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Chapter 6

Bayesian Inference for
Categorized Data

JEAN-MARC BERNARD

Introduction

This chapter presents Bayesian parametric inference and Bayesian
predictive inference for categorized data, that is for problems involv-
ing one or several frequencies. It is as self-contained as possible and
may be considered as a general introduction to the Bayesian method-
ology, even though the operational techniques described are specific
to categorized data. One definite advantage of presenting Bayesian
inference on this type of data is that the sampling model does not
involve arbitrary technical assumptions (e.g. normality, etc.). Being
partly freed from the burden of technical aspects, it becomes easier
to focus on the concepts underlying the methods.

The Bayesian approach to inference has often been criticized as
being subjective because, besides the data themselves, it requires an
external element, namely the prior distribution. However, we shall
see that, when one adopts what we call with Rouanet (see Chapters 1
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and 2) the data analysis methodology, the arbitrariness involved in
the choice of the prior distribution is much reduced and not larger
than the one existing in the frequentist framework. The data analysis
methodology leads to proposing, for each situation, a “reference prior
distribution” that provides a “standard Bayesian analysis”. In this
chapter we shall insist on how and why this approach to inference
enables one to go far beyond the traditional analyses. Our two claims
are the following: (i) all that can be done within the frequentist
framework may be reinterpreted in a more natural way within the
Bayesian one; (7i) some problems that arise quite naturally when
analyzing data, and for which the frequentist approach does not
provide answers, may, on the contrary, be addressed easily by the
Bayesian approach.

The other dimension that has, up to now, put a brake on the
development and use of Bayesian methods was the technical difficul-
ties involved in Bayesian computations. Nowadays the increase in
power of computers and, even more importantly, the emergence of
general and efficient algorithms have both contributed to fill the gap
between what was theoretically conceivable and what was practically
feasible.

This chapter is structured as follows. Section 6.1 deals with the
inference on one frequency, that is with binary data, under either an
hypergeometric or a binomial sampling model; it will enable us to
introduce the key concepts involved in the Bayesian approach and
to compare it to the frequentist one. From this point on, we shall
focus on Bayesian inference without further attempting to provide
a systematic comparison with frequentist inference. The predictive
approach to inference, again on one frequency, is presented in Section
6.2. We then give, through concrete and real examples, an insight on
how the Bayesian approach can be extended to situations involving
several frequencies, first considering simple designs (Section 6.3), and
then more complex ones (Section 6.4). The computational aspects,
left aside in the first sections, are sketched in Section 6.5. Finally,
Section 6.6 summarizes the major points put forward in the chapter.
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6.1 From Frequentist to Bayesian Inference:
An Illustration for Inference on one Fre-
quency

We shall first consider the case of binary data sampled without
replacement from a finite population (hypergeometric sampling).
This situation is presumably the simplest one at the technical level,
as the mathematics needed merely summarize to basic combinatorial
calculus. After stating the problem of inference on one frequency
(Section 6.1.1), we shall turn to its frequentist solutions (Section
6.1.2) and then to its Bayesian ones (Section 6.1.3 and Section
6.1.4). These first sections are illustrated by a miniature example
(small data set and small population) for which all calculations can
easily be carried out by hand. Considering a simple situation and a
simple example will enable us to examine all the steps involved in the
Bayesian approach at the conceptual level. In Section 6.1.5 we move
to sampling from an infinite population, i.e. binomial sampling.

We then explore, for the two kinds of sampling models, the
links between the frequentist and Bayesian approaches to inference
(Section 6.1.6). A detailed analysis of a real example (Section
6.1.7) will provide a practical view on the comparison of the two
approaches. Finally in Section 6.1.8, we stress the advantages of the
Bayesian approach.

6.1.1 The problem of Inference on one Frequency

Let us consider the following situation: the data are a group of
n binary observations, among which a are “successes” and b are
“failures”, with @ + b = n. Thus the observed frequency' of success

1. Throughout this chapter the word “frequency” will be used for designating a
“relative frequency”, and the word “count” for an “absolute frequency”. The
inferential methods considered further will involve probabilistic statements
bearing on unknown frequencies. The two concepts of “frequency” and
“probability”, though formally obeying identical rules, should be carefully
distinguished.
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is fops = a/n. We assume that the data constitute a sample from
a larger population of finite size N, whose composition in terms of
successes and failures (A, B) is unknown. The proportion ¢ = A/N
called the parent frequency (also called the population frequency or
the true frequency) is itself unknown and may be any value within
the set ® = {0/N,1/N,---,N/N}.

In this situation, the problem of inference may be stated as
follows: “What may be said about the unknown frequency ¢ on the
grounds of the observed data fo1,s and n?”. The frequency ¢ is thus
said to be the parameter of inference?.

Random sampling frame-model. Fundamentally, the problem
of inference described previously is a problem of generalization from
a sample to a population. But in order to proceed to such a
generalization, one must be assured (or must assume) that the
sample is, in some sense, representative of the population. Random
sampling is a privileged means to reach such a representativeness.
This is the frame that we shall adopt here: we assume (in the sense
of Chapter 2) that the group of observations is a random sample of
fixed size n without replacement from the population®.

The random sampling (with fixed size n) assumption, and the
characterization of the population by a single real parameter, ¢,
constitute here by themselves the “frame-model” for this situation
of inference. In the more complex situations that we shall envisage
later in this chapter, there will be several categories instead of
only two, so that the population will be characterized by several
parent frequencies as parameters. Nevertheless, even then, no extra
technical assumptions will be needed on the population.

2. In the following, several “objects” should be carefully distinguished: ¢, the
unknown parameter; ¢, a value that this parameter may take; o, a reference
value of interest for the parameter; and ® the set of all possible values for
parameter @.

3.  As we all know, effective random sampling is actually rarely done in practice.
An alternative view on this assumption is to think that the generalization
goes from the data set at hand to some larger data set that might be observed
and that would be composed of data items exchangeable with the available
ones (see Section 6.2.3).
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An illustrative example: Commitee data. To illustrate the
discussion, let us once again consider the example found in Chapter
4 Section 4.1.4: a club (the population) comprises N = 20 members;
a commitee (the sample) of n = 5 members is extracted from the
club and is composed of ¢« = 4 women and b = 1 man, so that the
observed frequency of women is f,;5s = 4/5. We call (a = 4,b=1)
the observed composition in counts and ( fops = 0.80,1— fo3, = 0.20)
the observed composition in frequencies. The corresponding parent
compositions (A, B) and (¢,1 — ¢) are unknown (see Table 6.1).

Table 6.1: Commitee data. Observed and unknown parent composi-
tions in counts.

Women  Men Total
Sample a=4 | b=1 n=>5
Population | A=?7 | B=7| N =20

We shall take ¢ = 0.30 as a reference value of interest for ¢, with,
as the main goal of the analysis, trying to generalize the descriptive
property f.ps > 0.30, i.e. to answer the question “May we say that
¢ > 0.3077.

6.1.2 The Frequentist Solutions

Sampling distribution. We saw in Chapter 4 Section 4.1.4 that,
for a given value ¢ = A/N of the parameter ¢, the proportion of
samples of size n for which the statistic frequency F equals the value
f=a/n,ac{0,---,n},is given by the hypergeometric distribution®:

A&
o)

P(F=f] é=¢)=p] (6.1)

4.  The notation (3) represents the binomial coefficient which may be expressed
in terms of factorials as: A!l/(a!(A —a)!). The symbol ‘|’ reads “if” or
“conditionally on”.
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For example, if the parent composition is (A = 6, B = 14) i.e.
¢ = 0.30, there are (i) (114) = 210 samples whose composition is
(a =4,b=1), or equivalently f = 4/5, out of (250) = 15504 samples
of size 5 in all, so that p? = 210/15504 = 0.0135.

Under the random sampling frame-model, these proportions of
samples convert to sampling probabilities®: thus p? represents the
probability of observing the frequency value f in a sample of size n
when the parent frequency equals ¢. The set of such probabilities
for all the possible values of the statistic F, {0/n,1/n,---,n/n}, is
called the sampling distribution of F given that ¢ = ¢. The sampling
distribution of F for the value ¢ = 0.30 is given in Table 6.2 and
represented graphically in Figure 6.1 p. 165.

Table 6.2: Sampling distribution of F, P(F = f | ¢ = ¢), for
»=0.30 (n =5 and N = 20).

f 1 0/5 [ 1/5 | 2/5 | 3/5 | 4/5 | 5/5
p? [0.1291 | 0.3874 | 0.3522 | 0.1174 | 0.0135 | 0.0004

Significance test. In the significance test procedure, one considers
a particular hypothesis about the true frequency ¢, for example
that ¢ equals some reference value of interest ¢g; this hypothesis
is generally called a null hypothesis and denoted Hg. The aim of the
test is to assess whether the observed data are compatible with Hq
or not.

This type of conclusion is reached on the sole basis of the
sampling distribution of F' given the hypothesis Hg : ¢ = o. As
may be seen from Figure 6.1 p. 165, if ¢ = 0.30, then the observable
frequency on a sample of size 5 may be any value from 0 to 1 but

5. The notation “P()” may be read “(sampling) probability” or “proportion (of
samples)” according to whether the random-sampling frame-model has been
assumed or not.
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Figure 6.1: Sampling distribution of F, P(F = f | ¢ = ¢), for
»=0.30 (n =5 and N = 20).

will most probably be close to 0.30: indeed, the two most probable
values are 0.20 and 0.40 (0.30 cannot be obtained with n = 5).

The compatibility of the data with Hp is measured by the
probability, under the hypothesis Hg, of obtaining a frequency F
more extreme than the observed frequency f,;5 (including the “as
extreme” case); this probability is called the observed significance
level, or simply the observed level, and noted p,;;. In our example
fors = 0.80 is greater than the reference value 0.30, and is thus
extreme upwise. In this situation the observed level is the observed
upper level pg,,, i.e. the probability of I being equal to or greater
than f,ps (psup Was denoted p in Chapter 4); according to Table 6.2
p. 164, is is thus:

Psup = P(F>0.80 | $=0.30) = 0.01354 0.0004 = 0.0139.

If f,3s had been lower than the reference value g, it would have
been extreme downwise and the observed level p,;, would then be
defined as the lower level p;,; = P(F < 0.80 | ¢ = 0.30).
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If the probability ps,, is considered sufficiently small, say smaller

than a specified one-sided reference level ay,,, then ¢ may be
declared significantly greater than 0.30 at the one-sided ag,, level;
equivalently we may say that the hypothesis ¢ = 0.30 is downwise
incompatible with the data. In our example, for the one-sided level
gy = 0.025, we have py,, = 0.0139 < 0.025, so that the parent
frequency ¢ can be declared significantly greater than 0.30. If we
similarly tested any other reference value ¢q less than 0.30, f,;
would be more extreme to the right and consequently the observed
level p,,, would be even smaller. Thus, for all possible hypotheses
such as ¢ = 0.25, ¢ = 0.20, etc., we would again reach the conclusion
of an incompatibility with the data. Hence the test performed is also
a test of the extended hypothesis Ho - ¢ < 0.30.
Remark: The observed level p,s is usually defined by including
the case F' = f,;,; this is an inclusive level. But this choice is a
matter of convention and the observed level could also be defined
by using the exclusive convention pl,, = P(F > f,s | Ho); here
we would find p},, = 0.0004. The inclusive convention is known to
be conservative whereas the exclusive one is anti-conservative. This
is why some authors have also proposed an intermediate solution
between these two, the mid-P convention, where the observed level
is defined as (psup + ply,)/2, that is here 0.0071 (see e.g. Berry &
Armitage, 1995). For a small sample, as in our example, the point
probability P(F = fous | Ho) may not be negligible, so that the
conclusion may be affected by the choice between these conventions;
for larger samples, any point probability is negligible so that using
one convention or another would be of no practical consequence.

Confidence limits and confidence interval for ¢. The confi-
dence interval for the parent frequency ¢ is built from the previously
described test procedure by seeking the set of reference values ¢q for

which f,;5 is not too extreme, neither upwise nor downwise®.

6. There are actually other ways of defining confidence intervals. Restricting
ourselves to this test-based construction allows us to use “The confidence
interval” without ambiguity.
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Let us consider all the possible values ¢g for ¢ that are less
than f,,. For a given one-sided reference level ay,, (less than
0.50 of course), some of these values — the smaller ones — will
be downwise incompatible with the data, while some others — the
larger ones — will be compatible with them; the smallest compatible
value, noted ¢, is the lower confidence limit for ¢. Similarly, if we
consider all possible reference values greater than f,;; and for each
compare the observed lower level p;,; with the one-sided reference
level aj,f, we get the upper confidence limit, 3. Typically these two
limits are defined by taking a fixed two-sided level ay, and identical
one-sided levels ay,, = a;r = ay/2. The resulting interval [¢; 7]
is the confidence interval for ¢ with confidence level (or guarantee)
Yis = 1 — ay; it is noted 1C,, .

For the Commitee data, for v;; = 0.95, i.e. ay, = 0.05, we find:

100.95 = [0357 095]

How should this interval be interpreted? By construction, it is the
set of values for ¢ that are compatible with the observed frequency
fors at the confidence level v4. From this construction follows the
fundamental confidence property satisfied by this interval: For any
value ¢, given that ¢ = ¢, the (sampling) probability for 1C.,_ to
contain ¢ is at least”

PICy,, ¢ | 6=¢) = 7. (6.2)

Frequentist probability. In the test of the hypothesis Hg : ¢ =
0.30, each probability involved, p% may be interpreted as the long-
run frequency of the occurence of “F = f” if one was repeatedly
collecting samples of size n = 5 from a population of size N = 20 with

7. Because the population is of finite size N, the set ® of the possible values for ¢
is discrete. Due to this, it is not always possible to find limits having exactly
some given confidence level 4. This is why we need to use the expression “at
least” (and the corresponding symbol ‘=’). This point is not fundamental,
“is at least” becoming “is exactly” as N tends to infinity.
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fixed ¢ = 0.30. These probabilities are thus “idealized frequencies”
and are said to be frequentist probabilities®.

