1st International Symposium on Imprecise Probabilities and Their Applications, Ghent, Belgium, 29 June - 2 July 1999

Examples of Independence for Imprecise Probabilities

Inés Couso Serafin Moral Peter Walley
Dpto. Estadstica e 1.O. y D.M. Dpto. Ciencias de la Computaci” 36 Bloomfield Terrace
Universidad de Oviedo Universidad de Granada Lower Hutt
33001 - Oviedo - Spain 18071 - Granada - Spain New Zealand
couso@pinon.ccu.uniovi.es smc@decsai.ugr.es
Abstract for modeling uncertainty, but the possible definitions are

even more numerous than for unconditional independence

In this paper we try to clarify the notion of independence and they will not be considered here.

for imprecise probabilities. Our main point is that there
are several possible definitions of independence which are

applicable in different types of situation. With this aim, 2 Fundamental Ideas of Imprecise

simple examples are given in order to clarify the meaning  Probability

of the different concepts of independence and the relation-

ships between them. In this section we give a brief introduction to imprecise
probabilities, following Walley [12]. Imprecise probabil-
ities are models for behaviour under uncertainty that do
not assume a unique underlying probability distribution
but correspond, in general, to a set of probability distribu-
1 Introduction tions. A decision maker is not required to choose between
every pair of alternatives and has the option of suspending
judgement.

Keywords. Imprecise probabilities, independence, condi-
tioning, convex sets of probabilities.

One of the key concepts in probability theory is the notion
of independence. Using independence, we can decompodeet 2 be a finite set of possibilities, exactly one of which
a complex problem into simpler components and build amust be true. Agamble X, on is a function from(2 to
global model from smaller submodels [1, 8]. IR (the set of real numbers). If you were to accept gamble
X andw turned out to be true then you would gaiti(w)
utiles (so you would lose iK (w) < 0). A subject’s beliefs
are elicited by asking her to specifysat of acceptableof
desirable) gambles.e., gambles she is willing to accept.

We use the ternstochastic independendte refer to the
standard concept of independence in probability theory
which is usually defined as factorization of the joint prob-
ability distribution as a product of the marginal distribu-
tions. The set of all gambles of? is denoted by (). Addition

The concept of independence is essential for imprecise?nd subtraction of gambles are defined pointwise, so that
or gamblesX andY’, for eachw € Q, (X + Y)(w) =

probabilities too, but there is disagreement about how tOX(w) Y (W)
define it. Comparisons of different definitions have been '
given by Campos and Moral [3] and Walley [12]. In this There are three rules for obtaining new acceptable gambles
paper we aim to show that several different definitions offrom previous judgements of acceptability [12, 14, 7]:
independence are needed in different kinds of problems.
We will try to demonstrate that through simple examples R1. If min X > 0, thenX is acceptable.
which involve only two binary variables, where each vari-
able represents the colour of a ball to be drawn from anR2. If X' is acceptable andl > 0, thenA.X is acceptable.
urn. Each of_ th_e examples gives rise to a different math—R3_ If X, and.Xs
ematical definition of independence. We concentrate on
the intuitive meaning of the definitions, making clear the
e oo e Gen & st of Eceplable Gambs e cosureot T

' denoted byl', is the set of all gambles that can be ob-

definition. tained from gambles ii" by applying the rules R1-R3.
Conditional independence is another fundamental concep€losed sets of acceptable gambles correspond to closed

are acceptable, thexi; + X, is accept-
able.



convex sets of probability distributions. ®(Q2) is the 3 Definitions of Independence

set of all probability distributions of2, then the closed

convex set of probability distributions associated wiith

is given by Kr = {P € P(Q) : Ep(X)>0,¥X €T},  Consider two variable or uncertain values which may be
where Ep denotes expectation with respect® Con-  regarded as the outcomes of two experiments. Suppose
versely, from a non-empty set of probability distributions, that the two outcomes are known to belong to the possi-
K, we can define a closed set of acceptable gambles byility spaces(?; and(2,, which are assumed to be finite.
Ik = {X €L(Q) : Ep(X)>0,VP € K}. Sets ofac- The most basic condition of independence of the two ex-
ceptable gambles and sets of probability distributions areperiments is that the set of possible joint outcomes is the
dual ways of representing the same behaviour. Cartesian produd? = ©; x 2, which is calledogical

) independencélNe assume throughout that this holds.
We shall consider only closed sets of acceptable gambles

that can be generated as the closure fifiize set of gam-  Let Ky and K, denote the marginal convex sets of prob-
bles. Such sets of gambles are equivalent to closed angbility distributions on(2; and €2, respectively, which
convex sets of probability distributions with a finite num- model our uncertainty about the two experiments sepa-
ber of extreme points. rately. LetKX denote the convex set of joint probability

In thi ivof ¢ bability distrib distributions on? = Q; x Q», which models our uncer-
n this approachgonvexityof a set of probability distribu- }ainty about the joint experiment.

