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Abstract

In this paper we try to clarify the notion of independence
for imprecise probabilities. Our main point is that there
are several possible definitions of independence which are
applicable in different types of situation. With this aim,
simple examples are given in order to clarify the meaning
of the different concepts of independence and the relation-
ships between them.
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1 Introduction

One of the key concepts in probability theory is the notion
of independence. Using independence, we can decompose
a complex problem into simpler components and build a
global model from smaller submodels [1, 8].

We use the termstochastic independenceto refer to the
standard concept of independence in probability theory,
which is usually defined as factorization of the joint prob-
ability distribution as a product of the marginal distribu-
tions.

The concept of independence is essential for imprecise
probabilities too, but there is disagreement about how to
define it. Comparisons of different definitions have been
given by Campos and Moral [3] and Walley [12]. In this
paper we aim to show that several different definitions of
independence are needed in different kinds of problems.
We will try to demonstrate that through simple examples
which involve only two binary variables, where each vari-
able represents the colour of a ball to be drawn from an
urn. Each of the examples gives rise to a different math-
ematical definition of independence. We concentrate on
the intuitive meaning of the definitions, making clear the
assumptions under which each definition is appropriate.
When possible, we give a behavioural interpretation of the
definition.

Conditional independence is another fundamental concept

for modeling uncertainty, but the possible definitions are
even more numerous than for unconditional independence
and they will not be considered here.

2 Fundamental Ideas of Imprecise
Probability

In this section we give a brief introduction to imprecise
probabilities, following Walley [12]. Imprecise probabil-
ities are models for behaviour under uncertainty that do
not assume a unique underlying probability distribution
but correspond, in general, to a set of probability distribu-
tions. A decision maker is not required to choose between
every pair of alternatives and has the option of suspending
judgement.

Let 
 be a finite set of possibilities, exactly one of which
must be true. Agamble, X , on
 is a function from
 to
IR (the set of real numbers). If you were to accept gamble
X and! turned out to be true then you would gainX(!)
utiles (so you would lose ifX(!) < 0). A subject’s beliefs
are elicited by asking her to specify aset of acceptable (or
desirable) gambles, i.e., gambles she is willing to accept.

The set of all gambles on
 is denoted byL(
). Addition
and subtraction of gambles are defined pointwise, so that
for gamblesX andY , for each! 2 
, (X + Y )(!) =
X(!) + Y (!).

There are three rules for obtaining new acceptable gambles
from previous judgements of acceptability [12, 14, 7]:

R1. If minX � 0, thenX is acceptable.

R2. IfX is acceptable and� � 0, then�X is acceptable.

R3. IfX1 andX2 are acceptable, thenX1+X2 is accept-
able.

Given a set of acceptable gambles�, the closureof �,
denoted by�, is the set of all gambles that can be ob-
tained from gambles in� by applying the rules R1-R3.
Closed sets of acceptable gambles correspond to closed



convex sets of probability distributions. IfP(
) is the
set of all probability distributions on
, then the closed
convex set of probability distributions associated with�
is given by K� = fP 2 P(
) : EP (X) � 0;8X 2 �g,
whereEP denotes expectation with respect toP . Con-
versely, from a non-empty set of probability distributions,
K, we can define a closed set of acceptable gambles by
�K = fX 2 L(
) : EP (X) � 0;8P 2 Kg. Sets of ac-
ceptable gambles and sets of probability distributions are
dual ways of representing the same behaviour.

We shall consider only closed sets of acceptable gambles
that can be generated as the closure of afinite set of gam-
bles. Such sets of gambles are equivalent to closed and
convex sets of probability distributions with a finite num-
ber of extreme points.

In this approach,convexityof a set of probability distribu-
tions has no behavioural significance. From a behavioural
point of view, any non-empty set of probability distribu-
tions,K, is indistinguishable from its convex hull, CH(K),
because bothK and CH(K) generate the same set of ac-
ceptable gambles�K. (But see Example 7 for one excep-
tion.) In this paper, to obtain a unique set of probability
distributions which represents�, we will generally use the
largestsuch set, which is the convex setK� defined above.
However, we could equally well have used a non-convex
set such as the set of extreme points of CH(K�), which is
behaviourally equivalent to CH(K�).

Another equivalent model involvesupper and lower pre-
visions. Given a closed set of gambles�, we can asso-
ciate with each gambleX its lower prevision,P (X) =
maxf� 2 IR : X � � 2 �g. The upper prevision can be
defined analogously, or through the conjugacy relationship
P (X) = �P (�X).

Upper and lower previsions are generalizations of upper
and lower probabilities. When the gambleX is the indi-
cator function of an eventA, whereA � 
, the upper
and lower previsionsP (X) andP (X) can be regarded as
the upper and lower probabilities ofA. By using the same
notationA to refer to both the event and its indicator func-
tion, we can write these upper and lower probabilities as
P (A) andP (A). Upper and lower probabilities, or more
generally upper and lower previsions, can also be written
as upper and lower envelopes of the closed convex set of
probability distributionsK, byP (A) = maxfP (A) : P 2
Kg andP (A) = min fP (A) : P 2 Kg.