The confidence level ~; of an interval is also a frequentist
probability: if one was repeatedly collecting samples of size n from
the same population of size N and was, for each one, computing the
confidence interval IC,, , then, in the long run, at least 74 x 100
percent of these intervals would contain the true value of ¢.

Quite often though, statistics users will propose the following
natural interpretation: “Given the calculated interval IC, , there is
a v probability that the parent frequency ¢ belongs to the interval.”
“Natural interpretation” because the probability evoked here bears
on an unknown quantity, namely the parameter ¢. The problem
is that this alternative interpretation has no meaning within the
frequentist statistical framework because the frequentist approach
only involves probabilities on observables given the parameter but
not on the parameter itself. As we shall see, this interpretation will
become possible in the Bayesian statistical framework.

To summarize, the frequentist procedures are exclusively based
on the sampling distribution. In this hypothetico-deductive ap-
proach, one considers a single (for the test) or several (for the con-
fidence interval) hypotheses concerning the parameter frequency ¢
and one concludes about the compatibility of the observed data with
these hypotheses. The assessment of compatibility is done on the sole
base of the sampling distribution, which provides probabilities of ob-
servable samples given a particular parent frequency considered as
fixed. At no moment this approach involves any probability relative
to the unknown parameter ¢.

6.1.3 The Bayesian Approach

Towards a more natural approach of the problem of infer-
ence. From an intuitive point of view, the problem of inference

8. The word “frequentist” has nothing to do with the fact that our inference
bears on an unknown “frequency”; it only expresses the status of the
probabilities involved.
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would appear to come up in the opposite way from the one adopted
in the frequentist approach: after having observed the data, f,;
and n, what may be said about the unknown parent frequency ¢?
Instead of having probabilities relative to all the possible samples
from a population with specified parameter ¢ = ¢, we would like to
have probabilities relative to the unknown ¢ for the unique sample
that was actually observed. In other words, the frequentist proba-
bilities go from the unknown (¢ = ¢g) to the known (the statistic
F), whereas natural probabilities would go from what is known (the
data characterized by F = f,;5) to what is not (¢). In brief, what
we have obtained, up to now, are the p% i.e. the probabilities of all
f given some value ¢, and what we would like to obtain are some
pé, i.e. some probabilities of all ¢ given a value f (and particularly
the observed one, fy;5).

How to obtain inverse probabilities: Bayes’ theorem. For
obtaining such inverse probabilities, the Bayesian approach consists
in posing prior probabilities on each value ¢ that ¢ may take; these
prior probabilities are denoted p,. The idea is that in order to begin
calculating the probabilities of the various possible “causes” of what
was observed, one must start somewhere with some probabilities of
these causes independently of what was observed. The set of the
prior probabilities, p, for all ¢ € ®, is called the prior distribution,
or simply the prior, on ¢.

From the sampling distribution (equation (6.1)) and the prior
distribution, one derives a posterior distribution, or simply a poste-
rior, i.e. a set of posterior probabilities pf;7 through the use of Bayes’
theorem:

;o ey

P — 6.3
¢ Y ped PeP} (6:3)

Each prior probability p, is updated according to the likelihood of
[ given o, i.e. p?; the denominator on the right-hand side of the
above equation is a normalizing constant for making the posterior
probabilities add up to one.
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The probabilities bearing on the unknown parameter ¢, whether
prior or posterior, will also be denoted with the symbol “Prob()”.
We purposely use a different symbol, Prob, for these Bayesian (epis-
temic) probabilities in order to distinguish them from the frequentist
ones, generically noted P. Hence, p, and pf’j may also appear as
Prob(¢ = ¢) and Prob(¢ = ¢ | F = f) respectively.

Bayes’ theorem provides probabilities on ¢ for any given value
f of F. If we use it for the observed value f,;;, we thus have a
distribution on ¢ given the observed data (and, of course, the prior
distribution).

Uniform prior distribution. The Bayesian approach requires the
choice of a prior distribution on ¢. One simple choice is to consider
that all possible values of ¢ have the same prior probability: as there
are (N + 1) such values, this choice leads to p, = 1/(N + 1). Using
the definition of p? given in (6.1) and applying Bayes’ theorem (6.3),
we find the posterior probabilities:

’ ()

(6.4)

This posterior distribution for the Commitee data is represented
in Figure 6.2 p. 171. For the first four lower values of ¢ (0, 0.05,
0.10 and 0.15) the posterior probability is exactly 0; indeed, having
observed a = 4 successes in the sample implies that the number of
successes A in the population is necessarily at least 4, so that we
know for sure (logical induction) that ¢ > 4/20 = 0.20. From the
value ¢ = 0.20, the probabilities are strictly positive and increase to
reach a maximum for 0.80, value which is the same as the observed
frequency, and then decrease to finally reach 0 again for the last value
¢ = 1 which again is logically impossible because the data comprised
b =1 failure.

Generalisation to Beta-binomial prior distributions. The
uniform distribution is only one particular possibility for the prior
distribution. For reasons that will soon become apparent, it is
important to investigate the other possible choices. For this purpose,
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Figure 6.2: Commitee data. Posterior distribution on ¢ derived from
a uniform prior (f,5s = 0.80, n = 5, N = 20).

we shall now introduce a more general class of distributions, the
Beta-binomial distributions, containing the uniform distribution as
a particular case”. A Beta-binomial distribution depends on two
positive real “hyperparameters” a and 'Y, whose sum is denoted
v = a4+ [; such a distribution will be noted BeBi(a,3;N). Tts

general expression is'!:

(R

N+v—

N
If the preceding distribution BeBi(«,3; N ) is taken as a prior on
(A, B) with fixed A+ B = N, then the posterior distribution,

A
Do with ¢ = N 1- (6.5)

B
v

9. This distribution appears in Mosimann (1962) as the compound binomial and
was later referred to as the Beta-binomial by Hoadley (1969) and most recent
authors. In Bernard (1983) they are called discrete-Beta.

10. These hyperparameters should not be mistaken for the parameter of inference
¢, nor for significance levels that were denoted with subscripts as, avsup or

Qinf-
11. Our notation follows the usual extension of binomial coefficients to
non-integers through the use of the Gamma function: (A‘lj_l) =

T(A+ a)/(T(a)Al).
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after observing the counts (a,b) with fixed a + b = n, is still
of the same type, but with transformed characteristics!?: it is a
BeBi(a+ a,b+ ;N —n). A first change expresses the knowledge
brought by the data: the two prior hyperparameters (a,f3) are
incremented by the observed counts (a,b) to become (o' = a+a, 3’ =
b+ 3) with v = n+v. On the other side, what remains to be known
about the population reduces so that the unknown composition
(A, B) is now replaced by (A’ = A—a, B’ = B—b) with N’ = N —n.
If, in the prior equation (6.5), we substitute A, B, N, o, § and v
with their respective “primed” value, i.e. A’, B’, etc., we get the
posterior distribution given below:

to!— 45— A4a—-1\ /B+5-1
CEICET _CRCEY
(N’—l]—\z;/’—l) - (N];lf—y—l) : :

vl

Actually, the two hyperparameters a and § may be considered as
prior strengths put on each of the two categories, that are combined
additively with the observed strengths a and b provided by the data.
Figure 6.3 p. 173 summarizes this updating process.

The uniform prior distribution for which we have first illustrated
Bayes’ theorem is a Beta-binomial BeBi(a=1,5=1;N ). Figure
6.4 p. 174 shows the application of Bayes’ theorem to the Commitee
data with a non-uniform though symmetrical prior BeBi(2,2;20).
As may be seen from the comparison of the prior and the posterior,
the data have intervened in two ways:

(i) As already noticed, the observed composition (¢« = 4,b = 1)
logically excludes some of the initially possible values for ¢: ¢ is
necessarily within the interval [4/20; (20 — 1)/20]. So only values
in this interval have a non-null posterior probability.

12. This property is why Beta-binomial distributions are privileged priors for
hypergeometric sampling: the Beta-binomial family is said to be a conjugate
family for this sampling scheme.
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Prior state

A B
f !
o B
Posterior state
A—a B—b
| |
f !
ol a | o 1 3

Figure 6.3: Prior and posterior states of knowledge on ¢ expressed by
a Beta-binomial distribution: the quantities appearing above belong
to the “unknown” (A and B in the prior state, A —a and B —b in
the posterior state), those appearing below belong to the “known”
(prior knowledge, a and /3, plus data, a and b, in the posterior state).

(ii) Moreover, the probabilities of the remaining possible values for ¢
have been updated in the direction of a favouring of values that
are close to f,;s; for example, Prob(¢ = 0.70) increases from 0.059
to 0.129 whereas Prob(¢ = 0.20) decreases from 0.048 to less than
0.001.

Bayes’ theorem as a learning model. Fundamentally Bayes’
theorem is a probabilistic learning model that may be schematized by
the diagram below. What is known initially, before any observation,
is expressed by the prior distribution; this prior state of knowledge
is updated by the data into a posterior state, itself expressed by the
posterior distribution®.

Prior on Dat Posteripr gn
<5 T fasandn T ¢ given the data

From the statistical point of view that we only focus on here,
this learning model interpretation also clearly explains why the

13. This view of Bayes’ theorem explains why it is now often proposed as a
model for knowledge representation and updating in the fields of cognitive
psychology and artificial intelligence (see e.g. Anderson, 1991; Walley, 1996b).
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P
0.15 Posterior
0.10 |
Prior
0.05 | IR T
| | | [ A 1| | |
| |
I||'I|"|"""'I'I|I
PRI I O P ¥ Y A
0 0.2 0.4 0.6 0.8 1 @
Figure 6.4: Commitee data.  Prior (dashes) and posterior

(solid) distributions; the prior is the non-uniform distribution
BeBi(a=2,5=2; N =20).

probabilities are of an epistemic nature. The probabilities involved
in the Bayesian approach are relative to some particular state of
knowledge; they are not the expression of some intrinsic property of
some object or device of the outside world, but they describe one’s
uncertainty about reality. And of course, this uncertainty varies with
the information available!. In this line, Bayesian inference should
also be seen as fundamentally recursive: after some data have been
observed the posterior state of knowledge becomes the new prior
state to be used with some future data, and so on.

Respective roles of the prior and the data upon the poste-
rior distribution. With the preceding view, the posterior distribu-
tion appears as the combination of two components, namely the prior
and the data. Let us look into how these two components respec-
tively affect the posterior distribution. Schematically two situations
may occur:

14. This is why we use the term “probability on ¢” rather than “probability of
¢77.
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(i) The data are in agreement with the prior distribution in the sense
that the observed frequency f,;;s corresponds to a region with high
prior probabilities. The peak of the posterior distribution then
corresponds to a value close to the peek of the prior (and close to
fors as well). The change from prior to posterior will then be a
decrease in variance. Using the “learning model” viewpoint, the
new information provided by the data goes in the same direction
as the initial state of knowledge; thus this state of knowledge is
reinforced, uncertainty diminishes and the resulting final state is
more precise. Of course, the larger the data size n is, the more
important is the gained precision, i.e. the decrease in variance.
This first case is illustrated in Figure 6.5. [In Figures 6.5 and 6.6,
we assume a population of size N = 100.]

Prior Posterior n = 5

0 .33 1 0 1

Figure 6.5: Posterior distribution (right) for ¢ when the data
of size n = 5 are in agreement (f,s = 0.20) with the prior

BeBi(a=2,5=4; N = 100) (left).

(ii) The data are in disagreement with the prior in the sense that f,;s
falls in a low prior probability region. In this case the updating
process comprises a translation of the center of the distribution
towards the observed frequency f,;s. If the data are not too
numerous, only this center shifting occurs; but with larger data
size, the decrease in variance previously described will also occur.
This is illustrated in Figure 6.6 p. 176.

This attraction power of the data, whether it involves a center
shifting or a variance decrease, depends on the ratio of the data’s
strength, i.e. their size n, to the total prior strength, v = a + . If
v is small, which represents little prior knowledge, then the data’s
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Figure 6.6: Posterior distributions (right) for ¢ when data of size
n=5,n =20 and n = 50 are in disagreement ( f,;s = 0.80) with the
prior BeBi(a=2,5=4; N = 100) (left).

attractive power will be quite perceptible even for small data size
n. On the other hand, if v is large, which represents substantial
prior knowledge, n must be large enough for the posterior to be
noticeably affected. Intuitively speaking, it is more difficult to get
someone to change his mind if his ideas are rather firm to start with.
This interpretation in terms of “strengths ratio” is a guide for the
question of the prior’s choice that we discuss next.