tions has no behavioural significance. From a behavioura
point of view, any non-empty set of probability distribu- We say that a joint probability distributiof? on 2 sat-
tions, K, is indistinguishable from its convex hull, GK),  isfies stochastic independenaghen P({(wi,w2)}) =
because botiC and CHK) generate the same set of ac- 1 ({w1})P2({w2}) for all wi € Q1 andw, € Q», where
ceptable gambleBx. (But see Example 7 for one excep- P1 is the marginal probability distribution of on €2,
tion.) In this paper, to obtain a unique set of probability defined byP;({w:}) = P({wi} x Q2), and similarly
distributions which represenks we will generally use the P is the marginal distribution of” on €2,. In this case
largestsuch set, which is the convex &t defined above. we write P = P, x P,. This is the usual definition of
However, we could equally well have used a non-convexindependence in probability theory. We assume that all
set such as the set of extreme points of(€H), whichis ~ marginal probabilities” ({w: }) and P»({w»}) are non-
behaviourally equivalent to CHr ). zero whenP; € K; andP; € K», to avoid the difficulties
that arise from conditioning on events of probability zero.
In this case, the usual definition is equivalent to a sec-
: . : - ond definition which requires equality of conditional and
ciate with each gambl& its lower prevision.2(X) = marginal distributions. The second definition is preferable

mag{u € R : X —peT}. The upper prevision can be . to the first one in the case not considered here, when some
defined analogously, or through the conjugacy relatlonsh|pm(,31rgim:1I probabilities may be zero [12]

P(X) = —P(~X).

. L In this section we discuss several possible definitions of
Upper and lower previsions are generahzgnons ,Of L,Jpperindependence that can be used when the marginal proba-
and lower probabllltles. When the gambleis the indi- bilities are imprecise, i.e., when the marginal gétsand
ca:;nlr function pf. an evend, (\j/vhereA < bQ' the lgp%er Ko are non-degenerate. Most of the definitions of inde-
and lower prevision®(.X') andP(X) can be regarded as o\ jence are associated with a particular basic property of
the upper and lower probabilities df By using the same the joint setC. In Subsection 3.3, for example, the basic

r}otatlonA to ref(_ar tohboth the eventdalnd its |ndlganlr func- property is that our uncertainty aba does not change
tion, we can write these upper and lower probabilities asap, e |earn the value of, . Given a joint sekC, we can

P(A) andP(4). Upper and '°W_ef probabilities, or more verify whetherK satisfies the particular basic property of
generally upper and lower previsions, can also be W”ttenindependence

as upper and lower envelopes of the closed convex set of

probability distributionsC, by P(4) = max{P(A) : P € However, itis not usual in practice that we are given a joint

K} andP(A) = min {P(A): P € K}. set. Instead, we usually need to construct the joint set

- - . from given marginal set&’; andX» and a judgement of

From a finite set of lower previsionB(X;) = p; (i = independence. In general, there will be several joint sets

1,...,n),wecan (_jefme lower p_rewsmnsfor every ggmble K which have the same margindls andk, and satisfy a

X € E(.Q). by using the technllque. afatural extension particular basic property of independence. In that case we

[12]. This is equivalent to considering the set of gamblesyefine 4 ynique moddl to be thdargest(i.e., the least in-

Iy = {Xi —p; : i=1,...,n}, forming its closurd’y,  5mative) set of joint probability distributions which has

and then calculating lower previsions frdr. the given marginal&’; andK, and also satisfies the basic
property. In this way, each of the basic properties can be
used constructively, to determine a unique model for the

Another equivalent model involvagpper and lower pre-
visions Given a closed set of gambl&s we can asso-



joint experiment from given marginals. is used to select the two balls. For example, it could be
the case that in each urn the balls are numbered fiom

Each of the following subsections 3.1-3.6 defines a dlf—,[0 10, and that a random numbe, betweert and 10 is

ferent method for constructing the joint sétirom given selected and ball numbéris chosen from each urn. The

marginalst, and/’,. When the method is based on a par- independence here is in our complete lack of information

_tlcular_ ba5|_c property of mdeper_wdence, the pa_s!c prope_rtyabout the interaction between the two drawings. We have
is defined in the same subsection. The definitions of in-

. . . ._._information only about the two marginal distributions.
dependence are presented in order of increasing precision;,

that is, for fixed marginal set§; andK,, the earlier def-  In this example we are interested in the colours of the two
initions produce a larger set of joint distributionts, than ~ balls that are drawn from the urns. The outcomede-

the later definitions. notes the colour of the ball drawn from the first urn, and

w9 denotes the colour of the ball drawn from the second

3.1 Independence of the Marginal Sets and urn. The only possible colours are red and white, so that
Unknown Interaction O = Qs = {red, white}.

Fori = 1,2, let K; denote the convex set of probability
distributions that models our uncertainty about the colour
of the ball drawn from urn. Then/C; contains all proba-
bility distributionsP; on; suchtha.5 < P ({red}) <

0.8 and X, contains all probability distributiong on 2,

for which0.3 < Py({red}) < 0.7. Under the unknown
interaction model, the joint séf contains all joint proba-
Let £ denote the set of all joint probability distributions bility distributions on2 whose marginal distribution#

on 2 whose marginal distribution ofe; belongs tok;. and P, satisfy both constraints.

