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Abstract

This paper presents a summary of Peter Walley’s theory of coherent lower pre-
visions. We introduce three representations of coherent assessments: coherent
lower and upper previsions, closed and convex sets of linear previsions, and sets
of desirable gambles. We show also how the notion of coherence can be used to
update our beliefs with new information, and a number of possibilities to model
the notion of independence with coherent lower previsions. Next, we comment on
the connection with other approaches in the literature: de Finetti’s and Williams’
earlier work, Kuznetsov’s and Weischelberger’s work on interval-valued probabil-
ities, Dempster-Shafer theory of evidence and Shafer and Vovk’s game-theoretic
approach. Finally, we present a brief survey of some applications and summarize
the main strengths and challenges of the theory.

Keywords. Subjective probability, imprecision, avoiding sure loss, coherence, desir-
ability, conditional lower previsions, independence.

1 Introduction
This paper aims at presenting the main facts about the theory of coherent lower previ-
sions. This theory falls within the subjective approach to probability, where the prob-
ability of an event represents our information about how likely is this event to happen.
This interpretation of probability is mostly used in the framework of decision making,
and is sometimes referred to as epistemic probability [30, 43].

Subjective probabilities can be given a number of different interpretations. One of
them is the behavioural one we consider in this paper: the probability of an event is
interpreted in terms of some behaviour that depends on the appearance of the event,
for instance as betting rates on or against the event, or buying and selling prices on the
event.

The main goal of the theory of coherent lower previsions is to provide a number of
rationality criteria for reasoning with subjective probabilities. By reasoning we shall
mean here the cognitive process aimed at solving problems, reaching conclusions or
making decisions. The rationality of some reasoning can be characterised by means of
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a number of principles and standards that determine the quality of the reasoning. In the
case of probabilistic reasoning, one can consider two different types of rationality. The
internal one, which studies to which extent our model is self-consistent, is modelled
in Walley’s theory using the notion of coherence. But there is also an external part of
rationality, which studies whether our model is consistent with the available evidence.
The allowance for imprecision in Walley’s theory is related to this type of rationality.

Within the subjective approach to probability, there are two problems that may
affect the estimation of the probability of an event: those of indeterminacy and incom-
pleteness. Indeterminacy, also called indeterminate uncertainty in [34], happens when
there exist events which are not equivalent for our subject, but for which he has no
preference, meaning that he cannot decide if he would bet on one over the other. It
can be due for instance to lack of information, conflicting beliefs, or conflicting infor-
mation. On the other hand, incompleteness is due to difficulties in the elicitation of
the model, meaning that our subject may not be capable of estimating the subjective
probability of an event with an arbitrary degree of precision. This can be caused by a
lack of introspection or a lack of assessment strategies, or to the limits of the computa-
tional abilities. Both indeterminacy and incompleteness are a source of imprecision in
probability models.

One of the first to talk about the presence of imprecision when modelling uncer-
tainty was Keynes in [33], although there were already some comments about it in ear-
lier works by Bernoulli and Lambert [58]. Keynes considered an ordering between the
probability of the different outcomes of an experiment which need only be partial. His
ideas were later formalized by Koopman in [35, 36, 37]. Other work in this direction
was made by Borel [4], Smith [61], Good [31], Kyburg [43] and Levi [45]. In 1975,
Williams [85] made a first attempt to make a detailed study of imprecise subjective
probability theory, based on the work that de Finetti had done on subjective probability
[21, 23] and considering lower and upper previsions instead of precise previsions. This
was developed in much more detail by Walley in [71], who established the arguably
more mature theory that we shall survey here.

The terms indeterminate or imprecise probabilities are used in the literature to refer
to any model using upper or lower probabilities on some domain, i.e., for a model where
the assumption of the existence of a precise and additive probability model is dropped.
In this sense, we can consider credal sets [45], 2- and n-monotone set functions [5],
possibility measures [15, 27, 88], p-boxes [29], fuzzy measures [26, 32], etc. Our
focus here is on what we shall call the behavioural theory of coherent lower previsions,
as developed by Peter Walley in [71]. We are interested in this model mainly for two
reasons: from a mathematical point of view, it subsumes most of the other models in the
literature as particular cases, having therefore a unifying character. On the other hand,
it also has a clear interpretation in terms of acceptable transactions. This interpretation
lends itself naturally to decision making [71, Section 3.9]. Our aim in this paper is to
give a gentle introduction to the theory for the reader who first approaches the field, and
to serve him as a guide on his way through. However, this work by no means pretends
to be an alternative to Walley’s book, and we refer to [71] for a much more detailed
account of the properties we shall present and for a thorough justification of the theory.

In order to ease the transition for the interested reader from this survey to Walley’s
book, let us give a short outline of the different chapters of the book. The book starts
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with an introduction to reasoning and behavior in Chapter 1. Chapter 2 introduces co-
herent lower and upper previsions, and studies their main properties. Chapter 3 shows
how to coherently extend our assessments, through the notion of natural extension, and
provides also the expression in terms of sets of linear previsions or almost-desirable
gambles. Chapter 4 discusses the assessment and the elicitation of imprecise probabili-
ties. Chapter 5 studies the different sources of imprecision in probabilities, investigates
the adequacy of precise models for cases of complete ignorance and comments on
other imprecise probability models. The study of conditional lower and upper previ-
sions starts in Chapter 6, with the definition of separate coherence and the coherence
of an unconditional and a conditional lower prevision. This is generalized in Chapter 7
to the case of a finite number of conditional lower previsions, focusing on a number of
statistical models. Chapter 8 establishes a general theory of natural extension of several
coherent conditional previsions. Finally, Chapter 9 is devoted to the modelling of the
notion of independence.

In this paper, we shall summarize the main aspects of this book and the relation-
ships between Walley’s theory of coherent lower previsions and some other approaches
to imprecise probabilities. The paper is structured as follows: in Section 2, we present
the main features of unconditional coherent lower previsions. We give three represen-
tations of the available information: coherent lower and upper previsions, sets of desir-
able gambles, and sets of linear previsions, and show how to extend the assessments to
larger domains. In Section 3, we outline how we can use the theory of coherent lower
previsions to update the assessments with new information, and how to combine infor-
mation from different sources. Thus, we make a study of conditional lower previsions.
Section 4 is devoted to the notion of independence. In Section 5, we compare Walley’s
theory with other approaches to subjective probability: the seminal work of de Finetti,
first generalized to the imprecise case by Williams, Kuznetsov’s and Weischelberger’s
work on interval-valued probabilities, the Dempster-Shafer theory of evidence, and
Shafer and Vovk’s recent work on game-theoretic probability. In Section 6, we review
a number of applications. We conclude the paper in Section 7 with an overview of
some questions and remaining challenges in the field.

