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ABSTRACT. A model for a subject’s beliefs about a phenomenon may exhibit symmetry,
in the sense that it is invariant under certain transformations. On the other hand, such a
belief model may be intended to represent that the subject believes or knows that the phe-
nomenon under study exhibits symmetry. We defend the view that these are fundamentally
different things, even though the difference cannot be captured by Bayesian belief mod-
els. In fact, the failure to distinguish between both situations leads to Laplace’s so-called
Principle of Insufficient Reason, which has been criticised extensively in the literature.

We show that there are belief models (imprecise probability models, coherent lower
previsions) that generalise and include the Bayesian belief models, but where this fun-
damental difference can be captured. This leads to two notions of symmetry for such
belief models: weak invariance (representing symmetry of beliefs) and strong invariance
(modelling beliefs of symmetry). We discuss various mathematical as well as more philo-
sophical aspects of these notions. We also discuss a few examples to show the relevance of
our findings both to probabilistic modelling and to statistical inference, and to the notion
of exchangeability in particular.

1. INTRODUCTION

This paper deals with symmetry in relation to models of beliefs. Consider a model for
a subject’s beliefs about a certain phenomenon. Such a belief model may be symmetrical,
in the sense that it is invariant under certain transformations. On the other hand, a belief
model may try to capture that the subject believes that the phenomenon under study exhibits
symmetry, and we then say that the belief model models symmetry. We defend the view
that there is an important conceptual difference between the two cases: symmetry of beliefs
should not be confused with beliefs of symmetry.1

Does this view need defending at all? That there is a difference may strike you as
obvious, and yet we shall argue that Bayesian belief models, which are certainly the most
popular belief models in the literature, are unable to capture this difference.

To make this clearer, consider a simple example. Suppose I will toss a coin, and you
are ignorant about its relevant properties: it might be fair but on the other hand it might
be heavily loaded, or it might even have two heads, or two tails (situation A). To you
the outcomes of the toss that are practically possible are h (for heads) and t (for tails).
Since you are ignorant about the properties of the coin, any model for your beliefs should
not change if heads and tails are permuted, so the model that ‘faithfully’ captures your
beliefs about the outcome of the toss should be symmetrical too, i.e., invariant under this
permutation of heads and tails.
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Suppose on the other hand that you know that the coin (and the tossing mechanism) I
shall use is completely symmetrical (situation B). Your belief model about the outcome
of the toss should capture this knowledge, i.e., it should model your beliefs about the
symmetry of the coin.

Our point is that belief models should be able to catch the important difference between
your beliefs in the two situations. Bayesian belief models cannot do this. Indeed—the
argument is well-known—the only symmetrical probability model, which is in other words
invariant under permutations of heads and tails, assigns equal probability 1/2 to heads and
tails. But this is automatically also the model that captures your beliefs that the coin is
actually symmetrical, so heads and tails should be equally likely.

The real reason why Bayesian belief models cannot capture the difference between
symmetry of models and modelling symmetry, is that they do not allow for indecision.
Suppose that I ask you to express your preferences between two gambles, whose reward
depends on the outcome of the toss. For first one, a, you will win one euro if the outcome
is heads, and lose one if it is tails. The second one, b, gives the same rewards, but with
heads and tails swapped.

In situation B, because you believe the coin to be symmetrical, it does not matter to you
which gamble you get, and you are indifferent in your choice between the two.

But in situation A, on the other hand, because you are completely ignorant about the
coin, the available information gives you no reason to (strictly) prefer a over b or b over a.
You are therefore undecided about which of the two gambles to choose.

Because decision based on Bayesian belief models leaves you no alternative but to either
strictly prefer one action over the other, or to be indifferent between them, the symmetry
of the model leaves you no choice but to act as if you were indifferent between a and b.
We strongly believe that it is wrong to confuse indecision with indifference in this example
(and elsewhere of course), but Bayesian belief models leave you no choice but to do so,
unless you want to let go of the principle that if your evidence or your beliefs are sym-
metrical, your belief model should be symmetrical as well. The problem with Laplace’s
Principle of Insufficient Reason is precisely this: if you use a Bayesian probability model
then the symmetry present in ignorance forces you to treat indecision (or insufficient rea-
son to decide) between a and b as if it were indifference.2 Or in other words, it forces you
to treat symmetry of beliefs as if there were beliefs of symmetry.

If on the other hand, we consider belief models that allow for indecision, we can sever
the unholy link between indecision and indifference, because in a state of complete igno-
rance, we are then allowed to remain undecided about which of the two actions to choose:
in the language of preference relations, they simply become incomparable, and you need
not be indifferent between them. As we shall see further on, similar arguments show that
such belief models also allow us to distinguish between ‘symmetry of models’ and ‘mod-
els of symmetry’ in those more general situations where the symmetry involved is not
necessarily that which goes along with complete ignorance.

So, it appears that in order to better understand the interplay between modelling beliefs
and issues of symmetry, which is the main aim of this paper, we shall need to work with
a language, or indeed, with a type of belief models that, unlike the Bayesian ones, take

2This may seem a good explanation why Keynes [1921, p. 83] renamed the ‘Principle of Insufficient Reason’
the ‘Principle of Indifference’. He (and others, see Zabell [1989b]) also suggested that the principle should not
be applied in a state of complete ignorance, but only if there is good reason to justify the indifference (such as
when there is evidence of symmetry). By the way, Keynes was also among the first to consider what we shall call
imprecise probability models, as his comparative probability relations were not required to be complete.
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indecision seriously. For this purpose, we shall use the language of the so-called imprecise
probability models [Walley, 1991], and in particular coherent lower previsions, which have
the same behavioural pedigree as the more common Bayesian belief models (in casu co-
herent previsions, see de Finetti [1974–1975]), and which contain these models as a special
case. We give a somewhat unusual introduction to such models in Section 2.3 In Section 3,
we provide the necessary mathematical background for discussing symmetry: we discuss
monoids of transformations, and invariance under such monoids. After these introductory
sections, we start addressing the issue of symmetry in relation to belief models in Section 4.
We introduce two notions of invariance for the imprecise probability models introduced in
Section 2: weak invariance, which captures symmetry of belief models, and strong invari-
ance, which captures that a model represents the belief that there is symmetry. We study
relevant mathematical properties of these invariance notions, and argue that the distinction
between them is very relevant when dealing with symmetry in general, and in particular
(Section 5) for modelling complete ignorance. Further interesting properties of weak and
strong invariance, related to inference, are the subject of Sections 6 and 7, respectively. We
show among other things that a weakly invariant coherent lower prevision can always be
extended to a larger domain, in a way that is as conservative as possible. This implies that,
for any given monoid of transformations, there always are weakly invariant coherent lower
previsions. This is not generally the case for strong invariance, however, and we give and
discuss sufficient conditions such that for a given monoid of transformations, there would
be strongly invariant coherent (lower) previsions. We also give various expression for the
smallest strongly invariant coherent lower prevision that dominates a given weakly invari-
ant one (if it exists). In Section 8, we turn to the important example of coherent (lower)
previsions on the set of natural numbers, that are shift-invariant, and we use them to charac-
terise the strongly invariant coherent (lower) previsions on a general space provided with a
single transformation. Further examples are discussed in Section 9, where we characterise
weak and strong invariance with respect to finite groups of permutations. In particular,
we discuss Walley’s [1991] generalisation to lower previsions of de Finetti’s [1937] no-
tion of exchangeability, and we use our characterisation of strong permutation invariance
to prove a generalisation to lower previsions of de Finetti’s representation results for finite
sequences of exchangeable random variables. Conclusions are gathered in Section 10.

We want to make it clear at this point that this paper owes a significant intellectual
debt to Peter Walley. First of all, we use his behavioural imprecise probability models
[Walley, 1991] to try and clarify the distinction between symmetry of beliefs and beliefs
of symmetry. Moreover, although we like to believe that much of what we do here is new,
we are also aware that in many cases we take to their logical conclusion a number of ideas
about symmetry that are clearly present in his work (mainly Walley [1991, Sections 3.5,
9.4 and 9.5] and Pericchi and Walley [1991]), sometimes in embryonic form, and often
more fully worked out.

2. IMPRECISE PROBABILITY MODELS

Consider a very general situation in which uncertainty occurs: a subject is uncertain
about the value that a variable X assumes in a set of possible values X . Because the
subject is uncertain, we shall call X an uncertain, or random, variable.

3For other brief and perhaps more conventional introductions to the topic, we refer to Walley [1996a], De
Cooman and Zaffalon [2004], De Cooman and Troffaes [2004], De Cooman and Miranda [2006]. A much more
detailed account of the behavioural theory of imprecise probabilities can be found in Walley [1991].
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The central concept we shall use in order to model our subject’s uncertainty about X , is
that of a gamble (on X , or on X ), which is a bounded real-valued function f on X . In
other words, a gamble f is a map from X to the set of real numbers R such that

sup f := sup{ f (x) : x ∈X } and inf f := inf{ f (x) : x ∈X }
are (finite) real numbers. It is interpreted as the reward function for a transaction which
may yield a different (and possibly negative) reward f (x), measured in units (called utiles)
of a pre-determined linear utility,4 for each of the different values x that the random variable
X may assume in X .

We denote the set of all gambles on X by L (X ). For any two gambles f and g, we
denote their point-wise sum by f + g, and we denote the point-wise (scalar) multiplica-
tion of f with a real number λ by λ f . L (X ) is a real linear space under these opera-
tions. We shall always endow this space with the supremum norm, i.e., ‖ f‖ = sup| f | =
sup{| f (x)| : x ∈X }, or equivalently, with the topology of uniform convergence, which
turns L (X ) into a Banach space.

An event A is a subset of X . If X ∈ A then we say that the event occurs, and if X 6∈ A
then we say that A doesn’t occur, or equivalently, that the complement(ary event) Ac =
{x ∈X : x 6∈ A} occurs. We shall identify an event with a special {0,1}-valued gamble IA,
called its indicator, and defined by IA(x) = 1 if x ∈ A and IA(x) = 0 elsewhere. We shall
often write A for IA, whenever there is no possibility of confusion.

2.1. Coherent sets of really desirable gambles. Given the information that the subject
has about X , she will be disposed to accept certain gambles, and to reject others. The idea
is that we model a subject’s beliefs about X by looking at which gambles she accepts, and
to collect these into a set of really desirable gambles R.

The dice example. Assume that our subject is uncertain about the outcome X of my tossing
a die. In this case X = X6 := {1,2,3,4,5,6} is the set of possible values for X . If the
subject is rational, she will accept the gamble which yields a positive reward whatever the
value of X , because she is certain to improve her ‘fortune’ by doing so. On the other hand,
she will not accept a non-positive gamble that is negative somewhere, because by accepting
such a gamble she can only lose utility (we then say she incurs a partial loss). She will
not accept the gamble which makes her win one utile if the outcome X is 1, and makes her
lose five utiles otherwise, unless she knows for instance that the die is loaded very heavily
in such a way that the outcome 1 is almost certain to come up.

Real desirability can also be interpreted in terms of the betting behaviour of our subject.
Suppose she wants to bet on the occurrence of some event, such as my throwing 1 (so that
she receives 1 utile if the event happens and 0 utiles otherwise). If she thinks that the die
is fair, she should be disposed to bet on this event at any rate r strictly smaller than 1

6 . This
means that the gamble I{1}− r representing this transaction (winning 1− r if the outcome
of X is 1 and losing r otherwise) will be really desirable to her for r < 1

6 . �

Now, accepting certain gambles has certain consequences, and has certain implications
for accepting other gambles, and if our subject is rational, which we shall assume her to
be, she should take these consequences and implications into account. To give but one
example, if our subject accepts a certain gamble f she should also accept any other gamble

4This utility can be regarded as amounts of money, as is the case for instance in de Finetti [1974–1975]. It
is perhaps more realistic, in the sense that the linearity of the scale is better justified, to interpret it in terms of
probability currency: we win or lose lottery tickets depending on the outcome of the gamble; see Walley [1991,
Section 2.2].
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g such that g ≥ f , i.e., such that g point-wise dominates f , because accepting g is certain
to bring her a reward that is at least as high as accepting f does.

Actually, this requirement is a consequence [combine (D2) with (D3)] of the follow-
ing four basic rationality axioms for real desirability, which we shall assume any rational
subject’s set of really desirable gambles R to satisfy:
(D1) if f < 0 then f 6∈R [avoiding partial loss];
(D2) if f ≥ 0 then f ∈R [accepting sure gains];
(D3) if f ∈R and g ∈R then f +g ∈R [accepting combined gambles]
(D4) if f ∈R and λ > 0 then λ f ∈R [scale invariance].
where f < g is shorthand for f ≤ g and f 6= g.5 We call any subset R of L (X ) that
satisfies these axioms a coherent set of really desirable gambles.

It is easy to see that these axioms reflect the behavioural rationality of our subject: (D1)
means that she should not be disposed to accept a gamble which makes her lose utiles, no
matter the outcome; (D2) means that she should accept a gamble which never makes her
lose utiles; on the other hand, if she is disposed to accept two gambles f and g, she should
also accept the combination of the two gambles, which leads to a reward f + g; this is an
immediate consequence of the linearity of the utility scale. This justifies (D3). And finally,
if she is disposed to accept a gamble f , she should be disposed to accept the scaled gamble
λ f for any λ > 0, because this just reflects a change in the linear utility scale. This is the
idea behind condition (D4).

Walley [1991, 2000] has a further coherence axiom that sets of really desirable gambles
should satisfy, which turns out to be quite important for conditioning, namely

(D5) if B is a partition of X and if IB f ∈R for all B in B, then f ∈R [full conglom-
erability].

Since this axiom is automatically satisfied whenever X is finite [it is then an immediate
consequence of (D3)], and since we shall not be concerned with conditioning unless when
X is finite (see Section 9), we shall ignore this additional axiom in the present discussion.

A coherent set of really desirable gambles is a convex cone [axioms (D3)–(D4)] that
includes the ‘non-negative orthant’ C+ := { f ∈L (X ) : f ≥ 0} [axiom (D2)] and has no
gamble in common with the ‘negative orthant’ C− := { f ∈L (X ) : f < 0} [axiom (D1)].6

If we have two coherent sets of really desirable gambles R1 and R2, such that R1 ⊆R2,
then we say that R1 is less committal, or more conservative, than R2, because a subject
whose set of really desirable gambles is R2 accepts at least all the gambles in R1. The
least-committal (most conservative, smallest) coherent set of really desirable gambles is
C+. Within this theory, it seems to be the appropriate model for complete ignorance: if our
subject has no information at all about the value of X , she should be disposed to accept only
those gambles which cannot lead to a loss of utiles (see also the discussion in Section 5).

Now suppose that our subject has specified a set R of gambles that she accepts. In an
elicitation procedure, for instance, this would typically be a finite set of gambles, so we
cannot expect this set to be coherent. We are then faced with the problem of enlarging this
R to a coherent set of really desirable gambles that is as small as possible: we want to
find out what are the (behavioural) consequences of the subject’s accepting the gambles
in R, taking into account only the requirements of coherence. This inference problem is

5So, here and in what follows, we shall write ‘ f < 0’ to mean ‘ f ≤ 0 and not f = 0’, and ‘ f > 0’ to mean
‘ f ≥ 0 and not f = 0’.

6This means that the zero gamble 0 belongs to the set of really desirable gambles. This is more a mathematical
convention than a behavioural requirement, since this gamble has no effect whatsoever in the amount of utiles of
our subject. See more details in Walley [1991].
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(also formally) similar to the problem of inference (logical closure) in classical proposi-
tional logic, where we want to find out what are the consequences of accepting certain
propositions.7

The smallest convex cone including C+ and R, or in other words, the smallest subset
of L (X ) that includes R and satisfies (D2)–(D4), is given by

E r
R :=

{
g ∈L (X ) : g≥

n

∑
k=1

λk fk for some n≥ 0, λk ∈ R+ and fk ∈R

}
,

where R+ denotes the set of non-negative real numbers. If this convex cone E r
R intersects

C− then it is easy to see that actually E r
R = L (X ), and then it is impossible to extend R

to a coherent set of really desirable gambles [because (D1) cannot be satisfied]. Observe
that E r

R ∩C ′
− = /0 if and only if

there are no n≥ 0, λk ∈ R+ and fk ∈R such that
n

∑
k=1

λk fk < 0,

and we then say that the set R avoids partial loss. Let us interpret this condition. As-
sume that it doesn’t hold (so we say that R incurs partial loss). Then there are really
desirable gambles f1, . . . , fn and positive λ1, . . . , λn such that ∑

n
k=1 λk fk < 0. But if our

subject is disposed to accept the gamble fk then by coherence [axioms(D2) and (D4)] she
should also be disposed to accept the gamble λk fk for all λk ≥ 0. Similarly, by coherence
[axiom (D3)] she should also be disposed to accept the sum ∑

n
k=1 λk fk. Since this sum is

non-positive, and strictly negative in at least some elements of X , we see that the subject
can be made subject to a partial loss, by suitably combining gambles which she accepts.
This is unreasonable.

When the class R avoids partial loss, and only then, we are able to extend R to a
coherent set of really desirable gambles, and the smallest such set is precisely E r

R , which is
called the natural extension of R to a set of really desirable gambles. This set reflects only
the behavioural consequences of the assessments present in R: the acceptance of a gamble
f not in E r

R (or, equivalently, a set of really desirable gambles strictly including E r
R) is not

implied by the information present in R, and therefore represents stronger implications
that those of coherence alone.

2.2. Coherent sets of almost-desirable gambles. Coherent sets of really desirable gam-
bles constitute a very general and powerful class of models for a subject’s beliefs (see
Walley [1991, Appendix F] and Walley [2000] for more details and discussion). We could
already discuss symmetry aspects for such coherent sets of really desirable gambles, but
we shall instead concentrate on a slightly less general and powerful type of belief models,
namely coherent lower and upper previsions. Our main reason for doing so is that this will
allow us to make a more direct comparison to the more familiar Bayesian belief models,
and in particular to de Finetti’s [1974–1975] coherent previsions, or fair prices.

Consider a gamble f . Then our subject’s lower prevision, or supremum acceptable
buying price, P( f ) for f is defined as the largest real number s such that she accepts the
gamble f − t for any price t < s, or in other words accepts to buy f for any such price t.
Similarly, her upper prevision, or infimum acceptable selling price, P( f ) for the gamble f
is the smallest real number s such that she accepts the gamble t− f for any price t > s, or
in other words accepts to sell f for any such price t.

7See Moral and Wilson [1995] and De Cooman [2000, 2005] for more details on this connection between
natural extension and inference in classical propositional logic.
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For an event A, the lower prevision P(IA) of its indicator is also called the lower prob-
ability of A, and denoted by P(A). It can be interpreted as the supremum rate for betting
on the event A. Similarly, P(IA) is called the upper probability of A, and also denoted by
P(A).

Since selling a gamble f for price s is the same thing as buying − f for price −s, we
have the following conjugacy relationship between an upper and a lower prevision:

P( f ) =−P(− f ).

This implies that from a given lower prevision P, we can always construct the conjugate
upper prevision P, so they are mathematically equivalent belief models. In what follows,
we shall mainly concentrate on lower previsions.

Now assume that our subject has a coherent set of really desirable gambles R, then it is
clear from the definition of lower and upper prevision that we can use R to define a lower
prevision

PR( f ) = sup{s ∈ R : f − s ∈R} (D-LPR)
and an upper prevision

PR( f ) = inf{s ∈ R : s− f ∈R}
for every gamble f on X . So, given R we can construct two real-valued functionals,
PR and PR , whose interpretation is that of a supremum acceptable buying price, and an
infimum acceptable selling price, respectively, and whose domain is L (X ). We shall call
these functionals lower and upper previsions.

We call a coherent lower prevision on L (X ) any real-valued functional on L (X )
satisfying the following three axioms:
(P1) P( f )≥ inf f [accepting sure gains];
(P2) P( f +g)≥ P( f )+P(g) [super-additivity];
(P3) P(λ f ) = λP( f ) [non-negative homogeneity].
for all gambles f and g on X , and all non-negative real λ .

It follows from the coherence axioms (D1)–(D4) for R that the lower prevision PR that
corresponds to a coherent set of really desirable gambles R is coherent.8

So we see that with a coherent set of really desirable gambles R, we can define a coher-
ent lower prevision on L (X ), using (D-LPR). We shall see further on that, conversely,
given a coherent lower prevision P on L (X ), we can always find a coherent set of really
desirable gambles R such that P and R are related through (D-LPR). But unfortunately,
the relationship between the two types of belief models is many-to-one: there are usually
many coherent sets of really desirable gambles that lead to the same coherent lower previ-
sion. This is why we said before that coherent sets of really desirable gambles are a more
general and powerful belief model than coherent lower previsions. The ultimate reason for
this is the following: suppose that a subject specifies her supremum buying price P( f ) for
a gamble f . This implies that she accepts all the gambles f −P( f )+δ , where δ > 0. But
the specification of P( f ) says nothing about the gamble f −P( f ) (where δ = 0) itself: she
might accept it, but then again she might not. And precisely because specifying a coherent
lower prevision says nothing about this border behaviour, it leads to a belief model that is
less powerful than coherent sets of really desirable gambles, where this border behaviour
would be determined.

The dice example (cont.). Let us go back to the die example. Consider, for any x in X6 =
{1, . . . ,6}, the event {x} that the outcome X of rolling the die is x. If, for some real

8To prove (P1), use (D2); for (P2) use (D3); and for (P3) use (D4) for λ > 0 and (D1) and (D2) for λ = 0.
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number r, our subject accepts the gamble I{x}− r, she is willing to pay r utiles in return
for the uncertain reward I{1}, or in other words to bet on the event {1} at rate r. So her
lower probability P({x}) for {x}, or equivalently, her lower prevision P(I{x}) for I{x}, is
the supremum rate at which she is willing to bet on {x}. This means that she accepts
the gamble I{x}− s for any s < P({x}). But it doesn’t imply that she actually accepts the
gamble I{x}−P({x}): this gamble is only claimed to be almost-desirable, as we shall see
further on.

If she is completely ignorant about the properties of the die, her evidence about the
die is symmetrical, i.e., doesn’t change when the possible outcomes are permuted. A
belief model that ‘faithfully’ captures the available evidence should therefore be symmet-
rical with respect to such permutations as well, so we infer that in particular P({1}), . . . ,
P({6}) are all equal to some number p. Coherence [use (P1) and (P2)] then requires that
0≤ p≤ 1

6 . Any such p leads to a symmetrical lower probability defined on the singletons,
and therefore reflects ‘symmetry of beliefs’. As we have indicated above, the model corre-
sponding to p = 0 is the one that reflects complete ignorance. We shall see further on (see
Sections 4.2 and 9) that the choice p = 1

6 leads to the only model that captures the belief
that the die is fair, i.e., that reflects ‘beliefs of symmetry’. �

In order to better understand the relationship between coherent lower previsions and
coherent sets of really desirable gambles, we need to introduce, besides real desirability, an
new and weaker notion, called almost-desirability, which will also play an important part in
our discussion of symmetry further on. This notion is inspired by the ideas in the discussion
above: we say that a gamble f is almost-desirable to a subject, or that she almost-accepts
f , whenever she accepts f + δ , or in other words f + δ is really desirable to her, for any
strictly positive amount of utility δ > 0. By stating that f is almost-desirable to her, nothing
is specified about whether the subject accepts f itself: she might, but then again she also
might not. If we generically denote by D a set of gambles that are almost-desirable to our
subject, we see that the set DR of almost-desirable gambles that corresponds to a coherent
set R of really desirable gambles, is given by

DR = { f ∈L (X ) : (∀δ > 0) f +δ ∈R}=
⋂

δ>0

[R−δ ] (D-M)

so DR is the closure (in the topology of uniform convergence on L (X )) of the convex
cone R.