Then the largest set of distributions that satisfies indepen|—_|ere K is a very large set. For examplel con-
dence of the marginal sets s = Ki 1 A3, In other tains the joint distribution WithP({(red red)}) =
words, the joint seiC consists of all joint probability dis- !

tributions whose two marginal distributions belongki P({(.wh“e’wh“e)}) = 0.5, unc_jer which the colour of
. ; . the first ball completely determines the colour of the sec-
andC, respectively. In this case we say that therers

known interactiorbetween the marainal experiments ond ball. Similarly/XC contains the joint distribution with
g P " P({(red, white)}) = P({(white,red)}) = 0.5. By con-

The definition of unknown interaction can also be ex- sidering these two distributions, we see that the upper and
pressed in terms of the closed sets of gambleg's and lower probabilities that the second ball will be red, condi-
I that are determined bi;, K, and K. Given a closed tional on the colour of the first ball, aré and 0. Under

set of gambleg’ on Q, there is unknown interaction be- this model, the effect of learning the colour of one ball
tween the marginal experiments if and only if there areis to make our beliefs about the colour of the other ball
two sets of gambleg}; C £(2;) andT’s C L£(95), such  less precise than they were initially. Observing one out-
that T' = (I'; UT';). Here we identify a gambl& on come changes our uncertainty about the other outcome,
with the gamble oif2 that assigns the valu€(w; ) to each  contrary to the intuitive notion of independence. This is
pair (w1, w2), and similarly for gambles oft,. an extreme example of a phenomenon catliéation [9].

We say that there imdependence of the marginal sdts

for any two marginal distribution®;, € K, andP, € Ks,
there is a joint distributior® in X which hasP; andP; as

its marginals. In other words, learning the marginal proba-
bility distribution on{2; would not change our uncertainty
about the marginal distribution dms.

The behavioural meaning of this definition is that the only Let S denote the event that both balls drawn have the
gambles that are directly judged to be acceptable are gamsame colour. By considering the same two distributions,
bles which depend on just one of the marginal outcomeswe see that the upper and lower probabilitiesSofinder

no judgments are made about any gamble that dependsis model areP(S) = max{P(S) : P € K} = 1 and

on bothw; andw». This model is appropriate when our P(S) = min {P(S) : P € K} = 0, which indicates that
knowledge aboufw; ,w->) consists entirely of our knowl- the joint probabilities under this model are highly impre-
edge about each of the components separately, and we dase. The later concepts of independence produce increas-

not know anything about how the two components are re-ingly narrower intervaldP(S), P(S)].

lated. The lower probabilites under this model satisfy

Example 1 Suppose that we have two urns. Each of theL({(red,red)}) =0 < 0.15 = Py ({red})Py({red}),

urns hasl0 balls which are coloured either red or white. S° that the model violates the factorization condition
We know that the first urn hasred, 2 white, and3 un- B(‘fll X Az) N 21 (A1) P(4s) (for Ay C €2y, Ay C )
known colours. and the second urn Bagd. 3 white. and  Which is satisfied by most of the later concepts of
4 unknown colours. One ball is chosen at random from independence.

each of the urns, but we do not assume stochastic indepen-

dence and it is possible that a correlated joint procedure Unknown interaction produces a very imprecise model,



but it can be exploited in local computation problems the setg:; (A1) andus(X2). Under these assumptions, the
[5, 6, 11]. Clearly it is not a generalization of stochas- joint mass functionn, defined above, is the appropriate
tic independence. However, it does capture a basic notiomodel for uncertainty about the joint outcome;, w-).

of independence, in the sense that we have informatiormhese assumptions are illustrated by the next example.
about the two components separately but we do not know

anything about how they are related. All the following def- Example 2 Suppose there are two urns as in Example
initions of independence are generalizations of stochastid, but now the balls of unknown colour are actually not

independence. painted until after the drawings are made. We select one
ball from each urn in a stochastically independent way,
3.2 Random Set Independence and if either of the selected balls are not coloured then

they are painted white or red by a completely unknown
This type of independence applies only to belief functionsprocedure. If both selected balls have no colour then there
[4, 10], which are a special type of lower probability func- can be arbitrary correlation between the colours they are
tion. A belief functionis a lower probability function that  assigned.

can be written in the form . . .
In this case, the marginal mass functions for the colours of

the two selected balls are
P(A) =Y m(B)
BCA
- e First urn: my ({red}) = 0.5, my ({white}) = 0.2,
hite,red}) = 0.3.
wherem is a mapping fron2? to [0, 1] such thatn(#) = 0 mi ({white, red})

and}_pcqm(B) = 1. A mappingm satisfying these , second urmnms ({red}) = 0.3, ma({white}) = 0.3,
conditions is called anass function mo ({white, red}) = 0.4.