2 Coherent lower previsions and other equivalent rep-
resentations

In this section, we present the main facts about coherent lower previsions, their be-
havioural interpretation and the notion of natural extension. We show that the infor-
mation provided by a coherent lower prevision can also be expressed by means of a
set of linear previsions or by a set of desirable gambles. Although this last approach
is arguably better suited to understanding the ideas behind the behavioural interpreta-
tion, we have opted for starting with the notion of coherent lower previsions, because
this will help to understand the differences with classical probability theory and more-
over they will be the ones we use when talking about conditional lower previsions in
Section 3. We refer to [20] for an alternative introduction.
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2.1 Coherent lower previsions
Consider a non-empty space Ω, representing the set of outcomes of an experiment. The
behavioural theory of imprecise probabilities provides tools to model our information
about the likelihood of the different outcomes in terms of our betting behavior on some
gambles that depend on these outcomes. Specifically, a gamble f on Ω is a bounded
real-valued function on Ω. It represents an uncertain reward, meaning that we obtain
the price f (ω) if the outcome of the experiment is ω ∈ Ω. This reward is expressed
in units of some linear utility scale, see [71, Section 2.2] for details. We shall denote
by L (Ω) the set of gambles on Ω.1 A particular case of gambles are the indicators of
events, that is, the gambles IA defined by IA(ω) = 1 if ω ∈ A and IA(ω) = 0 otherwise
for some A⊆Ω.

Example 1. Jack has made it to the final of a TV contest. He has already won 50000
euros,2 and he can add to this the amount he gets by playing with The Magic Urn.
He must draw a ball from the urn, and he wins or loses money depending on its
color: if he draws a green ball, he gets 10000 euros; if he draws a red ball, he gets
5000 euros; and if he draws a black ball, he gets nothing. Mathematically, the set
of outcomes of the experiment Jack is going to make (drawing a ball from the urn)
is Ω = {green,red,black}, and the gamble f1 which determines his prize is given by
f1(green) = 10000, f1(red) = 5000, f1(black) = 0.�

Let K be a set of gambles on Ω. A lower prevision on K is a functional P :
K → R. For any gamble f in K , P( f ) represents a subject’s supremum acceptable
buying price for f ; this means that he is disposed to pay P( f )− ε for the uncertain
reward determined by f and the outcome of the experiment, or, in other words, that the
transaction f −P( f ) + ε , understood as a point-wise operation, is acceptable to him
for every ε > 0 (however, nothing is said about whether he would buy f for the price
P( f )).3

Given a gamble f we can also consider our subject’s infimum acceptable selling
price for f , which we shall denote by P( f ). It means that the transaction P( f )+ ε− f
is acceptable to him for every ε > 0 (but nothing is said about the transaction P( f )− f ).
We obtain in this way an upper prevision P( f ) on some set of gambles K ′.

We shall see in Section 2.3 an equivalent formulation of lower and upper previsions
in terms of sets of desirable gambles. For the time being, and in order to justify the
rationality requirements we shall introduce, we shall only assume the following:

1. A transaction that makes our subject lose utiles, no matter the outcome of the
experiment, is not acceptable for him.

1Although Walley’s theory assumes the variables involved are bounded, the theory has also been general-
ized to unbounded random variables in [63, 62]. The related formulation of the theory from a game-theoretic
point of view, as we will present it in Section 5.6, has also been made for arbitrary gambles. See also
Section 5.3.

2Such an amount of money is only added in order to justify the linearity of the utility scale, which in the
case of money only holds if the amounts at stake are small compared to the subject’s capital.

3In this paper, we use Walley’s notation of P for lower previsions and P for upper previsions; these can
be seen as lower and upper expectations, and will only be interpreted as lower and upper probabilities when
the gamble f is the indicator of some event.

4



2. If he considers acceptable a transaction, he should also accept any other transac-
tion that gives him a greater reward, no matter the outcome of the experiment.

3. A positive linear combination of acceptable transactions should also be accept-
able.

Example 1(cont.). If Jack pays x euros in order to play at The Magic Urn, then the
increase in his wealth is given by 10000− x euros if he draws a green ball, 5000− x
euros if he draws a red ball, and of −x euros if he draws a black ball (i.e., he loses x
euros in that case). The supremum amount of money that he is disposed to pay will
be his lower prevision for the gamble f1. If for instance he is certain that there are no
black balls in the urn, he should be disposed to pay as much as 5000 euros, because
his wealth is not going to decrease, no matter which color is the ball he draws. And
if he has no additional information about the composition of the urn and wants to be
cautious, he will not pay more than 5000 euros, because it could happen that all the
balls in the urn are red, and by paying more than 5000 euros he would end up always
losing money.

On the other hand, and after Jack has drawn a ball from the urn, and before he sees
the color, he can sell the unknown prize attached to it to the 2nd ranked player (Kate)
for y euros. If Jack does this, his increase in wealth will be y−10000 euros if the ball
is green, y−5000 euros if the ball is red, and y euros if the ball is black. The minimum
amount of money that he requires in order to sell it will be his upper prevision for the
gamble f1. If he knows that there are only red and green balls in the urn, he should
accept to sell it for more than 10000 euros, because he is not going to lose money by
this, but not for less: it could be that all the balls are green and then by selling it for
less that 10000 euros he would end up losing money, no matter the outcome. �

Since by selling a gamble f for a price µ or alternatively by buying the gamble − f
for the price −µ our subject increases his wealth in µ− f in both cases, it may be ar-
gued that he should be disposed to accept these transactions under the same conditions.
Hence, his infimum acceptable selling price for f should agree with the opposite of his
supremum acceptable buying price for − f . As a consequence, given a lower prevision
on a set of gambles K we can define an upper prevision P on −K := {− f : f ∈K },
by P(− f ) = −P( f ), and vice versa. Taking this into account, all the developments
for lower previsions can also be done for upper previsions, and vice versa. We shall
concentrate in this survey on lower previsions.

Lower previsions are subject to a number of rationality criteria, which assure the
consistency of the judgements they represent. First of all, a positive linear combination
of a number of acceptable gambles should never result in a transaction that makes
our subject lose utiles, no matter the outcome. This is modeled through the notion of
avoiding sure loss: for every natural number n≥ 0 and f1, . . . , fn in K , we should have

sup
ω∈Ω

n

∑
i=1

[ fi(ω)−P( fi)]≥ 0.