From a finite set of lower previsionsP (Xi) = �i (i =
1; : : : ; n), we can define lower previsions for every gamble
X 2 L(
) by using the technique ofnatural extension
[12]. This is equivalent to considering the set of gambles
�1 = fXi � �i : i = 1; : : : ; ng, forming its closure�1,
and then calculating lower previsions from�1.

3 Definitions of Independence

Consider two variable or uncertain values which may be
regarded as the outcomes of two experiments. Suppose
that the two outcomes are known to belong to the possi-
bility spaces
1 and
2, which are assumed to be finite.
The most basic condition of independence of the two ex-
periments is that the set of possible joint outcomes is the
Cartesian product
 = 
1 � 
2, which is calledlogical
independence. We assume throughout that this holds.

Let K1 andK2 denote the marginal convex sets of prob-
ability distributions on
1 and 
2 respectively, which
model our uncertainty about the two experiments sepa-
rately. LetK denote the convex set of joint probability
distributions on
 = 
1 � 
2, which models our uncer-
tainty about the joint experiment.

We say that a joint probability distributionP on 
 sat-
isfies stochastic independencewhen P (f(!1; !2)g) =
P1(f!1g)P2(f!2g) for all !1 2 
1 and!2 2 
2, where
P1 is the marginal probability distribution ofP on 
1

defined byP1(f!1g) = P (f!1g � 
2), and similarly
P2 is the marginal distribution ofP on 
2. In this case
we write P = P1 � P2. This is the usual definition of
independence in probability theory. We assume that all
marginal probabilitiesP1(f!1g) andP2(f!2g) are non-
zero whenP1 2 K1 andP2 2 K2, to avoid the difficulties
that arise from conditioning on events of probability zero.
In this case, the usual definition is equivalent to a sec-
ond definition which requires equality of conditional and
marginal distributions. The second definition is preferable
to the first one in the case not considered here, when some
marginal probabilities may be zero [12].

In this section we discuss several possible definitions of
independence that can be used when the marginal proba-
bilities are imprecise, i.e., when the marginal setsK1 and
K2 are non-degenerate. Most of the definitions of inde-
pendence are associated with a particular basic property of
the joint setK. In Subsection 3.3, for example, the basic
property is that our uncertainty about
2 does not change
when we learn the value of!1. Given a joint setK, we can
verify whetherK satisfies the particular basic property of
independence.

However, it is not usual in practice that we are given a joint
setK. Instead, we usually need to construct the joint set
from given marginal setsK1 andK2 and a judgement of
independence. In general, there will be several joint sets
K which have the same marginalsK1 andK2 and satisfy a
particular basic property of independence. In that case we
define a unique modelK to be thelargest(i.e., the least in-
formative) set of joint probability distributions which has
the given marginalsK1 andK2 and also satisfies the basic
property. In this way, each of the basic properties can be
used constructively, to determine a unique model for the



joint experiment from given marginals.

Each of the following subsections 3.1–3.6 defines a dif-
ferent method for constructing the joint setK from given
marginalsK1 andK2. When the method is based on a par-
ticular basic property of independence, the basic property
is defined in the same subsection. The definitions of in-
dependence are presented in order of increasing precision;
that is, for fixed marginal setsK1 andK2, the earlier def-
initions produce a larger set of joint distributions,K, than
the later definitions.

3.1 Independence of the Marginal Sets and
Unknown Interaction

We say that there isindependence of the marginal setsif,
for any two marginal distributionsP1 2 K1 andP2 2 K2,
there is a joint distributionP in K which hasP1 andP2 as
its marginals. In other words, learning the marginal proba-
bility distribution on
1 would not change our uncertainty
about the marginal distribution on
2.

Let K�i denote the set of all joint probability distributions
on 
 whose marginal distribution on
i belongs toKi.
Then the largest set of distributions that satisfies indepen-
dence of the marginal sets isK = K�

1
\ K�

2
. In other

words, the joint setK consists of all joint probability dis-
tributions whose two marginal distributions belong toK1

andK2 respectively. In this case we say that there isun-
known interactionbetween the marginal experiments.

The definition of unknown interaction can also be ex-
pressed in terms of the closed sets of gambles�1;�2 and
� that are determined byK1;K2 andK. Given a closed
set of gambles� on 
, there is unknown interaction be-
tween the marginal experiments if and only if there are
two sets of gambles,�1 � L(
1) and�2 � L(
2), such
that � = (�1 [ �2). Here we identify a gambleX on
1

with the gamble on
 that assigns the valueX(!1) to each
pair (!1; !2), and similarly for gambles on
2.

The behavioural meaning of this definition is that the only
gambles that are directly judged to be acceptable are gam-
bles which depend on just one of the marginal outcomes;
no judgments are made about any gamble that depends
on both!1 and!2. This model is appropriate when our
knowledge about(!1; !2) consists entirely of our knowl-
edge about each of the components separately, and we do
not know anything about how the two components are re-
lated.