Suppose that the two marginal experiments are described

by belief functionsP, and P, which have corresponding  por the joint colours of the two selected balls, the mass
mass functionsn; andm,. We say that there imndom  fynction is given by m(4; x As) = my(A;)ma(As).

set independendd, 13] if and only if uncertainty about 5, example, mass.15 is assigned to obtaining a red ball
the joint experiment is described by the belief funct®on  fom each of the urns. With magsi2 we draw two un-

on) = €, x 2, whose mass function is defined by painted balls, and in this case (since we know nothing
about the procedure for assigning colours) we have ab-
m(Ay x Ay) = my(Ar)ms(As) solutely no information about the two colours.
For the eventS that the colours of the balls drawn
whenA4; C @, andA4; C Q9, with m(A4) = 0 for all from the two urns are the same, we obtain the lower
subsets of2 which are not of the formi = A; x As. and upper probabilitiesP(S) = my({red})ms({red})

+my ({white})mq({white}) = 0.21, and P(S) =

1— my ({red})ms({white}) — my ({white})ma({red})

= 0.79. The lower and upper probabilities are
achieved by the extreme points &f which respec-
tively assign the probabilitie€).15,0.56,0.23,0.06) and
S(0.56, 0.15,0.06, 0.23) to the four possible joint outcomes
(RR,RW,WR,WW). The same two extreme points achieve
the lower and upper probabilities that the second ball will
This definition of independence can be justified under thebe red, given that the first ball is red, which aié /71 =
following assumptions: (a) there are two random experi-0.211 and 56/71 = 0.789. The interval15/71,56/71]is
ments with possibility spaces; and A,, each of which  wider than[0.3, 0.7], the interval of marginal probabilities

is modeled by a known probability distribution; (b) each for the second drawing. Again, learning the colour of one
space; is related to2; through amultivalued mapping  ball changes our uncertainty about the colour of the other
1; [4], meaning that if\; is the outcome of random exper- ball, contrary to the intuitive notion of independence.
imenti then we learn only that the true state{bfbelongs

to the subset; (A;); (c) the probability distribution on\; This definition of independence enables us to construct
induces the mass function; on 2; through the multival-  a joint belief functionP from the marginal belief func-
ued mappingy;, for i = 1,2; (d) the probability distribu-  tions P, and P,. The joint model produced by random
tions onA; andA, are stochastically independent; and (e) set independence is more precise than the unknown inter-
we know nothing about the interaction between the twoaction model, in the sense that the joint &tcontains
mechanisms for selecting the outcomgsand w, from fewer probability distributions, because it requires some

There is a simple way of obtaining the global s&from
the mass functionn: it is the set of probability dis-
tributions obtained by assigning each probability mass
m(A; x A,) arbitrarily to elements ofi; x A, [4]. How-
ever, the expression fd¢ in terms of the marginal sets,
and IC, is complicated, because it is not easy to expres
the mass functiom; as a function ofC;.



independence in the selection of the valugandw, (ex-
cept when either marginal distribution @y is degener-
ate). The setsA; and A, are selected from each com-

ponent in a stochastically independent way, but inside th

sets4; x A, we allow dependent selections.

3.3 Epistemic Irrelevance and Irrelevant Natural
Extension

e

procedure for different values of;,. The irrelevant natural
extension satisfies independence of the marginal sets.

This model is appropriate when we are given the marginal
setsk; andKC,, and we judge only that learning should
not change our uncertainty abaouy (but not vice versa).

Example 3 Suppose now that we have three urns. The
first urn has the same contents as the first urn in Example
1. Our knowledge about the other two urns is the same as

The intuitive meaning of ‘independence’ is that learning tor urn 2 in Example 1, but it is not necessary that urns

the outcome of one experiment would not change our un anq 3 have exactly the same composition: the unknown
certainty about the other experiment. In other words, oneyg)is can have different colours in each urn. The proce-

experimentisrrelevantto the other[12, 2]. In behavioural

dure to select the two balls is as follows. A ball is ran-

terms, this means that the set of acceptable gambles conyomly selected from the first urn. If the first ball is red

cerning the second experiment does not change when Wg,en the second ball is selected randomly from the second
learn the outcome of the first experiment. For impreciseyr, and if the first ball is white then the second ball is
probabilities, irrelevance is a directional or asymmetric re- sg|ected randomly from the third urn.

lation. For precise probabilities, however, irrelevance is

symmetric and it agrees with stochastic independence. IANOW the uncertainty about the two colours is modeled by
this subsection we consider the property that the first exthe convex set of all joint probability distribution8 of
periment is irrelevant to the second, which we call epis-the formP({(red,w2)}) = Pi({red}) P> ({w,}|red) and
temic irrelevance, and in the next subsection we consided”({ (white,w)}) = [L — Pi({red})] P2({w:}|white),
the stronger property that each experiment is irrelevant tgvhere 0.5 < Pi({red}) < 0.8, 0.3 < Py({w:}|red)

the other, which we call epistemic independence.

Let K1,K, and K denote the marginal and joint sets of
probability distributions. For a joint distributioff in K
andw; € 4, let P»(-|w;) denote the conditional prob-
ability distribution on{2, givenw,. This is obtained by
Bayes’ rule, P> ({w2 }w1) = P(Q x {w2}[{w1} x Qo) =
P({(wr,w2)})/P({wi} x Q).

We say that the first experimentepistemically irrelevant

to the second when{P;(-|w1) : P € K} = K, for all
w1 € . Thatis, the set of conditional probability distri-

< 0.7, and0.3 < Py({w2}|white) < 0.7. This set has

8 extreme points which can be obtained from all pos-
sible combinations of the extreme valuesiy{{red}),
Py({red}|red) and P({red}|white). Four of these
extreme points, the ones for whid® ({red}|red) #

P, ({red}|white), do not satisfy stochastic independence.
For example, taking; ({red}) = 0.8, P»({red}|red) =

0.7 and P; ({red}|white) = 0.3 gives the probability dis-
tribution (0.56, 0.24, 0.06, 0.14) for the possible joint out-
comes (RR, RW, WR, WW). This illustrates that, although
w1 is epistemically irrelevant tas,, it may be stochasti-

butions (given the outcome of the first experiment) agreetally relevant in the sense that the occurrencevpfmay

with the marginal set of distributioriS,. This captures the

change the physical probability distribution af,: the

intuitive idea that learning the outcome of the first exper- Physical probability that the second ball is red may depend
iment would not change our uncertainty about the second®n the colour of the first ball.

experiment.