We call any set of gambles D that satisfies the following five axioms a coherent set of
almost-desirable gambles:

(M1) if sup f < 0 then f 6∈D [avoiding sure loss];
(M2) if inf f ≥ 0 then f ∈D [accepting sure gains];
(M3) if f ∈D and g ∈D then f +g ∈D [accepting combined gambles];
(M4) if f ∈D and λ > 0 then λ f ∈D [scale invariance];
(M5) if f +δ ∈D for all δ > 0 then f ∈D [closure].

It is a closed and convex cone in L (X ) that includes the non-negative orthant C+ and
does not intersect with the set C ′

− = { f ∈L (X ) : sup f < 0} ⊂ C−. It is easy to see
that the set of almost-desirable gambles DR that corresponds to a coherent set of really
desirable gambles R is actually also coherent.9

9To prove (M1), use (D1) with δ =− sup f
2 ; to prove (M2), use (D2); to prove (M3), use (D3); to prove (M4),

use (D4); and to prove (M5), use ε = δ

2 and the definition of DR to prove that f +δ ∈R for all δ > 0.
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It should at this point come as no surprise that coherent lower previsions and coherent
sets of almost-desirable gambles are actually equivalent belief models. Indeed, consider a
coherent set of almost-desirable gambles D , i.e., D satisfies (M1)–(M5). Then the real-
valued functional PD defined on L (X ) by10

PD ( f ) := max{s ∈ R : f − s ∈D} (M-LPR)

satisfies (P1)–(P3) and therefore is a coherent lower prevision on L (X ).11

Conversely, if we consider a coherent lower prevision P on L (X ), i.e., P satisfies
(P1)–(P3), then the set of gambles

DP := { f ∈L (X ) : P( f )≥ 0} (LPR-M)

satisfies (M1)–(M5) and is therefore a coherent set of almost-desirable gambles.12 More-
over, the relationships (M-LPR) and (LPR-M) are bijective (one-to-one and onto), and they
are each other’s inverses.13

Finally, consider a coherent lower prevision P on L (X ), and define the following set
of gambles

D+
P := { f ∈L (X ) : P( f ) > 0 or f > 0} .

Then D+
P ∪{0} is a coherent set of really desirable gambles, i.e., it satisfies (D1)–(D4).14

Moreover, any coherent set of really desirable gambles R that satisfies

D+
P ∪{0} ⊆R ⊆DP,

i.e., the union of whose (relative) topological interior with C + is D+
P ∪ {0} and whose

topological closure is DP, has P as its associated lower prevision, through (D-LPR). This
confirms what we claimed before: coherent lower previsions, or equivalently, coherent sets
of almost-desirable gambles, are less powerful belief models than coherent sets of really
desirable gambles. If a subject specifies a coherent lower prevision P, then she actually
states that all gambles in the union D+

P ∪{0} of C+ with the relative topological interior
of DP are really desirable, but she doesn’t specify whether the gambles in the topological
boundary DP \D+

P of DP are: we only know that they are almost-desirable to her.

2.3. Natural extension for coherent lower previsions. There is one important problem
that we skipped over in the discussion above, namely that of inference. Suppose a subject
specifies a set D of gambles that are almost-desirable to her. In an elicitation procedure,
for instance, this would typically be a finite set of gambles, so we cannot expect this set
to be coherent. We are then, as before for really desirable gambles, faced with the prob-
lem of enlarging this D into a coherent set of almost-desirable gambles that is as small
as possible: we want to find out what are the (behavioural) consequences of the subject’s
almost-accepting the gambles in D , taking into account only the requirements of coher-
ence.

10The supremum in Eq. (D-LPR) now becomes a maximum, simply because the set D is closed.
11(P1) follows from (M2), (P2) from (M3) and (P3) is a consequence of (M4).
12First, conditions (P1) and (P2) imply that P is monotone. Now, (P2) and (P3) imply that 0 = P(0) ≥

P( f ) + P(− f ) ≥ P( f ) + inf(− f ), whence P( f ) ≤ sup f . From these two facts we deduce (M1). (M2) is a
consequence of (P1), (M3) of (P2) and (M4) of (P3). Finally, the monotonicity of P implies that P(µ) = µ for
any constant value µ , and from this we deduce that P( f +δ ) = P( f )+δ for any δ > 0. This implies (M5).

13To see that they are each other inverses, it suffices to use that a coherent lower prevision satisfies P( f − s) =
P( f )− s for any gamble f and any real number s, and, conversely, that f ∈ DP if and only if P( f ) ≥ 0; this
implies also that both transformations are bijective.

14For (D1), use that a coherent lower prevision P satisfies P( f )≤ sup f for any gamble f ; for (D2), that f ≥ 0
satisfies either f > 0 or f = 0; for (D3), use (P2) and the monotonicity of the coherent P, and for (D4) use (P3).
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The smallest closed convex cone including C+ and D , or in other words, the smallest
subset of L (X ) that includes D and satisfies (M2)–(M5), is given by

E m
D :=

{
g ∈L (X ) : (∀δ > 0)(∃n≥ 0,λk ∈ R+, fk ∈D)g≥

n

∑
k=1

λk fk−δ

}
. (M-NE)

This is the topological closure of the set E r
D . If this convex cone E m

D intersects C ′
− =

{ f ∈L (X ) : sup f < 0} then it is easy to see that actually E m
D = L (X ), and then it is

impossible to extend D to a coherent set of almost-desirable gambles [because (M1) cannot
be satisfied]. Observe that E m

D ∩C ′
− = /0 if and only if15

sup

[
n

∑
k=1

λk fk

]
≥ 0 for some n≥ 0, λk ∈ R+ and fk ∈D , (M-ASL)

and we then say that the set D of almost-desirable gambles avoids sure loss. In that case,
and only then, we are able to extend D to a coherent set of almost-desirable gambles, and
the smallest such set is precisely E m

D , which is called the natural extension of D to a set of
almost-desirable gambles.

What does natural extension mean for the equivalent model of coherent lower previ-
sions? Suppose our subject specifies a supremum acceptable buying price, or lower previ-
sion, P( f ) for each gamble f in some set of gambles K ⊆L (X ).16 We can then interpret
P as a real-valued map on K , and we call P a lower prevision on K , and say that K is
the domain of P.

To study the problem of natural extension for this lower prevision, we shall use what
we already know about natural extension in the context of almost-desirable gambles. Re-
call that specifying P on K is tantamount to stating that the gambles in the set D :=
{ f −P( f ) : f ∈K } are almost-desirable. We now look at the natural extension of this D .
Using (M-ASL), we know that such a natural extension exists if and only if17

sup

[
n

∑
k=1

λk [ fk−P( fk)]

]
≥ 0 for all n≥ 0, λk ∈ R+ and fk ∈K , (LPR-ASL)

and we then say that the lower prevision P on K avoids sure loss. In this case, the natural
extension E m

D is the smallest coherent set of almost-desirable gambles that includes D , and
consequently the coherent lower prevision PE m

D
associated with E m

D through

PE m
D

(g) := max{s : g− s ∈ E m
D }

is the point-wise smallest coherent lower prevision on L (X ) that dominates P on K . We
call this coherent lower prevision the natural extension of P and we denote it by EP. We
deduce from (M-NE) that for all gambles g on X :

EP(g) = sup
λk≥0,gk∈D
k=1...,n,n≥0

inf

[
g−

n

∑
k=1

λkgk

]
= sup

λk≥0, fk∈K
k=1...,n,n≥0

inf

[
g−

n

∑
k=1

λk [ fk−P( fk)]

]
.

(LPR-NE)
If P incurs sure loss, i.e., (LPR-ASL) is not satisfied, then E m

D = L (X ) and consequently
EP assumes the value +∞ in every gamble.

15Actually, this condition is equivalent to the one where we always choose λk = 1.
16This set of gambles K need not have any predefined structure; in particular, it does not have to be a linear

space.
17Here too, this condition is equivalent to the one where we always choose λk = 1.
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We shall call the lower prevision P on K coherent, whenever it can be extended to
a coherent lower prevision on L (X ), or in other words, whenever it coincides with its
natural extension EP on every gamble in its domain K . Taking into account (LPR-NE),
we see that this happens exactly when

sup

[
n

∑
k=1

λk [ fk−P( fk)]−λ0 [ f0−P( f0)]

]
≥ 0 for all n≥ 0, λk ∈ R+ and fk ∈K ,

(LPR-COH)
This coherence condition implies that P avoids sure loss.

Let us see if, for lower previsions, we can give a more immediate behavioural interpre-
tation for avoiding sure loss, coherence, and natural extension. This should allow us to
develop more intuition, as the approach we have followed so far, which motivates these
notions through the coherence axioms for real and almost-desirable gambles, is admit-
tedly quite abstract. We begin with avoiding sure loss. Suppose that condition (LPR-ASL)
is not satisfied. Then there are n ≥ 0, λ1, . . . , λn in R+ and f1, . . . fn in K such that
sup [∑n

k=1 λk [ fk−P( fk)]] < 0, which implies that there is some δ > 0 for which
n

∑
k=1

λk [ fk−P( fk)+δ ]≤−δ .

Now, by the definition of P( fk), our subject accepts each of the gambles fk −P( fk)+ δ ,
so she should also accept the combined gamble ∑

n
k=1 λk[ fk−P( fk)+δ ] [use axioms (D3)

and (D4) for real desirability]. But this gamble leads to a sure loss of at least δ . In other
words, if condition (LPR-ASL) doesn’t hold, there are gambles which the subject accepts
and which, if properly combined, make her subject to a sure loss.

Next, assume that condition (LPR-COH) fails to hold. Then there are n≥ 0, λ0, . . . , λn
in R+ and f0, . . . fn in K such that sup[∑n

k=1 λk[ fk−P( fk)]−λ0[ f0−P( f0)]] < 0. Assume
that λ0 > 0, as we have already considered the case λ0 = 0 in our discussion of avoiding
sure loss. Then there is some δ > 0 such that

n

∑
k=1

λk

λ0
[ fk−P( fk)+δ ]≤ f0− (P( f0)+δ ).

As before, the gamble on the left-hand side is a gamble that our subject accepts. But then
she should also accept the gamble f0− (P( f0)+δ ) since it point-wise dominates a gamble
she accepts [use (D2) and (D3)]. This implies that she should be willing to pay a price
P( f0)+δ for f0, which is strictly higher than the supremum price P( f0) she has specified
for it. Coherence avoids this kind of inconsistency.

Finally, we turn to natural extension. Consider a gamble g on X , then (LPR-NE) tells
us that EP(g) is the supremum s such that there are n ≥ 0, λ1, . . . , λn in R+ and f1, . . . fn
in K for which

g− s≥
n

∑
k=1

λk [ fk−P( fk)]

Now the expression on the right-hand side is almost-desirable, because it is a non-negative
linear combination of almost-desirable gambles [apply the axioms (M3) and (M4)]. So
g− s should be almost-desirable as well [apply the axioms (M2) and (M3)], and therefore
our subject should be willing to buy g for any price t < s. So we deduce that EP(g)
is the supremum price for g that the subject can be forced to pay for the gamble g, by
suitably combining transactions that she is committed to accept by her specifying the lower
prevision P on K . In other words, EP(g) is the lower prevision for g that is implied by the
assessments in P and coherence alone.
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2.4. Coherent previsions: the Bayesian belief models. When a lower prevision P on K
is self-conjugate, that is, when P( f ) = P( f ) for any gamble f in K , it is called a prevision.
The common value P( f ) is then called the prevision of f ; it is a fair price for the gamble
f in the sense of de Finetti [1974–1975]. Formally, a real-valued function P on a class of
gambles K is called a linear, or coherent, prevision whenever

sup

[
n

∑
k=1

[ fk−P( fk)]−
m

∑
j=1

[g j−P(g j)]

]
≥ 0 for all n,m≥ 0 and fk,g j ∈K , (PR-COH)

A linear prevision is coherent, both as a lower and as an upper prevision. Moreover, if its
domain is the class of all gambles, L (X ), then condition (PR-COH) simplifies to
(PR1) P( f +g) = P( f )+P(g) for any f and g in L (X ) [linearity].
(PR2) P( f )≥ inf f for any f in L (X ) [accepting sure gains].
Linear previsions are the familiar Bayesian belief models: any linear prevision on all gam-
bles is indeed a coherent prevision in the sense of de Finetti [1974–1975]; and a prevision
defined on an arbitrary set of gambles is coherent exactly when it is the restriction of some
coherent prevision on all gambles. The restriction to (indicators of) events of a coherent
prevision on all gambles is a finitely additive probability. We shall denote by P(X ) the set
of all coherent previsions on L (X ).

There is an interesting relationship between coherent previsions and coherent lower
previsions. Let P be a lower prevision with domain K , and let us denote by

M (P) := {P ∈ P(X ) : (∀ f ∈K )P( f )≥ P( f )}
the set of all coherent previsions on L (X ) that dominate P on its domain. Then it can be
checked18 that P avoids sure loss if and only if M (P) is non-empty, that is, if and only if
there is some coherent prevision on L (X ) that dominates P on K , and P is coherent if
and only if it is the lower envelope of M (P), meaning that for all P in K ,

P( f ) = min{P( f ) : P ∈M (P)} .

Also, any lower envelope of a set of coherent previsions is a coherent lower prevision.
Moreover, the natural extension EP of P to all gambles can be calculated using the set
M (P) of coherent previsions: for any gamble f on X , we have

EP( f ) = min{P( f ) : P ∈M (P)} .

This means that from a mathematical point of view, a coherent lower prevision P and its
set of dominating coherent lower previsions M (P), are equivalent belief models. It can
be checked that this set is convex and closed in the weak* topology.19 Moreover, there
is a bijective relationship between weak*-closed convex sets of coherent previsions and
coherent lower previsions (their lower envelopes). This fact can (but need not) be used to
give coherent lower previsions a Bayesian sensitivity analysis interpretation, besides the
direct behavioural interpretation given in Section 2.2: we might assume the existence of a
precise but unknown coherent prevision P expressing a subject’s behavioural dispositions,
and we might model the information about P by means of a weak*-closed convex set of
coherent previsions M (the set of possible candidates). Then, this set is mathematically
equivalent to its lower envelope P, which is a coherent lower prevision. We shall come
back to the difference between the direct behavioural and the Bayesian sensitivity analysis

18See [Walley, 1991, Sections 3.3–3.4] for proofs for these statements.
19The weak* topology on the set of all continuous linear functionals on L (X ) is the topology of point-wise

convergence. For more details, see Walley [1991, Appendix D].
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interpretation of a lower prevision in Section 4.2, when we discuss the interplay between
these interpretations and the notion of symmetry.

Taking into account the bijective relationship that exists between coherent lower previ-
sions and sets of almost-desirable gambles, we may also establish a bijective relationship
between sets of coherent previsions and sets of almost-desirable gambles: given a weak*-
closed convex set M of coherent previsions on L (X ), the class

DM := { f ∈L (X ) : (∀P ∈M )P( f )≥ 0}
is a coherent set of almost-desirable gambles, that is, it satisfies the coherence condi-
tions (M1)–(M5). Conversely, given a coherent set of almost-desirable gambles D , the
corresponding set of coherent previsions

M (D) := {P ∈ P(L ) : (∀ f ∈D)P( f )≥ 0}
is a weak*-closed convex set of coherent previsions.

Hence, there are at least three mathematically equivalent representations for the be-
havioural dispositions of our subject: coherent sets of almost-desirable gambles, coherent
lower previsions, and weak*-closed convex sets of coherent previsions. The bijective rela-
tionships between them are summarised in Table 1.

↙ D P(·) M

D { f : P( f )≥ 0} { f : (∀P ∈M )P( f )≥ 0}

P(·) max{s : ·−s ∈D} min{P(·) : P ∈M }

M {P : (∀ f ∈D)P( f )≥ 0} {P : (∀ f )P( f )≥ P( f )}

TABLE 1. Bijective relationships between the equivalent belief models:
coherent sets of almost-desirable gambles D , coherent lower previsions
P on L (X ), and weak*-closed convex sets M of coherent previsions
on L (X )

We now briefly discuss a number of belief models that constitute particular instances of
coherent lower previsions. First, we consider n-monotone lower previsions, where n ≥ 1.
A lower prevision P is called n-monotone20 when the following inequality holds for all
p ∈ N, p≤ n, and all f , f1, . . . , fp in L (X ):

∑
I⊆{1,...,p}

(−1)|I|P

(
f ∧
∧
i∈I

fi

)
≥ 0,

where, here and further on, |I| denotes the number of elements in a finite set I. A similar
definition can be given if the domain of P is only a lattice of gambles, i.e., a set of gambles
closed under point-wise minimum ∧ and point-wise maximum ∨. Such n-monotone lower
previsions are particular instances of exact functionals [Maaß, 2003], i.e., they are scalar
multiples of some coherent lower prevision. In particular, an n-monotone lower probability
defined on a lattice of events S that contains /0 and X is coherent if and only if P( /0) = 0
and P(X ) = 1.

20See De Cooman et al. [2006, 2005b,a] for a detailed discussion of n- and complete monotonicity for lower
previsions.
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A completely monotone lower prevision is simply one that is n-monotone for any natural
number n≥ 1. When it is defined on indicators of events, it is called a completely monotone
lower probability. When X is finite, this leads to belief functions in the terminology of
Shafer [1976].

Two particular cases of belief functions and their conjugate upper probabilities are prob-
ability charges, or finitely additive probabilities defined on a field of events [Bhaskara Rao
and Bhaskara Rao, 1983] and possibility measures. The latter [De Cooman, 2001, Zadeh,
1978] are set functions Π satisfying Π(

⋃
i∈I Ai) = supi∈I Π(Ai) for any family (Ai)i∈I of

subsets of X . Π is a coherent upper probability if and only if Π(X ) = 1.
Finally, we can consider a particular instance of a completely monotone coherent lower

prevision that allows us to model complete ignorance, the so-called vacuous lower previ-
sion. It is given by

PX ( f ) = inf
x∈X

f (x),

for all gambles f on X . It corresponds to the set of almost-desirable gambles D = C+ =
{ f : f ≥ 0}, and to the set M = P(L ) of all coherent previsions on L . If we have no
information at all about the values that X takes in X , we have no reason to reject any
coherent prevision P, and this leads to the vacuous lower prevision as a belief model.
More generally, we can consider a vacuous lower prevision relative to some subset A of
X , which is given by

PA( f ) = inf
x∈A

f (x).

A vacuous lower prevision relative to a set A is the adequate belief model when we know
that the random variable X assumes values in A, and nothing else. The restriction to events
of a vacuous upper prevision is a (zero-one-valued) possibility measure.

2.5. Incomparability and indifference. We claimed in the Introduction that Bayesian
belief models do not take indecision seriously, and that we therefore need to look at a larger
class of belief models that do not have this defect. Here, we present a better motivation for
this claim.

Consider two gambles f and g on X . We say that a subject almost-prefers f to g, and
denote this as f � g, whenever she accepts to exchange g for f in return for any (strictly)
positive amount of utility. Given this definition, it is straightforward to check that we can
express this in terms of the three equivalent belief models D , P and M of the previous
sections by

f � g⇔ f −g ∈D

⇔ P( f −g)≥ 0

⇔ (∀P ∈M )P( f )≥ P(g).

The binary relation � is a partial pre-order on L (X ), i.e., it is reflexive and transitive.21

Observe also that f � g ⇔ f −g � 0 and that f � 0 ⇔ f ∈D , so f is almost-preferred to
g if and only if f −g is almost-preferred to the zero gamble, which in turn is equivalent to
the fact that our subject almost-accepts f −g, i.e., that f −g is almost-desirable to her.

Unless our subject’s lower prevision P is actually a (precise) prevision P (meaning that
D is the semi-space { f : P( f )≥ 0}, and that M = {P}), this ordering is not linear, or total:
it does not hold for all gambles f and g that f � g or g � f . When, therefore, both f 6� g

21The binary relation � is actually a vector ordering on the linear space L (X ), because it is compatible
with the addition of gambles, and the scalar multiplication of gambles with non-negative real numbers.
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and g 6� f , we say that both gambles are incomparable, or that the subject is undecided
about choosing between f and g, and we write this as f ‖ g.

It is instructive to see why the relation ‖ is non-empty unless P is a precise prevision
P. If P is not precise (but coherent), there is some gamble h such P(h) < P(h). Let x
be any real number such that P(h) < x < P(h). In this case, the subject does not express
a willingness to buy h for the price x, because x is strictly greater than her supremum
acceptable price P(h) for buying h. Nor does she express a willingness to sell h for a price
x, because x is strictly smaller than her infimum acceptable price P(h) for selling h. But
there is more. Consider the gambles f := h− x (buying h for a price x) and g := x− h
(selling h for a price x). Then it follows from the coherence of P that

P( f −g) = 2P(h− x) = 2[P(h)− x] < 0 and P(g− f ) = 2P(x−h) = 2[x−P(h)] < 0,

so f ‖ g: our subject is also undecided in the choice between buying h for x or selling h for
that price.

We say that our subject is indifferent between f and g, and denote this as f ≈ g when-
ever both f � g and g � f . This means that P( f − g) = P(g− f ) = 0, or equivalently,
P( f ) = P(g) for all P in M . Clearly, ≈ is an equivalence relation (a reflexive, sym-
metrical and transitive binary relation) on L (X ). It is important to distinguish between
incomparability and indifference. Indifference between gambles f and g represents strong
behavioural dispositions: it means that our subject almost-accepts to exchange f for g and
vice versa; on the other hand, incomparability has no behavioural implications, it merely
records the absence of a(n expressed) behavioural disposition to choose between f and g.

3. MONOIDS OF TRANSFORMATIONS

Symmetry is generally characterised mathematically as invariance under certain trans-
formations. In this section, we provide the necessary mathematical apparatus that will
allow us to describe and characterise symmetry for the belief models we are interested in.

3.1. Transformations and lifting. We are interested in models for beliefs that concern
a random variable X . So let us begin by concentrating on transformations of the set of
possible values X for X . A transformation of X is defined mathematically as a map
T : X →X : x 7→ T x. At this point, we do not require that such a map T should be onto
(or surjective), i.e., that T (X ) := {T x : x ∈X } should be equal to X . Neither do we
require that T should be one-to-one (or injective), meaning that T x = Ty implies x = y for
all x and y in X . A transformation of X that is both onto and one-to-one will be called a
permutation of X , but we shall in the sequel also need to consider transformations of X
that are not permutations.

Suppose we have two transformations, T and S, of X that are of interest. Then there
is no real reason why we shouldn’t also consider the combined action of T and S on X ,
leading to new transformations ST := S◦T and T S := T ◦S, defined by (ST )x := S(T x) and
similarly T Sx := T (Sx) for all x in X . And of course, we could also consider in a similar
way T ST and ST S, or for that matter T T T SST , which we shall also write as T 3S2T . So it
is natural in this context to consider a set T of transformations of X that is closed under
composition, i.e.,

(∀T,S ∈T )(T S ∈T ) (SG)
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Such a set is called a semigroup of transformations.22 If moreover the semigroup T con-
tains the identity map idX , defined by idX x := x for all x in X , it is called a monoid. As
the identity map leaves all elements of X unchanged, it has no implications as far as sym-
metry and invariance are concerned, and we can therefore in what follows assume without
loss of generality that any T we consider actually contains idX (is a monoid).