Example 1 Suppose that we have two urns. Each of the
urns has10 balls which are coloured either red or white.
We know that the first urn has5 red, 2 white, and3 un-
known colours, and the second urn has3 red,3 white, and
4 unknown colours. One ball is chosen at random from
each of the urns, but we do not assume stochastic indepen-
dence and it is possible that a correlated joint procedure

is used to select the two balls. For example, it could be
the case that in each urn the balls are numbered from1
to 10, and that a random number,i, between1 and10 is
selected and ball numberi is chosen from each urn. The
independence here is in our complete lack of information
about the interaction between the two drawings. We have
information only about the two marginal distributions.

In this example we are interested in the colours of the two
balls that are drawn from the urns. The outcome!1 de-
notes the colour of the ball drawn from the first urn, and
!2 denotes the colour of the ball drawn from the second
urn. The only possible colours are red and white, so that

1 = 
2 = fred; whiteg.

For i = 1; 2, let Ki denote the convex set of probability
distributions that models our uncertainty about the colour
of the ball drawn from urni. ThenK1 contains all proba-
bility distributionsP1 on
1 such that0:5 � P1(fredg) �
0:8 andK2 contains all probability distributionsP2 on
2

for which0:3 � P2(fredg) � 0:7. Under the unknown
interaction model, the joint setK contains all joint proba-
bility distributions on
 whose marginal distributionsP1
andP2 satisfy both constraints.

Here K is a very large set. For example,K con-
tains the joint distribution withP (f(red; red)g) =
P (f(white; white)g) = 0:5, under which the colour of
the first ball completely determines the colour of the sec-
ond ball. SimilarlyK contains the joint distribution with
P (f(red; white)g) = P (f(white; red)g) = 0:5. By con-
sidering these two distributions, we see that the upper and
lower probabilities that the second ball will be red, condi-
tional on the colour of the first ball, are1 and0. Under
this model, the effect of learning the colour of one ball
is to make our beliefs about the colour of the other ball
less precise than they were initially. Observing one out-
come changes our uncertainty about the other outcome,
contrary to the intuitive notion of independence. This is
an extreme example of a phenomenon calleddilation [9].

Let S denote the event that both balls drawn have the
same colour. By considering the same two distributions,
we see that the upper and lower probabilities ofS under
this model areP (S) = maxfP (S) : P 2 Kg = 1 and
P (S) = min fP (S) : P 2 Kg = 0, which indicates that
the joint probabilities under this model are highly impre-
cise. The later concepts of independence produce increas-
ingly narrower intervals[P (S); P (S)].

The lower probabilities under this model satisfy
P (f(red; red)g) = 0 < 0:15 = P

1
(fredg)P

2
(fredg),

so that the model violates the factorization condition
P (A1 � A2) = P

1
(A1)P (A2) (for A1 � 
1, A2 � 
2)

which is satisfied by most of the later concepts of
independence.

Unknown interaction produces a very imprecise model,



but it can be exploited in local computation problems
[5, 6, 11]. Clearly it is not a generalization of stochas-
tic independence. However, it does capture a basic notion
of independence, in the sense that we have information
about the two components separately but we do not know
anything about how they are related. All the following def-
initions of independence are generalizations of stochastic
independence.

3.2 Random Set Independence

This type of independence applies only to belief functions
[4, 10], which are a special type of lower probability func-
tion. A belief functionis a lower probability function that
can be written in the form

P (A) =
X

B�A

m(B)

wherem is a mapping from2
 to [0; 1] such thatm(;) = 0
and
P

B�
m(B) = 1. A mappingm satisfying these
conditions is called amass function.

Suppose that the two marginal experiments are described
by belief functionsP

1
andP

2
which have corresponding

mass functionsm1 andm2. We say that there israndom
set independence[4, 13] if and only if uncertainty about
the joint experiment is described by the belief functionP
on
 = 
1 �
2 whose mass function is defined by

m(A1 �A2) = m1(A1)m2(A2)

whenA1 � 
1 andA2 � 
2, with m(A) = 0 for all
subsets of
 which are not of the formA = A1 �A2.

There is a simple way of obtaining the global setK from
the mass functionm: it is the set of probability dis-
tributions obtained by assigning each probability mass
m(A1�A2) arbitrarily to elements ofA1�A2 [4]. How-
ever, the expression forK in terms of the marginal setsK1

andK2 is complicated, because it is not easy to express
the mass functionmi as a function ofKi.

This definition of independence can be justified under the
following assumptions: (a) there are two random experi-
ments with possibility spaces�1 and�2, each of which
is modeled by a known probability distribution; (b) each
space�i is related to
i through amultivalued mapping
�i [4], meaning that if�i is the outcome of random exper-
imenti then we learn only that the true state of
i belongs
to the subset�i(�i); (c) the probability distribution on�i
induces the mass functionmi on
i through the multival-
ued mapping�i, for i = 1; 2; (d) the probability distribu-
tions on�1 and�2 are stochastically independent; and (e)
we know nothing about the interaction between the two
mechanisms for selecting the outcomes!1 and!2 from

the sets�1(�1) and�2(�2). Under these assumptions, the
joint mass functionm, defined above, is the appropriate
model for uncertainty about the joint outcome(!1; !2).
These assumptions are illustrated by the next example.

Example 2 Suppose there are two urns as in Example
1, but now the balls of unknown colour are actually not
painted until after the drawings are made. We select one
ball from each urn in a stochastically independent way,
and if either of the selected balls are not coloured then
they are painted white or red by a completely unknown
procedure. If both selected balls have no colour then there
can be arbitrary correlation between the colours they are
assigned.