Given only the two marginal convex set§ and., we
can construct théargestset of joint distributions/C, un-

TakingS = {RR,WW to be the event that the two colours
are the same, the upper and lower probabilitiesSoére
P(S) = 0.7 (achieved by the preceding distribution) and

der which the first experiment is epistemically irrelevant £(S) = 0.3.

to the second: this is the set of all joint distributiaPgor
which (a) the marginal distribution oft; is in Ky; and
(b) the conditional distribution®(-|w; ) are inks, for all
wy € ;. This set is called tharrelevant natural exten-
sion of the marginaldC; and/Cs. It is the set of all joint
distributionsP which have the form

P({(w1,w2)}) = Pr({w1}) P2 ({wa}|wr),

forsomeP;, € K; andPs(-|w1) € K2. Herew, is selected
according to some marginal distributionkiy , and thenu,

is selected according to a distribution frdéa which may
depend o, . Note thatv, may be selected by a different

Under this model, learning the colour of the first ball does
not change our uncertainty about the colour of the second
ball. The conditional upper and lower probabilities that
the second ball is red, given the colour of the first ball,
are(.7 and0.3, the same as the marginal upper and lower
probabilities. However, we find that the conditional up-
per and lower probabilities that the first ball is red, given
the colour of the second ball, ag8/31 = 0.903 and0.3,
which differ from, and are less precise than, the marginal
upper and lower probabilitie8.8 and0.5. This is another
example of dilation. Thus the second experiment is epis-
temically relevant to the first. This shows that epistemic
irrelevance is not a symmetric relation.



3.4 Epistemic Independence and Independent model when we are given the two marginal sktsand
Natural Extension ICo (or the corresponding sets of acceptable gambles or up-
per and lower previsions), together with a judgement that
The next concept of independence, which we egliis-  the experiments are epistemically independent, but we are
temic independend@2, 2], is characterized by the prop- not willing to make stronger assumptions, e.g., that there
erty that our uncertainty about either of the two outcomesare underlying stochastic mechanisms which are stochas-
does not change when we obtain some information aboutically independent, which would justify the concept of
the other outcome. In other words, each experiment isstrong independence defined in the next subsection.
epistemically irrelevant to the other experiment. Unlike
epistemic irrelevance, epistemic independence is a SYMExample 4 Suppose again that there are two urns, and
metric relation. our knowledge about their composition is exactly as in Ex-
The mathematical definition is as follows. As in the @mple 1. One ball is drawn from each um. All we know
previous subsection, for a joint distributidn in K and ~ @boutthe stochastic mechanism for drawing the two balls,
Wi € Qi,ws € O, let Py(-lw1) denote the condi- 1€ the joint probablllty distributionP, is t_h_at (a) What-_
tional probability distribution orf2, given w;, defined  ©Ver the colour of the first ball, the conditional probabil-

by Bayes’ rule, and lef; (-|w;) denote the conditional ity that the second ball is red lies betweer$ and 0.7,
probability distribution onQ; given w». We say that and (b) whatever the colour of the second ball, the con-

the two experiments arepistemically independemthen ditional probability that the first ball is red lies between
each one is epistemically irrelevant to the other, i.e.,0-> @nd0.8. Since these upper and lower bounds agree

when {Py(-jwy) : P € K} = K, forallw, € Qy, and with the marginal upper and lower probabilities, learning
{P(|ws) : P €K} = Ky forallws € Q. the colour of either ball does not change our uncertainty

. _ _ o _about the colour of the other ball. Here we allow the possi-
The behavioural meaning of epistemic independence igjlity that there may be some physical interaction between

that the set of acceptable gambles concerning either exte two drawings, as in Example 3, but we assume that the
periment would not change if we learned the outcome ofgrawings are epistemically independent.

the other experiment. Defining;* to be the set of gam-

bles onQ2, that are acceptable conditionally on observing I this case the appropriate model is the independent nat-
w1, and defining T2 similarly, there is epistemic inde- ural extension of the two marginals. The upper and lower

pendence if and only iT" =T, and I'¥> =T for all probabilitie; of any e\./e.nts in the joint spafe and the

w1 € O, andws € Q». Equivalently, for all real-valued ©xtreme points of the joint convex $&tcan be found us-

functionsX (), the lower previsions that are generated iN9 linear programming techniques. For example, for the

by K or [ satisfy P,(X|w;) = P,(X), and similarly for eventS that the two baIIs_(_jrawn have the same colour, the
upper and lower probabilities under this model are found

to be P(S) = 40/59 = 0.678 and P(S) = 19/59 =

Given only the two marginal convex set§ andK», we  (.322. The upper probability is achieved by the joint prob-

can construct th&argestset of joint distributions/C, un- ability distribution (28/59,12/59,7/59,12/59) for (RR,

der which the two experiments are epistemically indepen-Rw, WR, WW), which is an extreme poinkobut not a

dent: this is the set of all joint distribution8 for which  product of marginal distributions. The independent natu-