A monoid T is Abelian if ST = T S for all T and S in T . An important example of
an Abelian monoid is the following. Consider a single transformation T of X , and the
Abelian monoid TT generated by T , given by

TT := {T n : n≥ 0} ,

where T 0 := idX is the identity map on X , T 1 := T and for n≥ 2,

T n := T ◦T ◦ · · · ◦T︸ ︷︷ ︸
n times

.

A monoid T of transformations is called left- (respectively right-)cancellable when for
every transformation T in T there is some S in T such that ST = idX (respectively T S =
idX ). This transformation S is then called a left- (respectively right-)inverse of T . If
T is both left- and right-cancellable, then the left-and right-inverses of T are unique and
coincide for any T in T , and T is called a group. Any element of T is then a permutation
of X .

For our purposes here, we generally only need to assume that T is a monoid, because
there interesting (and relevant) situations where T is not a group; this is for instance the
case for the Abelian monoid of the shift transformations of the set of natural numbers N:

Tθ := {θ
n : n≥ 0} , (1)

where θ(m) = m + 1, and θ n(m) = m + n for all natural numbers m and n. Another im-
portant example is the monoid TX of all transformations of X , which is generally not
Abelian, nor a group.

Since we are also concerned with gambles f on X , we need a way to turn a transfor-
mation of X into a transformation of L (X ). This is done by the procedure of lifting:
given any gamble f on X , we shall denote by T t f the gamble f ◦T , i.e.,

T t f (x) := f (T x),

for all x in X . For an event A, T t IA = IT−1(A), where T−1(A) := {x ∈X : T x ∈ A} is the
so-called inverse image of A under T . On the other hand, given a constant µ , we have
T t µ = µ for any transformation T .

The following observation is quite important. Consider two transformations T and S on
X . Then for any gamble f on X we see that

(ST )t f = f ◦ (S◦T ) = ( f ◦S)◦T = (St f )◦T = T t(St f ),

so (ST )t = T tSt , and lifting reverses the order of application of the transformations: for x
in X , ST x means that T is applied first to x, and then S to T x. For f in L (X ), (ST )t f
means that St is applied first to f and then T t to St f .

Any transformation T of X can therefore be lifted to a transformation T t of L (X ),
and we denote the corresponding set of liftings by T t . T t is then a monoid of transfor-
mations of L (X ). Lifting preserves the most common properties of semigroups, taking
into account the above-mentioned order-inversion: being a monoid, being Abelian, and
being a group are preserved under lifting. But being left-cancellable is turned into being

22A semigroup is defined as a set with a binary operation that is internal and associative. Composition of
maps is always an associative binary operation, and (SG) guarantees that it is internal in T .
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right-cancellable, and vice versa. Lifting also has the interesting property that it turns a
transformation T on X into a linear transformation T t of the linear space L (X ): for any
pair of gambles f and g on X and any real numbers λ and µ , we have

T t(λ f + µg) = λT t f + µT tg.

3.2. Invariant (sets of) gambles. We now turn to the important notions of invariance
under transformations. We start with the invariance of a set of gambles, because that is the
most general notion, from which all other notions of invariance can be derived. If K is a
set of gambles on X , and T any transformation of T , then we denote by

T tK :=
{

T t f : f ∈K
}

the direct image of the set K under T t , and we say that K is T -invariant if

(∀T t ∈T t)(T tK ⊆K ),

i.e., if all transformations in T t are internal in K .23

A gamble f on X is called T -invariant if the singleton { f} is, i.e., if T t f = f for all
transformations T in the monoid T . We call an event A T -invariant if its indicator IA is,
i.e., if T−1(A) = A for all T in T .

Let us denote by IT the set of all T -invariant events. It is easy to check that IT

is an ample field, i.e., it contains /0 and X , and it is closed under arbitrary unions and
complementation, and therefore also under arbitrary intersections. For any x in X , we
shall call

[x]T :=
⋂
{A : A ∈IT and x ∈ A}

the T -invariant atom containing x. It is the smallest T -invariant event that contains x.
Any T -invariant event A is a union of T -invariant atoms: A =

⋃
x∈A [x]T . We shall denote

by AT the set of all invariant atoms: AT := {[x]T : x ∈X }. It is a partition of X . A
gamble f on X is T -invariant if and only if it is constant on the T -invariant atoms of X .

Of course, the bigger the set of transformations T , the smaller the number of T -
invariant events (or, equivalently, the bigger the atoms [x]T ). The following proposition
relates the T -invariant atoms [x]T to the images of x under the transformations in T .

Proposition 1. Let T be a monoid of transformations of X , and let x be any element of
X . In general we have that {T x : T ∈T } ⊆ [x]T . If T is left-cancellable, then [x]T =
{T x : T ∈T }.

Proof. Fix x in X . Let T (x) := {T x : T ∈T } for brevity of notation. Consider any T in
T . Since [x]T is T -invariant, we have that T−1([x]T ) = [x]T . Since x ∈ [x]T because T
is a monoid, we infer from this equality that T x ∈ [x]T . Hence indeed T (x)⊆ [x]T .

To prove the converse inequality, assume that T is left-cancellable. Consider any S
in T . If we can prove that T (x) is S-invariant, meaning that S−1(T (x)) = T (x), then
the proof is complete, since then T (x) will be T -invariant, and since this set contains
x [because idX ∈ T ], it must include the smallest T -invariant set [x]T that contains x.
So we set out to prove that S−1(T (x)) = T (x). Consider any y in X . First assume that
y ∈ T (x). Then there is some T in T such that y = T x, whence Sy = ST x ∈ T (x), since
ST ∈ T . Conversely, assume that y ∈ S−1(T (x)), or equivalently, that Sy ∈ T (x), then
there is some T in T such that Sy = T x, and since T is assumed to be left-cancellable,
there is some S′ in T such that S′S = idX , whence T (x) 3 S′T x = S′Sy = y, since S′T ∈
T . �

23So T t is a monoid of transformations of K .
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An important special case is the following. Consider a transformation T of X , and
the Abelian monoid TT = {T n : n≥ 0} generated by T . Then a set of gambles K is TT -
invariant if and only if T tK ⊆K , and we simply say that K is T -invariant. Similarly, a
gamble f is TT -invariant if and only if T t f = f , and we say that f is T -invariant. In what
follows, we shall always use the phrase ‘T -invariant’ for ‘TT -invariant’. Also IT is the
set of T -invariant events, and it is an ample field whose atoms are denoted by [x]T . With
this notation, we have for an arbitrary monoid T that IT =

⋂
T∈T IT .

For instance, the particular case of the shift transformations of N given by Eq. (1) con-
cerns the Abelian monoid generated by θ . Here, the only θ - (or shift-)invariant events
are /0 and N, and consequently a gamble f on N is θ -invariant if and only if it is con-
stant. This also shows that the equality in the first part of Proposition 1 need not hold
when the monoid of transformations T is not left-cancellable: in the present case, we
have that Tθ (m) = {θ n(m) : n≥ 0}= {n ∈ N : n≥ m} is strictly included in the invariant
atom [m]

θ
= N for all m≥ 1.

Another interesting case is that of TX , the class of all transformations of X . This a
monoid, but it is not generally a group, nor Abelian. Moreover, it is not generally left-
cancellable. We have, for any element x of X that {T x : T ∈TX }= X , and from Propo-
sition 1 we deduce in a trivial manner that [x]TX

= X : the only invariant events under all
transformations of X are /0 and X . This shows that the left-cancellability condition in the
second part of Proposition 1 is not generally necessary.

4. SYMMETRY AND INVARIANCE FOR BELIEF MODELS

We now have the necessary mathematical tools for studying the issue of symmetry in
relation to the belief models discussed in Section 2. We shall see that for these coherent
sets of almost-desirable gambles, there is an important distinction between the concepts
‘symmetry of models’ (which we shall call weak invariance) and ‘models of symmetry’
(which we shall call strong invariance). Let us first turn to the discussion of symmetrical
belief models.

4.1. Weak invariance: symmetry of models. Consider a monoid T of transformations
of X . We want to express that a belief model about the value that the random variable
X assumes in X , exhibits a symmetry that is characterised by the transformations in T .
Thus, the notion of (weak) invariance of belief models that we are about to introduce is in
a sense a purely mathematical one: it expresses that these belief models are left invariant
under the transformations in T .

Definition 1 (Weak invariance). A coherent set of almost-desirable gambles D is called
weakly T -invariant if it is T -invariant as a set of gambles, i.e., if T tD ⊆ D for all T in
T .

Why don’t we require equality rather than the weaker requirement of set inclusion in this
definition? In linear algebra, invariance of a subset of a linear space with respect to a linear
transformation of that space is generally defined using only the inclusion. If we recall from
Section 3 that lifting turns any transformation T of X into a linear transformation T t of
the linear space L (X ), we see that our definition of invariance is just a special case of a
notion that is quite common in the mathematical literature.

A few additional comments are in order. First of all, any coherent set of almost-desirable
gambles is weakly idX -invariant, so we may indeed always assume without loss of gener-
ality that T is at least a monoid (contains idX ).
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Secondly, we have given an invariance definition for almost-desirability, but the def-
inition for coherent sets of really desirable gambles R is completely analogous: for all
T in T , T tR ⊆ R. Observe that if R is weakly T -invariant then the associated set of
almost-desirable gambles DR , given by (D-M), is weakly T -invariant as well.

Thirdly, if T is a group (or at least left-cancellable), then the weak invariance condition
is actually equivalent to T tD = D for all T in T : given a transformation T in T and its
(left-)inverse S ∈ T , consider f ∈ D ; then T t(St f ) = (ST )t f = f , so there is a gamble
g = St f , which belongs to D by weak invariance, such that f = T tg; this means that
f ∈ T tD , so D ⊆ T tD as well.

In summary, weak invariance is a mathematical notion that states that a subject’s be-
havioural dispositions, as represented by a belief model D , are invariant under certain
transformations. If we posit that a subject’s dispositions are in some way a reflection of
the evidence available to her, we see that weak invariance is a way to model ‘symmetry
of evidence’. The following examples try to argue that if there is ‘symmetry of evidence’,
then corresponding belief models should at least be weakly invariant.

The example of shift transformations. Suppose our subject is completely ignorant about the
value of a random variable X that assumes only non-negative integer values, so X = N. If
her belief model is to be a reflection of the available evidence (none), we should like it to
be weakly invariant with respect to the shift transformations in Tθ ( which is an Abelian
monoid, but not a group). Indeed, if she is ignorant about X , she is also ignorant about
θ(X) = X + 1, apart from the fact that she knows that θ(X) cannot assume the value 0,
whereas X can. Therefore, if our subject almost-accepts a gamble f , she should almost-
accept θ t f : θ t f (X) = f (X +1) may assume the same values as f (X), apart from the value
f (0), and because of her ignorance, our subject has no reason to treat the shifted gamble
differently. �

The dice example. Let us go back to the die example. Suppose that whatever evidence our
subject has about the outcome X of rolling the die, is left invariant by permutations π of
X6 = {1, . . . ,6}. Assume that our subject almost-accepts a gamble f , meaning that she is
willing to accept the uncertain reward f (X)+ε for any ε > 0. But since the evidence gives
our subject no reason to distinguish between the random variables X and π(X), she should
also be willing to accept the uncertain reward f (π(X))+ε for any ε > 0, or in other words,
she should almost-accept the gamble π t f .

We now investigate the corresponding notions for weak invariance for the equivalent
belief models: coherent lower previsions and weak*-closed convex sets of coherent previ-
sions. In order to do this, it is convenient to define the transformation of a (lower) prevision
under a transformation T on X , by lifting T to yet a higher level.

Definition 2 (Transformation of a functional). 24 Let T be a transformation of X and let
Λ be a real-valued functional defined on a T -invariant set of gambles K ⊆L (X ). Then
the transformation T Λ of Λ is the real-valued functional defined on K by T Λ := Λ ◦T t ,
or equivalently, by T Λ( f ) := Λ(T t f ) = Λ( f ◦T ) for all gambles f in K .

Theorem 2. Let P be a coherent lower prevision on L (X ), D a coherent set of almost-
desirable gambles, and M a weak*-closed convex set of coherent previsions on L (X ).
Assume that these belief models are equivalent, in the sense that they correspond to one

24We use the same notation T for the transformation of X and for the corresponding transformation of
a functional, first of all because we do not want to overload the mathematical notation, and also because, in
contrast with lifting only once, lifting twice preserves the order of application of transformations.
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another using the bijective relations in Table 1. Then the following statements are equiva-
lent.
1. D is weakly T -invariant, in the sense that T tD ⊆D for all T in T .
2. P is weakly T -invariant, in the sense that T P ≥ P for all T in T , or equivalently

P(T t f )≥ P( f ) for all T in T and f in L (X );
3. M is weakly T -invariant, in the sense that TM ⊆M for all T in T , or equivalently,

T P ∈M for all P in M and all T in T .25

Proof. We give a circular proof. Assume that D is weakly T -invariant. Consider any T in
T and f in K , and observe that for the corresponding lower prevision P

P(T t f ) = max
{

µ : T t f −µ ∈D
}
≥max{µ : f −µ ∈D}= P( f ),

where the inequality follows from the invariance assumption on D . This shows that the
first statement implies the second.

Next, assume that P is weakly T -invariant, and consider any T in T and P in the
corresponding M = M (P) = {P : (∀ f )P( f )≥ P( f )}. Then for any gamble f on X we
have that T P( f ) = P(T t f )≥ P(T t f )≥ P( f ), where the second inequality follows for the
invariance assumption on P. This tells us that indeed T P ∈M (P), so the second statement
implies the third.

Finally, assume that M is weakly T -invariant. Consider any T in T and any gamble
f in the corresponding D = DM = { f : (∀P ∈M )P( f )≥ 0}. Then we have for any P in
M that P(T t f ) = T P( f )≥ 0, since T P belongs to M (P) by the invariance assumption on
M . Consequently T t f ∈D , which proves that the third statement implies the first. �

A coherent prevision P on L (X ) is weakly T -invariant if and only if T P = P for
all T in T . This is easiest to prove by observing that M (P) = {P}.26 So for coherent
previsions, we have an equality in the weak invariance condition. As we argued before, we
generally won’t have such an equality for arbitrary monoids T , but the following corollary
gives another sufficient condition on T .

Corollary 3. If the monoid T is left-cancellable, then the first weak invariance condition
in Theorem 2 becomes T tD = D for all T in T . If T is right-cancellable, then the second
and third weak invariance conditions become T P = P and TM = M for all T in T .27

Proof. We have already proven the first statement near the beginning of Section 4.1. To
prove the second statement, it suffices to show that when T is right-cancellable, T -
invariance implies that P≥ T P and M ⊆ TM for all T in T . Consider any transformation
T in the monoid T , and let R be a right-inverse for T , i.e., T R = idX . Consider a gamble h
on X , then P(h) = P((T R)th) = P(Rt(T th))≥ P(T th), where the inequality follows from
the weak invariance of P. So indeed, P≥ T P. Similarly, consider P in M . Then RP ∈M
by weak invariance, and for any gamble f on X , T (RP)( f ) = RP(T t f ) = P(Rt(T t f )) =

25This shows that our notion of a weakly invariant belief model corresponds to Pericchi and Walley’s [1991]
notion of a ‘reasonable (or invariant) class of priors’, rather than a ‘class of reasonable (or invariant) priors’,
the latter being what our notion of strong invariance will correspond to. On the other hand, Walley [1991,
Definition 3.5.1] defines a T -invariant lower prevision P as one for which P(T t f ) = P( f ) for all T ∈ T and all
gambles f , so he requires equality rather than inequality, as we do here.

26See Proposition 7 for a more direct proof.
27The reason for the difference in terms of left- versus right-cancellability lies of course in the fact that in the

first condition, we work with transformations T t of gambles, and in the second and third condition we work with
transformations T of functionals, which are liftings of the former; simply recall that lifting reverses the order of
application of transformations.
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P( f ) since Rt(T t f ) = (T R)t f = f . So there is a Q = RP in M such that P = T Q, meaning
that P ∈ TM . So indeed M ⊆ TM . �

We see from the definition that if a coherent set of almost-desirable gambles D (or a
coherent lower prevision, or a weak*-closed convex set of coherent previsions) is weakly
T -invariant, it is also weakly T ′-invariant for any sub-monoid of transformations T ′ ⊆
T . Hence, as we add transformations, the collection of weakly invariant belief models
will not increase. The limit case is when we consider the class TX of all transformations
on X . The following theorem shows that the vacuous belief models are the only ones that
are completely weakly invariant, i.e., weakly TX -invariant.

Theorem 4. Let TX be the monoid of all transformations of X . Then the vacuous coher-
ent set of almost-desirable gambles C+ (or equivalently, the vacuous lower prevision PX ,
or equivalently, the weak*-closed convex set of all coherent previsions P(X )) is the only
coherent set of almost-desirable gambles (coherent lower prevision, weak*-closed convex
set of coherent previsions) that is weakly TX -invariant.

Proof. We give the proof for coherent sets of almost-desirable gambles. It is obvious
that C+ is TX -invariant. So, consider any TX -invariant coherent set of almost-desirable
gambles D . It follows from coherence [axiom (M2)] that C+ ⊆ D . Assume ex absurdo
that C+ ⊂ D and let f be any gamble in D \C+. This means that there is some x0 in
X such that f (x0) < 0. Consider the transformation Tx0 of X that maps all elements of
X to x0, then T t

x0
f = f (x0) and it follows from the Tx0 -invariance of D that the constant

gamble f (x0) ∈ D , which violates coherence axiom (M1), so D cannot be coherent, a
contradiction.28 �

This result also tells us in particular that the vacuous belief model is always T -invariant
for any monoid of transformations T . This implies that for any monoid of transformations
T , there always are T -invariant belief models.

What are the behavioural consequences of weak invariance with respect to a monoid of
transformations T ? It seems easiest to study this in terms of coherent lower previsions.
First of all, we have that for any gamble f on X and any T in T , our subject’s supremum
buying price P(T t f ) for the transformed gamble T t f should not be strictly smaller that her
supremum price P( f ) for buying f itself.

But there is also a more interesting consequence. Indeed, it follows from the coherence
of P that

P( f −T t f )≤ P( f )−P(T t f )≤ 0.

Walley [1991, Section 3.8.1] suggests that a subject strictly prefers a gamble f to a gamble
g, which we denote as f � g, if f > g, or also if she accepts to pay some (strictly) positive
price for exchanging g with f , so if P( f − g) > 0. This means that weak T -invariance
implies that

f 6� T t f for all f in L (X ) and all T in T such that f 6> T t f

which models that our subject has no reason (or disposition) to strictly prefer any gamble
f to any of its transformations T t f that it doesn’t strictly dominate.

28A similar argument tells us that the same result holds for complete weak invariance of coherent sets of
really desirable gambles, where now the axiom (D1) will be violated.
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4.2. Strong invariance: models of symmetry. Next, suppose that our subject believes
that the (phenomenon underlying the) random variable X is subject to symmetry with re-
spect to the transformations T in T , so that she has reason not to distinguish between
a gamble f and its transformation T t f . Let us give an example to get a more intuitive
understanding of what this means.

The dice example (cont.). Again, let us go back to the die example. Consider the gambles
I{x}, for x∈X6 := {1, . . . ,6}. Since our subject believes the die (and the rolling mechanism
behind it) to be symmetrical, she will be willing to exchange any gamble I{x} for any other
gamble I{y} in return for any strictly positive amount of utility: I{x}− I{y} should therefore
be almost-desirable to her, or in other words, in terms of her lower prevision P:

P(I{x}− I{y})≥ 0 for all x and y in X6.

This is equivalent to stating that I{x}−π t I{x} should be almost-desirable, or that P(I{x}−
π t I{x}) ≥ 0 for all x ∈ X6 and all permutations π of X6. Now the only coherent lower
prevision that satisfies these requirements is the uniform (precise) prevision, which assigns
precise probability 1

6 to each event {x} [simply observe that for any coherent prevision P
in M (P) it follows from these requirements that P(I{x}) = P(I{y})]. �

Let us now try and formalise the intuitive requirements in this example into a more
formal definition. We stated above that if our subject believes that the (phenomenon un-
derlying the) random variable X is subject to symmetry with respect to the transformations
T in T , then she has reason not to distinguish between a gamble f and its transforma-
tion T t f . Suppose she has the gamble f in her possession, then she should be willing to
exchange this for the gamble T t f in return for any strictly positive price, and vice versa.
This means that she should almost-accept both f −T t f and T t f − f , or in the language of
Section 2.5, that she is indifferent between f and T t f : f ≈ T t f . If D is her coherent set of
almost-desirable gambles, this means that

f −T t f ∈D and T t f − f ∈D for all f in L (X ) and all T in T .

If we define

DT :=
{

f −T t f : f ∈L (X ),T ∈T
}

=
{

T t f − f : f ∈L (X ),T ∈T
}

,

this leads to the following definition.

Definition 3. A coherent set of almost-desirable gambles D is called strongly T -invariant
if f −T t f ∈D for all f in L (X ) and all T in T , or equivalently, if DT ⊆D .

The following theorem gives equivalent characterisations of strong invariance in terms of
the alternative types of belief models.

Theorem 5. Let P be a coherent lower prevision on L (X ), D a coherent set of almost-
desirable gambles, and M a weak*-closed convex set of coherent previsions on L (X ).
Assume that these belief models are equivalent, in the sense that they correspond to one
another using the bijective relations in Table 1. Then the following statements are equiva-
lent:
1. D is strongly T -invariant, in the sense that DT ⊆D;
2. P is strongly T -invariant, in the sense that P( f −T t f ) ≥ 0 and P(T t f − f ) ≥ 0, and

therefore P( f −T t f ) = P(T t f − f ) = 0 for all f in L (X ) and T in T ;
3. M is strongly T -invariant, in the sense that T P = P for all P in M and all T in T .29

29So strongly invariant belief models correspond to the Pericchi and Walley’s [1991] notion of a ‘class of
reasonable (or invariant) priors’.
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Proof. We give a circular proof. Assume that D is strongly T -invariant, and consider any
gamble f on X and any T in T . Then we find for the associated coherent lower prevision
P that P( f −T t f ) = max{s : f −T t f − s ∈D}≥ 0, and similarly that P(T t f − f )≥ 0. But
since P is coherent, we find that also P( f −T t f ) =−P(T t f − f )≤−P(T t f − f )≤ 0 and
similarly P(T t f − f ) = −P( f −T t f ) ≤ −P( f −T t f ) ≤ 0, whence indeed P( f −T t f ) =
P(T t f − f ) = 0, so the first statement implies the second.

Next, assume that P is strongly T -invariant and consider any P in the associated set
of dominating coherent previsions M = {P : (∀ f )(P( f )≥ P( f ))} and any T in T . Then
for any gamble f on X we see that P( f −T t f )≥ 0 and P(T t f − f )≥ 0, and since P is a
coherent prevision, this implies that P(T t f ) = P( f ), so indeed T P = P. Hence, the second
statement implies the third.

Finally, assume that M is strongly T -invariant, and consider any gamble f on X
and any T in T . Then for all P in M we have that P( f − T t f ) = P(T t f − f ) = 0, so
both f −T t f and T t f − f belong to the associated set of almost-desirable gambles D =
{g : (∀P ∈M )P(g)≥ 0}. This tells us that the third statement implies the first. �

Let us now study in more detail the relationship between weak and strong invariance.
First of all, strong invariance implies weak invariance, but generally not the other way
around. It is easiest to see this using weak*-closed convex sets of coherent previsions M .
If M is strongly T -invariant, we have that T P = P and consequently T P ∈ M for all
P in M , so M is also weakly T -invariant. To see that the converse doesn’t generally
hold, consider the set of all coherent previsions P(X ) (the vacuous belief model), which
is weakly invariant with respect to any monoid of transformations, but not necessarily
strongly so, as, unless X contains only one element, we can easily find transformations T
and coherent previsions P such that T P is different from P (also see Theorem 6 below).