Two approaches for choosing the prior distribution. Accord-
ing to which criteria should the prior distribution be chosen? The
answer to this question actually depends on the goal which is as-
signed to the analysis of the data; very roughly we may categorize
goals into one of the two following ones.
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If the analysis must lead to decision making, one should take into
account all other available relevant pieces of information (previous
data, expert knowledge) besides the data themselves. These would
then be incorporated into the prior distribution and would then
partly affect the analysis. With such a goal, the prior strength v
may not be small relative to the data strength »!°. In addition, such
a decisionist approach typically involves the taking into account of
the respective costs (or utilities) of each possible decision. Clearly
this approach may involve several elements of subjectivity (expert
knowledge, costs) and is mostly advocated by what Rouanet calls
“radical Bayesians” (see Chapter 1, Appendix 1). For a recent
account of this approach, see Bernardo & Smith (1994).

The other approach that we shall adopt in the sequel of this
Chapter is what we call the “data analysis methodology”. Tt corre-
sponds to a situation in which no prior information is available, or
in which, if some is, one does not want to take it into account in the
analysis. Here the idea is to choose a prior which expresses a prior
state of ignorance on the parameter. The resulting posterior distri-
bution will then express “what the data have to say” about the un-
known parameter, independently of any external knowledge. In the
modern era of statistical inference, this “moderate Bayesian” view-
point is largely associated with the name of Jeffreys (1938/1961)',
in particular with the use of Jeffreys’s (1946) rule for choosing prior
probabilities'”.

15. For expressing substantive prior knowledge, a broader class of prior distribu-
tions might be needed. A simple and general solution is to use a weighted
mixture of Beta-binomial distributions instead of a single one; the posterior
obtained then is also a weighted mixture of Beta-binomial distributions.

16. Though less often referenced in Bayesian literature, Jaynes has also been a
strong defender of this view (e.g. Jaynes, 1968).

17. Bernardo & Smith (1994, p. 68) write that “ .. the problem of reporting
inferences is essentially a special case of a decision problem”; these authors
nevertheless dedicate a rather long chapter to “Inference” including a section
on “Reference analysis” where they propose “reference posterior distribu-
tions” (which often agree with Jeffreys’ proposals) to fulfill the need for an
inductive data analysis methodology.
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Formalizing ignorance: towards standard distributions. Of
course the goal of formalizing ignorance is to provide, if not an
objective Bayesian method, at least a reference method for public
usage. Much work and debate have been motivated by such a
purpose, because formalizing ignorance has not proved to be as a
simple matter as it might sound (for a recent review, see e.g. Kass
& Wasserman, 1996).

For the inference on a frequency in the case of a finite population,
the most common solution — initially proposed by Bayes himself and
later by Laplace (1825/1986 p. 45) who justified it by the so-called
principle of insufficient reason — consists of choosing a uniform prior
BeBi(a= 1,5 = 1; N ). knowing nothing about ¢ is operationalized
by assigning equal prior probabilities to each possible value for ¢.
Clearly the uniform solution satisfies two intuitive principles that
an ignorance prior should obey: (i) there must be some kind of
symmetry between the two categories, so that the prior strengths
a and [ must be of the same order of magnitude, (ii) the total
prior strength must be small for the strength ratio to be in favour of
the data. However, coherence with what was later proposed for the
case of an infinite population suggests the possible use of some other
priors than the uniform obeying these principles. We shall leave the
discussion of that point to Section 6.1.5. Here, we shall only give the
two resulting ideas.

The first idea is that, when considering all proposed priors, it is
possible to define an ignorance zone, corresponding to prior strengths
constrained by: a > 0, 3 > 0 and v = 1. The difference between the
two extreme points of this ignorance zone, namely (a = 1,3 = 0)
and (o = 0,3 = 1), actually reduces to a change from one success to
one failure. Thus, as soon as the sample size n is large enough, the
various solutions provided by the entire ignorance zone will lead to
very close results.

The second idea is that, for practical purposes, we have been
led to suggest one particular prior within the ignorance zone, the
standard prior obtained for a = f = 1/2. We call the resulting
posterior the standard posterior distribution or simply the standard
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distribution.  When using this standard prior, we shall refer to
Bayesian standard methods.

From these two points, the overall strategy that we shall adopt for
subsequent analyses in this chapter is the following. First, we shall
always provide standard probabilistic statements, i.e. ones that are
derived from the standard posterior distribution; such statements
will be of the form “Prob*(property) = v”. Secondly, varying the
prior within the ignorance zone provides the means to determine
the sensitivity of the Bayesian results to the choice of the prior.
When this is done, Bayesian probabilistic statements end up in a
probability interval rather than in a single probability value; these
complementary statements will be of the form “Prob*(property) =
[71,72]”. Often we shall summarize these two kinds of statements
by omitting the upper guarantee v, (less essential than +; for the
purpose of generalizing a property of interest), so as to obtain the
more compact statement,

Prob*(property) = ~ (> ) (6.7)

which should be understood as: “The probability of property is ~
for a standard prior, and in any case greater than ~; for whichever
prior taken in the ignorance zone”!®. Notice that the ‘x” superscript
in “Prob*” indicates two things at once: first that the probabilistic
statement is derived from the posterior distribution (thus the con-
ditioning on the observed data becomes implicit) and second, that
we are using an ignorance prior (either the standard prior or the
ignorance zone).

As will become apparent on examples considered further, for
large data sets, the several probabilities provided by the entire
ignorance zone will all be very close to one another so that the
single standard probability is enough to summarize them all. For
small samples though, the suggested sensitivity analysis might lead

18. If one wishes to produce statements involving only one guarantee value, the
most cautious (conservative) solution consists in stating: Prob*(property) >

Y-
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to wide probability intervals. If the inferential conclusion appears to
be too easily affected by the prior’s choice, a sensible conclusion is
that “we do not know much more about the parameter after taking
the data into account than before doing so”.

6.1.4 Bayesian Answers to the Inference Problem

We have now defined a general Bayesian framework for inductive
data analysis: from a prior distribution expressing an initial state
of ignorance about the parameter, and the observed data, one
derives a posterior distribution on the parameter which expresses
probabilistically what the data have to say about the parameter.

This construction will be completed by stating that, in the
Bayesian framework, the posterior distribution is the exhaustive sum-
mary of the inductive analysis from which answers to any question
pertaining to the parameter will be drawn. Fach possible question
can be translated into a property of interest that the parameter may
have, typically stating that the parameter is within some restricted
region among the set of its possible values; the Bayesian answer will
then be the posterior probability of the parameter belonging to that
region.

Of course, the Bayesian answers that we examine next are not
bound to the use of a particular prior, but, from now on, we shall
restrict our attention to answers obtained with ignorance priors;
thus speaking of “the” posterior or “the” probability will refer
to unambiguous statements, as far as we allow for the restricted
undetermination induced by the ignorance zone.

Bayesian test of an extended hypothesis. Let us turn back to
our initial question of comparing ¢ to the reference value g = 0.30.
Within the Bayesian framework, testing the extended hypothesis
Ho - ¢ < g just amounts to calculating the posterior probability
of the hypothesis, which is here found to be:

Prob*(¢ < 0.30) = 0.0049.
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This probability is the Bayesian counterpart of the frequentist ob-
served level p;,, for Ho (in Section 6.1.2, we found 0.0139, 0.0004 and
0.0071 for ps,, depending on the choice between the inclusive, the
exclusive or the mid-P conventions). As it is sufficiently small here,
say less than the one-sided level ay,, = 0.025, we are in a position to
reject 7% at level ag,,. The conclusion reached here sounds similar
to a conclusion obtained from a frequentist test, but the “rejection”
involved here is of a quite different nature. In the frequentist frame-
work the line of reasoning was: “If the hypothesis were true, then
the observed data would be highly unprobable; hence the hypothesis
must be false”. Whereas here it goes: “given the observed data, the
hypothesis is highly unprobable”.

Instead of considering an hypothesis counter to what we observed
in the data (as commonly done in frequentist methods), we may
envisage the problem more directly and consider the hypothesis
¢ > 0.30 which generalizes the observed property f.,;s > 0.30.
This is straightforward in the Bayesian framework: we previously
found Prob*(¢ < 0.30) = 0.0049, so that, by considering the
complementary property, we get

Prob*(¢ > 0.30) = 1—0.0049 = 0.9951.

This probability is close to 1, say greater than the one-sided guar-
antee 74, = 0.975, and we may thus conclude that the data are in
favour of the hypothesis ¢ > 0.30 at the guarantee 7,,,.

We have just illustrated here a quite general feature of the
Bayesian approach, the fact that it enables one to reason directly
about the hypothesis which generalizes the descriptive conclusion.
Because of this, it is more common within the Bayesian framework to
provide statements with a high guarantee (with respect to a reference
guarantee) rather than reverse statements having a low level (with
respect to a reference level).

If we now consider the ignorance zone as a whole and not the
standard prior only, we find Prob*(¢ < 0.30) = [0.0016,0.0139] and
Prob*(¢ > 0.30) = [0.9861,0.9984]. Even though the sample size
is particularly small here, n = 5, both intervals of probabilities are
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seen to be rather narrow. In any case we may conclude that the
probability of ¢ being greater than 0.30 is higher than 0.9861.

Credibility limits and credibility interval. There are also
Bayesian counterparts of the confidence limits and of the confidence
interval, respectively called credibility limits and credibility interval.

For a given upper reference level ag,,, or equivalently a given
upper guarantee v, = (1 — @y, ), the lower credibility limit for ¢,
noted ¢, is defined as the largest value for ¢ such that Prob*(¢ >
©) = Vsup- In the Commitee data example, for v,,, = 0.975, we have
Prob*(¢ > 0.45) = 0.9756 and Prob*(¢ > 0.50) = 0.9552, so that
we find ¢ = 0.45. The upper credibility limit at the lower guarantee
Vinf 18 defined in a similar way as the smallest value for ¢ such that
Prob*(¢ < @) = viys; here we find 3 = 0.95.

For identical upper and lower guarantees v = 7Ysup = (1 +
Yis)/2, the two values ¢ and P define the credibility intervall® for ¢
at the two-sided guaraﬁtee Yis = 0.95:

ICRO.95 = [045,095]

By construction the credibility interval ICR.,,  has the fundamental
credibility property, i.e.: The probability for ¢ belonging to ICR.,,_ is
at least yis: Prob*(¢ € [0;P]) = 7is-

It should be noted that both the test of an extended hypothesis
and the credibility interval procedure end up in statements of the
same nature, Prob*(property) = guarantee. The only difference is
that, in the former, the property is given and the guarantee to be
computed, whereas, in the latter, the guarantee is given and the
property has to be found (within a restricted class of properties).
As we announced, the answer to any question pertaining to the
parameter (or parameters in more complex problems) will be based
upon statements of this kind, where the property will correspond to
the appropriate region of the parameter’s space.

19. More acurately this is the symmetrical credibility interval. Other intervals
could be defined with differing lower and upper reference levels.
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Remark: Within the framework just presented, it is important to
notice that “testing a point null hypothesis”, if taken as meaning “as-
sessing the probability of the hypothesis”, is void of interest. Indeed,
the posterior probability Prob*(¢ = ¢g) of any point hypothesis is
very small provided that N is large (it tends to 0 as N increases),
so that only statements involving a set of values for ¢ may possibly
lead to a sufficiently high guarantee.

6.1.5 Binomial Sampling Model (/N Infinite)

Up to here, we have focused on inference about a frequency from
a sample from a finite population. This simple case has given us
the opportunity to set up the various components of the Bayesian
approach. But quite often, the population size is not specified and
may be considered very large relative to the sample size. This
situation corresponds to the case of an arbitrarily large population,
i.e. technically an infinite N. This case has received more attention
and results relative to it are more “classical” than the preceding
ones (see e.g. Lindley, 1965; Lindley & Phillips, 1976) even though,
in our opinion, they still remain too rarely applied. However, both
cases are closely related, since most results for the infinite case may
be obtained as limiting ones from the finite case, with N tending
towards infinity.

When N is infinite, the population is only characterized by its
composition in frequencies, i.e. by the unknown parent frequency
¢. The sampling distribution, the p% now becomes a binomial
distribution (limiting form of the hypergeometric when N tends
towards infinity). The prior and posterior distributions are now
members of the family of Beta distributions (limiting form of the
Beta-binomial family when N tends towards infinity). The major
change is that these distributions are continuous. To each possible
value ¢ of ¢ is now associated a probability density: any single value
of ¢ has a null probability and only intervals for ¢ have non-null
probabilities.
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All of the methods previously described, whether frequentist or
Bayesian, can be extended to the infinite case. However, we shall
not attempt to give a detailed parallel presentation, but rather focus
only on the Bayesian approach.

Prior distribution: Ignorance zone and standard prior. As
in the finite case, everything in the Bayesian approach can be
expressed in terms of prior and posterior strengths. A Beta prior is
characterized by two strengths a and 3 respectively attached to the
“success” and “failure” categories; we note such a prior Beta(a,[3).

The choice @ = 3 = 1 leads to a distribution with a uniform
density. Several other proposals can be found in the litterature
depending on which specific criteria are used to formalize ignorance:
Haldane (1948) proposed a = 3 = 0 (this should read very close to 0
since the Beta distribution is not defined for null strengths); Jeffreys
(1946, 1938/1961) and Perks (1947) suggested o = § = 1/2.

It appears that all suggested solutions correspond to prior
strengths both between 0 and 1. Moreover it can be shown (see
e.g. Bernard, 1996) that, for any prior in this set, the probability of
any one-sided hypothesis of the type ¢ > (g is always in-between
the probabilities obtained with the two following extreme priors:
(a =0,6=1)and (« = 1,5 = 0). This result led us to suggest
the idea of an ignorance zone defined as:

a>0, >0, v=a+=1. (6.8)

A similar suggestion is also made by Walley (1991, 1996a) under the
name of the “imprecise Beta model”. Formalizing prior ignorance by
this ignorance zone leads to a probability interval for each property of
interest relative to the parameter. The lower and upper probabilities
of this interval are interpreted by Walley as acceptable betting rates
for and against the property.