(a) the conditional distributionB (-|w: ) are inK», forall  ra| extensionk is strictly contained in the seé produced

wy € y; and (b) the conditional distributio3 (-|w») are  py the weaker judgement of epistemic irrelevance in Ex-

in Ky, for allw; € €2s. This setk is called theindepen-  ample 3, but because it has extreme points which do not

dent natural extensionf the marginaldC; andC,, since  factorize, it strictly contains the sé that is produced by

it is simply the natural extension of the sets of conditional the following definition of strong independence.

probability distributions that are determined by epistemic

independence ([12], Section 9.3). The independent natu- ) i

ral extensionC can be constructed as the intersection 01‘3'5 Independence in the Selection and Strong

two irrelevant natural extensions (defined in the previous Independence

subsection), or by using linear programming methods toIn some problems we know that there are underlying

find the extreme probability distributions that satisfy the stochastic mechanisms for the two experiments that are

linear constraints (a) and (b). As in the case of epistemic . ) N
irrelevance, a joint distributio® in K can have different stochastically independent. We say that therdepen

conditional distributionsP(-|w; ) for different values of dence in the selectiowhen every joint probability dis-

w1, and similarly for the distributions conditional tribution P that is an extreme point of. factorizes as
L y @ p _ p x P, whereP, is the marginal distribution of

Zpiénﬁzee;i?gg?satural extension satisfies mdependenﬁg on(; [3, 12]. (Such a model was called ardependent
9 ' envelopen [12].) That is, writing extf’) for the set of ex-
The independent natural extension is the appropriatéreme points ofC, there is independence in the selection if

functionsY (wy ).



and only if 014 > 006 = P,({white})P,({red}) and
P(4) = P({(white,red)}) = 0.15 < 0.35 =
ext(K) C{P1 x P, : P € Ky, P> € Ky} Py ({white})Py({red}), so this model violates the
factorization conditions.

Il?ésracci:(taigzltilr?rtlhsr:rgzg(:r?geﬁ(;c%izt;;ea:]; |de|r;1 doc:‘er;on— For the eventS that both balls_ are the same colour, this
w2- model givesP(S) = 0.5 and P(S) = 0.62, which are

not require that there is complete independence between / :
o . much more precise than the previous values.
the procedures that produge andw-, and it is possible

that we know some relationship between them, but therqgependence in the selection captures an important aspect
is independence in the stochastic part of the selection. Inyt jndependence, but it cannot be regarded as a definition
some cases we may have information about linkage beys 5 complete absence of any relationship between the two
tween the underlying marginal probability distributiafis  components. In an extreme case, a functional relationship
andP;, which rules out some of the combinatiofisx > petween the two components satisfies the definition. Imag-
such thatP, € K, andP, € K. Independence in the ine for example, the situation in which the 20 balls in the
selection implies epistemic independence of the marginaly, yrns are either all red or all white. In that case there
experiments. is independence in the selection, but the colour of a ran-

Independence in the selection is appropriate when the foldomly selected ball from one urn completely determines

lowing assumptions are satisfied: (a) the two outcomes rethe colour of a randomly selected ball from the other urn.

sult from random experiments, each governed by a uniquerhe |argest set of joint probability distributions that satis-

(but unknown) p_r_obat_)lllt_y dl_str|but|0n; (b) we know that fjag independence in the selection is

the two probability distributions belong to the setg

and K, respectively; and (c) the random experiments are K=CH{PLx P, : P € K1, P» € Ks}.

stochastically independent. Often (c) can be justified

through knowledge about causal unrelatedness of the tw@Vhen this equality is satisfied, we say that therstisng

experiments. independence(This model was called &ype-1 extension
in[12] and [2].)

Example 5 Assume that we have two urns with the same

composition as in Example 1, and we also know that: This de_finition is intended to capture a complete lack of
interaction between the two components. This concept of

independence has been studied in [3, 12, 13], and it has
been adopted by most of the authors who have modeled
independence using imprecise probabilities.

¢ the drawings from the two urns are stochastically in- Strong independence is appropriate when assumptions (a)-
dependent. (c) are satisfied and also: (d) we do not know of any re-
lationship between the two marginal probability distribu-
There is some interaction between the experiments, iRjons that would enable us to rule out some of the pos-
the sense that having more red balls in the first urn im- siple combinations of marginal distributions. In other
plies having more in the second. There are two extremeyords, there is independence of the marginal sets as de-
marginal probability distributions for each urn: fined in subsection 3.1. Strong independence is equivalent
to independence in the selection plus independence of the
e Firsturn: P} (8 red and2 white) andP? (5red and  marginal sets.
5 white).

e the7 balls in the two urns whose colours are unknown
are all the same colour;

Example 6 Consider the two urns of Example 1, and sup-
e Second urn:P; (7 red and3 white) andP; (3 red  pose that a ball is selected from each urn in a stochasti-
and7 white). cally independent way. The possible relative frequencies
of red balls in each urn are0.5,0.6,0.7 and 0.8 for the
The only possible joint probability distributions ar®! x firsturn, and0.3,0.4,0.5,0.6 and0.7 for the second urn.
P} and P?x P} . Thefirst piece of additionalinformation Because the two drawings are stochastically independent,
rules out the two joint distribution®>! x P and P? x P;. the probability of drawing (say) two red balls is the prod-
Thus K = CH{P} x Pj, P? x P%}. uct of the two relative frequencies, which can take any of
16 possible values ranging fron0.5 x 0.3 = 0.15 to
0.8 x 0.7 = 0.56. The interval [0.15, 0.56] is the convex
hull of the possible probabilities of drawing two red balls,
and it represents our uncertainty about this event.