But the theorem above, when interpreted well, also tells us a number of very interesting
things on this issue. First of all, we see that a coherent prevision P on L (X ) is strongly
T -invariant if and only if it is weakly T -invariant, so both notions of invariance coincide
for coherent previsions. So anyone who insists on modelling beliefs with Bayesian belief
models (coherent previsions) only, cannot distinguish between the two types of invariance.
This confirms in general what we claimed in the Introduction about Bayesian belief models.
From now on, we shall therefore no longer distinguish between strong and weak invariance
for coherent previsions, and simply call them invariant.

Furthermore, we see that a coherent lower prevision P is strongly T -invariant if and
only if all its dominating coherent lower previsions are, or equivalently, if all its dominating
coherent previsions, i.e., all the coherent previsions in M (P), are T -invariant. Or even
stronger, it is easy to see that a coherent lower prevision is strongly invariant if and only if
it is a lower envelope of some (not necessarily weak*-closed nor convex) set of invariant
coherent previsions.

The notions of weak and strong invariance, and the motivation for introducing them,
are tailored to the direct behavioural interpretation of lower previsions, or the equivalent
belief models. But what happens if we give a lower prevision P a Bayesian sensitivity
analysis interpretation? We then hold that there is some actual precise coherent prevision
Pa modelling the subject’s uncertainty about the random variable X , that we have only im-
perfect information about in the sense that we only know that Pa ≥ P, or equivalently, that
Pa ∈ M (P). Assume that we want the imperfect model P to capture that there is ‘sym-
metry of evidence’ with respect to a monoid of transformations T . The actual model Pa
then should be weakly T -invariant, but since this is a (precise) coherent prevision, we can
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not distinguish between weak and strong invariance, and it should therefore simply be T -
invariant: T Pa = Pa for all T ∈T . Since M (P) is interpreted as the set of candidate models
for Pa, all of the coherent previsions P in M (P) must be T -invariant too, or equivalently
P must be strongly T -invariant. A completely analogous course of reasoning shows that
if we want P to capture ‘evidence of symmetry’, P must be strongly T -invariant as well.
So in contradistinction with the direct behavioural interpretation, on a Bayesian sensitivity
analysis interpretation of P, we cannot distinguish between ‘symmetry of evidence’ and
‘evidence of symmetry’, and strong invariance is the proper symmetry property to use in
both cases.30

As is the case for weak invariance, a belief model that is strongly T -invariant, is also
strongly T ′-invariant for any sub-monoid T ′ ⊆T . But in contrast with weak invariance,
given any monoid T , there do not always exist coherent belief models that are strongly
invariant with respect to T . This is an immediate consequence of the following theorem,
which makes an even stronger claim: it is totally irrational to require complete strong
invariance, i.e., strong invariance with respect to the monoid TX of all transformations of
X .

Theorem 6. Assume that X contains more than one element. Then any belief model that
is strongly TX -invariant incurs a sure loss.

Proof. We shall give a proof for lower previsions. Assume ex absurdo that P avoids sure
loss, so M (P) is non-empty. Consider any P in M (P) and any non-constant gamble f on
X [there is at least one such gamble because X contains more than one element]. This
implies that there are (different) x1 and x2 in X such that f (x1) 6= f (x2). For any y in
X , consider the transformation Ty that maps all elements of X to y. Then we find that
T t

y f = f (y), whence P( f (y)− f ) ≥ P( f (y)− f ) ≥ 0 and P( f − f (y)) ≥ P( f − f (y)) ≥ 0,
since P is by assumption in particular strongly Ty-invariant. Consequently P( f ) = f (y).
But this holds in particular for y = x1 and for y = x2, so we infer that f (x1) = P( f ) = f (x2),
a contradiction. �

In fact, we easily see in this proof that given the transformation Ty that maps all elements
of X to y, the only strongly Ty-invariant belief model that avoids sure loss is the constant
prevision on y. Consequently, if we consider a monoid T that includes two different
constant transformations, any belief model that is strongly T -invariant incurs a sure loss.

As a result, we see that there are monoids T for which there are no strongly invariant
coherent (lower) previsions. Under which conditions, then, are there strongly T -invariant
coherent (lower) previsions? It seems easiest, and yields most insight, if we look at this
problem in terms of sets of almost-desirable gambles: indeed if we consider a coherent
lower prevision P on L (X ), then it is strongly T -invariant if and only if for its associated
set of almost-desirable gambles DP = { f ∈L (X ) : P( f )≥ 0} we have that DT ⊆ DP.
We can consider DT itself as a set of almost-desirable gambles, but at this point, we do
not know whether DT is coherent, or whether it even avoids sure loss. Interestingly, the
set of coherent previsions that is associated with DT is given by

M (DT ) = {P ∈ P(X ) : (∀g ∈DT )(P(g)≥ 0)}
=
{

P ∈ P(X ) : (∀ f ∈L (X ))(∀T ∈T )(P( f ) = P(T t f ))
}

.

So M (DT ) is precisely the convex and weak*-closed set of all T -invariant coherent
previsions, and P is strongly T -invariant if and only if M (P) ⊆ M (DT ), or in other

30See [Walley, 1991, Section 9.5] for related comments about the difference between permutability and ex-
changeability. These notions will be briefly discussed in Section 9.2.
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words, if and only if all coherent previsions that dominate P are T -invariant. So there are
strongly T -invariant coherent lower previsions if and only if M (DT ) 6= /0, i.e., if there
are T -invariant coherent previsions, and in this case the lower envelope of M (DT ) is the
point-wise smallest strongly T -invariant coherent lower prevision.

In summary, we see that there are T -invariant coherent previsions if and only if the set
of almost-desirable gambles DT avoids sure loss,31 which, taking into account (M-ASL),
is equivalent32 to the condition33

sup
n

∑
k=1

[
fk−T t

k fk
]
≥ 0 for all n≥ 0, f1, . . . , fn in L (X ) and T1, . . . , Tn in T . (2)

In that case, the natural extension ET := E m
DT

of DT to a coherent set of almost-desirable
gambles is given by34

ET =
⋂
ε>0

{
f ∈L (X ) : f − ε ≥

n

∑
k=1

[
fk−T t

k fk
]

for some n≥ 0, fk ∈L (X ), Tk ∈T

}
(3)

This is the smallest coherent and strongly T -invariant set of almost-desirable gambles,
or in other words, the belief model that represents evidence of symmetry involving the
monoid T . The corresponding lower prevision, defined by35

ET ( f ) = min{P( f ) : P ∈M (DT )} (4)

= max{µ ∈ R : f −µ ∈ ET } (5)

is then, by virtue of Eq. (4) [see also Theorem 10 further on], the point-wise smallest (most
conservative) strongly T -invariant coherent lower prevision on L (X ), and if we combine
Eqs. (3) and (5), we find that36

ET ( f ) = sup

{
inf

[
f −

n

∑
k=1

[
fk−T t

k fk
]]

: n≥ 0, fk ∈L (X ),Tk ∈T

}
. (6)

Remember that this lower prevision is only well-defined (assumes finite real values) when-
ever the condition (2) is satisfied. Taking into account Theorem 10 further on, we deduce
that a coherent (lower) prevision is (strongly) T -invariant if and only if it dominates ET .
Also, ET is the belief model we should use if nothing else but the evidence of symmetry is
given. Finally, this formula for the lower prevision is constructive, but usually the existence
of invariant previsions (on infinite spaces) is proven in a non-constructive (Hahn–Banach)
way; see Section 8, and also Agnew and Morse [1938] and Bhaskara Rao and Bhaskara Rao
[1983, Section 2.1.3(8)]. So we cannot usually get to the coherent invariant previsions by
construction, but we can always construct their lower envelope explicitly!

We shall have much more to say about the existence of strongly invariant belief models
in Section 7, where we show that this existence is guaranteed in particular if the monoid

31Also see Walley’s [1991, Lemma 3.3.2] Separation Lemma.
32Observe that the set DT is a cone, i.e., closed under scalar multiplication with non-negative real numbers.
33The same condition was derived by Walley [1991, Theorem 3.5.2 and Corollary 3.5.4] using an argument

that works directly with coherent lower previsions. Although our argument strongly plays on the connection
between the three equivalent types of belief models of Table 1, we believe that it produces more insight, once this
connection is fully understood.

34Again, observe that DT is a cone.
35It is easy to see that M (DT ) = M (ET ).
36Again, Walley [1991, Theorem 3.5.2 and Corollary 3.5.4] proves the same result in a different manner, see

also footnote 33.
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T is Abelian, or if it is a finite group. The following counterexample tells us that there is
no such guarantee for infinite groups.

Example 1 (Permutation invariance on the natural numbers). Consider the set PN of all
permutations of the set of natural numbers N. We show that there are no (strongly) PN-
invariant coherent (lower) previsions on L (N) by showing that the condition (2) doesn’t
hold. Indeed, consider the partition of N made up of the sets

Rr
3 = {3n+ r : n ∈ N} , r = 0,1,2,

and any permutations πr for r = 0,1,2 such that for all n ∈ N, πr(n) ∈ Rr
3 if and only if

n /∈Rr
3 [for instance, let πr be involutive and such that it assigns the first element of Rr

3 to the
first of (Rr

3)
c, the second element of Rr

3 to the second of (Rr
3)

c, etc.] Consider the gamble
G = ∑

2
r=0[IRr

3
−π t

rIRr
3
] on N, then we are done if we can show that supG < 0. Indeed, if

n ∈ Rr
3 then G(n) = 1+0+0− (1+1+0) =−1 for r = 0,1,2, so supG =−1. �

These results expose another fundamental difference between weak and strong invari-
ance: while strong invariance with respect to a greater number of transformations means
that we must refine our beliefs (i.e, it make them more precise), this is not the case with
weak invariance.

On the other hand, strong invariance is preserved by dominating lower previsions: if P1
is a coherent lower prevision that is strongly T -invariant and P2 is a coherent lower pre-
vision that dominates P1, then P2 is also strongly T -invariant. It indeed seems reasonable
that, if a subject has evidence of symmetry, and she has some additional information that
allows her to make her judgements more precise, she can add assessments while still pre-
serving strong invariance. But a similar result does not hold for weak invariance: since the
vacuous lower prevision is weakly TX -invariant, this would mean that any lower prevision
should be weakly TX -invariant, quod non.

In summary, there is an important conceptual difference between weak and strong in-
variance. Weakly invariant belief models capture in particular that a subject has no reason
to strictly prefer a gamble f to its transformation T t f whenever f 6> T t f . Strong invari-
ance captures that a subject has reason not to distinguish between, i.e., to be indifferent
between, the gambles f and T t f . And it is only if you insist on using Bayesian belief
models always that you must infer indifference from having no reason to (strictly) prefer.
This is of particular relevance for belief models that try to represent a subject’s complete
ignorance, as we now proceed to show.

5. MODELLING COMPLETE IGNORANCE

Suppose our subject is completely ignorant about the value that X assumes in X . Then
she has no relevant information that would allow her to favour one possible value of X
over another. This implies that the corresponding belief model should be symmetric in the
possible values of X , or in other words it should be weakly invariant with respect to the
group PX of all permutations of X . This leads to a form of Walley’s [1991, Section 5.5.1]
Symmetry Principle.

Symmetry Principle (SP). If a subject is completely ignorant about the value of a random
variable X in X , then her corresponding belief model should be weakly invariant with
respect to the group PX of all permutations of X .

We have mentioned before that the appropriate belief model for complete ignorance about
X seems to be the vacuous lower prevision PX . But SP by itself is not sufficient to single
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out this lower prevision: if, for instance, X is finite, then the uniform precise prevision
Pu, given by

Pu( f ) =
1
|X | ∑

x∈X

f (x)

for each gamble f on X , which assigns equal probability mass 1/|X | to each element
of X , is also weakly permutation invariant. We shall also see in Examples 5 and 6 of
Section 9 that there may be many more coherent lower previsions that share the same weak
permutation invariance property. If, however, we strengthen the Symmetry Principle to
require weak invariance with respect to all transformations, and not just all permutations,
then Theorem 4 tells us that the vacuous lower prevision PX is indeed the only coherent
lower prevision that is compatible with the following

Strong Symmetry Principle (SSP). If a subject is completely ignorant about the value
of a random variable X in X , then her corresponding belief model should be weakly
invariant with respect to the monoid TX of all transformations of X .

Walley [1991, Section 5.5.1 and note 7 on p. 526] has shown that for random variables
X taking values in a finite set X , the vacuous lower prevision PX is the only coherent
lower prevision that is compatible with SP and the so-called37

Embedding Principle (EP). Consider a random variable X, and consider a set of pos-
sible values A for X. Then the (lower) probability assigned to the event A, i.e., the lower
probability that X ∈ A, should not depend on the set X of all possible values for X in
which A is embedded.

So under coherence, SSP is equivalent to SP and EP taken together. Under coherence, it is
also equivalent to the following rationality principle, as we shall shortly see.

Revised Principle of Insufficient Reason (RPIR). If you have two different gambles f
and g on a random variable X that you are completely ignorant about, then if f 6≥ g you
have no reason to prefer f to g.

Indeed, the only coherent belief model that is compatible with this principle, is the vacuous
one. We shall argue in terms of real desirability models38 R (see Section 2.1). Say that a
subject (really) prefers f to g whenever f 6= g and f −g ∈R, i.e., she accepts to exchange
g for f . Then RPIR implies that for all f 6= 0, f 6≥ 0 implies that f 6∈R, or equivalently,
by contraposition, that f ∈R implies f ≥ 0. Hence R = C+ is the vacuous belief model.

In summary, we have the following equivalences, under coherence, and the only be-
lief model that is compatible with these three equivalent rationality requirements, is the
vacuous one:

SSP⇔ SP+EP⇔ RPIR.

RPIR is a revised version of the Principle of Insufficient Reason (PIR), which states that
if you are completely ignorant about the value of a random variable X , then you have no
reason to distinguish between the different possible values, and therefore should consider
all these values to have equal probability. Indeed, from a historical point of view, the PIR
was used extensively by Laplace (see for instance Howie [2002]) to justify using a uniform
probability for modelling complete ignorance.

37For additional discussion of this principle, see also Walley [1996b], Walley and Bernard [1999].
38A similar argument can be given for almost-desirability models D and lower previsions P, using for pref-

erence Walley’s [1991, Sections 3.7.7–3.7.9] corresponding notion of strict preference, which corresponds to the
present argument by using D+

P ∪{0} as a coherent set of really desirable gambles.
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We are of course aware that our reformulation RPIR of Laplace’s PIR is quite unusual
and has little or no historical grounds, which is why we refer to it as a revised, or perhaps
better, improved principle. It might have been preferable to call RPIR the ‘Principle of
Insufficient Reason to Prefer’, but we decided against that for aesthetical reasons.

We think that RPIR is reasonable, but that PIR isn’t. Indeed, one of the reasons for the
critical attitudes of many researchers towards ‘Bayesian methods’ and inverse probability
in the nineteenth and early twentieth century seem to lie in the indiscriminate use by many
of Laplace’s PIR in order to obtain uniform prior probabilities that can be plugged into
Bayes’s formula.39 And by ‘indiscriminate use’ we mean precisely the confusion that
exists between symmetry of evidence and evidence of symmetry: we have argued that it
is only evidence of symmetry that justifies using strongly invariant belief models (and in
many cases, such as permutation invariance for finite spaces, strong invariance singles out
the uniform probability as the only compatible belief model, see also Section 9). If there
is only symmetry of evidence, we should use weakly invariant belief models, and in the
special case of complete ignorance, vacuous ones. Of course, as we said in the Introduction
and proved in the previous section, for precise previsions (Bayesian belief models) there
is no difference between weak and strong invariance, so if you insist on using a Bayesian
belief model, symmetry of evidence leads you to a (strongly) invariant one! The problem
with the PIR, therefore, is that the belief model is only allowed to be precise: there would
be fewer or no difficulties if in its formulation we just replaced ‘probability’ with ‘lower
and upper probability’, for instance.

6. WEAKLY INVARIANT LOWER PREVISIONS

Let us now turn to a more involved mathematical study of the invariance of coherent
lower previsions. So far, we have only looked at coherent lower previsions that were
defined on all gambles. But of course, it will usually happen that our subject specifies a
supremum acceptable buying price P( f ) for only a limited number of gambles f , say those
in a subset K of L (X ). And then we can ask ourselves whether such an assessment
can be coherently extended to a weakly, or to a strongly, T -invariant lower prevision
on all gambles. We shall address these, and related, problems in this and the following
section. Let us begin here with weak invariance. The following definition generalises
the already established notion of weak invariance to lower previsions defined on any T -
invariant domain, that are not necessarily coherent (they may even incur a sure loss).40

Definition 4 (Weak invariance). A lower prevision P defined on a set of gambles K ⊆
L (X ) is called weakly T -invariant if
(W1) T t f ∈K for all f in K and T in T , i.e., K is T -invariant;
(W2) P(T t f )≥ P( f ) for all f in K and T in T , i.e., all T P point-wise dominate P.

As before, if T is right-cancellable (and in particular if it is a group), the inequality in
the invariance definition is actually an equality: consider a gamble f in K , a transforma-
tion T in T and its right-inverse R, we have P( f ) = P((T R)t f ) = P(Rt(T t f )) ≥ P(T t f )
in addition to P(T t f )≥ P( f ).

Next, because taking convex combinations, lower envelopes, limits inferior and superior
preserves inequalities, it is easy to see that convex combinations, lower envelopes and

39An interesting historical discussion of such attitudes can be found in Howie [2002] and Zabell [1989b].
40Our notion of weak invariance for a lower prevision is weaker than Walley’s [1991, Section 3.5.1] corre-

sponding notion of invariance, which requires equality, and has the drawback that it is not preserved by natural
extension.
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point-wise limits of weakly invariant lower previsions are also weakly invariant. Observe
by the way that the same operations also preserve coherence.

The following proposition looks at weak invariance for (precise) previsions.

Proposition 7. Let P be a prevision, i.e., a self-conjugate lower prevision, defined on a
negation-invariant domain K = −K . Assume that K is also T -invariant. Then P is
weakly T -invariant if and only if P(T t f ) = P( f ) for all T in T and all f in K .

Proof. It is clear that the condition is sufficient. To show that it is also necessary, assume
that P is T -invariant, and consider any T in T and any gamble f in K . Then it fol-
lows from the T -invariance of P that on the one hand P(T t f ) ≥ P( f ), and on the other
hand, since − f ∈K and T t(− f ) =−T t f ∈K , that P(−T t f ) = P(T t(− f ))≥ P(− f ), or
equivalently, using the self-conjugacy of P, that P( f )≥ P(T t f ). �

We study next whether a weakly invariant lower prevision P with domain K can be
extended to a coherent weakly invariant lower prevision on the set of all gambles, or more
generally, whether there is a coherent weakly invariant lower prevision on all gambles
that dominates P. We already know from the material in Section 2.3 that a necessary
condition for this is that P should avoid sure loss. Indeed, if P incurs sure loss then it has
no dominating coherent lower prevision, let alone a weakly invariant one. The perhaps
surprising result we prove next is that avoiding sure loss is also sufficient, and that all
we have to do is consider the natural extension EP of P, as it preserves weak invariance.
This natural extension is automatically guaranteed to be the point-wise smallest weakly
T -invariant coherent lower prevision that dominates P.41

Theorem 8 (Natural extension preserves weak invariance). The natural extension EP of a
weakly T -invariant lower prevision P on a set of gambles K that avoids sure loss is still
weakly T -invariant, i.e., for all gambles f on X and all T in T ,

T EP( f ) = EP(T t f )≥ EP( f ).

Consequently, EP is the point-wise smallest weakly T -invariant coherent lower prevision
on L that dominates P on its domain K .

Proof. Consider any gamble f on X and any T in T . From the definition (LPR-NE) of
natural extension, and the fact that T tK ⊆K , we get

EP(T t f ) = sup
λk≥0, fk∈K
k=1...,n,n≥0

{
α : T t f −α ≥

n

∑
k=1

λk [ fk−P( fk)]

}

≥ sup
λk≥0,gk∈K
k=1...,n,n≥0,

{
α : T t f −α ≥

n

∑
k=1

λk
[
T tgk−P(T tgk)

]}
. (7)

Now it follows from the T -invariance of P that P(T tgk)≥ P(gk), whence
n

∑
k=1

λk
[
T tgk−P(T tgk)

]
≤ T t

n

∑
k=1

λk [gk−P(gk)] ,

and consequently f −α ≥ ∑
n
k=1 λk[gk−P(gk)] implies that

T t f −α ≥ T t
n

∑
k=1

λk [gk−P(gk)]≥
n

∑
k=1

λk
[
T tgk−P(T tgk)

]
.

41This result is mentioned, with only a hint at the proof, by Walley [1991, Theorem 3.5.2].
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So we may infer from the inequality (7) that

EP(T t f )≥ sup
λk≥0,gk∈K
k=1...,n,n≥0,

{
α : f −α ≥

n

∑
k=1

λk [gk−P(gk)]

}
= EP( f ),

which completes the proof. �

Hence, if we start out with a lower prevision P on K that is weakly T -invariant and
already coherent, then its natural extension EP is the smallest coherent and weakly T -
invariant lower prevision on all gambles that agrees with P on K . As we shall show
further on, this result does not carry over to strong invariance.

7. STRONGLY INVARIANT LOWER PREVISIONS

We now turn to the study of strong invariance for lower previsions on general domains.

7.1. Definition and immediate properties. The following definition generalises the no-
tion of strong invariance introduced in Section 4.2 to lower previsions that needn’t be
coherent, nor defined on all of L (X ).

Definition 5 (Strong invariance). A lower prevision P defined on a set of gambles K ⊆
L (X ) is called strongly T -invariant if
(S1) T t f − f ∈K and f −T t f ∈K for all f in K and all T ∈T ;
(S2) P(T t f − f )≥ 0 and P( f −T t f )≥ 0 for all f in K and all T ∈T .

As is the case for weak invariance, it is easy to see that strong T -invariance is preserved
under convex combinations, lower envelopes, and point-wise limits, simply because all
these operations preserve inequalities.

Proposition 9. A strongly T -invariant coherent lower prevision on a T -invariant domain
is also weakly T -invariant.

Proof. First of all, the coherence and strong invariance of P imply that 0 ≤ P(T t f − f )≤
P(T t f )−P( f ), whence P(T t f )≥ P( f ) and similarly, we derive from P( f −T t f )≥ 0 that
P( f )≥ P(T t f ). So we see that P is also weakly T -invariant (with equality). �

To see that a converse result does not generally hold, so weak invariance is actually weaker
than strong invariance, consider the vacuous lower prevision PX on L (X ) and the trans-
formation Tx0 that maps all elements x of X to x0. Then, for any gamble f such that
inf f < f (x0) we have PX ( f − T t

x0
f ) < 0. Hence, PX is not strongly Tx0 -invariant but

Theorem 4 implies that it is weakly Tx0 -invariant. If we consider a finite space X and the
vacuous lower prevision PX on L (X ) and the class PX of all permutations of X , we
can see that weak invariance (with equality) does not imply strong invariance.