Within the ignorance zone, it is convenient to have one single
standard reference prior; the mid-point of the ignorance zone (a =
[ = 1/2), which coincides with Jeffreys’ and Perks’ priors, appears
as a good compromise between all proposed priors. We shall soon see
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(Section 6.1.6) that there are strong connections between Bayesian
methods using this ignorance zone and frequentist methods, even as
far as the degree of undetermination is concerned.

Posterior distribution on ¢. If the prior on ¢ is Beta(a,3) and
the data’s composition in counts is (a,b), the posterior distribution
is Beta(a+ a,b+ ). The mean and variance of the posterior
distribution are given below:

Mean(¢) = Zij (6.9)

_ _(lata)(b+p)
Var(¢) = CET LT TENb (6.10)

Notice that this mean is the ratio of the posterior “success” strength
(a+ a) to the posterior total strength (n+v); in particular the stan-

dard distribution (a = § = 1/2) is centered on a;l_{Q. Furthermore,

using any prior within the ignorance zone, the posterior mean is al-
ways comprised between -2 and ZE, it can be seen that, when

n is not too small, both values will be very close to the observed
frequency f,5s = a/n.

6.1.6 Bayesian Reinterpretation of Frequentist Proce-
dures

For the problem of inference with which we started, “What can be
said about ¢ from the data f,;s and n?”, it appears that we now have
two sets of answers: the first obtained by using frequentist methods
(significance test and confidence interval), and the second by using
the Bayesian framework (Bayesian test and credibility interval).
However, these answers are different on two levels: first, and most
of all, they respectively refer to two different statistical frameworks
in which the probabilities — on which the conclusions are based —
are of a different nature; second, they lead to different, though close,
numerical results.
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We shall now see that both frameworks are closely related and,
more precisely, that it is possible to reinterpret Bayesianly the fre-
quentist procedures by an appropriate choice of the prior strengths.

Tests of an extended hypothesis. Let us again consider the
frequentist test of the extended hypothesis ¢ < ¢ in the case
fobs > 0. As we remarked in Section 6.1.2, the observed level can
be defined in (at least) two ways, inclusive or exclusive, according
to whether the probability of the observed value is included or not.
These two observed levels were respectively defined as:

Pobs = Psup = P(F > fobs | ¢ = 990)7 (611)
Phobs = Phup P(F > fos | &= ¢0) (6.12)

For the Commitee data and ¢y = 0.30 we found: p,;; = 0.0139 and
P = 0.004.

Within the Bayesian framework we also introduced a Bayesian
test of the hypothesis ¢ < g, based on the posterior distribution,
that is a distribution conditionnal on the data and the two prior
strengths a and 3. Here also, we may consider two variants of this
test whether the probability of the value g is included or not; their
respective levels are:

PTOb(¢ < o | F = fobs; Oé7ﬁ)7 (613)
PTOb(¢ < ®o | F = fops; Oé7ﬁ). (614)

The symmetry with the frequentist approach is only apparent as the
two probabilities (6.13) and (6.14) are equal when N is considered
infinite (because then Prob(¢ = ¢o) = 0); on the other hand the
observed levels (6.11) and (6.12) are never equal (this would require
an infinite sample size n).

With a standard prior, & = 8 = 1/2, and the inclusive variant,
we found a Bayesian level of 0.0049 for the Commitee data, close to
the two frequentist levels. Due to what we call “Guilbaud’s magical
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hypergeometric identity”?0, it is actually possible to choose a and

[ so that both the frequentist levels and the Bayesian levels are in
perfect agreement:

P(FZfobs |¢:§00) PrOb(¢§§OO|F:fobs;071) (615)
P(F> fas| ¢=v0) = Prob(¢ < o| F= fos;1,0) (6.16)

As previously noted, the difference between the two Bayesian vari-
ants (6.13) and (6.14) tends to vanish as N becomes large. The
remaining and more important differences between equations (6.15)
and (6.16) are that the frequentist inclusive level corresponds to prior
strengths (o = 0,5 = 1) and the exclusive frequentist level to prior
strengths (a = 1,5 = 0).

It can be seen that the two priors that provide this frequentist-
Bayesian mutual reinterpretation are the two extreme priors of
the ignorance zone. From a Bayesian point of view, each of the
two frequentist tests appears slightly biased, as the inclusive one
is favouring the “failure” category whereas the exclusive one is
favouring the “success” category. In this regard, the “mid-P”
convention (taking (poss + p’;,)/2 as the observed level) appears to
be more balanced; this is quite similar to the argument that led us,
on the Bayesian side, to the standard prior (a = § = 1/2). Indeed
these two kinds of “compromises” will generally lead to almost the
same numerical value.

One major consequence of this link between the two approaches
is that, if one feels puzzled about the undetermination in the
ignorance zone in the Bayesian framework, one should feel so too
about the choice between the inclusive and exclusive conventions in
the frequentist framework. There is no more arbitrariness in the
Bayesian data analysis approach than in the frequentist approach.
Furthermore, the common undetermination in both approaches is

20. This identity may be found for example in Lieberman & Owen (1961, p. 19);
its importance for Bayesian inference has been pointed out by Guilbaud
during several seminars around 1980 (Guilbaud, 1983; see also Rouanet,
Bernard, Le Roux, 1990, p. 227).
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small and will be of no practical consequence if the sample size n is
not too small.

This link was explored in more detail in Bernard (1996); we also
showed that the ignorance zone provides bounds for frequentist levels
obtained from several other sampling models?!.

Confidence and credibility. From what precedes follows a similar
link between confidence intervals and crebility intervals. If IC., =
[¢, %] is a v confidence interval for ¢, then it is also approximately a
'y_standard credibility interval, that is:

Prob*(¢p € 1C.)) =~ 7. (6.17)

Of course this approximate identity holds for any procedure used
for defining confidence intervals, whether they are based upon the
inclusive, mid-P, or exclusive test, but the numerical closeness will
be much greater when comparing the mid-P level based confidence
interval with the standard credibility interval.

There are similar approximate identities for a variety of other
elementary cases. But, as Rouanet pointed out in Chapter 2, such
identities do not hold for many other cases, either because confi-
dence intervals are not available or because they present undesirable
properties. Investigating in detail several common interval estima-
tion problems, Jaynes (1976) summarizes his paper by saying: “...
the Bayesian method is easier to apply and yields the same or better
results. Indeed, the orthodox results are satisfactory only when they
agree closely (or exactly) with the Bayesian results.”

21. Ome conceptual difficulty of the frequentist approach is the dependence of
Pobs on the sample space, and particularly on the stopping rule, since the
observed data are compared to all other data sets that might have occurred.
Hence the same data will be analyzed differently whether it is considered
that the sampling process stopped because size n was reached (binomial
sampling) or because a successes (or b failures) were reached (negative-
binomial sampling). On the contrary, the ignorance zone idea is free from any
sampling scheme assumption. This last point is made very clear in Walley
(1996a).
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Fiducial approach. Bayesian inference with ignorance priors is
very close in spirit to Fisher’s fiducial approach: these both aim at
providing a distribution on the parameter which only expresses the
information brought by the data. However, the fiducial idea consists
in trying to reach this goal without the recourse to a prior distri-
bution. Unfortunately, due to the discreteness of the distributions
encountered in the case of categorized data, one can only derive an
asymptotic fiducial distribution for ¢, which, not so suprisingly, co-
incides with our suggested standard posterior distribution (Fisher,
1956/1959, pp. 60-65).

Thus, whereas in Chapter 5 the expressions “fiducial”, “Bayes-
fiducial” or “standard Bayesian” could be used indifferently, here,
within the context of categorized data, we shall only use “standard
Bayesian”, since the word “fiducial” may only refer to the motivation
but not to the technique.

General comments. Let us conclude this sub-section with two
remarks. First, when looked at from a Bayesian viewpoint, the
frequentist methods correspond to an ignorance prior state. This
is the expression of a more general result: in elementary problems
there is a privileged link between frequentist inference and data
analysis minded Bayesian inference, of which we already had an
example when considering inference on means in Chapter 5. Second,
equations (6.15), (6.16) and (6.17) each provide a single numerical
result with two possible statistical interpretations: in particular we
think that the Bayesian interpretations of the observed significance
level and of the confidence interval are both more natural than their
frequentist counterparts, since they provide probabilistic statements
about the unknown parameter ¢.

6.1.7 An Example: Mendel’s Peas (Shape)

We shall consider one of Mendel’s experiments on the genetic trans-
mission of pea characteristics, already mentioned in Chapter 2 Sec-
tion 2.1.1. Here we only consider the “shape” attribute of the
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peas, but we shall turn back to the full data, involving “shape” and
“colour”, in Section 6.3.4.

The prediction of the Mendelian model is that, by crossing two
pure breeds of peas, respectively round and wrinkled, the second
generation will provide on average 3 round peas for 1 wrinkled one,
i.e. 3 out of 4. The composition in counts of 556 observed peas is
(a = 423,b = 133), so that the observed frequency of “round” is
fors = 423/556 = 0.761, a value quite close to the reference value
predicted by the Mendelian model ¢y = 3/4 = 0.75.

First of all we may perform the usual significance test of the null
hypothesis Hg: ¢ = 0.75. Using the binomial inclusive test, we find
Pobs = 0.297; with the usual Chi-square approximate test corrected
for continuity, we find p,ps & 0.295, a value which agrees quite closely
with the exact result. Using the mid-P convention, we would find
respectively 0.280 (exact) and 0.278 (approximate). Whichever way
we perform the test, we reach the conclusion that the departure of
the data from the Mendelian model is not significant at any usual
reference level (p,3s > 0.10).

Figure 6.7 p. 191 gives the standard posterior distribution of ¢,
which corresponds to the posterior strengths a + « = 423 + 1/2 and
b+ = 133+ 1/2. The mean of this distribution is 0.760, value very
close to f,3s; the relatively low dispersion of this distribution results
from the large sample size (n = 556).

If, using this distribution, we proceed to the Bayesian test of the
extended hypothesis ¢ < 0.75, we find:

Prob*(¢ < 0.75) = 0.280.

Here we see that the mid-P test and the standard Bayesian test both
lead to the same numerical result up to the third decimal place.
Using the ignorance zone, we find Prob*(¢ < 0.75) = [0.264,0.297],
the lower probability corresponding to the frequentist exclusive test
(from equation (6.16)) and the upper one to the inclusive one (from
equation (6.15)).

Besides the numerical equivalence between frequentist and
Bayesian tests, the Bayesian interpretation throws a light on the
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0.6 0.7 0.75 | 0.8 0.9
0.761

Figure 6.7: Mendel’s data. Standard distribution on ¢ ( f,;s = 0.761,
n = 556).

true meaning of a “non-significant” (NS) result. The departure
of fops = 0.761 from ¢ = 0.75 has been qualified “NS” because
the observed level (say the mid-P one) p,;s = 0.280 was not small
enough. From the Bayesian viewpoint, this is equivalent to saying
that Prob*(¢ < o) is not small enough, but also, as a consequence,
that Prob*(¢ > ¢g) = 1 — 0.280 = 0.720 is not large enough. In
other words, concluding “NS” implies that none of the two state-
ments about ¢ have a sufficiently high guarantee: by itself a “NS”
conclusion is just a report of an insufficient knowledge about ¢, and
may in no way mean that the Mendelian model ¢ = ¢g has been
proved.

Clearly, providing a confidence or a credibility interval carries
much more information about ¢. For example, the standard Bayesian
statement

Prob*(0.724 < ¢ < 0.794) = 0.95

tells us a lot more about how close the unknown parameter ¢ comes
to the Mendelian model.

The previous Bayesian statements are reinterpretations of the
usual frequentist procedures. But the Bayesian approach may
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provide a probability for any property of interest relative to the
parameter. For example, we might prefer to consider a property
stating that ¢ is close to the predicted reference value 0.75, i.e. for
example that the departure of ¢ from 0.75 in any direction is not
more than € considered as a negligible amount. For € = 0.05, we get:

Prob*(0.75— 0.05 < ¢ < 0.75+ 0.05) = 0.988 (> 0.986).

With the Bayesian approach introduced here, it is not possible to
prove any sharp model since Prob*(¢ = 0.75) is always 0 however
large the sample size may be; but it is possible to conclude that,
with a good guarantee, the departure from the model is negligible.

Finally, some researchers might prefer to formulate the conclu-
sions, either descriptive or inductive, in terms of the odds ratio. The
observed odds ratio is 7,55 = fops /(1 — fors) = 3.18 to be compared
to the reference value pg = 3. From the standard distribution on
the parent odds ratio p = ¢/(1 — ¢), we may for example get the
statement?2,

Prob*(3—0.5<p<340.5) = 0.826(> 0.814),

in which the guarantee is clearly to small for the observed property
“3— 0.5 < 1ryps < 34 0.5” to be generalized to p.

What we illustrate here is that in order to say that the departure
from the model is small, one must first choose a particular scale
to measure the departure (frequency, odds ratio or any other felt
relevant). It must be emphasized that having this choice is allowed
by the flexibility of the Bayesian approach to inference.