In this case, the marginal mass functions for the colours of
the two selected balls are

� First urn: m1(fredg) = 0:5, m1(fwhiteg) = 0:2,
m1(fwhite; redg) = 0:3.

� Second urn:m2(fredg) = 0:3,m2(fwhiteg) = 0:3,
m2(fwhite; redg) = 0:4.

For the joint colours of the two selected balls, the mass
function is given bym(A1 � A2) = m1(A1)m2(A2).
For example, mass0:15 is assigned to obtaining a red ball
from each of the urns. With mass0:12 we draw two un-
painted balls, and in this case (since we know nothing
about the procedure for assigning colours) we have ab-
solutely no information about the two colours.

For the eventS that the colours of the balls drawn
from the two urns are the same, we obtain the lower
and upper probabilitiesP (S) = m1(fredg)m2(fredg)
+m1(fwhiteg)m2(fwhiteg) = 0:21, and P (S) =
1� m1(fredg)m2(fwhiteg) �m1(fwhiteg)m2(fredg)
= 0:79. The lower and upper probabilities are
achieved by the extreme points ofK which respec-
tively assign the probabilities(0:15; 0:56; 0:23; 0:06) and
(0:56; 0:15; 0:06; 0:23) to the four possible joint outcomes
(RR,RW,WR,WW). The same two extreme points achieve
the lower and upper probabilities that the second ball will
be red, given that the first ball is red, which are15=71 =
0:211 and 56=71 = 0:789. The interval[15=71; 56=71] is
wider than[0:3; 0:7], the interval of marginal probabilities
for the second drawing. Again, learning the colour of one
ball changes our uncertainty about the colour of the other
ball, contrary to the intuitive notion of independence.

This definition of independence enables us to construct
a joint belief functionP from the marginal belief func-
tionsP

1
andP

2
. The joint model produced by random

set independence is more precise than the unknown inter-
action model, in the sense that the joint setK contains
fewer probability distributions, because it requires some



independence in the selection of the values!1 and!2 (ex-
cept when either marginal distribution on�i is degener-
ate). The setsA1 andA2 are selected from each com-
ponent in a stochastically independent way, but inside the
setsA1 �A2 we allow dependent selections.

3.3 Epistemic Irrelevance and Irrelevant Natural
Extension

The intuitive meaning of ‘independence’ is that learning
the outcome of one experiment would not change our un-
certainty about the other experiment. In other words, one
experiment isirrelevantto the other [12, 2]. In behavioural
terms, this means that the set of acceptable gambles con-
cerning the second experiment does not change when we
learn the outcome of the first experiment. For imprecise
probabilities, irrelevance is a directional or asymmetric re-
lation. For precise probabilities, however, irrelevance is
symmetric and it agrees with stochastic independence. In
this subsection we consider the property that the first ex-
periment is irrelevant to the second, which we call epis-
temic irrelevance, and in the next subsection we consider
the stronger property that each experiment is irrelevant to
the other, which we call epistemic independence.

Let K1;K2 andK denote the marginal and joint sets of
probability distributions. For a joint distributionP in K
and!1 2 
1, let P2(�j!1) denote the conditional prob-
ability distribution on
2 given!1. This is obtained by
Bayes’ rule,P2(f!2gj!1) = P (
1�f!2gjf!1g�
2) =
P (f(!1; !2)g)=P (f!1g �
2).

We say that the first experiment isepistemically irrelevant
to the second whenfP2(�j!1) : P 2 Kg = K2 for all
!1 2 
1. That is, the set of conditional probability distri-
butions (given the outcome of the first experiment) agrees
with the marginal set of distributionsK2. This captures the
intuitive idea that learning the outcome of the first exper-
iment would not change our uncertainty about the second
experiment.

Given only the two marginal convex setsK1 andK2, we
can construct thelargestset of joint distributions,K, un-
der which the first experiment is epistemically irrelevant
to the second: this is the set of all joint distributionsP for
which (a) the marginal distribution on
1 is in K1; and
(b) the conditional distributionsP (�j!1) are inK2, for all
!1 2 
1. This setK is called theirrelevant natural exten-
sion of the marginalsK1 andK2. It is the set of all joint
distributionsP which have the form

P (f(!1; !2)g) = P1(f!1g)P2(f!2gj!1);

for someP1 2 K1 andP2(�j!1) 2 K2. Here!1 is selected
according to some marginal distribution inK1, and then!2
is selected according to a distribution fromK2 which may
depend on!1. Note that!2 may be selected by a different

procedure for different values of!1. The irrelevant natural
extension satisfies independence of the marginal sets.

This model is appropriate when we are given the marginal
setsK1 andK2, and we judge only that learning!1 should
not change our uncertainty about!2 (but not vice versa).

Example 3 Suppose now that we have three urns. The
first urn has the same contents as the first urn in Example
1. Our knowledge about the other two urns is the same as
for urn 2 in Example 1, but it is not necessary that urns
2 and 3 have exactly the same composition: the unknown
balls can have different colours in each urn. The proce-
dure to select the two balls is as follows. A ball is ran-
domly selected from the first urn. If the first ball is red
then the second ball is selected randomly from the second
urn, and if the first ball is white then the second ball is
selected randomly from the third urn.