So weak invariance is indeed a weaker notion than strong invariance. The following the-
orem expresses the main difference between these two concepts: while the former means
that the set of coherent previsions M (P) is invariant, the latter means that every element
of this set is invariant.

Theorem 10. Let K be a negation invariant and T -invariant set of gambles such that
T t f − f is in K for all f in K and T in T .
1. A coherent prevision P on K is weakly T -invariant if and only if it is strongly T -

invariant. In either case we simply call it T -invariant.
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2. A coherent lower prevision P on K is strongly T -invariant if and only if all its domi-
nating coherent previsions are (strongly) T -invariant on K .

Proof. We start with the first statement. We only need to prove the direct implication, so
assume that P is weakly T -invariant, and consider any f in K . Then from the assumption
and Proposition 7 we get P(T t f ) = P( f ), and it follows from the linearity of P that indeed
P(T t f − f ) = P( f −T t f ) = 0.

We now turn to the second statement. Since any coherent lower prevision is the lower
envelope of its dominating coherent previsions, the converse implications follow at once,
since taking a lower envelope preserves strong invariance. To prove the direct implication,
assume that P is strongly T -invariant, and consider any coherent prevision P in M (P).
For any T in T and any f in K we then find that

0≤ P( f −T t f )≤ P( f −T t f ) =−P(T t f − f )≤−P(T t f − f )≤ 0,

whence indeed P( f ) = P(T t f ). �

7.2. Strongly invariant natural extension. We have shown when studying weak invari-
ance that for any weakly T -invariant lower prevision P on some domain K that avoids
sure loss, there is a point-wise smallest weakly invariant coherent lower prevision defined
on all gambles that dominates it: its natural extension EP. Let us now investigate whether
something similar can be done for the notion of strong invariance. The question then is:
Consider a monoid T of transformations of X and a lower prevision P on K that avoids
sure loss, are there strongly T -invariant coherent lower previsions on all L (X ) that dom-
inate P, and if so, what is the point-wise smallest such lower prevision? Let us denote, as
before, by

DP =
{

f ∈L (X ) : EP( f )≥ 0
}

the set of almost-desirable gambles associated with P, and by

M (P) = {P ∈ P(X ) : (∀ f ∈K )(P( f )≥ P( f ))}
its set of dominating coherent previsions, then clearly a coherent lower prevision Q on
L (X ) is strongly T -invariant and dominates P if and only if M (Q)⊆M (P)∩M (DT ),
or equivalently, DP ∪DT ⊆ DQ. So there are strongly T -invariant coherent (lower) pre-
visions that dominate P if and only if M (P)∩M (DT ) 6= /0, or equivalently, if the set of
almost-desirable gambles DP∪DT avoids sure loss, and in this case the lower envelope of
M (P)∩M (DT ), or equivalently, the lower prevision associated with the natural exten-
sion of the set of almost-desirable gambles DP∪DT , is the smallest such lower prevision.
In the language of coherent lower previsions, this leads to the following theorem.42

Theorem 11 (Strongly invariant natural extension). Consider a lower prevision P on K
that avoids sure loss, and a monoid T of transformations of X . Then there are strongly
T -invariant coherent (lower) previsions on L (X ) that dominate P on K if and only if

EP

(
n

∑
k=1

[
fk−T t

k fk
])

≥ 0 for all n≥ 0, f1, . . . , fn in L (X ) and T1, . . . , Tn in T , (8)

or equivalently, if

ET

(
n

∑
k=1

[ fk−P( fk)]

)
≥ 0 for all n≥ 0, and f1, . . . , fn in K . (9)

42Walley [1991, Theorems 3.5.2 and 3.5.3] proves similar results involving Eqs. (8) and (10) for what we call
weakly T -invariant P that avoid sure loss, in a different manner. See also footnotes 33 and 36.
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In that case the smallest coherent and strongly T -invariant lower prevision on L (X ) that
dominates P on its domain K is given by

EP,T ( f ) = sup

{
EP

(
f −

n

∑
k=1

[
fk−T t

k fk
])

: n≥ 0, fk ∈L (X ),Tk ∈T

}
(10)

= sup

{
ET

(
f −

n

∑
k=1

λk [ fk−P( fk)]

)
: n≥ 0, fk ∈K ,λk ≥ 0

}
(11)

for all gambles f on X ; and M (EP,T ) is the set of all T -invariant coherent previsions
that dominate P on K .

Proof. We already know that there is a dominating coherent (lower) prevision if and only
if M (P)∩M (DT ) is non-empty. Let us show that this is equivalent to the conditions (8)
and (9). To see the equivalence between these two conditions, it suffices to notice [use
Eq. (LPR-NE) and the fact that EP(h) =−EP(−h)] that condition (8) is equivalent to

sup

[
n

∑
k=1

[
fk−T t

k fk
]
+

m

∑
j=1

[g j−P(g j)]

]
≥ 0

for all n,m≥ 0, fk ∈L (X ), Tk ∈T , g j ∈K , (12)

and that this is in turn [use Eq. (6) and the fact that ET (h) = −ET (−h)] equivalent to
condition (9). But, considering condition (M-ASL), we see that condition (12) holds if and
only if the set of almost-desirable gambles DP ∪DT avoids sure loss, or equivalently, if
the corresponding set of coherent previsions M (P)∩M (DT ) is non-empty.

We now prove the validity of the expression (11) for the lower envelope EP,T of the set
of coherent previsions M (P)∩M (DT ). The proof for the expression (10) is analogous.
We know from the material in Section 2 that this lower envelope is also the coherent lower
prevision associated with the natural extension of the set of almost-desirable gambles DP∪
DT , so we get by applying Eq. (LPR-NE) with D = DP∪DT that

EP,T ( f ) = sup
λk≥0,gk∈DP
k=1,...,n,n≥0

sup
µ`≥0,h`∈DT
`=1,...,m,m≥0

inf

[
f −

n

∑
k=1

λkgk−
m

∑
`=1

µ`h`

]

= sup
λk≥0,gk∈DP
k=1,...,n,n≥0

sup
µ`≥0,h`∈DT
`=1,...,m,m≥0

inf

[(
f −

n

∑
k=1

λkgk

)
−

m

∑
`=1

µ`h`

]

= sup
λk≥0,gk∈DP
k=1,...,n,n≥0

ET

(
f −

n

∑
k=1

λkgk

)
= sup

λk≥0, fk∈K
k=1,...,n,n≥0

ET

(
f −

n

∑
k=1

λk[ fk−P( fk)]

)
,

for every gamble f on X , also taking into account the definition (6) of ET . �

In conclusion, whenever the equivalent conditions (8) and (9) are satisfied for a lower
prevision P that avoids sure loss, then (and only then) the functional EP,T , defined by
Eqs. (10) and (11), is the point-wise smallest coherent and strongly T -invariant lower
prevision that dominates P. We shall call EP,T the strongly T -invariant natural extension
of P, as it is the belief model that the assessments captured in P lead to if in addition a
(so-called structural)43 assessment of symmetry involving the monoid T is made.

43Structural assessments are discussed in general in Walley [1991, Chapter 9].
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7.3. The existence of strongly invariant coherent (lower) previsions. There is a beau-
tiful and surprisingly simple argument to show that for some types of monoids T , there
always are strongly T -invariant lower previsions that dominate a given lower prevision
that is weakly T -invariant and avoids sure loss. It is based on the combination of a number
of ideas in the literature: (i) Agnew and Morse [1938, Section 2] constructed some specific
type of Minkowski functional and used this together with a Hahn–Banach extension result
to prove the existence of linear functionals that are invariant with respect to certain groups
of permutations; (ii) Day [1942, Theorem 3] showed, in a discussion of ergodic theorems,
that a similar construction always works for Abelian semigroups of transformations; (iii)
with crucially important insight, Walley [1991, Theorems 3.5.2 and 3.5.3] recognised that
the Minkowski functional in the existence proofs of Agnew and Morse, and Day, is actu-
ally what we have called a strongly invariant lower prevision, and he used the ideas behind
this construction to introduce what we shall call mixture lower previsions in Section 7.4;
(iv) in another seminal discussion of mean ergodic theorems, Alaoglu and Birkhoff [1940]
show that (Moore–Smith-like) convergence of convex mixtures of linear transformations is
instrumental in characterising ergodicity; and (v) Bhaskara Rao and Bhaskara Rao [1983,
Section 2.1.3] use so-called Banach limits to generate shift-invariant probability charges.
In this and the next section, we combine and extend these ideas to prove more general ex-
istence results for (strongly) invariant coherent (lower) previsions, and to investigate their
relation to (generalised) Banach limits (Section 8). As we shall see in Section 7.4, Walley’s
[1991, Section 3.5] results can then be derived from our more general treatment.

Consider a monoid T of transformations of X . We can, as before, consider the set of
lifted transformations T t as a monoid of linear transformations of the linear space L (X ).
A convex combination T ∗ of elements of T t is a linear transformation of L (X ) of the
form

T ∗ =
n

∑
k=1

λkT t
k ,

where n ≥ 1, λ1, . . . , λn are non-negative real numbers that sum to one, and of course
T ∗ f = ∑

n
k=1 λkT t

k f . We denote by T ∗ the set of all convex combinations of elements of
T t . We have of course for any two elements T ∗

1 = ∑
m
k=1 λkU t

k and T ∗
2 = ∑

n
k=1 µkV t

k of T ∗

that their composition

T ∗
2 T ∗

1 =
n

∑
k=1

µkV t
k

(
m

∑
`=1

λ`U t
`

)
=

n

∑
k=1

m

∑
`=1

µkλ`V t
kU t

` =
n

∑
k=1

m

∑
`=1

λ`µk(U`Vk)t

again belongs to T ∗. This implies that T ∗ is a monoid of linear transformations of L (X )
as well. We can now introduce invariance definitions involving transformations in T ∗ in
precisely the same way as we defined them for T (or actually T t ). We can also define,
for any real functional Λ and T ∗ ∈T ∗, the transformed functional T ∗Λ as Λ◦T ∗. We then
have the following result.

Proposition 12. The following statements hold, where f is a gamble on X , K is a convex
set of gambles on X , and P is a coherent lower prevision on K :
1. f is T -invariant if and only if f is T ∗-invariant;
2. K is T -invariant if and only if K is T ∗-invariant;
3. P is weakly T -invariant if and only if P is weakly T ∗-invariant;
4. P is strongly T -invariant if and only if P is strongly T ∗-invariant.

Proof. It suffices of course to prove the direct implications. Consider an arbitrary T ∗ =
∑k λkTk ∈ T ∗. For the first statement, let f be T -invariant, then T ∗ f = ∑k λkT t

k f =
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∑k λk f = f , where the second equality follows from the T -invariance of f . So f is
T ∗-invariant. For the second statement, let K be T -invariant and let f ∈ K , then
T ∗ f = ∑k λkT t

k f ∈ K , because T t
k f ∈ K for all k by the T -invariance of K and be-

cause K is convex. So K is T ∗-invariant. For the third statement, assume that P is
weakly T -invariant. For any f ∈K ,

P(T ∗ f ) = P

(
∑
k

λkT t
k f

)
≥∑

k
λkP(T t

k f )≥∑
k

λkP( f ) = P( f ),

where the first inequality follows from the coherence of P, and the second from the weak
T -invariance of P. Hence P is weakly T ∗-invariant. For the last statement, assume that P
is strongly T -invariant. For any f ∈K ,

P

(
∑
k

λkT t
k f − f

)
= P

(
∑
k

λk(T t
k f − f )

)
≥∑

k
λkP(T t

k f − f )≥ 0,

where the first inequality follows from the coherence of P, and the second from the strong
T -invariance of P. Similarly P( f −∑k λkT t

k f )≥ 0. Hence P is strongly T ∗-invariant. �

We now define the following binary relation > on T ∗: for T ∗
1 and T ∗

2 in T ∗ we say that
T ∗

2 is a successor of T ∗
1 , and we write T ∗

2 > T ∗
1 , if and only if there is some T ∗ in T ∗ such

that T ∗
2 = T ∗T ∗

1 . Clearly > is a reflexive and transitive relation, because T ∗ is a monoid.
We say that T ∗ has the Moore–Smith property, or is directed by >, if any two elements of
T ∗ have a common successor, i.e., for any T ∗

1 and T ∗
2 in T ∗ there is some T ∗ in T ∗ such

that T ∗ > T ∗
1 and T ∗ > T ∗

2 . It is not difficult to see that if T is Abelian, or a finite group,
then T ∗ is directed by the successor relation. This need not hold if T is an infinite group
or a finite monoid, however.

Now, given a net α on T ∗, i.e., a mapping α : T ∗→ R, we can take the Moore–Smith
limit of α with respect to the directed set (T ∗,>) [Moore and Smith, 1922, Section I,
p. 103], which, if it exists, is uniquely defined as the real number a such that, for every
ε > 0, there is a T ∗

ε in T ∗, such that |α(T ∗)−a| < ε for all T ∗ > T ∗
ε . The Moore–Smith

limit a of α is denoted by limT ∗∈T ∗ α(T ∗). This limit always exists if α is non-decreasing
and bounded from above, or if α is non-increasing and bounded from below.

Theorem 13. Let P be a coherent and weakly T -invariant lower prevision on L (X ), and
assume that T ∗ has the Moore–Smith property. Then for any gamble f on X the Moore–
Smith limit limT ∗∈T ∗ P(T ∗ f ) converges to a real number QP,T

( f ). Moreover, QP,T
is the

point-wise smallest strongly T -invariant coherent lower prevision on L (X ) that domi-
nates P on L (X ), and

QP,T
( f ) = sup{P(T ∗ f ) : T ∗ ∈T ∗}= sup

{
P

(
1
n

n

∑
k=1

T t
k f

)
: n≥ 1,T1, . . . ,Tn ∈T

}
.

(13)

Proof. First, fix f in L (X ). Consider T ∗
1 and T ∗

2 in T ∗, and assume that T ∗
2 > T ∗

1 . This
means that there is some T ∗ in T ∗ such that T ∗

2 = T ∗T ∗
1 , and consequently we find that

P(T ∗
2 f ) = P(T ∗(T ∗

1 f ))≥ P(T ∗
1 f ),

where the inequality follows from the fact that P is in particular weakly T ∗-invariant [ob-
serve that L (X ) is convex and that P is weakly T -invariant, and apply Proposition 12].
This means that the net P(T ∗ f ), T ∗ ∈ T ∗ is non-decreasing. Since this net is moreover
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bounded from above [by sup f , since P is coherent], it converges to a real number QP,T
( f ),

and clearly

QP,T
( f ) = lim

T ∗∈T ∗
P(T ∗ f ) = sup{P(T ∗ f ) : T ∗ ∈T ∗} . (14)

This tells us that the net of coherent lower previsions T ∗P, T ∗ ∈ T ∗ converges point-
wise to the lower prevision QP,T

, so QP,T
is a coherent lower prevision as well [taking

a point-wise limit preserves coherence]. Since idt
X ∈ T ∗, it follows from Eq. (14) that

QP,T
( f )≥ P(idt

X f ) = P( f ), so QP,T
dominates P on L (X ). We now show that QP,T

is strongly T -invariant.44 Consider any f in L (X ) and T in T . Then for any n ≥ 1,
T ∗

n := 1
n ∑

n
k=1(T

k)t belongs to T ∗, and it follows from the coherence of P that

P(T ∗
n ( f −T t f )) =

1
n

P(T t f − (T n+1)t f )≥ 1
n

inf
[
T t f − (T n+1)t f

]
=−1

n
sup
[
(T n+1)t f −T t f

]
≥−2

n
sup| f |,

and consequently

QP,T
( f −T t f )≥ sup

{
−2

n
sup| f | : n≥ 1

}
= 0.

A similar argument can be given for QP,T
(T t f − f ) ≥ 0, so QP,T

is indeed strongly T -
invariant.

Next, consider any strongly T -invariant and coherent lower prevision Q on L (X ),
and assume that it dominates P. Then we get for any gamble f on X and any T ∗ in T ∗:

Q( f ) = Q( f −T ∗ f +T ∗ f )≥ Q( f −T ∗ f )+Q(T ∗ f )≥ Q(T ∗ f )≥ P(T ∗ f ),

where the first inequality follows from the coherence of Q, the second inequality from its
strong T -invariance [use Proposition 12], and the last inequality from the fact that Q dom-
inates P. We then deduce from Eq. (14) that Q dominates QP,T

. So QP,T
is indeed the

point-wise smallest strongly T -invariant coherent lower prevision on L (X ) that domi-
nates P on L (X ).

Finally, let us prove the second equality in Eq. (13). Consider a gamble f and any
ε > 0. Then, by Eq. (14), there is some T ∗ in T ∗ such that QP,T

( f ) ≤ P(T ∗ f )+ ε

2 . For
this T ∗, there are n≥ 1, T1, . . . , Tn in T and λ1, . . . ,λn ≥ 0 that sum to one, such that T ∗ =
∑

n
k=1 λkT t

k . Let ρ1, . . . , ρn be non-negative rational numbers satisfying |ρi−λi| ≤ ε

2nsup| f |
such that moreover ∑

n
i=1 ρi = 1.45 Now it follows from the coherence of P that

P(T ∗ f ) = P

(
n

∑
i=1

λiT t
i f

)
≤ P

(
n

∑
i=1

ρiT t
i f

)
−P

(
n

∑
i=1

(ρi−λi)T t
i f

)
,

44The idea for this part of the proof is due to Walley [1991, Point (iv) of the proof of Theorem 3.5.3].
45To see that such rational numbers exist, it suffices to consider non-negative rational numbers ρ1, . . . ,ρn−1

such that 0≤ ρi ≤ λi ≤ 1 and |ρi−λi| ≤ ε

2n2 sup| f | for i = 1, . . . ,n−1, and to let ρn := 1−∑
n−1
i=1 ρi ≥ 1−∑

n−1
i=1 λi =

λn ≥ 0. Then ρn ∈ [0,1], and for n big enough, and unless we are in the trivial case where λi = 1 for some i, we
get |ρn−λn| ≤ ε

2nsup| f | .
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and also

P

(
n

∑
i=1

(ρi−λi)T t
i f

)
≥

n

∑
i=1

P((ρi−λi)T t
i f )≥

n

∑
i=1

inf(ρi−λi)T t
i f

≥
n

∑
i=1
− ε

2nsup| f |
sup| f |=−ε

2
,

whence

QP,T
( f )≤ P(T ∗ f )+

ε

2
≤ P

(
n

∑
i=1

ρiT t
i f

)
+ ε,

and consequently

QP,T
( f ) = sup

{
P

(
n

∑
i=1

ρiT t
i f

)
: n≥ 1,T1, . . . ,Tn ∈T ,ρ1, . . . ,ρn ∈Q+,

n

∑
i=1

ρi = 1

}
,

where Q+ denotes the set of non-negative rational numbers. Now, it is easy to see [just
consider the least common multiple of the denominators of ρ1, . . . , ρn] that this supremum
coincides with the right-hand side of Eq. (13). �

This result allows us to establish the following corollary. It gives a sufficient condi-
tion for the existence of strongly T -invariant lower previsions dominating a given coher-
ent lower prevision P. The smallest such lower prevision reflects how initial behavioural
dispositions, reflected in P, are modified (strengthened) to EP,T when we add the extra
assessment of strong invariance with respect to a monoid T of transformations.

Corollary 14 (Strongly invariant natural extension). Let T be a monoid of transforma-
tions of X and let P be a weakly T -invariant lower prevision on some set of gambles
K , that avoids sure loss. Assume that T ∗ has the Moore–Smith property. Then there are
strongly T -invariant coherent lower previsions on L (X ) that dominate P on L (X ),
and the smallest such lower prevision, which is called the strongly T -invariant natural
extension of P, is given by EP,T = QEP,T

. Moreover, for every T -invariant gamble f we

have that EP,T ( f ) = EP( f ).

Proof. The first part of the proof follows at once from the observation that a coherent lower
prevision Q on L (X ) dominates P on K if and only if it dominates EP on all gambles.
For the second part of the proof, simply observe that if f is a T -invariant gamble, then
T ∗ f = f and therefore EP(T ∗ f ) = EP( f ) for all T ∗ in T ∗. �

Let us show in particular how this result applies when we consider the monoid TT
generated by a single transformation T :

Corollary 15. Let T be a transformation of X and consider the Abelian monoid TT =
{T n : n≥ 0}. Then for any weakly T -invariant lower prevision P on some set of gambles
K that avoids sure loss, there are strongly T -invariant coherent (lower) previsions on
L (X ) that dominate P, and the point-wise smallest such lower prevision EP,T is given by

EP,T ( f ) = lim
n→∞

EP

(
1
n

n−1

∑
k=0

(T k)t f

)
= sup

n≥1
EP

(
1
n

n−1

∑
k=0

(T k)t f

)
.

Proof. The existence of strongly T -invariant coherent (lower) previsions on L (X ) that
dominate P follows from Corollary 14, and the fact that for any Abelian monoid T , T ∗
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has the Moore–Smith property. It also follows from this corollary that for any gamble f on
X ,

EP,T ( f ) = sup
{

EP(T ∗ f ) : T ∗ ∈T ∗
T
}
≥ sup

n≥1
EP

(
1
n

n−1

∑
k=0

(T k)t f

)
.

To prove the converse inequality, fix any T ∗ in T ∗
T and any gamble f on X . Then there is

some N ≥ 1 and non-negative λ0, . . . , λN−1 that sum to one, such that T ∗ = ∑
N−1
k=0 λk(T k)t .

Consider the element S∗M = 1
M ∑

M−1
`=0 (T `)t of T ∗, where M is any natural number such that

M ≥ N. Observe that

S∗MT ∗ =
1
M

M−1

∑
`=0

(T `)t

(
N−1

∑
k=0

λk(T k)t

)
=

M−1

∑
`=0

N−1

∑
k=0

λk

M
(T k+`)t =

M+N−2

∑
m=0

µm(T m)t ,

where we let, for 0≤ m≤M +N−2,

µm :=
N−1

∑
k=0

M−1

∑
`=0

λk

M
δm,k+` =


∑

m
k=0

λk
M if 0≤ m≤ N−2

1
M if N−1≤ m≤M−1

∑
N−1
k=m−M+1

λk
M if M ≤ m≤M +N−2.

This tells us that µm = 1
M for N−1 ≤ m ≤ M−1, and 0 ≤ µm ≤ 1

M for all other m. If we
let δm := µm− 1

N+M−1 , it follows at once that

|δm| ≤


N−1

M(M +N−1)
if N−1≤ m≤M−1

1
M +N−1

if 0≤ m≤ N−2 or M ≤ m≤M +N−2

Consequently, it follows from the weak T -invariance and the coherence of EP that

EP(T ∗ f )

≤ EP(S∗MT ∗ f )

= EP

(
S∗M+N−1 f +

M+N−2

∑
m=0

δm(T m)t f

)
≤ EP(S∗M+N−1 f )+

M+N−2

∑
m=0

|δm|sup| f |

≤ EP(S∗M+N−1 f )+ sup| f |
[

N−1
M(M +N−1)

(M−N +1)+
1

M +N−1
(2N−2)

]
= EP(S∗M+N−1 f )+ sup| f | (N−1)(3M−N +1)

M(M +N−1)
.

Recall that f and T ∗, and therefore also N are fixed. Consider any ε > 0, then there is some
Mε ≥ N such that sup| f | (N−1)(3M−N+1)

M(M+N−1) < ε for all M ≥Mε , whence

EP(T ∗ f )≤ EP(S∗Mε +N−1 f )+ ε ≤ sup
n≥1

EP(S∗n f )+ ε.