6.1.8 Bayesian vs Frequentist Inference

Significant or Non-significant vs Large or Small. When
studying the preceding example, we argued that the “S vs NS” fre-
quentist dichotomy provides a rather poor range of conclusions about

22. If ¢ follows a Beta distribution, the derived parameter p actually follows
a scaled Fisher/Snedecor F' distribution (the unscaled version is well known
to those familiar with ANOVA). The standard posterior on p is precisely

S F(2a+1,2041).
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the model of interest. We suggest that a better way to summarize
the information provided by the data about the validity of a model
is to think in terms of a large or small departure from the model.
This methodological point of view is not, by itself, bound to the
Bayesian approach, but using that approach makes it particularly
easy to adopt (for a detailed account of this viewpoint within the
context of ANOVA, see Rouanet, 1996). The two figures that we
examine next will help us to make the distinction between the two
approaches clearer (see Figure 6.8).

Let us consider, as for Mendel’s data, the model ¢ = 0.75; to fix
ideas, let us also take d,p; = (fo3, — 0.75) as an index of the data’s
departure from the model, and define |d,;5| < € as a small departure
and d,ps > € as a large positive one, with € > 0, say for example
e = 0.10.

Figure 6.8a p. 195 shows how the values of d,;; and of n jointly
determine the significance of the frequentist test (for a fixed reference
level ay,, = 0.05). The “NS” conclusion may be reached, either for
a small d,p,, or for a large one and a small n. At the same time, a
“S” conclusion can occur when d,;, is large, but also when d,;; is
small and n is large (note that these remarks actually apply for any
value for €). With a huge n, almost any value of d,;s leads to an
“S” conclusion. Obviously, the distinction “S” vs “NS” mixes the
observed size of the departure and the size of the sample.

On the other hand, if we now adopt the Bayesian framework and
take v, = 1 —agy, = 0.95 as a reference guarantee, we will conclude
“Large” when Prob*(6 > €) > 0.95, “Small” when Prob*(]6| < ¢) <
0.95, and “Don’t know” otherwise (with é = (¢—0.75)). Figure 6.8b
p. 195 is analogous to Figure 6.8a and gives the regions where each
of these conclusions are reached depending on d,;s and n. Now it
is clear that the conclusions “Large” or “Small” cannot be reached
if d,ps is not itself large or small. Thus, this approach can only
provide inductive conclusions that generalize descriptive ones. The
“Don’t know” region mostly corresponds to the case of a small n
(there are not enough data for being able to generalize anything),
or otherwise to situations where d,; is too close to € to reach a
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conclusion (relatively to €). If we superimpose the two figures, we
are now in a position to decide whether a “NS” result actually means
“The model is approximately true” or “There are not enough data”,
two conclusions which, undoubtedly, do not sound quite the same.
On the other hand, “S” is seen to be a necessary condition for

“Large”, but not a sufficient one??.

Simple change of words or more? It could be argued that what
we propose in this section is nothing more than replacing “signif-
icance test” by “Bayesian test” and “confidence” by “credibility”.
This is actually a way of thinking of the frequentist-Bayesian mutual
interpretations, but only at the numerical level. More fundamental,
we think, is that the Bayesian approach enables the researcher to
formulate his/her conclusions in natural terms, that is in terms of
probability statements relative to the unknown parameter.

But it should already appear that there are some decisive advan-
tages to the Bayesian approach, such as the freedom to choose the
parameter of interest (e.g. frequency or odds ratio) in order to match
the researcher’s question precisely. This will become even more obvi-
ous in the next sections where we examine questions that are either
unanswerable or awkwardly answered in the frequentist framework:
e.g. predictive inference, inference in the presence of nuisance param-
eters. Unlike what we did in the beginning of this section, we shall
now concentrate on the Bayesian approach and shall not attempt to
present the frequentist alternatives (when they exist). What will,
hopefully, become clear is that the Bayesian approach to inference
provides a general, unrestricted, framework for inferring from any
property of the data, however complex the data or the property may
be, to the corresponding property in the population.

23. Figures like 6.8a and 6.8b (p. 195) could actually be constructed for a variety
of other situations; see for example Bernard (1994, p. 79) for inferring on a
contrast on several means.
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dobs

Significant

Significant
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0.25

Large

dobs

0.00
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Figure 6.8: Frequentist test vs Bayesian assessment of importance.
(a) “Significant” or “Non-significant” for Ho : & > oo at level
agy, = 0.05 (above); (b) “Large”, “Small” or “Don’t know” for
the departure of ¢ from ¢o (relatively to € = 0.10) at guarantee
Ysup = 0.95 (below); conclusions in both diagrams are expressed as
functions of n (scale in \/n) and d,35 = fors — o, for the reference
value ¢o = 0.75.
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6.2 Predictive Inference on one Frequency

6.2.1 The Predictive Approach to Inference

Another way of considering the problem of inference is to adopt a
predictive point of view by trying to answer the following question:
after having observed the composition (a,b), what may be predicted
about the composition (a’,d’) of a future sample of size n’ = a’ + ¥/,
or equivalently about its frequency f' = a’/n'?

For Mendel’s data (Section 6.1.7), we found the descriptive
property 0.70 < fy,s < 0.80. In the predictive formulation of
the problem of inference, one is interested in the probability of
finding this property again in a future experiment with n’ other
peas. As Guttman (1983) pointed out, this simple question cannot
be answered within the traditional (frequentist) framework.

6.2.2 Predictive Distribution

The predictive distribution required to answer this type of question
can also be derived from Bayes’ theorem?*. TLet us first consider
the case of a finite population of size N. If the prior on ¢ is
Beta-binomial BeBi(a,3; N ), then the predictive distribution of
f' = d'/n’ given f = a/n is also a member of the same family,

as it is a BeBi(a+ a,b+ [;n’), whose expression is:

;o (a’—l—a:;a—l) (b’—l—b;ﬁ—l)
pf’ - (7’LI-|—7’L-|/—11—1>

n

(6.18)

As we shall see next, this distribution summarizes all the Bayesian
distributions given until now in this chapter.

24. In equation (6.3), the expression Zweé pwp‘; may also be written p; and
represents prior predictive probabilities. After having observed (a, b) on a first
sample, the resulting state of knowledge about ¢ is given by the posterior
probabilities pf:,. From this state of knowledge taken as a new prior one,
it is possible to apply Bayes’ theorem again in order to integrate a second
sample (a’,b'); then the previous expression will provide posterior predictive
probabilities, or, in short, predictive probabilities.
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Predictive vs posterior distribution. Inferring on the popula-
tion composition (A, B) from the observed (a,b) is nothing other
than predicting what remains unknown in the population, that is
the composition (A’, B") = (A — a, B — b) of the N' = N — n re-
maining elements. Thus the posterior distribution can be seen as a
particular predictive distribution where the prediction bears on the
whole N’ remaining elements, whereas in the predictive distribution,
the prediction only bears on the n’ next elements.

Hence, the only difference between the predictive distribution
given in (6.18) and the posterior distribution of (6.6) is the extent
of the prediction realized. This is obvious from their respective
equations: replacing (a’,b’) by (A’ = A — a, B' = B — b) in equation
(6.18) leads us back to equation (6.6).

Predictive distribution for infinite N. As we have said, the hy-
pergeometric and binomial sampling models only differ by the status
of N, finite or infinite. But it can be seen that, in the predictive
distribution, the size N of the population no longer appears. Con-
sequently the predictive distribution is the same whatever sampling
model is considered. The only difference between these two models is
that the finiteness of N induces a limit for n’, n’ < (N —n), whereas,
when N is infinite, n’ may be any value. In each model, setting n’
to its maximum value, either n’ = N — n or n’ = oo, will give back
the posterior distribution.

Characteristics of the predictive distribution. As the poste-
rior, the predictive distribution is centered on the relative posterior
strength of the “success” category; on the other hand, its variance is
larger than the posterior’s:
a+ «
M N = 6.19
canf) = 222, (6.19)
b 1 1
(ata)(b+p) ( + —). (6.20)
(n+v)(n+trv+1)

n+v n

Var(f)

In the predictive distribution, there are two sources of variance or
uncertainty: the first one concerns the parameter ¢ which, as in
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the posterior distribution, is only known through the n available
observations; the second one comes from the fact that, for a given
¢, there is still some uncertainty about the composition of the n’
observations on which the prediction bears. These two sources of
variance combine additively to give the above predictive variance.
This is even more obvious in the following approximation of the
variance, valid for small prior strengths and large sizes n and n’:

Var(F) & f( = N+ ). (6:21)

A common way for frequentists to bypass the difficulties of the
frequentist approach for answering such predictive questions is to
estimate ¢ from the data, e.g. <$ = fobs, and to predict f’ assuming
that <E is the true value of ¢. This approach is obviously biased
since it does not take into account one source of uncertainty, namely
the one about ¢, and thus leads to overprecise predictions. Raftery,
Madigan & Volinsky (1996) show that using a Bayesian predictive

analysis instead improves predictive performance?’.

Prediction about the next observation. The special case n’ =
1, i.e. predicting the next observation, has certainly been one of
the most discussed in the early era of statistical inference®®. For
the next observation there are only two possible outcomes, either
(/! =1, =0)sothat f' =1,0r ('’ = 0,0 = 1) so that f' = 0. The
posterior distribution is then determined by the single probability of
a success in the next trial,

Prob(f = 1) = 21¢ (6.22)

n+v’

25. This difference between the frequentist and Bayesian approaches to inference
is true in more general contexts than prediction: the Bayesian approach
enables one to take into account all sources of uncertainty when inferring on
a parameter of interest (see Chapter 5, Section 5.2.3).

26. The most famous example is the Laplace (1825/1986 p. 45) “probability that
the sun will rise again tomorrow” example, which, as Bernard Bru points out
(id., postface, pp. 263—264), was not amongst the least arguable applications
of his method.
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which has the same expression as the posterior mean in the general
case??.

As may be seen, this expression differs slightly from the first
intuitive answer that might be proposed: “if one observed a successes
out of n, then the probability of a subsequent success is =7. We just
used the expression “first intuitive answer” because considering cases
a = 0 or a = n, especially when n is small, leads one to thinking
that this latter formula is over-confident. The prior strengths «
and [ involved in (6.22), if they are chosen strictly positive, may
thus be viewed as safeguards against a too “data-glued” inferential
statement, since they allow for the possibility of an event that has
not yet been observed.

Adopting the ignorance zone formalization of prior ignorance,
we find Prob*(f" = 1) =[5, Zii] This suggests an alternative
“predictively-minded” interpretation of the ignorance zone. After
having observed a successes out of n, one may wish to give a
probability statement that will remain acceptable after the next
observation, whatever it may be, will have been observed. The first
intuitive answer, =, will be modified into ZE if this hypothetical
next observation is a success, and into nil if it is a failure: these
two values are precisely the two bounds of our ignorance-zone-based

predictive probability.

Example of a predictive distribution. Figure 6.9 p. 200 gives
the standard predictive distribution (prior strengths a = 5 = 1/2)
for a hypothetical replication of Mendel’s experiment (n’ = n = 556).
From this distribution, we get the statement Prob*(0.70 < f’ <
0.80) = 0.929. For several other values of n’, this probability would
be: 0.651 (n/ = 100), 0.957 (n/ = 1000) and 0.985 (n’ = 10000). This
last value is already extremely close to the result found in Section
6.1.7 from the standard posterior (0.988).

27. For a uniform prior (o« = 1 and v = 2) equation (6.22) is the famous Laplace’s
rule of succession.
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0.6 0.7 0.75 0.8 0.9
0.761

Figure 6.9: Mendel’s data. Standard predictive distribution on f’
for a future sample of size n’ = 556 ( f,3s = 0.761, n = 556).

6.2.3 Remarks on the Predictive Approach

Predictive approach and exchangeability. In this section, we
derived the predictive distribution from a parametric sampling model
characterized by the unknown parameter ¢. There is actually a
more direct and intuitive way to obtain the predictive distribution.
The idea, due to de Finetti (1974-1975, 1981), and that we only
sketch here, is to consider a frame model where observables, either
actually observed or future ones, are considered exchangeable, and
where the prior is defined on observables only. In this framework,
the concept of a parameter becomes a secondary one, and is derived
from considering the limiting case of a large or infinite sequence of
exchangeable data items (see also Geisser, 1993, pp. 1-5).

Generality of the predictive approach. The predictive ap-
proach provides a unified framework for the two sampling schemes
that were considered in Section 6.1, and this on two counts: (i) it
includes the inference on the parameter as a particular case, and (7i)
it does not require wondering whether the population has a finite or
infinite size; the only condition is to assume that the population is
large enough to contain the n’ observations on which one wants to
make a prediction. One implication of this is that, using the predic-
tive viewpoint, the notion of a parent parameter may be envisaged



Bayesian Inference for Categorized Data 201

in a much more intuitive way: the parent frequency can be seen
as the frequency in a future sample of extremely large size. This
intuitive interpretation will surely be found helpful in subsequent
sections dealing with more complex data structures involving several
unknown parameters.

Because the predictive probabilities are obtained through Bayes’
theorem, they are, like the posterior ones, of an epistemic nature:
they go from what is known (the n observed data) to what is not (the
n’ future ones). But predictive probabilities are, we think, even more
intuitive than posterior ones because they only relate observables
between each other. As a matter of fact, Marie-Paule Lecoutre
experiments (see Chapter 3) indeed showed that the predictive
formulation of the problem of inference appears very natural to
researchers.

Quite surprisingly — and even though “... prediction was the
earliest and most prevalent form of statistical inference” as Geisser
(1993, preface) points out —, research in predictive inference is now
quite underdeveloped compared with research in parametric infer-
ence. Very few books, even amongst those adopting the Bayesian
framework, actually attempt to correct this oversight; noticeable ex-
ceptions are Aitchison & Dunsmore (1975) and Geisser (1993).