Consider the eventd that a white ball is drawn
from the first urn and a red ball is drawn from
the second urn. The only possible values of
the probabilty P(A) are P(A) = 0.14 and
P(A) = 0.15. Also P(A) = P({(white,red)}) = More generally, the set of possible joint proba-



bility distributions concerning the two colours is know only that this probability distribution belongs to the
{P, x P> : P, € Ky, P> € K2}, whereK; is the set oft set/C;. In this case we not only have identical information
or 5 probability distributions concerning the colour drawn about the two experiments, but we also know that the two
from urni. The convex hull of this set hasextreme  outcomes are identically distributed. If we also know that
points which can be obtained by combining either of thethe two experiments are stochastically independent, then
two extreme points of’; with either of the two extreme the joint probability distribution is of the forn® x P, for
points of/C,. (Clearly it would make no difference to this someP in ;. Under these assumptions the convex set of
model, or to upper and lower probabilities and previsions, joint probability distributions orf2; x Q5 is

if we replacedlC; here by its convex hull.) The four ex-

treme distributions o} = {RR, RW,WR, WW} are K=CH{PxP:Pecky).
(0.56,0.24,0.14,0.06), (0.24,0.56,0.06,0.14), (0.35,

0.15,0.35,0.15) and (0.15,0.35,0.15,0.35). For the When thi dition i isfied hat thereei
eventS that both balls have the same colour, strong in- ™. 'en t 115 con d't'on IS satis Ieh’ wedz_a_yt ?tkt er?‘;’
dependence produces the upper and lower probabilitiesetItlon indepen en_cﬁz, 13]. T € ac |t|qna nowleage
P(S) = 0.62 and P(S) = 0.38, which are more pre- that the two experiments are identical, i.e., that they are

cise than the probabilities produced by epistemic ind(_}pengoverned by the same probability distribution, reduces the

dence, but less precise than the probabilities in Exampleset’C and produces a more precise global model than we

5, where the upper probability was the same but the IowerWOUId obtain_from strqng indeper_1dence. Repet_ition in-
probability was0.5. dependence is a special type of independence in the se-

lection, where we know that the two marginal probability
The model in Example 5 determines some probabilitiesdistributions are the same. Again, repetition independence
much more precisely than strong independence. Consideimplies epistemic independence.
the event4 that a white ball is drawn from the first urn
and a red ball is drawn from the second urn. Under strong
independence, the possible probabilitiee4) range from
0.06 to 0.35. Under the model in Example 5, the interval
[0.14,0.15] was much narrower, because the additional in-
formation produced a smaller joint skt

Repetition independence is the appropriate definition of
independence in statistical problems, where we have
stochastically independent repetitions of a random experi-
ment and our only knowledge about the underlying proba-
bility distribution is that it belongs to the s&}; .

Strong independence implies the earlier inde endencExample7 Suppose that we have two identical urns, and

9 P P . per -our knowledge about them is the same as our knowledge
properties of independence of the marginal sets, epistemic . . .
: . . . about the first urn in Example 1: we know that each urn
irrelevance, epistemic independence and independence in

) . . as 5 red balls, 2 white balls, and3 balls of unknown
the selection. In particular, learning the outcome of one
: . colours. Now we know also that the number of red balls
experiment does not change our uncertainty about th

other experiment, in accordance with the intuitive notionl?s the same in each um. Suppose that a ball is selected
. P ' from each urn in a stochastically independent way. The
of independence. . . . .
possible relative frequencies of red balls in each urn are
The probabilities produced by strong independence are ald.5,0.6,0.7 and 0.8, with the same relative frequency in
ways at least as precise as those produced by all the defingach urn.
S‘:}gzrg;z]nm ;:geprgxggscseuizsaeﬁvt:nss;'SertSh;Jgf'r:theegi nfonsider the evend that a white ball is drawn from the
9 P y . 1€ 9ot urn and a red ball is drawn from the second umn.
sets under the earlier models. However, there is an impor: . . .
. . ) . Because the drawings are stochastically independent, the
tant case in which strong independence agrees with ran- .
; ) . nly possible values oP(A) are now 0.25,0.24,0.21
dom set independence, the irrelevant natural extension ang d ith th ind d del
the independent natural extension: whenexerC (2 and0.16, _Compare with the strong independence model,
’ = "t under which the values aP(A) range from0.1 to 0.4.
and A, C Q,, these four models produce the same uppe

le: .
and lower probabilities for the product sét x A», which SmCEE(A)__ 0.16 > 0_'1—_ Bl({.wmt—e})E?({red})

are given by the factorization formula®(Ad; x dy) =  2dP(A) =025 < 0.4 = Pr({white}) P> ({red}), the

are given by zafl UlaB (A x Ay) = repetition independence model violates the factorization
Pl(Al)PQ(AZ) and E(Al X Az) = Bl(Al)BQ(A2)