Otherwise, there would exist some δ > 0 such that ∑
n
i=1[ fi(ω)− (P( fi)− δ )] ≤ −δ ,

meaning that the sum of acceptable transactions [ fi− (P( fi)−δ )] results in a loss of at
least δ , no matter the outcome of the experiment.
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Example 1(cont.). Jack decides to pay 5000 euros in order to play at The Magic Urn.
The TV host offers him also another prize depending on the same outcome: he will win
9000 euros if he draws a black ball, 5000 if he draws a red ball and nothing if he draws
a green ball. Let f2 denote this other prize. Jack decides to pay additionally as much
as 5500 euros to also get this other prize. But then he is paying 10500 euros, and total
prize he is going to win is 10000 euros with a green or a red ball, and 9000 euros with a
black ball. Hence, he is going to lose money, no matter the outcome of the experiment.
Mathematically, this means that the assessments P( f1) = 5000 and P( f2) = 5500 incur
a sure loss. �

But there is a stronger requirement, namely that of coherence. Coherence means
that our subject’s supremum acceptable buying price for a gamble f should not be
raised by considering a positive linear combination of a finite number of other accept-
able gambles. Formally, this means that for every non-negative integers n and m and
gambles f0, f1, . . . , fn in K , we have

sup
ω∈Ω

n

∑
i=1

[ fi(ω)−P( fi)]−m[ f0(ω)−P( f0)]≥ 0. (1)

A lower prevision satisfying this condition will in particular avoid sure loss, by consid-
ering the particular case of m = 0.

Let us suppose that Equation (1) does not hold for some non-negative integers n,m
and some f0, . . . , fn in K . If m = 0, this means that P incurs in a sure loss, which we
have already argued is an inconsistency. Assume then that m > 0. Then there exists
some δ > 0 such that

n

∑
i=1

[ fi(ω)− (P( fi)−δ )]≤ m[ f0(ω)− (P(ω)+δ )]

for all ω ∈Ω. The left-hand side is a positive linear combination of acceptable buying
transactions, which should then be acceptable. The right-hand side, which gives a
bigger reward than this acceptable transaction, should be acceptable as well. But this
means that our subject should be disposed to buy the gamble f0 at the price P( f0)+δ ,
which is greater than the supremum buying price he established before. This is an
inconsistency.

Example 1(cont.). After thinking again, Jack decides to pay as much as 5000 euros for
the first prize ( f1) and 4000 euros for the second ( f2). He also decides that he will
sell this second prize to Kate for anything bigger than 6000 euros, but not for less.
In the language of lower and upper previsions, this means that P( f1) = 5000,P( f2) =
4000,P( f2) = 6000, or, equivalently, P(− f2) =−6000. The rise in his wealth is given
by the following table:
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green red black
Buy f1 for 5000 5000 0 −5000
Buy f2 for 4000 −4000 1000 5000
Sell f2 for 6000 6000 1000 −3000

Table 1: Increase on Jack’s wealth depending on the color of the ball he draws.

These assessments avoid sure loss. However, the first one already implies that he
should sell f2 for anything bigger than 5000 euros: if he does so, the increase in his
wealth is 5000 euros with a green ball, 0 with a red ball, and −4000 with a black ball.
This situation is better than the one produced by buying f1 for 5000 euros, which he
considered acceptable. This is an inconsistency with his assessment of 6000 euros as
infimum acceptable selling price for f2. �

When the domain K of a lower prevision is a linear space, i.e., closed under
addition of gambles and multiplication of gambles by real numbers, coherence takes
a simpler form. It can be checked that in that case P is coherent if and only if the
following three axioms hold for all f ,g in K and all λ > 0:

(P1) P( f )≥ inf f [accepting sure gains].

(P2) P(λ f ) = λP( f ) [positive homogeneity].

(P3) P( f +g)≥ P( f )+P(g) [superlinearity].

A consequence of these axioms is that a convex combination, a lower envelope and
a point-wise limit of coherent lower previsions is again a coherent lower prevision.

A coherent lower prevision defined on indicators of events only is called a coher-
ent lower probability. The lower probability of an event A can also be seen as our
subject’s supremum betting rate on the event, where betting on A means that he gets
1 if A appears and 0 if it does not; similarly, the upper probability of an event A can
be interpreted as our subject infimum betting rate against the event A. Here, in con-
tradistinction with the usual approaches to classical probability theory, we start from
previsions (of gambles) and deduce the probabilities (of events), instead of going from
probabilities to previsions using some expectation operator (but see also [83] for a sim-
ilar approach in the case of precise probabilities).

As Walley himself argues in [71, Section 2.11], the notion of coherence can be
considered too weak to fully characterize the rationality of probabilistic reasoning. In-
deed, other additional requirements could be added in order to achieve this: we may
for instance use symmetry or independent principles, or the principle of direct infer-
ence discussed in [71, Section 1.7.2]. In this sense, most of the notions of upper and
lower probabilities considered in the literature (2- and n-monotone capacities, belief
functions, necessity measures) are particular cases of coherent lower previsions. Nev-
ertheless, the main point here is that coherence is a necessary condition for rationality,
and that we should at least require our subject’s assessments to satisfy it. Other possi-
ble rationality axioms, such as the notion of conglomerability, will be discussed later
in this paper.
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The assessments expressed by means of a lower prevision can also be made in terms
of two alternative representations: sets of linear previsions and sets of almost-desirable
gambles.

2.2 Linear previsions
When the supremum buying price and the infimum selling price for a gamble f coin-
cide, then the common value P( f ) := P( f ) = P( f ) is called a fair price or prevision
for f . More generally, a real-valued function defined on a set of gambles K is called
a linear prevision when for all natural numbers m,n and gambles f1, . . . , fm,g1, . . . ,gn
in the domain,

sup
ω∈Ω

[
m

∑
i=1

[ fi(ω)−P( fi)]−
n

∑
j=1

[g j(ω)−P(g j)]]≥ 0. (2)

Assume that this condition does not hold for certain gambles f1, . . . , fm,g1, . . . ,gn
in K . Then there exists some δ > 0 such that

m

∑
i=1

[ fi(ω)−P( fi)+δ ]+
n

∑
j=1

[P(g j)−g j +δ ] <−δ (3)

for all ω ∈ Ω. Since P( fi) is our subject’s supremum acceptable buying price for the
gamble fi, he is disposed to pay P( fi)−δ for it, so the transaction fi−P( fi)+δ is ac-
ceptable for him; on the other hand, since P(g j) is his infimum acceptable selling price
for g j, he is disposed to sell it for the price P(g j)+δ , so the transaction P(g j)+δ −g j
is acceptable. But Equation (3) tells us that the sum of these acceptable transactions
produces a loss of at least δ , no matter the outcome of the experiment!