6.3 Bayesian Inference on Several Frequen-
cies (structure S — Uy)

What we have dealt with up to here in this chapter are dichotomous
data. This simple case has enabled us to set up the Bayesian
framework. We shall now generalize some of the preceding results
to the case of polytomous data, i.e. involving K > 2 categories. On
top of its intrinsic interest, this situation also constitutes the key
to the analysis of structured data, i.e. data whose design involves
several factors. The stress here will not be put on technical matters
but rather on the substance of the results and their interpretation.
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More details about technical matters can be found in Bernard (1983,
1986).

We shall first restate the problem of inference when several
parameters are involved with the aid of a simple example with K = 3
(Section 6.3.1) before moving to general considerations on Bayesian
inference in this context (Section 6.3.2) and finally exploring in more
detail two more complex examples (Section 6.3.4).

6.3.1 The Problem of Inferring on Several Frequencies

Let us consider an arbitrarily large population (we assume N infinite)
whose composition in frequencies according to a ternary variable is
¢ = (¢1,02,03) with ¢1 + ¢2 + ¢3 = 1. The parent composition
@ is unknown, but a sample of size n randomly extracted from the
population is available and has led to the observed composition in
counts @ = (ay,as,as) with ay + az + az = n.

For a given parent composition ¢, the sampling distribution of
a is given by the multinomial distribution, which generalizes the
binomial distribution to K categories. Under the random sampling
frame model, this distribution provides probabilities of a given ¢.

An illustrative example: “Ordered data”. For the purpose
of illustration, let us consider the following data (hereafter called
“Ordered data”) where each observation falls into one of three
categories: the observed counts are @ = (10,8,6), with n = 24 and
hence the observed frequencies f = (0.417,0.333,0.250). These have
the descriptive property fi > fo > f3 and a question of interest is
whether this property can be extended to the population: Can we
say that ¢1 > ¢g > ¢3?

Parameters and questions. When considering binary data, the
frame model was characterized by a single parameter, the unknown
frequency ¢ of one of the two categories. But now we have two free
parameters (not three, because the parent frequencies ¢ must add
up to 1). For a given question, there will usually be a corresponding
parameter of interest which will be the subject of inference. This
parameter of interest may be one of the initial parameters of the
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sampling model, e.g. ¢1, or a derived parameter, e.g. (¢1 — ¢2) or
b1/ @2, ete..

But some other questions may be more complex and may require
statements that are relative to several parameters at the same time.
This is the case in our example, as the question of interest may be

stated: “Can we conclude that both (¢1 — ¢2) and (¢ — ¢3) are

positive?”

Shortcomings of the frequentist methods. As the sampling
model now involves several parameters, some difficulties arise as far
as frequentist methods are concerned. Two major difficulties are
examined below.

Nuisance parameters. Suppose there is a unidimensional parameter
of interest 0 (e.g. ¢1 — ¢3) and that we want to test some hypothesis
about 0, say § = 63. Because the sampling model involves two
parameters, this hypothesis is by itself generally insufficient to fully
determine the sampling distribution: this distribution still depends
on some nuisance parameters. In our example there are two free
parameters, so that when specifying one through the hypothesis there
will still be one remaining nuisance parameter (e.g. ¢1 + ¢2). In
some simple situations, it is possible to overcome this difficulty by
conditioning the model on some statistic, calculated from the data,
that gives little or no information about the parameter of interest.
This approach leads to conditional tests sometimes referred to as
“exact tests”. But, quite often for more complex derived parameters,
this first approach cannot be used and the only remaining solution
is to resort to asymptotic considerations that provide approximate
tests. The difficulty is that the resulting methods are typically not
valid for small samples, which explains the ritual warnings such as:
“the Chi-square test is only valid if the expected absolute frequencies
are all greater than 5.

Questions without answers. The problem of nuisance parameters
transfers to the confidence interval procedure. Moreover, in some
cases, the problem may become dramatic as it may be possible to
devise a test for some reference values of the parameter of interest
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but not for all of them. An example is the absence of a satisfactory
confidence interval for the ratio of two frequencies from independent
samples (Aitchison & Bacon-Shone, 1981).

But, in our view, the most critical shortcoming of the frequentist
approach is its inadequacy to deal with complex properties of interest
such as the one in our example. It is indeed hard to think of
any single Hy whose rejection would enable us to conclude that

o1 > P2 > P3.

6.3.2 Bayesian Inference

On the contrary, the Bayesian approach is free from these limitations.
Again it involves a prior distribution on the unknown ¢ which, when
combined with the data a, leads to a posterior distribution on ¢.
Both these distributions bear simultaneously on all the parameters
of the sampling model, so that the answer to any question is, at the
theoretical level, quite simple?®. If there is one single parameter
of interest, one derives, from the overall posterior distribution,
the corresponding marginal distribution on this parameter; if one
is interested in a complex property, the answer is the posterior
probability of the appropriate region of the parameters’ space. There
is no theoretical need to resort to asymptotic results so that the
Bayesian approach can be applied to any sample, large or small.

The K-category generalization of the Beta distribution that we
introduced for binary data is the Dirichlet distribution (for its main
properties, see e.g. Wilks, 1962, pp. 177-182; Fang, Kotz & Ng,
1990, pp. 16-24). When combined with data sampled according to
a multinomial model, a Dirichlet prior leads to a Dirichlet posterior.
For a K categories problem, the prior distribution is characterized
by K prior strengths, & = (ay,---,ax) which are updated into
posterior strengths a+a = (a1 +ay,-- -, ax +ax). Again we denote
v the total prior strength: v =3, ai.

28. We remind the reader that the computational issues are discussed in Section
6.5.
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Ignorance/standard prior distributions. The uniform prior is
obtained by taking the prior strengths aj all equal to 1: o = 1.
Haldane’s (1948) prior corresponds to null prior strengths, i.e.
ap = 0; with Jeffreys’ rule (1946, 1938/1961) all prior strengths
are a = 1/2, a solution which now differs from Perks’ (1947) who
suggested ap = 1/K.

The definition of an ignorance zone is more delicate in the general
case of K categories®?. Following the same line as in Bernard (1996),
we suggest defining it as the region Z?:l ap = 1, a proposal that
is in agreement with Walley’s (1996a) suggestion of an “imprecise
Dirichlet model” with » = 1. Within this region, we take Perks’
(1947) prior, a, = 1/ K, as the standard prior.

Standard posterior distribution. Figure 6.10 p. 206 shows the
standard posterior distribution Di(10 + %78 + %76 + %) for the Or-
dered data. The support of this distribution is a simplex (all points
within a triangle for K = 3), each vertex of which corresponds to one
of the most extreme possible compositions: (1,0,0) (left), (0,1,0)
(bottom) and (0,0, 1) (right). The relative posterior strengths de-
termine the center of the distribution, while its dispersion mostly
reflects the small overall posterior strength n + v = 25.

Figure 6.11 p. 207 shows the simplex of all possible composi-
tions with the two necessary ingredients for answering our inductive
question: Figure 6.11a gives another view of the posterior distri-
bution where the probability density is now expressed by means
of “isodensity” contours; Figure 6.11b indicates the region of the
simplex for which the property ¢1 > ¢2 > ¢3 holds. Answer-
ing our initial question simply amounts to “merging” these two

29. One difficulty is that for some of the proposed priors (the uniform and
Jeffreys’) the total prior strength depends on K. This may be seen as
undesirable, because the number K of categories into which data are classified
may sometimes be quite arbitrary. Neither our proposed standard prior nor
the ignorance zone idea present this difficulty.

30. This symmetrical standard prior should be used when the K categories do
not have any particular underlying structure. If some tree-structure underlies
the set of categories, the standard prior needs to be adapted in order to take
the tree-structure into account (Bernard, 1997).
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Insert Figure 6.10 about here

Figure 6.10: Ordered data. Standard distribution on ¢ = (¢1, ¢2, ¢3)

for an observed composition in counts @ = (10,8, 6).

views of the simplex by computing the posterior probability, accord-
ing to Figure 6.11a, of the region given in Figure 6.11b: we find
Prob(¢1 > ¢9 > ¢3) = 0.423 (> 0.375). The degree of generalizabil-
ity of the descriptive property is too small; the property cannot be
extended to the population®'.

6.3.3 Some Derived Parameters and Their Posterior
Distributions

The posterior on ¢ fully determines the posterior on any derived
parameter. There are two properties of the Dirichlet that allow
making specific inferences, namely the pooling and the restriction
properties (Bernard, 1997): (i) when pooling two categories k and &/,

31. Tt is only for a certain type of properties (e.g. those corresponding to a
region of the simplex defined by a linear inequation) that the probability of
the property is assured to be greater than 0.50 when the property is true for
the sample. Here, there is a larger probability for the population property
not to hold (0.577) than there is for it to hold (0.423). This fact would be
even more striking for properties defining a smaller region of the simplex.
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0,1,0 0,1,0

1,60 0,0,1 1,60 0,0,1

Figure 6.11: Ordered data. (@) Simplex with isodensity countours
with respect to the standard distribution on ¢ (left); (b) Region of
the simplex for which the property ¢1 > ¢ > ¢3 holds (right).

the posterior is still a Dirichlet with all necessary vectors (frequencies
and strengths) transformed by summing their & and &’ components;
(i) if inference is restricted to a subset K’ of K" and thus bears on
the associated conditional (on K’) frequencies, the posterior is still
a Dirichlet, but a reduced one involving only the K’ categories and
their respective strengths.

For the privileged problem of the partial comparison of two
frequencies, say ¢; and ¢ with respective posterior strengths a; and
o, two derived parameters are generally considered: § = ¢; — ¢y and
p = ¢;/dr. The posterior distribution on ¢ is not standard but may
be easily obtained by an appropriate software; on the other hand,
the exact posterior of p is a scaled Fisher/Snedecor distribution:
p ~ (a/a})F (2a%,2a) ). We already saw a particular case of that
property for K = 2 (see Footnote 22, p. 192).

6.3.4 Two Examples of Typical Problems

Validating a model: Mendel’s data (shape and colour). Let
us reconsider Mendel’s full data involving the shape and colour
attributes of peas, already discussed in Chapter 2 Section 2.1.1 and
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that were partly analyzed in Section 6.1.7: the observed data on 556
peas and the expected frequencies according to Mendel’s theory are
given in Table 6.3.

Table 6.3: Mendel’s data (shape and colour). Observed compositions
in counts and frequencies, and theoretical frequencies.

Round Wrinkled
Yellow Green Yellow Green
Observed counts ay, 315 108 101 32 556
Observed frequencies fj, 0.567 | 0.194 | 0.182 0.058 1
Theoretical frequencies g, | 0.5625 | 0.1875 | 0.1875 | 0.0625 | 1

As we already noted in Chapter 2, the data could hardly be more
in accordance with Mendel’s theory: the goodness of fit indicator
Phi-square was found to be 0.0008. However, we also stressed that
the non-significant result obtained from the standard goodness of fit
Chi-square test (x? = 0.47, pops = 0.93) is insufficient to reach the
conclusion that “the model is true”. The only allowed conclusion
from this test is that “the data are compatible with the model”.

Now, within the framework adopted in this chapter, how can
we try to really validate Mendel’s model? The idea is quite simple
and proceeds as follows. We must first choose a relevant goodness
of fit descriptive indicator. Second we must define some criteria,
relative to this indicator, that can be considered as indicating a
“good-enough” fit. This criteria provides a property of interest that
a frequency composition (on four categories) may or may not have.
Then we will just proceed as we did before: (i) check whether the
property is true for the observed data, and, if it is, (7i) calculate the
probability for it being true in the underlying population.

Let us first take the Phi-square, Priz, as a relevant descriptive
indicator: a value of 0 indicates a perfect fit and the greater the
value the worse the fit is. Following Corroyer & Rouanet (1994) we
can take Phiz < 0.20% = 0.04 as a criteria of a small departure from a
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perfect fit. Descriptively this property is true as the observed value of
this indicator is Pri2 .5, = 0.0008 < 0.04. To the observed Phi-square,
Phi2 o35, computed from the observed frequencies f, corresponds the
unknown parent Phi2,,,, a derived parameter computed in a similar
way from the parent frequencies ¢>2. From the overall standard
posterior distribution,

¢ ~ Di315+ 1108+ 1 101+ %32+ 1)
we can derive the marginal distribution of Phiz,,, from which we get:
Prob(Phrizy,, < 0.04) = 1.000 (> 1.000).

The inductive conclusion is straightforward: the departure of ¢ can
be assessed negligible (defined operationaly as Phi2,,, < 0.04) with
a guarantee of at least 1.000 (values are rounded to three decimal
places, so that > 1.000 actually means > 0.9995).

Of course it is not necessary to specify the 0.04 limit in advance.
We could instead specify some guarantee, say v = 0.95, and find the
corresponding limit for Phiz,,,. Doing so, we get:

Prob(Phiz,,, < 0.015) = 0.95.

It cannot be overemphasized that the line of reasoning just presented
is quite general and could be applied to any relevant indicator and /or
criteria. For example we might prefer to consider the maximum (over
the K categories) of the absolute value of the relative deviation
between fr and g MazDevyps = MaxM%L For this other
indicator we find descriptively MazDevops = 0.079 and inductively
Prob*(MazDevy,, < 0.333) = 0.95%%. With a 0.95 guarantee, it may
be said that none of the four true frequencies ¢, departs from the

32. Tt is common to note observables quantities with a latin letter and the
corresponding unknown parameter with a related greek letter (e.g. f and ¢).
But of course the alphabet quickly turns out a bit short and the alternative
“obs” vs “par” subscripts notation becomes more handy.