Now the uncertainty about the two colours is modeled by
the convex set of all joint probability distributionsP of
the formP (f(red; !2)g) = P1(fredg)P2(f!2gjred) and
P (f(white; !2)g) = [1 � P1(fredg)] P2(f!2gjwhite),
where 0:5 � P1(fredg) � 0:8, 0:3 � P2(f!2gjred)
� 0:7, and0:3 � P2(f!2gjwhite) � 0:7. This set has
8 extreme points which can be obtained from all pos-
sible combinations of the extreme values ofP1(fredg),
P2(fredgjred) and P2(fredgjwhite). Four of these
extreme points, the ones for whichP2(fredgjred) 6=
P2(fredgjwhite), do not satisfy stochastic independence.
For example, takingP1(fredg) = 0:8, P2(fredgjred) =
0:7 andP2(fredgjwhite) = 0:3 gives the probability dis-
tribution (0:56; 0:24; 0:06; 0:14) for the possible joint out-
comes (RR, RW, WR, WW). This illustrates that, although
!1 is epistemically irrelevant to!2, it may be stochasti-
cally relevant in the sense that the occurrence of!1 may
change the physical probability distribution of!2: the
physical probability that the second ball is red may depend
on the colour of the first ball.

TakingS = fRR,WWg to be the event that the two colours
are the same, the upper and lower probabilities ofS are
P (S) = 0:7 (achieved by the preceding distribution) and
P (S) = 0:3.

Under this model, learning the colour of the first ball does
not change our uncertainty about the colour of the second
ball. The conditional upper and lower probabilities that
the second ball is red, given the colour of the first ball,
are0:7 and0:3, the same as the marginal upper and lower
probabilities. However, we find that the conditional up-
per and lower probabilities that the first ball is red, given
the colour of the second ball, are28=31 = 0:903 and0:3,
which differ from, and are less precise than, the marginal
upper and lower probabilities0:8 and0:5. This is another
example of dilation. Thus the second experiment is epis-
temically relevant to the first. This shows that epistemic
irrelevance is not a symmetric relation.



3.4 Epistemic Independence and Independent
Natural Extension

The next concept of independence, which we callepis-
temic independence[12, 2], is characterized by the prop-
erty that our uncertainty about either of the two outcomes
does not change when we obtain some information about
the other outcome. In other words, each experiment is
epistemically irrelevant to the other experiment. Unlike
epistemic irrelevance, epistemic independence is a sym-
metric relation.

The mathematical definition is as follows. As in the
previous subsection, for a joint distributionP in K and
!1 2 
1; !2 2 
2, let P2(�j!1) denote the condi-
tional probability distribution on
2 given !1, defined
by Bayes’ rule, and letP1(�j!2) denote the conditional
probability distribution on
1 given !2. We say that
the two experiments areepistemically independentwhen
each one is epistemically irrelevant to the other, i.e.,
when fP2(�j!1) : P 2 Kg = K2 for all !1 2 
1, and
fP1(�j!2) : P 2 Kg = K1 for all !2 2 
2.

The behavioural meaning of epistemic independence is
that the set of acceptable gambles concerning either ex-
periment would not change if we learned the outcome of
the other experiment. Defining�!1

2
to be the set of gam-

bles on
2 that are acceptable conditionally on observing
!1, and defining�!2

1
similarly, there is epistemic inde-

pendence if and only if�!1
2

= �2 and �!2
1

= �1 for all
!1 2 
1 and!2 2 
2. Equivalently, for all real-valued
functionsX(!2), the lower previsions that are generated
byK or � satisfy P

2
(X j!1) = P

2
(X), and similarly for

functionsY (!1).

Given only the two marginal convex setsK1 andK2, we
can construct thelargestset of joint distributions,K, un-
der which the two experiments are epistemically indepen-
dent: this is the set of all joint distributionsP for which
(a) the conditional distributionsP2(�j!1) are inK2, for all
!1 2 
1; and (b) the conditional distributionsP1(�j!2) are
in K1, for all !2 2 
2. This setK is called theindepen-
dent natural extensionof the marginalsK1 andK2, since
it is simply the natural extension of the sets of conditional
probability distributions that are determined by epistemic
independence ([12], Section 9.3). The independent natu-
ral extensionK can be constructed as the intersection of
two irrelevant natural extensions (defined in the previous
subsection), or by using linear programming methods to
find the extreme probability distributions that satisfy the
linear constraints (a) and (b). As in the case of epistemic
irrelevance, a joint distributionP in K can have different
conditional distributionsP2(�j!1) for different values of
!1, and similarly for the distributions conditional on!2.
The independent natural extension satisfies independence
of the marginal sets.

The independent natural extension is the appropriate

model when we are given the two marginal setsK1 and
K2 (or the corresponding sets of acceptable gambles or up-
per and lower previsions), together with a judgement that
the experiments are epistemically independent, but we are
not willing to make stronger assumptions, e.g., that there
are underlying stochastic mechanisms which are stochas-
tically independent, which would justify the concept of
strong independence defined in the next subsection.