Since this holds for all ε > 0, we get EP(T ∗ f ) ≤ supn≥1 EP(S∗n f ). Taking the supremum
over all T ∗ in T ∗ leads to the desired inequality. �

7.4. Mixture lower previsions. The condition established in Theorem 13 is fairly general,
and guarantees for instance the existence of T -invariant coherent previsions whenever the
monoid T is Abelian, or a finite group. In case T ∗ is not directed, however, as may happen
for instance for groups T that are not finite nor Abelian, there may still be T -invariant
coherent previsions, as we shall see in Example 2 below. So we see that the directedness
of T ∗ is not a necessary condition for the existence of T -invariant coherent previsions.
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But consider a weakly T -invariant lower prevision P defined on some domain K , that
avoids sure loss. Even if T ∗ is not directed,46 we may still associate with P a lower
prevision QP,T

on L (X ) through Eq. (13):

QP,T
( f ) = sup

T ∗∈T ∗
EP(T ∗ f ) = sup

{
EP

(
1
n

n

∑
k=1

T t
k f

)
: n≥ 1,T1, . . . ,Tn ∈T

}
,

where we have replaced the Moore–Smith limit by a supremum (with which it would coin-
cide in case T ∗ were directed), and where EP is the natural extension of P to all gambles.
We shall call this lower prevision the mixture lower prevision associated with the weakly
invariant P. The supremum in this expression is finite, since it is dominated by sup f . This
mixture lower prevision is not necessarily coherent, but it is still strongly T ∗-invariant.47

Moreover, this mixture lower prevision dominates EP, and therefore also P [observe that
EP is weakly invariant because P is]; and if there are T -invariant coherent previsions,
it is dominated by the strongly T -invariant natural extension EP,T of P.48 This shows
that M (QP,T

) = M (EP,T ), since all coherent previsions that dominate the strongly T -
invariant QP,T

are necessarily T -invariant. And clearly then, if this mixture lower previ-
sion is coherent, it coincides with the strongly invariant natural extension. So we see that
the mixture lower prevision, even if it is not coherent, still allows us to characterise all
T -invariant coherent previsions. In particular, there are such invariant coherent previsions
if and only if it avoids sure loss.

Example 2 (Directedness is not necessary). Let us consider the space X3 := {1,2,3}, and
let T1 and T2 be the transformations of X given by T1(1) = 1, T1(2) = 2, T1(3) = 2 and
T2(1) = 1, T2(2) = 3, T2(3) = 3, respectively. Since T1T1 = T1, T2T2 = T2, T2T1 = T2 and
T1T2 = T1, we deduce that the set of transformations T = {idX ,T1,T2} is a monoid. Let
P{1} be the coherent prevision on L (X ) given by P{1}( f ) = f (1) for any gamble f , i.e.,
all of whose probability mass lies in 1. Then we have P{1}( f ) = P{1}(T t

1 f ) = P{1}(T t
2 f ) for

any gamble f , so P{1} is T -invariant. Let us show that T ∗ does not have the Moore–Smith
property.

Consider T ∗
1 and T ∗

2 in T ∗ given by T ∗
1 = λT t

1 +(1−λ )T t
2 and T ∗

2 = µT t
1 +(1−µ)T t

2 ,
with λ 6= µ . Let T ∗ be another element of T ∗, so there are non-negative α1, α2 and α3
such that α1 +α2 +α3 = 1 and T ∗ = α1 idt

X +α2T t
1 +α3T t

2 . Now,

T ∗T ∗
1 = α1λ idt

X T t
1 +α1(1−λ ) idt

X T t
2

+α2λT t
1 T t

1 +α2(1−λ )T t
1 T t

2 +α3λT t
2 T t

1 +α3(1−λ )T t
2 T t

2

= α1λT t
1 +α1(1−λ )T t

2 +α2λT t
1 +α2(1−λ )T t

2 +α3λT t
1 +α3(1−λ )T t

2

= λT t
1 +(1−λ )T t

2 = T ∗
1 .

Similarly, T ∗T ∗
2 = T ∗

2 for any T ∗ ∈T ∗. This means that T ∗
1 is the only possible successor

of T ∗
1 , and T ∗

2 is the only possible successor of T ∗
2 . Hence, T ∗ cannot have the Moore–

Smith property. Nevertheless, there is a T -invariant coherent prevision P{1}.

46This is the general situation that Walley [1991, Section 3.5] considers, and he doesn’t discuss the direct-
edness of T ∗. He does consider the special case that T is Abelian for which he proves that the existence of
invariant coherent previsions is guaranteed. The results in this section were first proven by him.

47Simply observe that the relevant part (near the end) of the proof of Theorem 13 is not based on the direct-
edness of T ∗.

48To prove that the mixture lower prevision dominates P, consider T ∗ = idX in its definition. To prove that
it is dominated by the strongly invariant natural extension, take fk = f /n in the expression (10) for this natural
extension.
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Let us consider the vacuous, and therefore weakly T -invariant and coherent, lower
prevision PX3

on L (X3), and the mixture lower prevision QPX3
,T

that corresponds with

it. It is easy to show that for any gamble f , QPX3
,T

( f ) = min{ f (1),max{ f (2), f (3)}} and

this lower prevision avoids sure loss, and is therefore strongly T -invariant, but it is not
coherent [it is not super-additive]. It is easy to see that P{1} is the only coherent prevision
that dominates QPX3

,T
, and is therefore the only T -invariant coherent prevision. �

7.5. Invariance and Choquet integration. Until now, we have explored the relation be-
tween coherence and (weak or strong) invariance. To complete this section, we intend to
explore this relation for the particular case of the n-monotone lower previsions and proba-
bilities introduced near the end of Section 2.4.

Consider an n-monotone lower probability P defined on a lattice of events K containing
/0 and X . Then its natural extension to all events coincides with its inner set function P∗,
which is given by P∗(A) = sup{P(B) : B ∈K ,B⊆ A}. Furthermore, the natural extension
to all gambles is given by the Choquet integral with respect to P∗:

EP( f ) = (C)
∫

X
f dP∗ := inf f +(R)

∫ sup f

inf f
P∗({x ∈X : f (x)≥ α})dα

for all gambles f on X , where the integral on the right-hand side is a Riemann integral.
This natural extension (and therefore also the inner set function) is still n-monotone [De
Cooman et al., 2005b,a]. Since we have proven in Theorem 8 that natural extension pre-
serves weak invariance, we can deduce that the inner set function of a n-monotone weakly
invariant coherent lower probability, and the associated Choquet functional, are still weakly
invariant, n-monotone and coherent. We now show that weak invariance of the inner set
function and the associated Choquet integral is still guaranteed if the lower probability P
is not coherent or 2-monotone, but only monotone. In what follows, it is important to
remember that for a transformation T of X and a subset A of X , T t IA = IT−1(A).

Proposition 16. Let P be a weakly T -invariant monotone lower probability, defined on
a T -invariant lattice of events K that contains /0 and X , and such that P( /0) = 0 and
P(X ) = 1. Then
1. the inner set function P∗ of P is weakly T -invariant; and
2. the Choquet integral with respect to P∗ is weakly T -invariant.

Proof. To prove the first statement, consider any A ⊆X , and let B ∈K be a any subset
of A. Then for any T in T , T−1(B) ∈ K and T−1(B) = {x : T x ∈ B} ⊆ {x : T x ∈ A} =
T−1(A), whence P(B)≤P(T−1(B))≤P∗(T−1(A)), where the first inequality follows from
the weak invariance of P, and the second from the fact that P∗ is monotone and coincides
with P on its domain, because P is assumed to be monotone. Consequently P∗(A) =
supB∈K ,B⊆A P(B)≤ P∗(T−1(A)). Hence, P∗ is also weakly T -invariant.

To prove the second statement, let f be any gamble on X . Define, for any α in R, the
level set fα := {x : f (x)≥ α}. Then by the first statement,

P∗( fα)≤ P∗(T
−1( fα)) = P∗({x : T x ∈ fα}) = P∗({x : f (T x)≥ α}) = P∗((T

t f )α).

Hence,

(C)
∫

f dP∗ = inf f +(R)
∫ sup f

inf f
P∗( fα)dα

≤ inf f +(R)
∫ sup f

inf f
P∗((T

t f )α)dα = (C)
∫

T t f dP∗,
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also taking into account for the last equality that P∗((T t f )α) = 1 for all α in [inf f , infT t f ),
and that P∗( fα) = 0 for all α in (supT t f ,sup f ]. �

As we said before, natural extension does not preserve strong invariance in general,
and a simple example shows that this continues to hold in particular for n-monotone lower
previsions: the unique coherent lower prevision defined on { /0,X } is trivially completely
monotone and strongly invariant with respect to any monoid of transformations T , but its
natural extension, the vacuous lower prevision PX (which is completely monotone), is not
strongly T -invariant unless in the trivial case that T = {idX }.

It is nonetheless interesting that if we restrict ourselves to coherent previsions (which
constitute a particular instance of completely monotone lower previsions), natural exten-
sion from events to gambles does preserve strong invariance. This is a consequence of the
following theorem.

Theorem 17. Let P be a coherent lower prevision on L (X ) and let T be a monoid of
transformations on X . Then P is strongly T -invariant if and only if any P in M (P), its
restriction to events is (weakly) T -invariant, in the sense that P(T−1(A)) = P(A) for all
A⊆X and all T ∈T .

Proof. We start with the direct implication. If P is strongly T -invariant, then any P in
M (P) is T -invariant by Theorem 10. Hence, given A ⊆X and T ∈ T , we get P(A) =
P(T−1(A)).

Conversely, consider P in M (P). Recall that a coherent prevision on all events has
only one coherent extension from all events to all gambles, namely its natural extension,
or Choquet functional; see [De Cooman et al., 2005a]. So for any gamble f on X and
any T in T , taking into account that P is assumed to be invariant on events, and that
T−1( fα) = (T t f )α [see the proof of Proposition 16], we get

P( f ) = (C)
∫

X
f dP = inf f +(R)

∫ sup f

inf f
P( fα)dα

= inf f +(R)
∫ sup f

inf f
P(T−1( fα))dα = inf f +(R)

∫ sup f

inf f
P((T t f )α)dα

= (C)
∫

X
T t f dP = P(T t f ).

Hence, P is strongly T -invariant and, applying Theorem 10, so is the lower envelope P of
M (P). �

We see that, although the condition of strong invariance cannot be considered for lower
probabilities, in the sense that IA−T t IA will not be in general the indicator of an event, it
is still to some extent characterised by behaviour on events. Moreover, we may deduce the
following result.

Corollary 18. Let P be a strongly T -invariant lower prevision on a T -invariant set of
gambles K that includes all indicators of events. Assume that P avoids sure loss. Then its
natural extension to all gambles is strongly T -invariant, and coincides therefore with the
strongly invariant natural extension of P.

Proof. Since P avoids sure loss, M (P) is non-empty. Since P is strongly invariant on
a domain that includes all events, any element P of M (P) is (strongly) invariant on all
events. Hence, by the previous theorem, P is also (strongly) invariant on all gambles,
since a coherent prevision on all events has only one coherent extension from all events to
all gambles (namely its natural extension, or Choquet functional). Therefore, the natural
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extension of P is a lower envelope of invariant coherent previsions, and is therefore strongly
invariant. �

This result provides further insight into the existence problem for strongly invariant co-
herent lower previsions. The existence of strongly invariant coherent lower previsions on
all gambles is equivalent to the existence of invariant coherent previsions on all gambles,
which in turn is equivalent to the existence of invariant coherent previsions on all events
(or in other words, invariant finitely additive probabilities). And it is the impossibility of
satisfying invariance with finitely additive probabilities in some cases (for instance for the
class TX of all transformations) that prevents the existence of coherent strongly invariant
belief models.

We also infer that if the restriction Q of a coherent lower prevision P on L (X ) to
gambles of the type IA−T t IA and T t IA− IA, involving only indicators of events, is strongly
invariant, then P is strongly invariant on all of L (X ): it will dominate the natural exten-
sion EQ of Q, which is strongly invariant by Corollary 18, and consequently it will also be
strongly invariant.

We can also deduce the following result. Recall that a linear lattice of gambles K is
a set of gambles that is at once a lattice of gambles and a linear subspace of L (X ). If
in addition K contains all constant gambles, then for any coherent prevision P defined
on K , its natural extension to all gambles [Walley, 1991, Theorem 3.1.4] is given by the
inner extension P∗( f ) := sup{P(g) : g ∈K ,g≤ f}. Let us denote by P∗ the conjugate
upper prevision of P∗.

Corollary 19. Let T be a monoid of transformations of X , and let P be a strongly T -
invariant lower prevision on a linear lattice of gambles K that contains all constant
gambles. The natural extension EP of P to all gambles is strongly T -invariant if and
only if for any coherent prevision P on K that dominates P, we have P∗(A \T−1(A)) =
P∗(A\T−1(A)) = P∗(T−1(A)\A) = P∗(T−1(A)\A) for all A⊆X and all T ∈T .

Proof. It follows from Walley [1991, Theorem 3.4.2] that EP is the lower envelope of the
coherent lower previsions P∗, where P is any coherent prevision on K that dominates P
on K . But then, clearly, EP will be strongly T -invariant if and only if all the P∗ are.
Consider any such P∗. By Theorem 17, P∗ is strongly invariant if and only if for all A⊆X
and T ∈T :

Q(A) = Q(T−1(A)) for all Q in M (P∗)
which is obviously equivalent to P∗(IA−T t IA) = P∗(T t IA− IA) = 0. Now observe that IA−
T t IA = IA− IT−1(A) = IA\T−1(A)− IT−1(A)\A, and that the functions IA\T−1(A) and −IT−1(A)\A
are comonotone. Since P is a coherent prevision on K , it is completely monotone. Hence,
its inner extension P∗ is coherent and completely monotone on all gambles, and therefore
comonotone additive [De Cooman et al., 2005a]. This means that

P∗(IA−T t IA) = P∗(IA\T−1(A)− IT−1(A)\A) = P∗(IA\T−1(A))+P∗(−IT−1(A)\A)

= P∗(IA\T−1(A))−P∗(IT−1(A)\A) = P∗(A\T−1(A))−P∗(T−1(A)\A)

and similarly P∗(T t IA − IA) = P∗(T−1(A) \A)−P∗(A \T−1(A)). The rest of the proof is
now immediate. �

8. SHIFT-INVARIANCE AND ITS GENERALISATIONS

8.1. Strongly shift-invariant coherent lower previsions on L (N). Let us consider, as
an example, the case of the shift-invariant, i.e., Tθ -invariant, coherent previsions on L (N).
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These are usually called Banach limits in the literature, see for instance, Bhaskara Rao and
Bhaskara Rao [1983, Section 2.1.3] or Walley [1991, Sections 2.9.5 and 3.5.7]. We know
from Corollary 14 that there are always Banach limits that dominate a given weakly shift-
invariant lower prevision—so we know that there actually are Banach limits. Let us denote
by Pθ (N) the set of all Banach limits. We also know that a coherent lower prevision on
L (N) is strongly shift-invariant if and only if it is a lower envelope of such Banach limits.
The smallest strongly shift-invariant coherent lower prevision Eθ on L (N) is the lower
envelope of all Banach limits, and it is given by:49

Eθ ( f ) = sup
m1,...mn≥0

n≥0

inf
k≥0

1
n

n

∑
`=1

f (k +m`) = lim
n→∞

inf
k≥0

1
n

k+n−1

∑
`=k

f (`), (15)

for any gamble f on N (or in other words, for any bounded sequence f (n)n∈N of real num-
bers). The first equality follows from Corollary 14, and the second from Corollary 15.
Eθ ( f ) is obtained by taking the infimum sample mean of f over ‘moving windows’ of
length n, and then letting the window length n go to infinity. Since this is the lower pre-
vision on L (N) that can be derived solely using considerations of coherence and the evi-
dence of shift-invariance, we believe that this Eθ is a natural candidate for a ‘uniform dis-
tribution’ on N. It is the belief model to use if we only have evidence of shift-invariance,
as all other strongly shift-invariant coherent lower previsions will point-wise dominate Eθ ,
and will therefore represent stronger behavioural dispositions than warranted by the mere
evidence of shift-invariance.50

We could also sample f over the set {1, . . . ,n} leading to a coherent ‘sampling’ previ-
sion

Sn( f ) =
1
n

n−1

∑
`=0

f (`),

but the problem here is that for any given f the sequence of sampling averages Sn( f ) is not
guaranteed to converge. Taking the limits inferior of such sequences (one for each gamble
f ), however, yields a coherent lower prevision51 Sθ given by

Sθ ( f ) = liminf
n→∞

Sn( f ) = liminf
n→∞

1
n

n−1

∑
`=0

f (`)

for any gamble f on N. For any event A ⊆ N, or equivalently, any zero-one-valued se-
quence, we have that Sn(A) = 1

n |A∩{0, . . . ,n− 1}| is the ‘relative frequency’ of ones in
the sequence IA(n) and

Sθ (A) = liminf
n→∞

Sn(A) = liminf
n→∞

1
n
|A∩{0, . . . ,n−1}|.

Let Sθ denote the conjugate of Sθ , given by Sθ ( f ) = limsupn Sn( f ). Those events A for
which Sθ (A) = Sθ (A) have a ‘limiting relative frequency’ equal to this common value. It
is not difficult to show that the coherent ‘limiting relative frequency’ lower prevision Sθ

49See also Walley [1991, Section 3.5.7]. The expression on the right hand side is not a limit inferior!
50But this belief model has the important defect that, like the lower prevision Sθ defined further on, it is not

fully conglomerable; see Walley [1991, Section 6.6.7] and observe that the counterexample that Walley gives
for Sθ , also applies to Eθ . Walley’s remark there that his example shows that there are no (what we call) fully
conglomerable (strongly) shift-invariant (lower) previsions that dominate Sθ , can be extended in a straightforward
manner to Eθ to show that there are no fully conglomerable (strongly) shift-invariant (lower) previsions.

51A limit inferior of a sequence of coherent lower previsions is always coherent, see Walley [1991, Corol-
lary 2.6.7].
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is actually also strongly shift-invariant.52 This implies that all the coherent previsions that
dominate Sθ are strongly shift-invariant. But it is easy to see (see Example 3 below) that
Eθ is strictly dominated by Sθ , so there are Banach limits that do not dominate Sθ .

Proposition 20. Let L be any Banach limit on L (N), let f be any gamble on N. Then the
following statements hold.
1. liminfn→∞ f (n)≤ Eθ ( f )≤ Sθ ( f )≤ Sθ ( f )≤ Eθ ( f )≤ limsupn→∞ f (n).
2. If limn→∞ f (n) exists, then

Eθ ( f ) = Sθ ( f ) = Eθ ( f ) = Sθ ( f ) = L( f ) = lim
n→∞

f (n).

3. If f is θ m-invariant (has period m≥ 1), then

Eθ ( f ) = Sθ ( f ) = Eθ ( f ) = Sθ ( f ) = L( f ) =
1
m

m−1

∑
r=1

f (r).

4. If f is zero except in a finite number of elements of N, then Eθ ( f ) = Sθ ( f ) = Eθ ( f ) =
Sθ ( f ) = L( f ) = 0. In particular, this holds for the indicator of any finite subset A of N.

Proof. We begin with the first statement. By conjugacy, we can concentrate on the lower
previsions. We have already argued that Sθ is a strongly shift-invariant coherent lower pre-
vision, so Sθ will dominate the smallest strongly shift-invariant coherent lower prevision
Eθ . So it remains to prove that Eθ dominates the limit inferior. Consider the first equality
in Eq. (15). Fix the natural numbers n ≥ 1, m1, . . . mn. We can assume without loss of
generality that the m1 is the smallest of all the m`. Observe that

inf
k≥0

1
n

n

∑
`=1

f (k +m`)≥ inf
k≥0

n
min
`=1

f (k +m`) =
n

min
`=1

inf
k≥m`

f (k) = inf
k≥m1

f (k),

and therefore
Eθ ( f )≥ sup

m1≥0
inf

k≥m1
f (k) = liminf

n→∞
f (n).

The second statement is an immediate consequence of the first, and the third follows
easily from the definition of Eθ and Eθ . Finally, the fourth statement follows at once from
the second. �

Example 3 (Not all Banach limits dominate Sθ ). Consider the event

A =
{

n2 + k : n≥ 1,k = 0, . . . ,n−1
}

.

Then A has ‘limiting relative frequency’ Sθ (A) = Sθ (A) = 1/2, whereas Eθ (A) = 0 and
Eθ (A) = 1. This shows that Sθ strictly dominates Eθ , so not all Banach limits dominate
Sθ .

Indeed, for the limiting relative frequency, consider the subsequence Sm2−1(A), m ≥ 2
of Sn(A). Then

Sm2−1(A) =
1

m2−1
|A∩{0, . . . ,m2−2}|= 1+2+ · · ·+m−1

m2−1
=

1
2 m(m−1)

m2−1
=

1
2

m
m+1

,

so this subsequence converges to 1
2 . Now the ‘integer intervals’ [m2 − 1,(m + 1)2 − 1],

m ≥ 1 cover the set of all natural numbers, and as n varies over such an interval, Sn(A)
starts at Sm2−1(A) = 1

2
m

m+1 < 1
2 , increases to Sm2+m(A) = 1

2
m2+m
m2+m = 1

2 , and then again

52The following simple proof is due to Walley [1991, Section 3.5.7]. Observe that Sn(θ t f − f ) = [ f (n)−
f (0)]/n→ 0 as n→ ∞, so Sθ (θ t f − f ) = Sθ (θ t f − f ) = 0.
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decreases to S(m+1)2−1(A) = 1
2

m+1
m+2 < 1

2 . Both the lower and upper bounds converge to 1
2

as m→ ∞, and therefore the sequence Sn(A) converges to 1
2 as well.

To calculate Eθ (A), we consider the second equality in Eq. (15). Fix n ≥ 1 and let
k = n2 +n, then k +n−1 = (n+1)2−2, so

1
n

k+n−1

∑
`=k

IA(`) =
1
n

(n+1)2−2

∑
`=n2+n

IA(`) = 0,

whence infk≥0
1
n ∑

k+n−1
`=k IA(`) = 0 for all n ≥ 1, and therefore Eθ (A) = 0. To calculate

Eθ (A), fix n≥ 1 and let k = n2 then

1
n

k+n−1

∑
`=k

IA(`) =
1
n

n2+n−1

∑
`=n2

IA(`) = 1,

whence supk≥0
1
n ∑

k+n−1
`=k IA(`) = 1 for all n≥ 1, and therefore Eθ (A) = 1. �

In an interesting paper, Kadane and O’Hagan [1995] study candidates for the ‘uniform
distribution’ on N. They consider, among others, all the finitely additive probabilities
(or equivalently, all coherent previsions) that coincide with the limiting relative frequency
on all events for which this limit exists. One could also consider as such candidates the
coherent previsions that dominate the sampling lower prevision Sθ , which have the benefit
of being strongly shift-invariant. But, we actually believe that all Banach limits (or actually,
their lower envelope) are good candidates for being called ‘uniform distributions on N’ and
not just the ones that dominate Sθ . Kadane and O’Hagan also propose to consider other
coherent previsions, and their idea is to consider the ‘residue sets’, which are the subsets

Rr
m = {km+ r : k ≥ 0}= {` ∈ N : ` = r mod m}

of N, where m ≥ 1 and r = 1, . . . ,m−1. These sets are θ m-invariant, so we already know
from Proposition 20 that Eθ (Rr

m) = Sθ (Rr
m) = Sθ (Rr

m) = Eθ (Rr
m) = 1

m for all m ≥ 1 and
r = 1, . . . ,m− 1. Now what Kadane and O’Hagan do, is consider the set of all coherent
previsions (finitely additive probabilities in their paper, but that is equivalent) that extend
the probability assessments P(Rr

m) = 1/m for all events Rr
m. In other words, they consider

the natural extension Eres of all such assessments, i.e., the lower envelope of all such
coherent previsions. It is not difficult to prove that this natural extension is given by53

Eres( f ) = lim
m→∞

1
m

m−1

∑
r=0

inf
k∈N

f (km+ r).