33. We challenge frequentists to define sensible confidence limits for this complex
indicator.
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corresponding reference frequency ¢g; by more than 33.3% in terms
of relative deviation. This conclusion seems to be much less in favour
of the Mendelian model, but it must be realized that this indicator
is also a much more severe one than the Phi-square as it requires a
condition simulaneously on each of the four frequencies.

Remark: The move from the observed statement Priz,;; = 0.008
to the inductive one Prob*(Phiz,,, < 0.015) = 0.95 can be thought
of as “paying a tax” whose amount is the difference 0.015 — 0.008.
This “tax” is the price to pay for having a statement on the
unknown parent parameters rather than one on the data set at hand
only. Of course there is a trade-off between the strength of the
inductive statement and its guarantee: the lower the guarantee, the
stronger the statement, i.e. the lower the tax. In addition the tax
can be reduced with more data, because then the “generalizability
potential” of the data is larger.

Assessing a “quasi-implication”: Fractions data. Does suc-
cess to task A imply, approximately, success to task B? This type of
question is quite common in developmental Psychology, since such a
fact, if it was established, may point to the hypothesis that the ac-
quisition of B-type ability is necessary for the acquisition of A-type
ones. For example, in an experiment about number construction in
children, Charron (1996) asked 165 school pupils to do several tests
in which the task consisted of calculating some quantity through the
use of a fraction which could express either a Part-Part or a Part-
Whole relationship. Table 6.4 gives the observed counts for two of
these tests A and B (success is denoted a and b, failure is denoted
a’ and b').

Amongst subjects succeeding at task A, 92.3% also succeed at
task Bj; there is a quasi-implication from a to b. On the other hand
only 50.0% of subjects succeeding at B also succeed at A, so that
the reciprocal quasi-implication is much less supported by the data.

For Table 6.4, the observed Phi-square is Phi2,;; = 0.298 which
indicates a large descriptive departure from independence; the Chi-
square test for independence (corrected for continuity), x* = 46.63
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Table 6.4: Fractions data. Observed counts for two tests A (Part-
Part relationship) and B (Part-Whole relationship) from Charron
(1996).

Part-Part
b 4
Part- a 36 3

Whole &' | 36 90

(p < 107%), is highly significant and thus clearly points to the
existence of a departure from independence. However, none of these
results tell us that this departure occurs in the specific direction of
an implication ¢« = b, as both statistics would be unchanged by
permuting A and B.

Hildebrand, Laing & Rosenthal (1977) proposed a general de-
scriptive index “Del” for measuring the departure of the frequencies
of an A X B cross-classification table from a specific logical model (a
model which specifies that one or several cells should be empty). For
the case of a simple implicative model in a 2 x 2 table (one empty
cell), the Del index is equivalent to Loevinger’s (1948) “homogene-
ity index” and to Rouanet, Le Roux & Bert’s (1987, pp. 156-160)
“association rate index”. For Table 6.4 and the model a = b (cell
ab’ empty), the Del index is defined as

fab’
fafb’ ’

where f,; denotes the ab’-cell frequency and f, and [y the corre-
sponding marginal frequencies. This index equals 0 in case of inde-
pendence and 1 if the logical model is descriptively true (the index
may be negative if the association between A and B is negative); a
high value thus indicates a high degree of quasi-implication.

One problem is that the corresponding existing inferential fre-
quentist methods, because they are based upon asymptotic consid-
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erations, do not provide valid statements, neither for small data sets,
nor, paradoxically, for cases where the implicative model is almost
descriptively verified (Hildebrand et al., 1977, pp. 206-208).

In Bernard & Charron (1996a) we proposed a Bayesian approach
for the study of oriented dependencies in 2x2 tables, called “Bayesian
Implicative Analysis”, which is free from these difficulties. On
the descriptive side, the method is based on the idea that the
implicative analysis must take into account all d indexes (one for each
possibly empty cell of the table) and particularly the two positive
ones; depending on their values, the descriptive conclusion may be
that of a “quasi-implication”, a “quasi-equivalence” or a “quasi-
independence”. For the Fractions data, we get:

dyosp = 0.864
dy—s, = 0.345

These values reflect the asymmetry in Table 6.4: the degree of the
quasi-implication @ — b is high (close enough to 1) whereas the
degree of its reciprocal is not.

Going from the descriptive side to the inductive one is again
straightforward in the Bayesian framework. The first step leads
to the standard Bayesian distribution on the vector of the parent

frequencies @ = (ab, Pap's Parhs Paryy):
¢ ~ Di36+%+,3+1.36+1+,90+ 1)

From this overall distribution, we next derive the joint marginal
distribution on the two parent Del indexes, 6,—; and 6,—,, which
is summarized in Figure 6.12%4,

From this joint distribution we may compute the probability of
any statement relative to d,—4, €.9. Prob*(é,—s > 0.70) = 0.964,
t0 Op—s4, Or to both simultaneously. For example we may define

34. The entire figure actually also contains, as is done in Bernard & Charron
(1996a, p. 28), the region in which the two & indices are negative. This
region has been omitted here because it has a very low probability (< 10_6).
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Figure 6.12: Fractions data. Joint standard Bayesian distribution on
bg—p and dp—, with disks’ surface proportional to probability; the
vertical axis indicates the degree of the quasi-implication ¢« — b,
from 0 (independence) to 1 (implication @ = b); the horizontal axis
reads similarly for the reverse quasi-implication b — «; the largest
probability is obtained for é6,—; € [0.8,0.9] and é,—; € [0.3,0.4]
which corresponds to the observed values of the d’s: 0.864 and 0.345.

operationaly the notion of a quasi-implication from a to b (meaning
that @ — b at a high degree but that the reciprocal is not true) by
a joint statement on d,—; and dp—s, such as,

da:>b > 0.70 and db:a < 0.50.

This property is descriptively verified for the Fractions data; at the
inductive level, we get,

Prob*(bg=—p > 0.70 & dp—, < 0.50) = 0.959 (> 0.920)

so that the conclusion of a quasi-implication from a to b (relatively
to the threshold values 0.70 and 0.50) can be generalized to the
population with a guarantee of at least 0.920.
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As we announced, the method can also be used for extreme data.
Suppose, for example, that the ab’ count in Table 6.4 were 0 (non
structural) instead of 3. Then, we would find descriptively dy—sp = 1
and dy—,, = 0.357, and inductively Prob*(8,— > 0.70 & fp—s, <
0.50) = 0.992 (> 0.992).

In Bernard & Charron (1996a) we extend this “Bayesian Implica-
tive Analysis” to the study of several binary variables, the method
providing, in the end, descriptive and inductive implicative graphs.
In Bernard & Charron (1996b), we give extensions to more complex
logical models in A x B tables.

6.4 Examples of More Complex Designs

The previous section was concerned with data whose design structure
may be formally written as “S — Ug” (“Subjects categorized
in a set Ux of K categories”)?>. The study of such designs is
actually the key to the Bayesian analysis of more complex designs,
since the observation space Ux may be itself complex for example
because some particular tree-structure underlies it. Indeed, one of
our directions of research has been to consider the case of tree-
structured categories, with applications to the analysis of sequential
data from Ethology (Bernard, Blancheteau, Rouanet, 1985; Bernard,
Blancheteau, 1987; Bernard, 1997).

Another direction has been to show how the Bayesian ap-
proach could be extended to “quasi-complete” designs, i.e. formally
S<G>XT — Uy (“Subjects nested within Groups and crossed
with Trials providing binary observations”), on the theoretical level
(Bernard, 1986) as well as on the practical one with the development
of the specific software IBFGT2 (Poitevineau, Bernard, 1986).

In this section, we shall only illustrate through examples the
results of Bayesian inference for two paradigmatic experimental
designs and questions, namely the comparison of two independent

35. In the following we shall use several such formulas which belong to the “LID”
language used by the EyeLID software (see e.g. Bernard, 1994).
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samples (5< Gy >— Us) and of two matched samples (5 x Ty — Us)

with binary observations®®.

6.4.1 The “Aspirine Data” (Two Independent Sam-
ples)

The following data are extracted from a study on 22071 American
doctors started in 1982 and whose purpose was to investigate the ef-
fect of regularly taking aspirin on several health indicators (Steering
Commitee of the Physicians’ Health Study Research Group, 1988);
we only consider here the data relative to myocardial infarction (MI)
occurence. The doctors were randomly allocated to two experimental
groups: 11037 took a 325myg dose of aspirin every other day (group
g1), and 11034 took a placebo instead (group gz). After 57 weeks of
treatment, 104 MI occured within group g; and 189 within group gs.

A frequentist analysis of these data is presented in Rouanet,
Bernard, Le Roux (1990, p. 210). We shall only present here its
Bayesian analysis. Descriptively, the frequencies of MI in each group
are: fi = 104/11037 = 0.0094 and f; = 189/11034 = 0.0171. Both
frequencies being very small, it is more natural to compare them
considering their ratio than considering their difference; we have
Tops = f2/f1 = 1.82, so that descriptively we may conclude that
taking aspirin did reduce the risk of MI by a coeflicient of at least
3/2: Tops > 3/2.

If we want to generalize this result (to a larger population
from which the set of 22071 doctors may reasonably be considered
as a random sample), we need to infer on the derived parameter
p = ¢1/¢2 corresponding to the observed r,;5. From the overall

36. To give a hint to the key link between these designs and the “S — Ug”
design, let us only say that there are some strong equivalences (in terms of
the Bayesian distributions involved) between designs “S < G2 >— Us” and
“S — G2 x Us” on the one hand, and between designs “S x T — Uz” and
“S — U,T2” on the other. More details, in particular for the specification of
ignorance/standard priors, can be found in Bernard (1983).
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standard distribution on (¢1,$2)%7, we first derive the standard
distribution on p which then leads to the following statements:

Prob*(p > 3/2) 0.945 (> 0.937)
Prob*(p > 4/3) = 0.995 (> 0.994)

The observed property, 7,55 > 3/2, can be generalized into an
inductive one, p > 3/2, with a standard guarantee of 0.945. If we
consider a weaker property, p > 4/3, we get a better guarantee
0.995. This illustrates again the trade-off between the strength of
the property and the guarantee in the probabilistic statement.

The unconstrained choice of the parameter of interest for realizing
a comparison is a strong advantage of the Bayesian framework.
Any relevant derived parameter can be used so that conclusions
can be expressed either in terms of the frequencies’ difference or
of the frequencies’ ratio, or any other relevant indicator. In the
present case, it is clear that statements about p are more directly
interpretable than statements about the difference ¢ between the
frequencies, such as for example Prob*(6 > 0.0052) = 0.95.

6.4.2 “Conflicting Data” (Two Matched Samples)

The other paradigmatic example is that of the comparison of two
matched samples (design S x Ty — Us). It is used here as a base for
stressing once again the psychological difficulties encountered in the
interpretation of traditional frequentist procedures, and for showing
how the Bayesian interpretation framework clears up apparently
conflicting results.

Data and frequentist procedures. The data (hereafter called
“Conflicting data”) are fictitious data borrowed from Marie-Paule
Lecoutre (see Chapter 3) concerning the interpretation of significance
tests in situations where an initial experiment and a replicate of it
lead to apparently conflicting conclusions; in one of M.-P. Lecoutre’s

37. The standard distribution is here defined by: ¢1 ~ Beta(189.25,10845.25),
2 ~ Beta(104.25,10933.25) and ¢1 1L éo.
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experiments, researchers in Psychology were presented with the
following experimental data and results.

A first experiment involved 50 rats that were tested on two
successive trials, t1 and 2, of a labyrinth run; between the trials,
the rats received an injection of some particular drug. For each run
(one rat and one trial), the experimenter measured the number of
errors, and from it derived a binary measure: “+” for less than two

[44

errors, “=” for more. The raw results of experiment 1 are given in
Table 6.5a.

Table 6.5: Conflicting data. Observed counts (a) for experiment 1
(left) and (b) for experiment 2 (right).

2 2
+ - + -

4+ [2]15 4+ 8115
- 5]18 - [10[17

The success frequency is higher for trial 1 ( fy = (12425)/50 = 0.54)
than for trial 2 (f; = (12 4+ 5)/50 = 0.34). If we proceed to
a McNemar test for comparing the two trials with regard to the
frequency of success, we get x%, = 5 for 1 df, and hence p,;, =
Psup = 0.013, so that the difference is significant at the one-sided
level a,, = 0.025.

In a replicate of the experiment with 50 rats again, another
researcher gets the data given in Table 6.5b. Now the frequencies of
success are respectively fi = 0.46 and f; = 0.36. Here, the McNemar
test leads to x%,, = 1 so that the difference is not significant
(pobs = Psup = 0159)

Fxperiment 1 reveals inductively a negative effect of the drug on
rats’ performance, whereas experiment 2 does not seem to confirm
this result. The conflict becomes even stronger when researchers are
told that, if the two experiments were pooled together, the same
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kind of analysis would provide a significant result again: y?%, =5,
Psup = 0.013 < 0.025.

We are going to see that the perceived conflict is only apparent
and that, when analyzing these data in the Bayesian framework (and
in particular using the Bayesian reinterpretation of the tests), the
feeling of a paradox completly vanishes.