Example 4 Suppose again that there are two urns, and
our knowledge about their composition is exactly as in Ex-
ample 1. One ball is drawn from each urn. All we know
about the stochastic mechanism for drawing the two balls,
i.e., the joint probability distributionP , is that (a) what-
ever the colour of the first ball, the conditional probabil-
ity that the second ball is red lies between0:3 and 0:7,
and (b) whatever the colour of the second ball, the con-
ditional probability that the first ball is red lies between
0:5 and 0:8. Since these upper and lower bounds agree
with the marginal upper and lower probabilities, learning
the colour of either ball does not change our uncertainty
about the colour of the other ball. Here we allow the possi-
bility that there may be some physical interaction between
the two drawings, as in Example 3, but we assume that the
drawings are epistemically independent.

In this case the appropriate model is the independent nat-
ural extension of the two marginals. The upper and lower
probabilities of any events in the joint space
, and the
extreme points of the joint convex setK, can be found us-
ing linear programming techniques. For example, for the
eventS that the two balls drawn have the same colour, the
upper and lower probabilities under this model are found
to beP (S) = 40=59 = 0:678 and P (S) = 19=59 =
0:322. The upper probability is achieved by the joint prob-
ability distribution (28=59; 12=59; 7=59; 12=59) for (RR,
RW, WR, WW), which is an extreme point ofK but not a
product of marginal distributions. The independent natu-
ral extensionK is strictly contained in the setK produced
by the weaker judgement of epistemic irrelevance in Ex-
ample 3, but because it has extreme points which do not
factorize, it strictly contains the setK that is produced by
the following definition of strong independence.

3.5 Independence in the Selection and Strong
Independence

In some problems we know that there are underlying
stochastic mechanisms for the two experiments that are
stochastically independent. We say that there isindepen-
dence in the selectionwhen every joint probability dis-
tribution P that is an extreme point ofK factorizes as
P = P1 � P2, wherePi is the marginal distribution of
P on
i [3, 12]. (Such a model was called anindependent
envelopein [12].) That is, writing ext(K) for the set of ex-
treme points ofK, there is independence in the selection if



and only if

ext(K) � fP1 � P2 : P1 2 K1; P2 2 K2g:

This definition is intended to capture the idea of non-
interaction in the random selection of!1 and!2. It does
not require that there is complete independence between
the procedures that produce!1 and!2, and it is possible
that we know some relationship between them, but there
is independence in the stochastic part of the selection. In
some cases we may have information about linkage be-
tween the underlying marginal probability distributionsP1
andP2, which rules out some of the combinationsP1�P2
such thatP1 2 K1 andP2 2 K2. Independence in the
selection implies epistemic independence of the marginal
experiments.

Independence in the selection is appropriate when the fol-
lowing assumptions are satisfied: (a) the two outcomes re-
sult from random experiments, each governed by a unique
(but unknown) probability distribution; (b) we know that
the two probability distributions belong to the setsK1

andK2 respectively; and (c) the random experiments are
stochastically independent. Often (c) can be justified
through knowledge about causal unrelatedness of the two
experiments.

Example 5 Assume that we have two urns with the same
composition as in Example 1, and we also know that:

� the7 balls in the two urns whose colours are unknown
are all the same colour;

� the drawings from the two urns are stochastically in-
dependent.

There is some interaction between the experiments, in
the sense that having more red balls in the first urn im-
plies having more in the second. There are two extreme
marginal probability distributions for each urn:

� First urn: P 1
1 (8 red and2 white) andP 2

1 (5 red and
5 white).

� Second urn:P 1
2

(7 red and3 white) andP 2
2

(3 red
and7 white).

The only possible joint probability distributions areP 1
1
�

P 1
2

and P 2
1
�P 2

2
. The first piece of additional information

rules out the two joint distributionsP 1
1�P

2
2 and P 2

1�P
1
2 :

ThusK = CHfP 1
1
� P 1

2
; P 2

1
� P 2

2
g.

Consider the eventA that a white ball is drawn
from the first urn and a red ball is drawn from
the second urn. The only possible values of
the probability P (A) are P (A) = 0:14 and
P (A) = 0:15. Also P (A) = P (f(white; red)g) =

0:14 > 0:06 = P
1
(fwhiteg)P

2
(fredg) and

P (A) = P (f(white; red)g) = 0:15 < 0:35 =
P 1(fwhiteg)P 2(fredg), so this model violates the
factorization conditions.

For the eventS that both balls are the same colour, this
model givesP (S) = 0:5 andP (S) = 0:62, which are
much more precise than the previous values.

Independence in the selection captures an important aspect
of independence, but it cannot be regarded as a definition
of a complete absence of any relationship between the two
components. In an extreme case, a functional relationship
between the two components satisfies the definition. Imag-
ine, for example, the situation in which the 20 balls in the
two urns are either all red or all white. In that case there
is independence in the selection, but the colour of a ran-
domly selected ball from one urn completely determines
the colour of a randomly selected ball from the other urn.

The largest set of joint probability distributions that satis-
fies independence in the selection is

K = CHfP1 � P2 : P1 2 K1; P2 2 K2g:

When this equality is satisfied, we say that there isstrong
independence. (This model was called atype-1 extension
in [12] and [2].)