A linear prevision P is coherent, both when interpreted as a lower and as an upper
prevision; the former means that P := P is a coherent lower prevision on K , the latter
that the functional P1 on −K := {− f : f ∈K } given by P1( f ) = −P(− f ) is a co-
herent lower prevision on −K . However, not every functional which is coherent both
as a lower and as an upper prevision is a linear prevision. This is because coherence
as a lower prevision only guarantees that Equation (2) holds for n ≤ 1, and coherence
as an upper prevision only guarantees that the same equation holds for the case where
m ≤ 1. An example showing that these two properties do not imply that Equation (2)
holds for all non-negative natural numbers n,m is the following:

Example 2. Let us consider a five element space Ω := {x1,x2,x3,x4,x5}, and a func-
tional P defined on a subset {g1,g2,g3,g4} of L (Ω) such that the gambles gi are given
by:

x1 x2 x3 x4 x5
g1 0 0 1 1 -2
g2 0 0 0 -2 1
g3 1 0 2 0 0
g4 0 1 0 0 0
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Consider P given by P(gi) = 0 for i = 1, . . . ,4. Then it can be checked that P is
coherent both as a lower and as an upper prevision. However, the gamble g1 + g2−
g3− g4 has the constant value −1, and this implies that Equation (2) does not hold.
Therefore P is not a linear prevision. �

As it was the case with the coherence condition for lower previsions, when the
domain K satisfies some additional conditions, then Equation (2) can be simplified.
For instance, if the domain K is self-conjugate, meaning that −K = K , then P is a
linear prevision if and only if it avoids sure loss and satisfies P( f ) = −P(− f ) for all
f ∈K . On the other hand, when K is a linear space of gambles, then P is a linear
prevision if and only if

(P0) P( f +g) = P( f )+P(g) for all f ,g ∈K .

(P1) P( f )≥ inf f for all f ∈K .

It follows from these two conditions that P also satisfies

(P2) P(λ f ) = λP( f ) for all f ∈K ,λ > 0.

Hence, when the domain is a linear space of gambles linear previsions are coherent
lower previsions which are additive instead of simply super-additive.

A linear prevision on a domain K is always the restriction of a linear prevision on
all gambles, which is, by conditions (P0) and (P1), a linear functional on L (Ω). We
shall denote by P(Ω) the set of linear previsions on Ω.

Given a linear prevision P on all gambles, i.e., an element of P(Ω), we can con-
sider its restriction Q to the set of indicators of events. This restriction can be seen in
particular as a functional on the class P(Ω) of subsets of Ω, using the identification
Q(A) = P(IA). It can be checked that this functional is a finitely additive probability,
and P is simply the expectation with respect to Q. Hence, in case of linear previ-
sions there is no difference in expressive power between representing the information
in terms of events or in terms of gambles: the restriction to events (the probability)
determines the value on gambles (the expectation) and vice versa. This is no longer
true in the imprecise case, where there usually are infinitely many coherent extensions
of a coherent lower probability [71, Section 2.7.3], and this is why the theory is for-
mulated in general in terms of gambles. The fact that lower previsions of events do not
determine uniquely the lower previsions of gambles is due to the fact that we are not
dealing with additive functionals anymore.

A linear prevision P whose domain is made up of the indicators of the events in
some class A is called an additive probability on A . If in particular A is a field
of events, then P is a finitely additive probability in the usual sense, and moreover
condition (2) simplifies to the usual axioms of finite additivity:

(a) P(A)≥ 0 for all A in A .

(b) P(Ω) = 1.

(c) P(A∪B) = P(A)+P(B) whenever A∩B = /0.
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Example 1(cont.). Assume that Jack knows that there are only 10 balls in the urn,
and that the drawing is fair, so that the probability of each color depends only on the
proportion of balls of that color. If he knew the exact composition of the urn, for
instance that there are 5 green balls, 4 red balls and 1 black ball, then his expected gain
with the gamble f1 would be 0.5∗10000+0.4∗5000−0.1∗0 = 7000 euros, and this
should be his fair price for the gamble. Any linear prevision will be determined by its
restriction to events via the expectation operator. This restriction to events corresponds
to some particular composition of the urn: if he knows that there are 4 red balls out of
10 in the urn, then his betting rate on or against drawing a red ball (that is, his fair price
for a gamble with reward 1 if he draws a red ball and 0 if he does not) should be 0.4. �

We can characterize the coherence of a lower prevision P with domain K by means
of its set of dominating linear previsions, which we shall denote as

M (P) := {P ∈ P(Ω) : P( f )≥ P( f ) for all f in K }.

It can be checked that P is coherent if and only if it is the lower envelope of M (P),
that is, if and only if

P( f ) = min{P( f ) : P ∈M (P)}

for all f in K . Moreover, the set of dominating linear previsions allows us to establish
a one-to-one correspondence between coherent lower previsions P and closed (in the
weak-* topology) and convex sets of linear previsions: given a coherent lower prevision
P we can consider the (closed and convex) set of linear previsions M (P). Conversely,
every closed and convex set M of linear previsions determines uniquely a coherent
lower prevision P by taking lower envelopes. 4 Besides, it can be checked that these
two operations (taking lower envelopes of closed convex sets of linear previsions and
considering the linear previsions that dominate a given coherent lower prevision) com-
mute. We should warn the reader, however, that this equivalence does not hold in gen-
eral for the conditional lower previsions that we shall introduce in Section 3, although
there exists an envelope result for the alternative approach developed by Williams that
we shall present in Section 5.2.

The representation of coherent lower previsions in terms of sets of linear previsions
allows us to give them a Bayesian sensitivity analysis representation: we may assume
that there is a fair price for every gamble f on Ω, which results on a linear prevision
P ∈ P(Ω), and such that our subject’s imperfect knowledge of P only allows him to
place it among a set of possible candidates, M . Then the inferences he can make from
M are equivalent to the ones he can make using the lower envelope P of this set. This
lower envelope is a coherent lower prevision.