Bayesian procedures. A preliminary remark is in order con-
cerning the data’s structure. The design of each experiment is
S X Ty — Us: each subject is tested on each of two trials, each pair
subject/trial providing a binary outcome in U; = {+,—}. Equiva-
lently, we can describe the data’ structure by saying that for each
subject we observe a success/failure profile amongst the four follow-
ing ones: “447 for two successes, “+—" for a success followed by a
failure, “—+" for a failure followed by a success, and finally “——"
for two failures. If we denote V4 the set of these four profiles, the
design can be rewritten S — Vj, and so we are taken back to a
design envisaged in Section 6.3. With this rewriting, the sampling
model involves four parameters, i.e. the four parent profile frequen-
cies: ¢4y, ¢4—, ¢_4 and ¢__; the two frequencies that we want
to compare are derived parameters, namely ¢4 = ¢4 + ¢4 and
¢4 = dyy + ¢o_4; finally if we want to compare them through their
difference, we need to consider 6 = ¢4 — ¢4 as the parameter of
interest. Notice that 6 can even be writen more simply as a partial
contrast between the profile frequencies®: § = ¢, _ — ¢_,.

Let us first proceed to a quick descriptive analysis of these data:
For experiment 1, the observed difference in success between trial
t; and trial 15 is d = 0.20; for experiment 2 the trial effect is still
positive (which corresponds to a negative effect of the drug) but
smaller, d = 0.10. In the pooled data, we have d = 0.15.

38. More generally, any design of the type S x T' — Ug, where T is a simple
or compound factor with several modalities, can be rewriten as S — U KT;
contrasts on 7" are then transformed into contrasts on Uzx”. This property
is used in the IBFGT2 software (Bernard, 1986; Poitevinean, Bernard, 1986).
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Figure 6.13 gives the standard distribution on the parent param-
eter & for experiment 1. This distribution is roughly centered on the
observed difference d = 0.20; its dispersion expresses the experimen-
tal precision. From this distribution, we get the statements:

Prob*(6 > 0)
Prob*(6 > 0.05)

0.990 (> 0.979)
0.959 (> 0.930)

I T I I I I I I I
-0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6

)

Figure 6.13: Conflicting data (experiment 1). Standard distribution
on é.

The existence of an effect is well established: there is a high
guarantee, 0.990, for the true effect § to be in the same direction
as the observed one. Symmetrically, the probability of a negative
effect, i.e. a true effect in the opposite direction to the observed one,
is small: Prob*(6 < 0) = 1 —0.990 = 0.010. This last numerical
result is the Bayesian counterpart (approximately) of the one-sided
level of the frequentist Chi-square test: py,, = 0.013.

Figure 6.14 p. 220 shows the standard distributions on é for each
of the two experiments as well as for the pooled data. Experiment
2 descriptively goes in the same direction as experiment 1 (d =
0.10), but experimental precision is not large enough to reach the
conclusion of the existence of a true effect with a sufficient guarantee:
Prob*(6 > 0) = 0.843. The non-significant result given by the
Chi-square test (ps,, = 0.159) approximately corresponds to the
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Bayesian statement Prob*(6 < 0) = 1 — 0.843 = 0.157. But it
should be obvious from the distribution of ¢ in figure 6.14 that this
statement in no way constitutes a proof of the absence of an effect;

the distribution is not particularly concentrated around the value 0
as the following statement indicates: Prob*(|6| < 0.257) = 0.95.

Pooling

) Experiment 1
Experiment 2

I T I I I I I I I
-0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6

Figure 6.14: Conflicting data. Standard distribution on § for
experiments 1 and 2 and for the pooling of the two experiments.

Again (see Section 6.1.8), the Bayesian reinterpretation of the fre-
quentist observed level sheds light on the limits of the conclusions
that a test might lead to: a significant (S) result clearly allows one
to conclude that the effect exists (the effect has been proved to be
greater than 0), but a non-significant (NS) one does not allow one to
conclude that it does not exist. The seeming paradox is only the con-
sequence of a false identification between the dichotomies “S vs NS”
and “Effect vs No effect”. On the contrary, if we compare the two
standard Bayesian distributions for experiments 1 and 2, it is clear
that the information that they each provide on ¢ is not contradic-
tory. The two data sets basically point in the same direction. When
pooling the data, the experimental precision becomes sufficient again
to conclude that the effect exists, Prob*(é6 > 0) = 0.988, despite the
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fact that the overall observed difference d = 0.15 is smaller than in
experiment 1 alone.

This example reminds us that the first step of the analysis should
always be based on description: if the observed d is not small, no
inductive analysis, either frequentist or Bayesian, should be able to
prove that the corresponding ¢ is small, and still less that 6 is 0. One
great advantage of the Bayesian approach is that both the descriptive
step and the inductive step are contained in the standard distribution
on 6: the distribution is typically approximately centered on the
observed d and its dispersion reflects the attained strength of our
state of knowledge about the unknown 6.

Last, another point emerging from the preceding comparison between
the two approaches is the extreme poorness of the “S vs NS”
alternative. “NS”, as we have just said, does not tell us very much,
and “S” only tells us that the existence of an effect is well established
without saying anything about the size of the effect. This criticism,
though often pointed out, has not, until now, led many researchers
(nor many referees) to enrich their statistical toolbox with more
powerful devices.

Our claim, following Rouanet (1996), is that the Bayesian ap-
proach is perfectly suited to go beyond significance testing and to
provide answers to the crucial question of the importance of effects
(see also Bernard, 1994, in particular Chapter 6, pp. 70-80). From
a standard Bayesian distribution, several much more informative
statements can be derived; in somes cases, statements of the type
“Prob*(6 > 8g) = 7" may lead to the conclusion of a large effect, in
some others, statements of the type “Prob*(|é| < ¢) = 7 will allow
one to conclude that there is a small (or negligible) one.

6.5 Computational Aspects

On a practical level, how can we do all that was described in this
chapter? Until very recently, implementing the Bayesian approach
to inference posed serious technical difficulties for all but the most
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elementary cases. These difficulties arose from the fact that the
posterior distributions needed cannot generally be characterized
analytically, and thus have to be evaluated by numerical means.
Because of this, the application of Bayesian methods has long
been restricted to cases for which the required computations were
feasible in a reasonable amount of time on available computers.
Fortunately these limitations have been pushed back, first by the
tremendous increase in the power of micro-computers, but even more
by the recent emergence of very efficient numerical approximation
techniques.

In 1991, for the first French version of this book, we developed
software that treated each case separately by some specific means.
Most of the inferences presented in the present chapter were then
handled by one of the IBF2XK and IBFGT2 programs (Bernard, 1986;
Poitevineau, Bernard, 1986)%°. But for complex cases, today we
prefer another method which we implemented in the BayCat software
and which is based on the principle of random sampling from the
posterior distribution. The advantage of this latter “Monte-Carlo”

approach is not its numerical accuracy — though it has proved to
perform quite nicely on this level —, but its generality and ease of
implementation.

Elementary problems. Let us first summarize the computational
needs in the elementary cases for which the Monte-Carlo approach
is not necessary. All Bayesian inferences that were presented in the
first sections of the chapter only involve known unidimensional distri-
butions: Beta-binomial distributions for parametric inference from

39. IBF2XK provides inferences on one frequency ¢ and on the difference é or ratio
p between two frequencies for the following designs: S — U (one group of
binary observations), S — Uk (one group of K-categorized observations),
S < G2 >— U (two groups of binary observations), S < G2 >— Ux
(two groups of K-categorized observations). IBFGT2 provides inferences on
user-defined linear combination between frequencies for a design of the type
S < @ > xXT — U, (G groups of binary observations with 7' repeated
measurements for each “subject” in set S). Each of these programs resorts
to approximations by other distributions (scaled-Beta or scaled-F') when
necessary.
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binary data sampled without replacement from a finite population
(Sections 6.1.3 and 6.1.4), Beta or F' distributions for parametric
inference from binary data sampled from an infinite population (Sec-
tions 6.1.5 and 6.1.7), and Beta-binomial distributions again for pre-
dictive inference from binary data (Section 6.2).

These distributions are all implemented for example in the basic
Bayesian software FirstBayes?®. They may also be found in most
standard statistical or mathematical packages.

More complex problems. The Bayesian inferences discussed in
the last sections of this chapter all involve parameters that follow
Dirichlet distributions or parameters derived from them. Let us
consider that the overall posterior distribution is given by ¢ ~
Di(a’), where o’ are the posterior strengths, and that we are
interested in some derived parameter g(¢) where ¢g() may either be
a numerical function or a logical function of the ¢;’s. In this general
setup, the following simple Monte-Carlo algorithm can be used:

Step 0. Set 7 = 1.

Step 1. Draw a random sample @ from the posterior distribu-
tion Di(a’). This can easily be done using the charac-
terizations of the Dirichlet either in terms of independent
Gamma distributions (see e.g. Fang, Kotz & Ng, 1990,
p. 17) or in terms of independent Beta distributions (see
e.g. Bernard, 1997).

Step 2. Calculate g[i] = g(@).
Step 3. Increment i. Repeat steps 1-2 as long as ¢ < [.

Step 4. The vector g[i],i = 1,---,1 provides an approximation
to the distribution of g(¢), which can be summarized by
any appropriate means: histogram, mean and variance, or
quantiles.

40. FirstBayes was written by Anthony O’Hagan. Version 1.0, dated May
1994, and relevant documentation are available on the Internet at the
“http://www.maths.nott.ac.uk/personal/aoh/1b.html” site.
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It must be stressed that, on top of its simplicity, the above al-
gorithm may be used for any function g() so that it enables one to
draw inferences on any derived parameter or property of interest,
however complex it may be, without requiring sophisticated mathe-
matics. The numerical accuracy of summaries of the distribution of
g(¢@) is controlled by the number of iterations I: the larger I, the

more accurate the approximation®!.

Computation of ignorance-zone-based probability intervals.
Of course, when prior ignorance is formalized by the ignorance zone,
one needs to perform the above computation not for a single Dirichlet
posterior distribution but for several ones; the set of distributions to
consider is all Di(a’), with &' = a + a, such that all a; are > 0
and such that their sum v is equal to 1. In principle, what is then
required is to minimize/maximize the probability of the property of
interest on g(¢), obtained from each Di(a’), with respect to . In
practice, this optimizing problem may be solved in an approximate
way by only considering the K extreme vectors of prior strengths a,
i.e. a = 1 for some k and ap = 0 for &/ # k. This approximate
solution was used for all examples in this chapter®?.

All figures of distributions and probability statements relative to
the examples “Ordered data” (Section 6.3.1), “Mendel’s data” and
“Fractions data” (Section 6.3.4), “Aspirine data” (Section 6.4.1) and
“Conflicting data” (Section 6.4.2) have been obtained by the above
method with 7 = 10° iterations?®. A remarkable fact is that all
Bayesian guarantees and credibility limits given for these examples
agree perfectly (up to the third decimal place) with results obtained
in the 1991 French edition through more specific routines.

41. With this algorithm, the standard error on any probability value can easily
be shown to be at most 1/(2\/7), e.g. 0.0005 for T = 10°.

42. For a numerical derived parameter g(¢b) and a property of the type g(¢) > go,
this optimizing problem may be better approximated by first minimiz-
ing/maximizing g(?—,,) (with v" = n + v) with respect to «, and then use
each found solution for «¢ as a prior strengths vector.

43. We generally recommend to set I to at least 10*. On a 80486-DX2/66-
based computer, the computing time per thousand iterations is (very roughly)
0.1 x K seconds where K denotes the number of categories.
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The BayCat software implements the above Monte-Carlo algo-
rithm for all the types of inferences described in relation to these
examples**. This program, as well as the previous French-language
IBF2XK and IBFGT2, are available from the author of this chapter.

6.6 Conclusions

We think that a quite general scientific methodology, as far as data
analysis is concerned, is to (i) characterize the observed data by
one or more properties of interest, (7i) attempt to generalize these
properties to some future data of size n’. What we have tried to show
in this chapter is that the Bayesian approach is particularly suited for
fulfilling such a purpose, including the Bayesian predictive approach
(generalization for small n’) and the Bayesian parametric approach
(generalization for large or infinite n’). Within this framework, point
(ii) is answered by standard probability statements expressing the
information brought by the data on the specific question of interest.

The two difficulties of the Bayesian approach to inference (its
supposed subjectivity and its computational impracticability) are,
in our opinion, perfectly dealt with, the former by the recourse to
reference Bayesian distributions obtained from ignorance priors, the
latter by efficient and quite general approximate algorithms. On the
other hand, we have stressed several shortcomings of the frequentist
approach which restrict its use to particular data structures or
questions.

It is clear that several common questions of interest that may arise
from the analysis of categorical data have not been mentioned at all
in this chapter. Nevertheless, we think that the framework we have
drawn here is quite general and may be applied to a variety of other

44. Strangely enough, though there are clear mentions of the use of the above
algorithm (see e.g. Gelman, Carlin, Stern & Rubin, 1995, pp. 76-77 and
pp- 481-482), we have not been able to find any widely available software
for the inference on various derived parameters from a Dirichlet distribution.
This is why we decided to develop our own software, BayCat.
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questions. Qur view is that the inductive step is straightforward
within such a framework, so that the major issue in the analysis
is to ask the right question(s), i.e. to carefully design the relevant
descriptive properties (based on relevant descriptive indices) that
the inferential step will attempt to generalize.

To conclude, the Bayesian approach does not only appeal to us
because it provides natural probabilistic statements, but also, on a
very practical level, because it opens up a free and wide road to
getting the data to answer all the questions that a researcher may
need to ask.
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