This definition is intended to capture a complete lack of
interaction between the two components. This concept of
independence has been studied in [3, 12, 13], and it has
been adopted by most of the authors who have modeled
independence using imprecise probabilities.

Strong independence is appropriate when assumptions (a)-
(c) are satisfied and also: (d) we do not know of any re-
lationship between the two marginal probability distribu-
tions that would enable us to rule out some of the pos-
sible combinations of marginal distributions. In other
words, there is independence of the marginal sets as de-
fined in subsection 3.1. Strong independence is equivalent
to independence in the selection plus independence of the
marginal sets.

Example 6 Consider the two urns of Example 1, and sup-
pose that a ball is selected from each urn in a stochasti-
cally independent way. The possible relative frequencies
of red balls in each urn are0:5; 0:6; 0:7 and0:8 for the
first urn, and0:3; 0:4; 0:5; 0:6 and0:7 for the second urn.
Because the two drawings are stochastically independent,
the probability of drawing (say) two red balls is the prod-
uct of the two relative frequencies, which can take any of
16 possible values ranging from0:5 � 0:3 = 0:15 to
0:8� 0:7 = 0:56. The interval [0:15; 0:56] is the convex
hull of the possible probabilities of drawing two red balls,
and it represents our uncertainty about this event.

More generally, the set of possible joint proba-



bility distributions concerning the two colours is
fP1 � P2 : P1 2 K1; P2 2 K2g, whereKi is the set of4
or 5 probability distributions concerning the colour drawn
from urn i. The convex hull of this set has4 extreme
points which can be obtained by combining either of the
two extreme points ofK1 with either of the two extreme
points ofK2. (Clearly it would make no difference to this
model, or to upper and lower probabilities and previsions,
if we replacedKi here by its convex hull.) The four ex-
treme distributions on
 = fRR;RW;WR;WWg are
(0:56; 0:24; 0:14; 0:06), (0:24; 0:56; 0:06; 0:14), (0:35;
0:15; 0:35; 0:15) and (0:15; 0:35; 0:15; 0:35). For the
eventS that both balls have the same colour, strong in-
dependence produces the upper and lower probabilities
P (S) = 0:62 and P (S) = 0:38, which are more pre-
cise than the probabilities produced by epistemic indepen-
dence, but less precise than the probabilities in Example
5, where the upper probability was the same but the lower
probability was0:5.

The model in Example 5 determines some probabilities
much more precisely than strong independence. Consider
the eventA that a white ball is drawn from the first urn
and a red ball is drawn from the second urn. Under strong
independence, the possible probabilitiesP (A) range from
0:06 to 0:35. Under the model in Example 5, the interval
[0:14; 0:15]was much narrower, because the additional in-
formation produced a smaller joint setK.

Strong independence implies the earlier independence
properties of independence of the marginal sets, epistemic
irrelevance, epistemic independence and independence in
the selection. In particular, learning the outcome of one
experiment does not change our uncertainty about the
other experiment, in accordance with the intuitive notion
of independence.

The probabilities produced by strong independence are al-
ways at least as precise as those produced by all the defini-
tions given in the previous subsections, i.e., the joint setK
under strong independence is always a subset of the joint
sets under the earlier models. However, there is an impor-
tant case in which strong independence agrees with ran-
dom set independence, the irrelevant natural extension and
the independent natural extension: wheneverA1 � 
1

andA2 � 
2, these four models produce the same upper
and lower probabilities for the product setA1�A2, which
are given by the factorization formulaeP (A1 � A2) =
P 1(A1)P 2(A2) and P (A1 � A2) = P

1
(A1)P 2

(A2).
The other models do not always satisfy these factorization
properties.

3.6 Repetition Independence

Now suppose that the two experiments have the same set
of possible outcomes,
1 = 
2, and that each experiment
is governed by the same probability distribution, but we

know only that this probability distribution belongs to the
setK1. In this case we not only have identical information
about the two experiments, but we also know that the two
outcomes are identically distributed. If we also know that
the two experiments are stochastically independent, then
the joint probability distribution is of the formP � P , for
someP in K1. Under these assumptions the convex set of
joint probability distributions on
1 � 
2 is

K = CHfP � P : P 2 K1g:

When this condition is satisfied, we say that there isrep-
etition independence[12, 13]. The additional knowledge
that the two experiments are identical, i.e., that they are
governed by the same probability distribution, reduces the
setK and produces a more precise global model than we
would obtain from strong independence. Repetition in-
dependence is a special type of independence in the se-
lection, where we know that the two marginal probability
distributions are the same. Again, repetition independence
implies epistemic independence.

Repetition independence is the appropriate definition of
independence in statistical problems, where we have
stochastically independent repetitions of a random experi-
ment and our only knowledge about the underlying proba-
bility distribution is that it belongs to the setK1.

Example 7 Suppose that we have two identical urns, and
our knowledge about them is the same as our knowledge
about the first urn in Example 1: we know that each urn
has 5 red balls, 2 white balls, and3 balls of unknown
colours. Now we know also that the number of red balls
is the same in each urn. Suppose that a ball is selected
from each urn in a stochastically independent way. The
possible relative frequencies of red balls in each urn are
0:5; 0:6; 0:7 and0:8, with the same relative frequency in
each urn.