This coherent lower prevision is completely monotone [as a point-wise limit of completely
monotone lower previsions, even (natural extensions to gambles of so-called) belief func-
tions [Shafer, 1976]], and weakly shift-invariant [since the natural extension of any weakly
shift-invariant lower prevision is]. Since the assessments P(Rr

m) = 1
m coincide with the val-

ues given by Eθ , we see that Eθ will point-wise dominate the natural extension Eres of these
assessments to all gambles. But as we shall shortly prove in Example 4, Eres is not strongly
shift-invariant, meaning that among the coherent previsions that extend these assessments,
there also are coherent previsions that are not Banach limits (not shift-invariant).

53See De Cooman et al. [2006] for a proof.
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Example 4. Here we show by means of a counterexample that Eres is not strongly shift-
invariant. Let Bm := {0, . . . ,m−1} and A :=

⋃
m≥1{m}×Bm, and consider the map

φ : A→ N : (m,r) 7→ φ(m,r) :=
m(m−1)

2
+ r +1.

It is easy to see that φ is a bijection (one-to-one and onto). Also define the map

κ : A→ N : (m,r) 7→ κ(m,r) := Nmφ(m,r)+ r.

for some fixed N ≥ 2. We consider the strict order < on A induced by the bijection φ , i.e.,
(m,r) < (m′,r′) if and only if φ(m,r) < φ(m′,r′) [if and only if m < m, or m = m′ and
r < r′, so < is the lexicographic order]. Then κ is an increasing map with respect to this
order. To see this, assume that (m,r) < (m′,r′). If m < m′, then

κ(m,r) = Nmφ(m,r)+ r < Nmφ(m′,0)+ r

< Nm′
φ(m′,0)+0≤ Nm′

φ(m′,r′)+ r′ = κ(m,r′).

If on the other hand m = m′ and r < r′, then κ(m,r) = Nmφ(m,r)+ r < Nmφ(m,r′)+ r′ =
κ(m,r′).

Moreover, given (m,r) < (m′,r′), we see that κ(m′,r′)−κ(m,r)≥N. Indeed, since κ is
increasing, it suffices to prove this for consecutive pairs in the order < we have defined on
A. There are only two possible expressions of consecutive pairs (m,r) and (m′,r′): either
we have (m′,r′) = (m,r +1), and then we get

κ(m,r +1)−κ(m,r) = Nm[φ(m,r +1)−φ(m,r)]+1 = Nm+1≥ N;

or we have r = m−1,(m′,r′) = (m+1,0), and then we get

κ(m+1,0)−κ(m,m−1) = Nm[φ(m+1,0)−φ(m,m−1)]+Nφ(m+1,0)− (m−1)

= Nm+Nφ(m+1,0)− (m−1)≥ Nm≥ N,

taking into account that φ(m+1,0)≥ m−1 by definition of φ .
Consider the set C = κ(A)c. Then Eres(C) = limm→∞

1
m ∑

m−1
r=0 infk∈N IC(km + r). Since

for every m ∈ N and r ∈ Bm the value κ(m,r) = Nmφ(m,r)+ r does not belong to C, we
deduce that 1

m ∑
m−1
r=0 infk∈N IC(km+ r) = 0 for all m, and consequently Eres(C) = 0.

On the other hand, Eθ (C) = limn→∞ infk≥0
1
n ∑

k+n−1
`=k IC(`). Since by construction any

two elements in κ(A) differ in at least N elements, we deduce that infk≥0
1
n ∑

k+n−1
`=k IC(`)≥

1− 2
N+1 , and this for all n ∈ N. This implies that Eθ (C) ≥ 1− 2

N+1 > 0. Hence, Eres is
strictly smaller than the smallest strongly shift-invariant natural extension Eθ , and there-
fore not strongly shift-invariant. �

8.2. Strong T -invariance. Now consider an arbitrary non-empty set X . Also consider a
transformation T of X and the Abelian monoid TT = {T n : n≥ 0} generated by T . We
shall characterise the strongly T -invariant coherent lower previsions on L (X ) using the
Banach limits on L (N).

First of all, consider any coherent lower prevision P on L (X ), and any gamble f on
X . Define the gamble fP on N as

fP(n) := P((T t)n f ) = P( f ◦T n). (16)

[This is indeed a gamble, as for all n we deduce from the coherence of P that fP(n) =
P( f ◦T n)≤ sup[ f ◦T n]≤ sup f and similarly fP(n)≥ inf f .] On the one hand (T t f )P(n) =
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P(T t f ◦T n)) = P(T t( f ◦T n)) = fT P(n) and on the other hand (T t f )P(n) = P( f ◦T n+1) =
fP(n+1) = fP(θn), so

(T t f )P = fT P = θ
t fP, (17)

and this observation allows us to establish a link between the transformation T on X and
the shift transformation θ on N. This makes us think of the following trick, inspired by
what Bhaskara Rao and Bhaskara Rao [1983, Section 2.1.3(9)] do for probability charges,
rather than coherent lower previsions. Let L be any shift-invariant coherent prevision on
L (N), or in other words, a Banach limit on L (N). Define the real-valued functional PL
on L (X ) by PL( f ) := L( fP). We show that this functional has very special properties.

Proposition 21. Let L be a shift-invariant coherent prevision on L (N), let P be a coherent
lower prevision on L (X ), and let T be a transformation of X . Then the following
statements hold.
1. PL is a weakly T -invariant coherent lower prevision on L (X ) (with equality).
2. If P dominates a weakly T -invariant coherent lower prevision Q on L (X ), then PL

dominates Q.
3. If P = P is a coherent prevision, then PL is a (strongly) T -invariant coherent prevision

on L (X ).
4. If Q is a weakly T -invariant coherent lower prevision on L (X ), then the (strongly)

T -invariant coherent prevision PL dominates Q for any P in M (Q).
5. If P = P is a T -invariant coherent prevision, then PL = P.

Proof. We first prove the first statement. Consider gambles f and g on X . Since inf f ≤
fP, it follows from the coherence of L that inf f ≤ L( fP) = PL( f ). Moreover, we have for
any n in N that

( f +g)P(n) = P(( f +g)◦T n) = P( f ◦T n +g◦T n)≥P( f ◦T n)+P(g◦T n) = fP(n)+gP(n),

where the inequality follows from the coherence [super-additivity] of P. Since L is coher-
ent, we see that PL( f + g) ≥ L( fP)+ L(gP) = PL( f )+ PL(g). Finally, for any λ ≥ 0, we
have that (λ f )P(n) = P((λ f ) ◦ T n) = P(λ ( f ◦ T n)) = λP( f ◦ T n) = λ fP(n), since P is
coherent. Consequently PL(λ f ) = L(λ fP) = λL( fP) = λPL( f ), since L is coherent. This
proves that PL is a coherent lower prevision on L (X ) [because (P1)–(P3) are satisfied].
To show that it is weakly T -invariant, recall that (T t f )P = θ t fP, whence

PL(T t f ) = L((T t f )P) = L(θ t fP) = L( fP) = PL( f ),

since L is shift-invariant.
To prove the second statement, assume that P dominates the weakly T -invariant coher-

ent lower prevision Q on L (X ). Then for any gamble f on X , we see that

fP(n) = P( f ◦T n)≥ Q( f ◦T n)≥ Q( f ),

where the last inequality follows from the weak T -invariance of Q. Consequently, since L
is coherent, we get PL( f ) = L( fP)≥ Q( f ).

The third statement follows immediately from the first and the fact that PL is a self-
conjugate coherent lower prevision (and therefore a coherent prevision) because P and L
are.

The fourth statement follows at once from the second and the third. The fifth is an
immediate consequence of the definition of PL. �

We can use the results in this proposition to characterise all strongly T -invariant coher-
ent lower previsions using Banach limits on L (N).
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Theorem 22. Let P be a weakly T -invariant coherent lower prevision defined on some
T -invariant domain K , that avoids sure loss. Then the set of all T -invariant coherent
previsions on L (X ) that dominate P on K is given by

{PL : P ∈M (P) and L ∈ Pθ (N)} ,

so the smallest strongly T -invariant coherent lower prevision EP,T on L (X ) that domi-
nates P, i.e., the strongly T -invariant natural extension of P, is the lower envelope of this
set, and also given by

EP,T ( f ) = inf
P∈M (P)

Eθ ( fP) = inf
P∈M (P)

sup
n≥1

inf
k≥0

[
1
n

k+n−1

∑
`=k

P((T `)t f )

]
for any gamble f on X . As a consequence, the set PT (X ) of all T -invariant coherent
previsions on L (X ) is given by

PT (X ) = {PL : P ∈ P and L ∈ Pθ (N)} .

This tells us that all T -invariant coherent previsions can be constructed using Banach
limits on L (N). The smallest strongly T -invariant coherent lower prevision ET on L (X )
is the lower envelope of this set, and also given by

ET ( f ) = inf
P∈P(X )

Eθ ( fP) = inf
P∈P(X )

sup
n≥1

inf
k≥0

[
1
n

k+n−1

∑
`=k

P((T `)t f )

]
for any gamble f on X .

Proof. First of all, a coherent prevision P on L (X ) belongs to M (P), i.e., dominates
P on its domain K , if and only if P dominates the natural extension EP on all gambles.
Moreover, EP is weakly T -invariant by Theorem 8. Now consider any P ∈ M (P). Use
the above observations together with Proposition 21 [statements 3 and 4] to show that for
any Banach limit L on L (N), PL is a T -invariant coherent prevision that dominates P.
Conversely, if P is a T -invariant coherent prevision on L (X ) that dominates P on K ,
then by Proposition 21 [statement 5], P = PL for any Banach limit L on L (N). This shows
that {PL : P ∈M (P),L ∈ Pθ (N)} is indeed the set of T -invariant coherent previsions on
L (X ) that dominate P on K . Consequently, EP,T is the lower envelope of this set,
whence for any gamble f on X

EP,T ( f ) = inf
P∈M (P)

inf
L∈Pθ (N)

PL( f ) = inf
P∈M (P)

inf
L∈Pθ (N)

L( fP)

and since Eθ is the lower envelope of Pθ (N),

= inf
P∈M (P)

Eθ ( fP)

and using Eqs. (15) and (16),

= inf
P∈M (P)

sup
n≥1

inf
k≥0

[
1
n

k+n−1

∑
`=k

P((T `)t f )

]
.

The rest of the proof is now immediate. �
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8.3. Generalised Banach limits. The above results on monoids TT generated by a single
transformation T can be generalised towards more general monoids T of transformations
of X , such that the set T ∗ of convex mixtures of the lifted linear transformations in T t

is directed by the successor relation > on T ∗. The following discussion establishes an
interesting connection between strong invariance and the notion of a generalised Banach
limit.

We can consider T ∗ as a monoid of transformations of itself, as follows: with any
element T ∗ we associate a transformation of T ∗, also denoted by T ∗, such that T ∗(S∗) :=
S∗T ∗ ∈ T ∗, for any S∗ in T ∗.54 We can, in the usual fashion, lift T ∗ to a transformation
(T ∗)t on L (T ∗) by letting (T ∗)tg = g◦T ∗, or in other words

(T ∗)tg(S∗) = g(T ∗(S∗)) = g(S∗T ∗), (18)

for any S∗ in T ∗ and any gamble g on T ∗, i.e., g ∈L (T ∗).
Now a generalised Banach limit [Schechter, 1997, Sections 12.33–12.38] on L (T ∗) is

defined as any linear functional on L (T ∗) that dominates the limit inferior operator with
respect to the directed set T ∗. Let us take a closer look at this limit inferior operator. It is
defined by

liminf
T ∗

g = liminf
T ∗∈T ∗

g(T ∗) := sup
S∗∈T ∗

inf
T ∗>S∗

g(T ∗),

for any gamble g on T ∗. Now recall that T ∗ > S∗ if and only if there is some R∗ in T ∗

such that T ∗ = R∗S∗, so we get, using Eq. (18), that

liminf
T ∗∈T ∗

g(T ∗) = sup
S∗∈T ∗

inf
R∗∈T ∗

g(R∗S∗) = sup
S∗∈T ∗

inf
R∗∈T ∗

(S∗)tg(R∗) = lim
S∗∈T ∗

PT ∗((S∗)tg),

where PT ∗ is the vacuous lower prevision on L (T ∗). If we look at Corollary 14 for
the special case X = T ∗ and the monoid of transformations T ∗, recall that we need
to lift transformations in T ∗ before we can apply them to gambles, and that the lifted
transformations of T ∗ already constitute a convex set55, we easily get to the following
conclusion.

Proposition 23. The limit inferior operator on L (T ∗) is actually the point-wise smallest
strongly T ∗-invariant coherent lower prevision on L (T ∗), and the generalised Banach
limits on L (T ∗) are the T ∗-invariant coherent previsions on L (T ∗).

We can now apply arguments similar to the ones in the previous section, for general
monoids T of transformations of X such that T ∗ is directed. Consider any coherent
lower prevision P on L (X ) and any gamble f , and define the following gamble fP on
T ∗:

fP(S∗) := P(S∗ f )
for any S∗ in T ∗, which generalises Eq. (16). Observe that, using Eq. (18),

(T ∗ f )P(S∗) = P(S∗T ∗ f ) = fP(S∗T ∗) = (T ∗)t fP(S∗),

so
(T ∗ f )P = (T ∗)t fP,

54Usually, T ∗(S∗) is defined as T ∗S∗, see for instance Walley [1991, Note 1 of Section 3.5.1]. But we have to
take a different route here because the elements of T ∗ are convex mixtures of lifted transformations, and as we
have seen, lifting reverses the order of application of transformations.

55In general, even if T t is directed by the successor relation >, the limit inferior operator on L (T t) will not
be strongly invariant. But convexification, or going from T t to T ∗, makes the limit inferior strongly invariant.
Observe in this respect that the limit inferior operator on L (N) is not strongly shift-invariant, but its ‘convexified’
counterpart Eθ is.
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which generalises Eq. (17). If we consider any T ∗-invariant coherent prevision L on
L (T ∗), or in other words a generalised Banach limit on L (T ∗), we can now define
a new lower prevision PL on L (X ) by PL( f ) := L( fP), and Proposition 21, as well as
Theorem 22, can now easily be generalised from monoids of transformations with a single
generator to arbitrary directed monoids. In particular, we find that

EP,T ( f ) = inf
P∈M (P)

liminf
T ∗∈T ∗

P(T ∗ f ) and ET ( f ) = inf
P∈P(X )

liminf
T ∗∈T ∗

P(T ∗ f )

for any gamble f on X , where P is any weakly T -invariant lower prevision that avoids
sure loss.

9. PERMUTATION INVARIANCE ON FINITE SPACES

Assume now that T is a finite group P of permutations of X . Then we have the
following characterisation result for the weakly P-invariant coherent lower previsions.

Theorem 24. Let P be a finite group of permutations of X . All weakly P-invariant
coherent lower previsions Q on L (X ) have the form

Q =
1
|P| ∑

π∈P

πP, (19)

where |P| is the number of permutations in P , and P is any coherent lower prevision on
L (X ).

Proof. Consider a coherent lower prevision P on L (X ), and let Q be the corresponding
lower prevision, given by Eq. (19). Then Q is coherent, as a convex mixture of coherent
lower previsions πP. Moreover, let ϖ be any element of P , then

ϖQ =
1
|P| ∑

π∈P

(ϖπ)P,=
1
|P| ∑

π∈ϖP

πP,

where ϖP = {ϖπ : π ∈P}= P , because P is a group of permutations. Consequently
ϖQ = Q, so Q is weakly P-invariant.

Conversely, let Q be any weakly P-invariant coherent lower prevision, then we recover
Q on the left-hand side if we insert Q in the right-hand side of Eq. (19). So any weakly
P-invariant coherent lower prevision is indeed of the form (19). �

Next, we give an interesting representation result for the strongly P-invariant coherent
lower previsions, when in addition, X is a finite set.56 As we shall see further on, this es-
sentially simple result has many interesting consequences, amongst which a generalisation
to coherent lower previsions of de Finetti’s [1937] representation result for finite sequences
of exchangeable random variables (see Section 9.2). Recall that AP is the set of all P-
invariant atoms of X . For each A in AP , define Pu(·|A) as the coherent prevision on
L (X ) all of whose probability mass is uniformly distributed over A, i.e., for all gambles
f on X :

Pu( f |A) =
1
|A| ∑

x∈A
f (x).

Finally, let Pu( f |AP) denote the gamble on AP that assumes the value Pu( f |AP)(A) :=
Pu( f |A) in any element A of AP .

56We find the ‘permutation symmetry’ between Theorems 24 and 25 quite surprising: the former states that
a weakly P-invariant coherent lower prevision is a uniform prevision (or mixture) of coherent lower previsions,
and the latter that a strongly P-invariant coherent lower prevision is a coherent lower prevision of uniform
previsions.
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Theorem 25. Let P be a group of permutations of the finite set X . A coherent lower
prevision on L (X ) is strongly P-invariant if and only if P( f ) = P0(Pu( f |AP)) for all
f in L (X ), where P0 is an arbitrary coherent lower prevision on L (AP).

Proof. We begin with the ‘if’ part. Let P0 be an arbitrary coherent lower prevision on
L (AP), and suppose that P = P0(Pu(·|AP)). Then it is easy to see that P is coherent.
We show that P is strongly P-invariant. Consider any gamble f on X and any π ∈ P .
Then for any A in AP and any gamble f on X ,

Pu( f −π
t f |A) =

1
|A| ∑

x∈A
[ f (x)− f (πx)] = 0,

because x ∈ A is equivalent to πx ∈ A. So we see that P( f −π t f ) = P0(0) = 0, since P0
is coherent. In a similar way, we can prove that P(π t f − f ) = 0, so P is indeed strongly
P-invariant.

To prove the ‘only if’ part, we first concentrate on the case of a P-invariant coherent
prevision P on L (X ). Fix any gamble f on X . Since P is a coherent prevision, we find
that

f = ∑
A∈AP

f IA and P( f ) = ∑
A∈AP

P( f IA) = ∑
A∈AP

P( f |A)P(A),

where we have used Bayes’s rule to define P( f |A) := P( f IA)/P(A) if P(A) > 0 and P( f |A)
is arbitrary otherwise.

Now assume that P is P-invariant. Fix any P-invariant atom A in AP such that
P(A) > 0 and let π ∈P . For any gamble f on X , we see that π t( f IA) = (π t f )IA, since A
is in particular π-invariant. Consequently

P(π t f |A) = P((π t f )IA)/P(A) = P(π t( f IA))/P(A) = P( f IA)/P(A) = P( f |A),

so P(·|A) is P-invariant as well.57 Now let for any y in the finite set A, p(y|A) :=
P({y}|A) ≥ 0, then on the one hand ∑x∈A p(x|A) = P(A|A) = 1. On the other hand, it
follows from the π-invariance of P(·|A) that p(x|A) = p(πx|A) for any x in A. Since we
know from Proposition 1 that A = {πx : π ∈P}, we see that p(·|A) is constant on A,
so p(x|A) = 1/|A| for all x in A, and consequently P( f |A) = Pu( f |A), whence P( f ) =
∑A∈AP

Pu( f |A)P(A). So indeed there is a coherent prevision P0 on L (AP), defined by
P0({A}) = P(A) for all A ∈AP , such that P = P0(Pu(·|AP)).

Finally, let P be any strongly P-invariant coherent lower prevision, so any P ∈M (P)
is P-invariant and can therefore be written as P = P0(Pu(·|AP)). If we let P0 be the
(coherent) lower envelope of the set {P0 : P ∈M (P)}, then since P is the lower envelope
of M (P), we get immediately that P = P0(Pu(·|AP)). �

As an immediate corollary, we see that that the uniform coherent prevision Pu on
L (X ) is the only strongly P-invariant coherent lower prevision on L (X ) if and only
if X is the only P-invariant atom, i.e., if AP = {X }. This is for instance the case if P
is the group of all permutations of X , or more generally if P includes the cyclic group
of permutations of X . It should therefore come as no surprise that, since symmetry of
beliefs is so often confused with beliefs of symmetry, the uniform distribution is so often
(but wrongly so) considered to be a good model for complete ignorance.

Another immediate corollary of this result is that the smallest strongly P-invariant
coherent lower prevision on L (X ) is given by P( f ) = infA∈AP

1
|A| ∑x∈A f (x), which of

57This is an instance of a more general result, namely that coherent conditioning of a coherent lower prevision
on an invariant event preserves both weak and strong invariance. A proof of this statement is not difficult, but
outside the scope of this paper.
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course agrees with the uniform distribution when we let P be the group of all permuta-
tions.

These results do not extend to the case where we have transformations of X that are
not permutations; as we have said before, as soon as we have two different constant trans-
formations in the monoid T , there are no strongly invariant belief models.