Hence, all the developments we make with (unconditional) coherent lower previ-
sions can also be made with sets of finitely additive probabilities, or equivalently with
the set of their associated expectation operators, which are linear previsions. In this
sense, there is a strong link between this theory and robust Bayesian analysis [53]. We

4Remark nonetheless that convexity is not really an issue here, since a set of linear previsions represents
the same behavioural dispositions (has the same lower and upper envelopes) as its convex hull, and in many
cases, the set of linear previsions compatible with some beliefs will not be convex; see [10, 13] for more
details, and [55] for a more critical approach to the assumption of convexity in the context of decision
making.
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shall see in Section 3 that, roughly speaking, this link only holds when we update our
information if we deal with finite sets of categories.
Example 1(cont.). The lower previsions P( f1) = 5000 and P( f2) = 4000 that Jack es-
tablished before for the gambles f1, f2 are coherent. The information P gives is equiva-
lent to its set of dominating linear previsions, M (P). Any of these linear previsions is
characterized by its restriction to events, which gives the probability of drawing a ball
of some particular color. In this case, it can be checked that

M (P) := {(p1, p2, p3) : p1 ≥ p3, p2 ≥ 4(p1− p3)− p3},

where p1, p2 and p3 denote the proportions of green, red and black balls in the urn,
respectively. This means that his beliefs about the composition of the urn are that there
are at least as many green as black balls, and that the number of red and black balls is
at least four times the difference of green and black balls.

We see in this example that the actual set of possible compositions of the urns which
are compatible with these beliefs determines the following set of compatible previsions
(remember that we are assuming that there are 10 balls in the urn and that the drawing
is fair):

P( Green ) P( Red ) P( Black )
0 1 0

0.1 0.9 0
0.1 0.8 0.1
0.2 0.8 0
0.2 0.7 0.1
0.2 0.6 0.2
0.3 0.5 0.2
0.3 0.4 0.3
0.4 0.3 0.3
0.4 0.2 0.4
0.5 0.1 0.4
0.5 0 0.5

Table 2: The previsions compatible with Jack’s beliefs about the composition of the
urn and the extraction method.

This set is finite, and therefore non-convex; it provides nonetheless the same be-
havioural information as its convex hull M (P). It is also interesting that, as remarked
by one of the referees, not all the probabilities in this table correspond to extreme points
of M (P): for instance (0.4,0.2,0.4) = 0.8∗ (0.5,0,0.5)+0.2∗ (0,1,0). �

We will comment further on linear previsions when we discuss the connection with
de Finetti’s work, in Section 5.1.

2.3 Sets of desirable gambles
An alternative, more direct, representation of the behavioural assessments expressed
by a lower prevision can be made by sets of almost-desirable gambles. A gamble f is
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said to be almost-desirable when our subject is almost disposed to accept it, meaning
that he considers the gamble f + ε to be desirable for every ε > 0 (although nothing is
said about the desirability of f ).

Following the behavioural interpretation we gave in Section 2.1 to lower previsions,
we see that the gamble f −P( f ) must be almost-desirable for our subject: if P( f ) is
his supremum acceptable buying price, then he must accept the gamble f −P( f )+ ε ,
which means paying P( f )− ε for the gamble f , for every ε > 0. The lower prevision
of f is the maximum value of µ such that the gamble f −µ is almost-desirable to our
subject.

We can also express the requirement of coherence in terms of sets of almost-
desirable gambles. Assume that, out of the gambles in L (Ω), our subject judges the
gambles in D to be almost-desirable. His assessments are coherent, and we say that D
is coherent, if and only if the following conditions hold:

(D0) If f ∈D , then sup f ≥ 0 [avoiding sure loss].

(D1) If inf f > 0, then f ∈D [accepting sure gains].

(D2) If f ∈D ,λ > 0, then λ f ∈D [positive homogeneity].

(D3) If f ,g ∈D , then f +g ∈D [addition].

(D4) If f +δ ∈D for all δ > 0, then f ∈D [closure].

Let us give an interpretation of these axioms. D0 states that a gamble f which
makes him lose utiles, no matter the outcome, should not be acceptable for our subject.
D1 on the other hand tells that he should accept a gamble which will always increase
his wealth. D2 means that the almost-desirability of a gamble f should not depend
on the scale of utility we are considering. D3 states that if two gambles f and g are
almost-desirable, our subject should be disposed to accept their combined transaction.
Axioms D0-D3 characterize the so-called desirable gambles (see [71, Section 2.2.4]).
A class of desirable gambles is always a convex cone of gambles. Axiom D4 is a
closure property, and allows us to give an interpretation in terms of almost-desirability.

It is a consequence of axioms (D1) and (D4) that any non-negative gamble f is
almost-desirable. From this and (D3), we can deduce that if a gamble f dominates an
almost-desirable gamble g, then f (which is the sum of the almost-desirable gambles g
and f−g) is also almost-desirable. Finally, it follows from (D2) and (D3) that a positive
linear combination of almost-desirable gambles is also almost-desirable. These are the
rationality requirements we have used in Section 2.1 to justify the notion of coherence.

A coherent set of almost-desirable gambles is a closed convex cone containing all
non-negative gambles and not containing any uniformly negative gambles. There is,
moreover, a one-to-one correspondence between coherent lower previsions on L (Ω)
and coherent sets of almost-desirable gambles: given a coherent lower prevision P on
L (Ω), the class

DP := { f ∈L (Ω) : P( f )≥ 0} (4)

is a coherent set of almost-desirable gambles. Conversely, if D is a coherent set of
almost-desirable gambles, the lower prevision PD given by

PD ( f ) := max{µ : f −µ ∈D} (5)
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is coherent. Moreover, it can be checked that the operations given in Equations (4) and
(5) commute, meaning that if we consider a coherent lower prevision P on L (Ω) and
the set DP of almost-desirable gambles that we can obtain from it via Equation (4),
then the lower prevision PDP

that we define on L (Ω) by Equation (5) coincides with
P; and similarly if we start with a set of almost-desirable gambles.

Since the assessments expressed by means of a coherent lower prevision P can
also be expressed by means of its set of dominating linear previsions M (P), we see
that this set is also equivalent to the set of almost-desirable gambles D we have just
derived. Indeed, given a coherent set of almost-desirable gambles D , we can consider
the set of linear previsions

MD := {P ∈ P(Ω) : P( f )≥ 0 for all f in D}.

MD is a closed and convex set of linear previsions, and its lower envelope P coincides
with the coherent lower prevision induced by D through Equation (5).

Conversely, given a closed and convex set of linear previsions M , we can consider
the set of gambles

DM = { f ∈L (Ω) : P( f )≥ 0 for all P in M }.

DM is a coherent set of almost-desirable gambles, and the lower prevision PDM
it

induces is equal to the lower envelope of M .