Consider the eventA that a white ball is drawn from the
first urn and a red ball is drawn from the second urn.
Because the drawings are stochastically independent, the
only possible values ofP (A) are now 0:25; 0:24; 0:21
and0:16. Compare with the strong independence model,
under which the values ofP (A) range from0:1 to 0:4.
SinceP (A) = 0:16 > 0:1 = P

1
(fwhiteg)P

2
(fredg)

andP (A) = 0:25 < 0:4 = P 1(fwhiteg)P 2(fredg), the
repetition independence model violates the factorization
conditions.

We would obtain a slightly different joint model here if we
replaced the marginal setK1, which contains just the four
possible marginal distributions withP (fredg) = 0:5; 0:6;
0:7 or 0:8, by its convex hullCH(K1). For example, con-
sider the gambleX which takes the value3 if RW occurs,
1 if RR, and 0 otherwise. If the joint modelK is con-
structed using repetition independence from the marginal



setK1, we find that the upper prevision ofX is 1:120,
achieved whenP (fredg) is 0:7 or 0:8. But if the joint
model is constructed from the marginal setCH(K1), the
upper prevision ofX is 1:125, achieved whenP (fredg)
is 0:75. In this case, convexity of the marginal set of prob-
ability distributions does have some behavioural signifi-
cance, because it affects the joint model that is formed us-
ing repetition independence.

4 Conclusions

In probability theory, there is essentially only one concept
of independence: the different definitions are essentially
equivalent, except in their treatment of events that have
probability zero. In this paper we have shown that inde-
pendence is more complex when imprecise probabilities
are involved. There are several definitions of indepen-
dence which are not equivalent.

We have presented six definitions of independence which
produce a joint model from given marginals, in order of
increasing precision: the later definitions produce smaller
joint convex setsK and more precise inferences. Table
1 summarizes the (lower, upper) probability intervals for
the eventS, that the two balls drawn from the urns of Ex-
ample 1 have the same colour, under these different def-
initions, excluding repetition independence. (Repetition
independence is inapplicable in this example because the
two marginal sets are different.)

All of the definitions of independence given in Section
3 seem to be useful in particular kinds of application.
Clearly, the choice of an appropriate definition must de-
pend on the type of application. We hope that our discus-
sion of the assumptions on which each concept is based,
and our examples, will help in selecting the most appro-
priate concept.

Which independence concepts are likely to be the most
useful and most frequently applicable in applications? We
think that, when!1 and !2 are the outcomes of two
random experiments that are stochastically independent,
strong independence will usually be the most appropri-
ate concept. If there is additional information about the
linkage between the stochastic mechanisms then a more
precise model, involving independence in the selection or
repetition independence, may be appropriate. All three of
these models are based on assumptions of stochastic inde-
pendence. In examples of drawing balls from urns, it is
natural to assume both that there are underlying marginal
probability distributions (determined by the composition
of each urn) and that the drawings are physically unrelated
and therefore stochastically independent. Under these as-
sumptions, strong independence, or one of its modifica-
tions, is appropriate.

However, in many practical applications there is no un-

P (S) P (S)
Unknown Interaction 0.00 1.00
Random Set Independence 0.21 0.79
Irrelevant Natural Extension 0.30 0.70
Independent Natural Extension 0.32 0.68
Strong Independence 0.38 0.62

Table 1: Probability intervals for the eventS under differ-
ent definitions of independence.

derlying stochastic mechanism which would justify strong
independence, and then the choice of an appropriate def-
inition of independence is less clear. The authors of this
paper disagree slightly about which independence con-
cepts are most useful in these cases. One of us (PW)
thinks that, because of their simple behavioural meaning,
epistemic independence (or irrelevance) and independent
(or irrelevant) natural extension are likely to be the most
frequently applicable concepts; they are purely epistemic
concepts which require no assumptions about underlying
stochastic mechanisms. The other two authors (IC and
SM) think that strong independence is applicable even in
cases in which no underlying stochastic mechanism is as-
sumed: it is enough that the values!1 and!2 are pro-
duced by physical procedures that are causally unrelated.
However, without an assumption of underlying stochastic
independence, no behavioural justification for strong inde-
pendence is available at present.

We believe that the most important role for a concept of
independence is in constructing a joint or global model
from simpler components. In most applications of the con-
cept, we do not extract independence from a global model,
but rather we perceive independence as a primitive concept
and then use it to construct the global model. In the formu-
lation adopted in this paper, we would construct the joint
convex setK from the marginal convex setsK1 andK2,
using only the judgement that the marginal experiments
are independent. Most of the concepts defined in this pa-
per can be used in this way, but some are easier to use than
others. For example, to construct the independent natural
extension it is necessary to use linear programming meth-
ods, whereas construction of the joint model using random
sets independence, irrelevant natural extension or strong
independence involves simpler calculations.

We are presently studying the computational aspects of
epistemic independence and the other definitions. In future
work, we also plan to extend the independence concepts to
conditional independence, to try to find other characteriza-
tions of the concepts which will help to clarify their mean-
ing, and to study more closely the relationships between
the concepts.
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