9.1. A few simple examples. We now apply the theorems above in a number of interesting
and simple examples.

Example 5. Let X = X2 := {1,2}, then all coherent lower previsions on L (X2) are so-
called linear-vacuous mixtures, i.e., convex combinations of a coherent (linear) prevision
and the vacuous lower prevision, and therefore given by

P( f ) = ε [α f (1)+(1−α) f (2)]+(1− ε)min{ f (1), f (2)},

where 0 ≤ α ≤ 1 and 0 ≤ ε ≤ 1. Let P2 be the set of all permutations of X2. Then the
only strongly P2-invariant coherent lower prevision is the uniform coherent prevision

P1
2
( f ) =

1
2
[ f (1)+ f (2)],

corresponding to α = 1
2 and ε = 1. The weakly P2-invariant coherent lower previsions

are given by
P( f ) = εP1

2
( f )+(1− ε)min{ f (1), f (2)},

where 0≤ ε ≤ 1, so they are all the convex mixtures of the uniform coherent prevision and
the vacuous lower prevision. �

Example 6. Let X = X3 := {1,2,3}, then all 2-monotone coherent lower previsions on
L (X3) are given by58

P( f ) = m1 f (1)+m2 f (2)+m3 f (3)

+m4 min{ f (1), f (2)}+m5 min{ f (2), f (3)}+m6 min{ f (3), f (1)}

+m7 min
{

f (1)+ f (2)
2

,
f (2)+ f (3)

2
,

f (3)+ f (1)
2

}
+m8 min{ f (1), f (2), f (3)}.

where 0≤mk ≤ 1 and ∑
8
k=1 mk = 1. Let P3 be the set of all permutations of X3. Then the

only strongly P3-invariant coherent lower prevision is the uniform coherent prevision

P( f ) =
1
3
[ f (1)+ f (2)+ f (3)],

corresponding to m1 = m2 = m3 = 1
3 and m4 = m5 = m6 = m7 = m8 = 0 [Observe that

a coherent prevision is always 2-monotone.]. Weak P3- invariance, on the other hand,

58An explicit proof of this statement is beyond the scope of this paper, but it runs along the following lines:
(i) any coherent lower probability on the set of all events of a three-element space is 2-monotone [Walley, 1981,
p. 58]; (ii) all 2-monotone coherent lower probabilities make up a convex set, and are convex mixtures of the
extreme points of this set [Maaß, 2003, Chapter 2] (By the way, an argument similar to that in Maaß [2003,
Chapter 2] shows that all strongly T -invariant coherent lower previsions are (infinite) convex mixtures of the
extreme strongly T -invariant coherent lower previsions.); (iii) the 2-monotone coherent lower previsions on all
gambles are natural extensions of the 2-monotone coherent lower previsions on all events [Walley, 1981, De
Cooman et al., 2006, 2005b,a]; and (iv) natural extension to gambles of 2-monotone lower probabilities preserves
convex mixtures.
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requires only that m1 = m2 = m3 and m4 = m5 = m6, so all the weakly P3-invariant and
2-monotone coherent lower previsions are given by

P( f ) =
M1

3
[ f (1)+ f (2)+ f (3)]

+
M2

3
[min{ f (1), f (2)}+min{ f (2), f (3)}+min{ f (3), f (1)}]

+M3 min
{

f (1)+ f (2)
2

,
f (2)+ f (3)

2
,

f (3)+ f (1)
2

}
+M4 min{ f (1), f (2), f (3)}.

where 0≤Mk ≤ 1 and M1 +M2 +M3 +M4 = 1. The weakly P3-invariant and completely
monotone coherent lower previsions (natural extensions of belief functions) correspond to
the choice M3 = 0. �

Example 7. Consider rolling a die for which there is evidence of symmetry between
all even numbers, on the one hand, and between all odd numbers on the other. Let
X = X6 := {1, . . . ,6} and let Peo be the set of all permutations of X6 that map even
numbers to even numbers and odd numbers to odd numbers. The Peo-invariant atoms are
{1,3,5} and {2,4,6}. By Theorem 25, the strongly Peo-invariant coherent previsions on
L (X6), which are the precise belief models that are compatible with the subject’s beliefs
of symmetry, are given by

P( f ) =
α

3
[ f (1)+ f (3)+ f (5)]+

1−α

3
[ f (2)+ f (4)+ f (6)],

where 0≤α ≤ 1, and more generally, the strongly Peo-invariant coherent lower previsions
on L (X6) are [apply Theorem 25 and use the results in Example 5]

P( f ) = ε

[
α

3
[ f (1)+ f (3)+ f (5)]+

1−α

3
[ f (2)+ f (4)+ f (6)]

]
+(1− ε)min

{
f (1)+ f (3)+ f (5)

3
,

f (2)+ f (4)+ f (6)
3

}
for 0≤ ε ≤ 1 and 0≤ α ≤ 1. �

Example 8. Let us show that the point-wise smallest strongly invariant coherent lower
prevision extension is not necessarily 2-monotone. Consider X4 := {1,2,3,4}, and let π

be the permutation of X4 defined by π(1) = 2, π(2) = 1, π(3) = 4 and π(4) = 3. Observe
that π is its own inverse, so Tπ = {idX4 ,π} is a group. From Theorem 25 we infer that the
point-wise smallest strongly π-invariant coherent lower prevision on all gambles is given
by

Eπ( f ) = min
{

f (1)+ f (2)
2

,
f (3)+ f (4)

2

}
.

Let us now consider the gambles f1 and f2 on X4, given by f1(1) = 0, f1(2) =−1, f1(3) =
1, f1(4) =−1 and f2(1) =−1, f2(2) =−0.25, f2(3) =−1.5, f2(4) = 0. Check that

Eπ( f1∧ f2)+Eπ( f1∨ f2) =−1.25−0.125 =−1.375 <−0.5−0.75 = Eπ( f1)+Eπ( f2).

Hence, Eπ is not 2-monotone. �

The following example shows that possibility measures are not very useful for mod-
elling permutation invariance.
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Example 9. Consider a possibility measure Π defined on all events of a finite space X .
Then there is a map λ : X → R+, called the possibility distribution of Π, such that
λ (x) := Π({x}) and moreover Π(A) = maxx∈A λ (x) for all non-empty events A ⊆ X .
We have mentioned before that Π is a coherent upper probability if and only if Π(X ) =
maxx∈X λ (x) = 1. We shall assume this is the case. Now consider any group P of per-
mutations of X . Then clearly Π is weakly P-invariant if and only if λ is constant on the
P-invariant atoms of X . In particular, Π is weakly invariant with respect to all permuta-
tions if and only is λ is everywhere equal to one, so Π is the vacuous upper probability.

For strong P-invariance, let P be any strongly P-invariant coherent lower prevision
whose domain contains at least all events. Let x be any element of X , and let [x]P be
the P-invariant atom that contains x. Then it follows from Theorem 25 that P({x}) ≤
1/|[x]P |. So for P to extend a possibility measure, it is necessary (but not sufficient) that
there is at least one element z of X such that P({z}) = 1, implying that z should be left
invariant by all the permutations in P , or equivalently, [z]P = {z}. �

9.2. Exchangeable lower previsions. As another example, we now discuss the case of
so-called exchangeable coherent lower previsions. Consider a non-empty finite set Xκ :=
{1, . . . ,κ} of categories, and N random variables X1, . . . , XN taking values in the same set
Xκ , where κ and N are natural numbers with κ ≥ 2 and N ≥ 1. The joint random variable
X := (X1, . . . ,XN) assumes values in the set X := X N

κ .59 We want to model a subject’s
beliefs about the value that X assumes in X N

κ , and generally, we use a coherent lower
prevision P on L (X N

κ ) to represent such beliefs.
Now assume that our subject believes that all random variables Xk are generated by the

same process at different times k, and that the properties of this process do not depend
on the time k. So, the subject assesses that there is permutation symmetry between the
different times k. How can such beliefs of symmetry be modelled?

With a permutation π of {1, . . . ,N}, we can associate (by the usual procedure of lifting)
a permutation of X = X N

κ , also denoted by π , that maps any x = (x1, . . . ,xN) in X N
κ to

πx := (xπ(1), . . . ,xπ(N)). The belief models that are compatible with the subject’s beliefs
of symmetry, are therefore the coherent lower previsions on (subsets of) L (X N

κ ) that are
strongly PN

κ -invariant, where PN
κ is the group of liftings to X N

κ of all permutations of
{1, . . . ,N}. Walley [1991, Chapter 9] calls such lower previsions exchangeable, as they
generalise de Finetti’s [1937] notion of exchangeable coherent previsions. We intend to
characterise the exchangeable lower previsions using Theorem 25. This will lead us to a
generalisation (Eq. (20)) of de Finetti’s [1937] representation result for finite numbers of
exchangeable random variables.

It should be mentioned here that we should, as always, clearly distinguish between
‘beliefs of symmetry’ and ‘symmetry of beliefs’. The latter imposes much weaker require-
ments on coherent lower previsions, namely those of weak PN

κ -invariance, which is called
permutability by Walley [1991, Chapter 9].60 In particular, the permutation symmetry that
goes along with ignorance can only be invoked to justify permutability, but not, of course,
exchangeability. Observe in this respect that the vacuous lower prevision on L (X N

κ ) is
permutable, but not exchangeable. It is well-known (see for instance Zabell [1989a, 1992]),
that Laplace’s Rule of Succession can be obtained by updating a particular exchangeable
coherent prevision, but it should be clear from the discussion in this paper that ignorance

59This means that we assume these N random variables to be logically independent.
60See Walley [1991, Chapter 9] for a much more detailed discussion of the difference between permutability

and exchangeability.
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alone (the Principle of Insufficient Reason) cannot be invoked to justify using such an ex-
changeable prevision, as (with considerable hindsight) Laplace implicitly seems to have
done (see for instance Howie [2002], Zabell [1989a, 1992]).

For any x = (x1, . . . ,xN) in X N
κ , the PN

κ -invariant atom [x]PN
κ

is the set of all permuta-
tions of (the components of) x. If we define the set of possible count vectors

N N
κ =

{
(m1, . . . ,mκ) : mk ∈ N+ and

κ

∑
k=1

mk = N

}
and the counting map T : X N

κ → N N
κ such that T(x1, . . . ,xN) is the κ-tuple, whose k-th

component is given by

Tk(x1, . . . ,xN) = |{` ∈Xκ : x` = k}|,

i.e., the number of components of x whose value is k, then the number of elements of the
invariant atom [x]PN

κ
is precisely

ν(T(x)) :=
(

N
T1(x) . . .Tκ(x)

)
=

N!
T1(x)! . . .Tκ(x)!

and T is a bijection (one-to-one and onto) between APN
κ

and N N
κ . An invariant atom is

therefore completely identified by the count vector T(x) of any of its elements x, and we
shall henceforth denote the invariant atoms of X N

κ by [m], where m = (m1, . . . ,mκ)∈N N
κ ,

and x ∈ [m] if and only if T(x) = m.
The coherent prevision Pu(·|m) on L (X N

κ ) whose probability mass is uniformly dis-
tributed over the invariant atom [m] is given by

Pu( f |m) =
1

ν(m) ∑
x∈[m]

f (x).

Interestingly, this is the precise prevision that is associated with taking N a-select drawings
without replacement from an urn with N balls, m1 of which are of type 1, . . . , and mκ

of which are of type κ . Theorem 25 now tells us that any exchangeable coherent lower
prevision P on L (X N

κ ) can be written as

P( f ) = PN
κ (Pu( f |N N

κ )), (20)

where PN
κ is some coherent lower prevision on L (N N

κ ). This means that such an ex-
changeable lower prevision can be associated with N a-select drawings from an urn with
N balls of types 1, . . . , κ , whose composition m is unknown, but for which the available
information about the unknown composition is modelled by a coherent lower prevision PN

κ .
That exchangeable coherent previsions can be interpreted in terms of sampling without

replacement from an urn with unknown composition, is actually well-known, and essen-
tially goes back to de Finetti [1937]. Heath and Sudderth [1976] give a simple proof for
random variables that may assume two values. But we believe our proof61 for the more
general case of exchangeable coherent lower previsions and random variables that may
assume more than two values, is conceptually even simpler than Heath and Sudderth’s
proof, even though it is a special case of a much more general representation result (The-
orem 25). The essence of the present proof in the special case of coherent previsions P
is captured wonderfully well by Zabell’s [1992, Section 3.1] succinct statement: “Thus P

61Walley [1991, Chapter 9] also mentions this result for exchangeable coherent lower previsions. The essence
of his argument is similar to what we do in the last paragraph of the proof of Theorem 25.
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is exchangeable if and only if two sequences having the same frequency vector have the
same probability.”

Our subject’s beliefs could, in addition, be symmetrical in the categories in Xκ =
{1, . . . ,κ}, for instance as a result of her ignorance about the process that generates the
outcomes Xk at each time k. As we have seen, this will be typically represented by using
a type of weakly invariant belief models, in this case with respect to permutations of the
categories, rather than the times. Any permutation ϖ of Xκ induces a permutation of X N

κ ,
also denoted by ϖ , through

ϖx = ϖ(x1, . . . ,xN) := (ϖ(x1), . . . ,ϖ(xN)).

What happens if we require that P, in addition to being exchangeable, should also be
weakly invariant under all such permutations? It is not difficult to prove that

Pu(ϖ−1 f |m) = Pu( f |ϖm),

where we let ϖm = ϖ(m1, . . . ,mκ) := (mϖ(1), . . . ,mϖ(κ)) in the usual fashion. This im-
plies that there is such weak invariance if and only if the coherent lower prevision PN

κ on
L (N N

κ ) is weakly invariant with respect to all category permutations! In particular, this
weak invariance is satisfied for the vacuous lower prevision on L (N N

κ ). Another type
of lower coherent prevision that exhibits such a combination of strong invariance for time
permutations and weak invariance for category permutations, and which also has other
very special and interesting properties, is constructed by taking lower envelopes of specific
sets of Dirichlet-Multinomial distributions, leading to the so-called Imprecise Dirichlet-
Multinomial Model (IDMM, see Walley and Bernard [1999]).

In the literature, however, it is sometimes required that a coherent precise prevision
should be invariant with respect to the combined action of the permutations of times and
categories. These are the so-called partition exchangeable previsions (see Zabell [1992]
for an interesting discussion and historical overview). Of course, the generalisation of
this notion to coherent lower previsions should be strongly invariant with respect to such
combined permutations, and therefore be a lower envelope of partition exchangeable pre-
visions. For such partition exchangeable lower previsions, Theorem 25 can be invoked to
prove a representation result that is similar to that for coherent lower previsions that are
only exchangeable. It should be clear that they correspond to exchangeable lower previ-
sions for which the corresponding coherent lower prevision PN

κ on L (N N
κ ) is strongly

rather than just weakly invariant with respect to all category permutations. Of course, any
justification for such models should be based on beliefs that there is permutation symmetry
in the categories behind the process that generates the outcomes Xk at different times k, and
cannot be justified by mere ignorance about this process.

9.3. Updating exchangeable lower previsions: predictive inference. Finally, let us dis-
cuss possible applications of the discussion in this paper to predictive inference. As-
sume that we have n∗ random variables X1, . . . Xn∗ , that may assume values in the set
Xκ = {1, . . . ,κ}. We assume that these random variables are assessed to be exchange-
able, in the sense that any coherent lower prevision that describes the available information
about the values that the joint random variable X∗ = (X1, . . . ,Xn∗) assumes in X n∗

κ should
be exchangeable, i.e., strongly Pn∗

κ -invariant. This requirement could be called pre-data
exchangeability. So we know from the previous section that such a coherent lower previ-
sion must be of the form P = Pn∗

κ (Pu(·|N n∗
κ )), where Pn∗

κ is some coherent lower prevision
on L (N n∗

κ ). We shall assume that Pn∗
κ is a lower envelope of a set of coherent previsions

M n∗
κ on L (N n∗

κ ).



56 GERT DE COOMAN AND ENRIQUE MIRANDA

Suppose we now observe the values x = (x1, . . . ,xn) of the first n random variables
X = (X1, . . . ,Xn), where 1 ≤ n < n∗. We ask ourselves how we should coherently update
the belief model P to a new model P(·|x) which describes our beliefs about the values
of the remaining random variables X′ = (Xn+1, . . . ,Xn∗). This is, generally speaking, the
problem of predictive inference. In order to make things as easy as possible, we shall
assume that P({x}) > 0, so our subject has some reason, prior to observing x, to believe
that this observation will actually occur, because she is willing to bet on its occurrence at
non-trivial odds.

Let us denote by n′ = n∗−n the number of remaining random variables, then we know
that X′ assumes values in X n′

κ , and P(·|x) will be a lower prevision on L (X n′
κ ).

We shall first look at the problem of updating the coherent prevision P = Q(Pu(·|N n∗
κ ))

for any coherent prevision Q in M n∗
κ . So consider any gamble g on X n′

κ . It follows from
coherence requirements (Bayes’s rule) that the updated coherent prevision P(·|x) is given
by

P(g|x) =
P(gIx)
P(Ix)

=
Q(Pu(gIx|N n∗

κ ))
Q(Pu(Ix|N n∗

κ ))
, (21)

where Ix(x∗) = 1 if the first n components of the vector x∗ ∈X n∗
κ are given by the vector x,

and zero otherwise. Observe, by the way, that by assumption, P(Ix)≥ P(Ix) = P({x}) > 0.
Now for any m∗ in N n∗

κ we find that, with obvious notations,

Pu(gIx|m∗) =
1

ν(m∗) ∑
T′(x′)+m=m∗

g(x′) =
ν(m∗−m)

ν(m∗)
Pu(g|m∗−m) (22)

where we let m = T(x),and where T′ maps samples x′ in X n′
κ to their corresponding count

vectors T′(x′) in N n′
κ . Of course ν(m∗−m) is non-zero only if m∗ ≥m, or equivalently if

m∗−m∈N n′
κ , or in other words if it is possible to select n balls of composition m without

replacement from an urn with composition m∗. In this expression, Pu(·|m′) stands for the
coherent prevision on L (X n′

κ ) whose probability mass is uniformly distributed over the
Pn′

κ -invariant atom [m′], for any m′ in N n′
κ . Now for g = 1 we find that

Pu(Ix|m∗) =
ν(m∗−m)

ν(m∗)
= p(m|m∗) =: Lm(m∗) (23)

is the probability of observing a sample of size n with composition m by sampling without
replacement from an urn with composition m∗. Lm is the corresponding likelihood function
on N n∗

κ . We may as well consider Lm as a likelihood function on N n′
κ , and for any m′ in

N n′
κ we let

Lm(m′) := Lm(m+m′) =
ν(m′)

ν(m+m′)
be the probability that there remain n′ balls of composition m′ after drawing (without
replacement) n balls of composition m from an urn with n∗ balls. We may then rewrite
Eq. (21), using Eqs. (22) and (23), as

P(g|x) =
Q(LmPu(g|N n′

κ ))
Q(Lm)

= Q(Pu(g|N n′
κ )|m), (24)

where Q(Lm)= P(Ix)> 0 by assumption, and Q(·|m) is the coherent prevision on L (N n′
κ )

defined by

Q(h|m) :=
Q(Lmh)
Q(Lm)

, (25)
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for any gamble h on N n′
κ , i.e., Q(·|m) is the coherent prevision obtained after using Bayes’s

rule to update Q with the likelihood function Lm. This means that if Q is a belief model
for the unknown composition of an urn with n∗ balls, then Q(·|m) is the corresponding
model for the unknown composition of the remaining n′ balls in the urn, after n balls with
composition m have been taken from it.

Now if we have a coherent lower prevision Pn∗
κ on L (N n∗

κ ) that is a lower envelope
of a set M n∗

κ of coherent previsions Q, then coherence62 tells us that the updated lower
prevision P(·|x) is precisely the lower envelope of the corresponding updated coherent
previsions P(·|x), and consequently, using Eqs. (24) and (25), we find that

P(g|x) = Pn∗
κ (Pu(g|N n′

κ )|m), (26)

where Pn∗
κ (·|m) is the coherent lower prevision on L (N n′

κ ) given by

Pn∗
κ (h|m) := inf

{
Q(Lmh)
Q(Lm)

: Q ∈M n∗
κ

}
= inf

{
Q(h|m) : Q ∈M n∗

κ

}
, (27)

for any gamble h on N n′
κ . In other words, Pn∗

κ (·|m) is the coherent lower prevision ob-
tained after using coherence (the so-called Generalised Bayes Rule) to update Pn∗

κ with
the likelihood function Lm. This means again that if Pn∗

κ is a belief model for the unknown
composition of an urn with n∗ balls, then Pn∗

κ (·|m) is the corresponding belief model for the
unknown composition of the remaining n′ balls in the urn, after n balls with composition
m have been taken from it.

If we compare Eq. (26) with Eq. (20), we see that the updated belief model P(·|x) is
still strongly Pn′

κ -invariant,63 so there still is post-data exchangeability for the remaining
random variables X′ = (Xn+1, . . . ,Xn∗). Moreover, by looking at Eq. (21) and Eqs. (26)
and (27), we see that the updated (lower) previsions P(·|x) and P(·|x) only depend on
the observed sample x through the likelihood function LT(x). This tells us that this type
of predictive inference satisfies the so-called likelihood principle, and moreover that the
count vector m = T(x), or more generally the map T is a sufficient statistic.

10. CONCLUSIONS

We have tried to argue that there is a clear distinction between the symmetry of belief
models, and models of beliefs of symmetry, and that both notions can be distinguished
between when indecision is taken seriously, as is the case in Walley’s [1991] behavioural
theory of imprecise probabilities. Our present attempt to distinguish between these notions,
and capture the distinction in a formal way, is inspired by Walley’s [1991, Chapter 9]
discussion of the difference between permutable and exchangeable lower previsions, and
Pericchi and Walley’s [1991] discussion of ‘classes of reasonable priors’ versus ‘reasonable
classes of priors’.

Indeed, there seems to be a difference of type between the two notions. The former
(symmetry of models) is a property that belief models may have, and we may require, as
a principle of rationality, or as a principle of ‘faithful modelling’, that if the available evi-
dence is symmetrical, then our corresponding belief models should be symmetrical too. A
case in point is that of complete ignorance, where the ‘evidence’ is completely symmetri-
cal, and we may therefore require that corresponding belief model should be completely
symmetrical too. This leads to the various principles discussed in Section 5, all of which

62This follows from Walley’s [1991, Section 6.5] Generalised Bayes Rule.
63See also footnote 57.
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seem to single out the vacuous belief model for representing complete ignorance, and
which extend Walley’s [1991, Section 5.5] treatment of this matter.

The latter notion (models of symmetry) is more properly related to a type of structural
assessment: if a subject believes there is symmetry, how should she model that, and how
should assessments of symmetry be combined with other assessments? We have tried
to answer such questions in Sections 7, where we discuss the strongly invariant natural
extension.

It is well-known that if we only use Bayesian, or precise, probability models, requiring
invariance of the probability measures with respect to all types of symmetry in the evi-
dence may be impossible; examples were given by Boole, Bertrand and Fisher (see Zabell
[1989a] for discussion and references). This has led certain researchers to abandon re-
quiring the above-mentioned ‘faithfulness’ of belief models, or to single out certain types
of symmetry which are deemed to be better than others. We have tried to argue that this
is unnecessary: the vacuous belief model has no such problems, and is symmetrical with
respect to any transformation you care to name. And of course, our criticism of the Prin-
ciple of Insufficient Reason is not new. Our ideas were heavily influenced by Walley’s
[1991] book on imprecise probabilities, whose Chapter 5 contains a wonderful overview
of arguments against restricting ourselves to precise probability models. Zabell [1989b]
also gives an excellent discussion of much older criticism, dating back to the middle of
the 19th century. In particular, Ellis’s [1844] ex nihilo nihil — you cannot make decisions
or inferences based on complete ignorance — finds a nice confirmation in the fact that
the vacuous belief model captures complete indecision, and that updating a vacuous belief
model leads to a vacuous belief model [Walley, 1991, Section 6.6.1]. But what we have
tried to do here is provide a framework and mathematical apparatus that allows us to better
understand and discuss the problems underlying the Principle of Insufficient Reason, and
more general problems of dealing with any type of symmetry in belief models.

This study of symmetry in relation to belief models is far from being complete how-
ever, and our notions of weak and strong invariance may have to be refined, and perhaps
even modified, as well as complemented by other notions of symmetry. It might for in-
stance be of interest to study the notion of symmetry that captures the insufficient reason
to strictly prefer that is briefly touched upon near the end of Section 4.1. Also, we may
seem more certain than we actually are about the appropriateness (in terms of having a
sound behavioural justification and interpretation) of our notions of weak and (especially)
strong invariance for random variables that may assume an infinite number of values. This
is the point where our intuition deserts us, and where a number of interesting questions
and problems leave us speechless. To name but one such problem, brought to the fore
by the discussion in Section 7: for certain types of monoids, it is completely irrational
to impose strong invariance (because doing so makes us subject to a sure loss). We can
understand why this is the case for the monoid of all transformations, even on a finite set
(Theorem 6). But why, for instance, are there no (strongly) permutation invariant coher-
ent (lower) previsions on the set of natural (and a fortiori real) numbers? Why are we
(consequently) reduced to using (strong) shift or translation invariance of coherent (lower)
previsions when we want to try and capture the idea of a uniform distribution on the set
of natural (or real) numbers? And even then, why, as is hinted at in footnote 50, are there
situations where updating a (strongly) shift-invariant coherent (lower) prevision produces
a sure loss? Are there appropriately weakened versions of our strong invariance condition
that avoid these problems?
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B. de Finetti. La prévision: ses lois logiques, ses sources subjectives. Annales de l’Institut
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