Example 1(cont.). From the set of linear previsions M (P) compatible with Jack’s co-
herent assessments, we obtain the class of almost-desirable gambles

D = {(a1,a2,a3) :
a1 +a3 ≥ 0, a2 ≥ 0, a1 ≥max{−4a2,−3(a1 +a2 +a3),−a2−4(a1 +a3)}},

where a1 = f (green),a2 = f (red),a3 = f (black). �

Hence, we have three equivalent representations of coherent assessments: coher-
ent lower previsions, closed and convex sets of linear previsions, and coherent sets of
almost-desirable gambles. The use of one or another of these representations will de-
pend on the context: for instance, a representation in terms of sets of linear previsions
may be more useful if we want to give our model a Bayesian sensitivity analysis inter-
pretation, while the use of sets of almost-desirable gambles may be more interesting in
connection when decision making.

Note however that these representations do not tell us anything about our subject’s
buying behavior for the gambles f at the price P( f ): he may accept it, as he does for
the price P( f )− ε for all ε > 0, but then he also might not. If we want to give infor-
mation about the behavior for P( f ), we have to consider a more informative model:
sets of really desirable gambles. These sets allow to distinguish between desirability
and almost desirability, and they solve moreover some of the difficulties we shall see
in Section 3 when talking about conditioning on sets of probability zero [77]. We refer
to [71, Appendix F], [77] and [20] for a more detailed account of this more general
model.
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2.4 Natural extension
Assume now that our subject has established his acceptable buying prices rates for all
gambles on some domain K . He may then wish to check which are the consequences
of these assessments for other gambles. If for instance he is disposed to pay a price µ1
for a gamble f1 and a price µ2 for a gamble f2, he should be disposed to pay at least
the price µ1 + µ2 for their sum f1 + f2. In general, given a gamble f which is not in
the domain, he would like to know which is the supremum buying price that he should
find acceptable for f , taking into account his previous assessments (P), and using only
the condition of coherence.

Assume that for a given price µ there exist gambles g1, . . . ,gn in K and non-
negative real numbers λ1, . . . ,λn, such that

f (ω)−µ ≥
n

∑
i=1

λi(gi(ω)−P(gi)).

Since all the transactions in the sum of the right-hand side are acceptable to him, so
should be the left-hand side, which dominates their sum. Hence, he should be disposed
to pay the price µ for the gamble f , and therefore his supremum acceptable buying
price should be greater than or equal to µ . To use the language of the previous section,
the right-hand side of the inequality is an almost-desirable gamble, and as a conse-
quence so must be the gamble on the left-hand side. And the correspondence between
almost-desirable gambles and coherent lower previsions implies then that the lower
prevision of f should be greater than, or equal to, µ .

The lower prevision that provides these supremum acceptable buying prices is
called the natural extension of P. It is given, for f ∈L (Ω), by

E( f ) = sup
gi∈K ,λi≥0,

i=1,...,ni,ni∈N

inf
ω∈Ω

{
f (ω)−

n

∑
i=1

λi[gi(ω)−P(gi)]

}
. (6)

The reasoning above tells us that our subject should be disposed to pay the price E( f )−
ε for the gamble f , and this for every ε > 0. Hence, his supremum acceptable buying
price should dominate E( f ). But we can check also that this value is sufficient to
achieve coherence ([71, Theorem 3.1.2]).

Therefore, E( f ) is the smallest, or more conservative, value we can give to the
buying price of f in order to achieve coherence with the assessments in P. There may
be other coherent extensions, which may be interesting in some situations; however,
any other of these less conservative, coherent extensions will represent stronger assess-
ments than the ones that can be derived purely from P and the notion of coherence.
This is why we usually adopt E as our inferred model.

Coherent lower previsions constitute a very general model for uncertainty: they
include for instance as particular cases 2- and n-monotone capacities, belief functions,
or probability measures. In this style, the procedure of natural extension includes as
particular cases many of the extension procedures present in the literature: Choquet
integration of 2- and n-monotone capacities, Lebesgue integration of probability mea-
sures, or Bayes’s rule for updating probability measures. It provides the consequences
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for other gambles of our previous assessments and the notion of coherence. If for in-
stance we consider a probability measure on some σ -field of events A , the natural
extension to all events will determine the set of finitely additive extensions of P to
P(Ω), and it will be equal to the lower envelope of this set. It coincides moreover
with the inner measure of P.

Example 1(cont.). Jack is offered next a new gamble f3, whose reward is 2000 euros if
he draws a green ball, 3000 if he draws a red ball, and 4000 euros if he draws a black
ball. Taking into account his previous assessments, P( f1) = 5000, P( f2) = 4000, he
should at least pay

E( f3)
= sup

λ1,λ2≥0
min{2000−5000λ1 +4000λ2,3000−1000λ2,4000+5000λ1−5000λ2}.

It can be checked that this supremum is achieved for λ1 = 0,λ2 = 0.2. We obtain then
E( f3) = 2800. This is the supremum acceptable buying price for f3 that Jack can derive
from his previous assessments and the notion of coherence. �

If the lower prevision P does not avoid sure loss, then Equation (6) yields E( f ) = ∞

for all f ∈L (Ω). The idea is that if our subject’s initial assessments are such that he
can end up losing utiles no matter the outcome of the experiment, he will also lose
utiles with any other gamble that they offer to him. Because of this, the first thing we
have to verify is whether the initial assessments avoid sure loss, and only then we can
consider their consequences on other gambles.

When P avoids sure loss, E is the smallest coherent lower prevision on all gambles
that dominates P on K , in the sense that E is coherent and any other coherent lower
prevision E ′ on L (Ω) such that E ′( f ) ≥ P( f ) for all f ∈ K will satisfy E ′( f ) ≥
E( f ) for all f in L (Ω). E is not in general an extension of P; it will only be so
when P is coherent itself. Otherwise, the natural extension will correct the assessments
present in P into the smallest possible coherent lower prevision. Hence, the notion of
natural extension can be used to modify the initial assessments into other assessments
that satisfy the notion of coherence, and it does so in the least-committal way, i.e., it
provides the smallest coherent lower prevision with the same property.

Example 1(cont.). Let us consider again the assessments P( f1) = 5000,P( f2) = 4000
and P( f2) = 6000. These imply the acceptable buying transactions in Table 1, which,
as we showed, avoid sure loss but are incoherent. If we apply Equation (6) to them
we obtain that their natural extension is E( f1) = 5000,E( f2) = 4000,E( f2) = 5000.
Hence, it is a consequence of coherence that Jack should be disposed to sell the gamble
f2 for anything bigger than 5000 euros. �

The natural extension of the assessments given by a coherent lower prevision P
can also be calculated in terms of the equivalent representations we have given in Sec-
tions 2.2 and 2.3.