The other models do not always satisfy these factorizationcondltlons'

properties. We would obtain a slightly different joint model here if we
replaced the marginal sét, , which contains just the four
3.6 Repetition Independence possible marginal distributions witR ({red}) = 0.5, 0.6,

0.7 or 0.8, by its convex hulCH(K;). For example, con-
Now suppose that the two experiments have the same setider the gambl& which takes the valugif RW occurs,
of possible outcomes$); = (25, and that each experiment 1 if RR, and 0 otherwise. If the joint modeX is con-
is governed by the same probability distribution, but we structed using repetition independence from the marginal



set Ky, we find that the upper prevision df is 1.120, P(S) P(S)

achieved wherP({red}) is 0.7 or 0.8. But if the joint Unknown Interaction 0.00 1.00
model is constructed from the marginal €#(X,), the Random Set Independence 0.21 0.79
upper prevision ofX is 1.125, achieved wheP({red}) Irrelevant Natural Extension 0.30 0.70

is 0.75. In this case, convexity of the marginal set of prob- Independent Natural Extension  0.32  0.68
ability distributions does have some behavioural signifi- Strong Independence 0.38 0.62
cance, because it affects the joint model that is formed us-

ing repetition independence. Table 1: Probability intervals for the evefitunder differ-

ent definitions of independence.

4 Conclusions

In probability theory, there is essentially only one concept

of independence: the different definitions are essentially

equivalent, except in their treatment of events that havederlying stochastic mechanism which would justify strong
probability zero. In this paper we have shown that inde-independence, and then the choice of an appropriate def-
pendence is more complex when imprecise probabilitiesnition of independence is less clear. The authors of this
are involved. There are several definitions of indepen-paper disagree slightly about which independence con-
dence which are not equivalent. cepts are most useful in these cases. One of us (PW)

We have presented six definitions of independence whichthmks that, because of their simple behavioural meaning,

produce a joint model from given marginals, in order of epistemic independence (or irrelevance) and independent

. ; L . (or irrelevant) natural extension are likely to be the most
increasing precision: the later definitions produce smaller,

joint convex setdC and more precise inferences. Table frequently ap_pllcable_concepts; they_ are purely Ep'Stem'C
. e concepts which require no assumptions about underlying
1 summarizes the (lower, upper) probability intervals for

the eventS, that the two balls drawn from the urns of Ex- stochastic mechanisms. The other two authors (IC and

ample 1 have the same colour, under these different def-SM) think that strong independence is applicable even in

S . o ...~ cases in which no underlying stochastic mechanism is as-
initions, excluding repetition independence. (Repetition L
sumed: it is enough that the values andw, are pro-

mdepend_ence IS |napp|_|cable in this example because thSuced by physical procedures that are causally unrelated.
two marginal sets are different.) . . . )

However, without an assumption of underlying stochastic
All of the definitions of independence given in Section independence, no behavioural justification for strong inde-
3 seem to be useful in particular kinds of application. pendence is available at present.

Clearly, the choice of an ap_proprlate definition mus_t de'We believe that the most important role for a concept of
pend on the type of application. We hope that our discus- . . o

: . . . ndependence is in constructing a joint or global model
sion of the assumptions on which each concept is base ; S

. . . tfom simpler components. In most applications of the con-

and our examples, will help in selecting the most appro- .

. cept, we do not extractindependence from a global model,
priate concept. 7 L2

but rather we perceive independence as a primitive concept

Which independence concepts are likely to be the mostand then use it to construct the global model. In the formu-
useful and most frequently applicable in applications? Welation adopted in this paper, we would construct the joint
think that, whenw; and w, are the outcomes of two convex setC from the marginal convex sef§; and K-,
random experiments that are stochastically independentsing only the judgement that the marginal experiments
strong independence will usually be the most appropri-are independent. Most of the concepts defined in this pa-
ate concept. If there is additional information about the per can be used in this way, but some are easier to use than
linkage between the stochastic mechanisms then a morethers. For example, to construct the independent natural
precise model, involving independence in the selection orextension it is necessary to use linear programming meth-
repetition independence, may be appropriate. All three ofods, whereas construction of the joint model using random
these models are based on assumptions of stochastic indsets independence, irrelevant natural extension or strong
pendence. In examples of drawing balls from urns, it isindependence involves simpler calculations.

natural to assume both that there are underlying margina\INe are presently studying the computational aspects of
probability distributions (determined by the composition

of each urn) and that the drawings are physically unrelateuepiStemiC independence and the other definitions. In future

. . work, we also plan to extend the independence concepts to
and therefore stochastically independent. Under these as- . . ) .

. . . . __conditional independence, to try to find other characteriza-
sumptions, strong independence, or one of its modifica-; : . . .
. . . tions of the concepts which will help to clarify their mean-
tions, is appropriate.

ing, and to study more closely the relationships between
However, in many practical applications there is no un-the concepts.
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