Consider a coherent lower prevision P with domain K , and let DP be the set of
almost-desirable gambles associated with the lower prevision P by Equation (4):

DP := { f ∈K : P( f )≥ 0}.
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The natural extension EDP of DP provides the smallest set of almost-desirable gambles
that contains DP and is coherent. It is the closure (in the supremum norm topology) of

{ f : ∃ f j ∈DP,λ j > 0 such that f ≥
n

∑
j=1

λ j f j}, (7)

which is the smallest convex cone that contains DP and all non-negative gambles. Then
the natural extension of P to all gambles is given by

E( f ) = sup{µ : f −µ ∈ EDP}.

If we consider the set M (P) of linear previsions that dominate P on K , then

E( f ) = min{P( f ) : P ∈M (P)}. (8)

This last expression also makes sense if we consider the Bayesian sensitivity analysis
interpretation we have given to coherent lower previsions in Section 2.2: there is a
linear prevision modelling our subject’s information, but his imperfect knowledge of it
makes him consider a set of linear previsions M (P), whose lower envelope is P. If he
wants to extend P to a bigger domain, he should consider all the linear previsions in
M (P) as possible models (he has no additional information allowing to disregard any
of them), or equivalently their lower envelope. He obtains then that M (P) = M (E).

The procedure of natural extension preserves the equivalence between the differ-
ent representations of our assessments: if we consider for instance a coherent lower
prevision P with K and the set of almost-desirable gambles DP we derive from Equa-
tion (4), then we can consider the natural extension of DP via Equation (7). The co-
herent lower prevision we can derive from this set of acceptable gambles using Equa-
tion (5) coincides with the natural extension E of P. This is because the notion of
natural extension, both for lower or linear previsions or for sets of desirable gambles
determines the least-committal extension of our initial model that satisfies the notion
of coherence.

On the other hand, we can also consider the natural extension of a lower prevision
P from a domain K to a bigger domain K1 (not necessarily equal to L (Ω)). It can
be checked then that the procedure of natural extension is transitive, in the following
sense: if E1 denotes the natural extension of P to K1 and we later consider the natural
extension E2 of E1 to some bigger domain K2 ⊃K1, then E2 agrees with the natural
extension of P from K to K2: in both cases we are only considering the behavioural
consequences of the assessments on K and the condition of coherence. This is easiest
to see using Equation (8): we have M (E1) = M (E2) = M (P).

3 Updating and combining information
So far, we have assumed that the only information that our subject possesses about the
outcome of the experiment is that it belongs to the set Ω. But it may happen that, after
he has made his assessments, he comes to have some additional information about this
outcome, for instance that it belongs to some element of a partition B of Ω. He then
has to update his assessments, and the way to do this is by means of what we shall call
conditional lower previsions.
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3.1 Conditional lower previsions
Let B be a subset of the sampling space Ω, and consider a gamble f on Ω. Walley’s
theory of coherent lower previsions gives two different interpretations of P( f |B): the
updated and the contingent one. The most natural in our view is the contingent in-
terpretation, under which P( f |B) is our subject’s current supremum buying price for
the gamble f contingent on B, that is, the supremum value of µ such that the gamble
IB( f −µ) is desirable for our subject.

In order to relate our subject’s current dispositions on a gamble f contingent on
B with his dispositions towards this gamble if he later shall come to know whether
the outcome of the experiment belongs to B, Walley introduces the so-called updating
principle. We say a gamble f is B-desirable for our subject when he is currently dis-
posed to accept f provided he later observes that the outcome belongs to B. Then the
updating principle requires that a gamble is B-desirable if and only if IB f is desirable.
In this way, we can relate the current and future dispositions of our subject.

Under the updated interpretation of conditional lower previsions, P( f |B) is the sub-
ject’s supremum acceptable buying price he would pay for the gamble f now if he came
to know later that the outcome belongs to the set B, and nothing more. It coincides with
the value determined by the contingent interpretation of P( f |B) because of the updating
principle.

Let B be a partition of our sampling space, Ω, and consider an element B of this
partition. This partition could be for instance a class of categories of the set of out-
comes. Assume that our subject has given conditional assessments P( f |B) for all gam-
bles f on some domain HB. As it was the case for (unconditional) lower previsions,
we should require that these assessments are consistent with each other. We say that
the conditional lower prevision P(·|B) is separately coherent when the following two
conditions are satisfied:

(SC1) It is coherent as an unconditional prevision, i.e.,

sup
ω∈Ω

n

∑
i=1

[ fi(ω)−P( fi|B)]−m[ f0(ω)−P( f0|B)]≥ 0 (9)

for all non-negative integers n,m and all gambles f0, . . . , fn in HB;

(SC2) the indicator function of B belongs to HB and P satisfies P(B|B) = 1.

The coherence requirement (9) can be given a behavioural interpretation in the
same way as with (unconditional) coherence in Equation (1): if it does not hold for
some non-negative integers n,m and gambles f0, . . . , fn in HB, then it can be checked
that either: (i) the almost-desirable gamble ∑

n
i=1[ fi−P( fi|B)] incurs in a sure loss (if

m = 0) or (ii) we can raise P( f0|B) in some positive quantity δ , contradicting our
interpretation of it as his supremum acceptable buying price (if m > 0).

On the other hand, Equation (9) already implies that P(B|B) should be smaller than,
or equal to, 1. That we require it to be equal to one means just that our subject should
bet at all odds on the occurrence of the event B after having observed it.

In this way, we can obtain separately coherent conditional lower previsions P(·|B)
with domains HB for all events B in the partition B. It is a consequence of separate
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coherence that the conditional lower prevision P( f |B) does only depend on the values
that f takes on B, i.e, for every two gambles f and g such that f (ω) = g(ω) for all
ω ∈ B, we should have P( f |B) = P(g|B). This property implies that all the domains
HB can be extended to the common domain H := { f = ∑B∈B fB : fB ∈HB ∀B}, and
we can define on H a conditional lower prevision P(·|B) by

P( f |B) := ∑
B∈B

IBP( f |B),

i.e., the gamble on Ω that assumes the value P( f |B) on all elements of B. This con-
ditional lower prevision is then called separately coherent when P(·|B) is separately
coherent for all B ∈B. It provides the updated supremum buying price after learning
that the outcome of the experiment belongs to some particular element of B. We shall
later use the notation

G( f |B) := IB( f −P( f |B)), G( f |B) := ∑
B∈B

G( f |B) = f −P( f |B). (10)

When the domain H of P(·|B) is a linear space containing all constant gambles,
then separate coherence is equivalent to:

(C1) P( f |B)≥ infω∈B f (ω).

(C2) P(λ f |B) = λP( f |B).

(C3) P( f +g|B)≥ P( f |B)+P(g|B).

for all positive real λ , B ∈B and gambles f ,g in H . The first requirement shows that
the conditional lower prevision on B should only depend on the behavior of f on this
set; conditions (C2) and (C3) are the counterparts of the requirements (P2) and (P3) we
made for unconditional lower previsions, respectively.

Example 1(cont.). For the gambles f1 and f2 whose reward in terms of the color of the
ball drawn is given by the following table

green red black
f1 10000 5000 0
f2 0 5000 9000

Table 3: Increase on Jack’s wealth depending on the color of the ball he draws.

Jack had established the coherent assessments P( f1) = 5000 and P( f2) = 4000. But
he may also establish now his supremum acceptable buying prices for these gambles
depending on some future information on the color of the ball drawn. If for instance
he is informed that the ball drawn is not green, Jack should update his lower prevision
for the gamble f2, because he is sure that in that case he would get at least a prize of
5000 euros out of it. On the other hand, if he keeps the supremum buying prize of 5000
euros for f1 he is implying that he is sure that the ball that has been drawn is red once
he comes to know that it is not green.
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If for instance he considers as possible models the ones in Table 2 and updates them
using Bayes’s rule, then the updated supremum buying prices he should give by taking
lower envelopes would be P( f1| not green ) = 0 and P( f2| not green ) = 5000.5 �

3.2 Coherence of a finite number of conditional lower previsions
In practice, it is not uncommon to have lower previsions conditional on different parti-
tions B1, . . . ,Bn of Ω. We can think for instance of different sets of categories, or of
information provided in a sequential way. We end up then with a finite number of con-
ditional lower previsions P(·|B1), . . . ,P(·|Bn) with respective domains H1, . . . ,Hn ⊆
L (Ω), which we shall assume are separately coherent.

As it was the case with unconditional lower previsions, before making any infer-
ence based on these assessments we have to verify that they are consistent with each
other. And again, by ‘consistent’ we shall mean that a combination of acceptable buy-
ing prices should neither lead to a sure loss, nor to an increase of the supposedly supre-
mum acceptable buying price for a gamble f .

To see which form coherence takes now, we need to introduce the second pillar
of Walley’s theory of conditional previsions (the other is the updating principle): the
conglomerative principle. This rationality principle requires that if a gamble is B-
desirable for every set B in a partition B of Ω, then f is also desirable. Taking into
account the updating principle, this means that if IB f is desirable for every B in B, then
f should be desirable.

It follows from this principle that for every gamble f in the domain of P(·|B),
the gamble G( f |B) given by Equation (10) should be almost-desirable. This is the
basis of the following definition of coherence. For simplicity, we shall assume that
the domains H1, . . . ,Hn are linear spaces of gambles. A possible generalization to
non-linear domains can be found in [46]. Given fi ∈Hi, we shall denote by Si( fi) :=
{B ∈Bi : IB fi 6= 0} the Bi-support of fi. It is the set of elements of Bi where fi is not
identically zero. It follows from the separate coherence of P(·|Bi) that P(0|Bi) = 0 for
all i = 1, . . . ,n, and as a consequence the gamble P( f |Bi) (or G( f |Bi), for that matter)
is identically zero outside Si( fi).

We say that P(·|B1), . . . ,P(·|Bn) are (jointly) coherent when for all fi ∈Hi, i =
1, . . . ,n and all f0 ∈H j,B0 ∈B j for some j ∈ {1, . . . ,n},

sup
ω∈B

[
n

∑
i=1

G( fi|Bi)−G( f0|B0)

]
(ω)≥ 0 (11)

for some B ∈ {B0}∪
⋃n

i=1 Si( fi).
Assume that Equation (11) does not hold. Then, there is some δ > 0 such that

G( f0|B0) + IB0δ dominates the almost-desirable gamble ∑
n
i=1 G( fi|Bi) on every B ∈

{B0} ∪
⋃n

i=1 Si( fi). As a consequence, the gamble G( f0|B0) + IB0δ should also be
almost-desirable, and this means that P( f |B0)+δ should be an acceptable buying price
for f , contingent on B0. This is an inconsistency.

5This is an instance of a procedure called regular extension, that can sometimes be used to coherently
update beliefs; see [71, Appendix J] for more details.
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Remark 1. The sum ∑
n
i=1 G( fi|Bi)−G( f0|B0)] in the left-hand side in Equation (11)

is identically zero outside the union of the sets in the family {B0}∪
⋃n

i=1 Si( fi). Hence,
if in Equation (11) we consider the supremum over all Ω (a condition called weak
coherence by Walley [71, Section 7.1.4]) instead of over the sets in the family {B0}∪⋃m

i=1 Si( fi), the condition will be automatically satisfied whenever the union of these
sets is not equal to Ω, no matter how inconsistent these assessments are with each
other. This is one of the reasons to consider this stronger version as our definition of
coherence. See [71, Example 7.3.5] for other undesirable properties of weak coher-
ence.

3.2.1 Natural extension of conditional lower previsions

Assume then that our subject has provided a finite number of (separately and jointly)
coherent lower previsions P(·|B1), . . . ,P(·|Bn) defined on respective linear subsets
H1, . . . ,Hn of L (Ω). Then he may wish to see which are the behavioural implications
of these assessments on gambles which are not in the domain. The way to do this is
through the notion of natural extension. Given f ∈ L (Ω) and B0 ∈Bi, E( f |B0) is
defined as the supremum value of µ for which there are fi ∈Hi such that

sup
ω∈B

[
n

∑
i=1

G( fi|Bi)− IB0( f −µ)

]
(ω) < 0 (12)

for all B in the class {B0}∪∪n
i=1Si( fi).

In the particular case where we only have an unconditional lower prevision, i.e.,
when n = 1 and B1 = {Ω}, this notion coincides with the unconditional natural exten-
sion we introduced in Section 2.4. If we have a number of conditional lower previsions
P(·|B1), . . . ,P(·|Bn), we can calculate their natural extensions E(·|B1), . . . ,E(·|Bn)
to all gambles using Equation (12). If the partitions B1, . . . ,Bn are finite, then these
natural extensions share some of the properties of the unconditional natural extension:

1. They coincide with P(·|B1), . . . ,P(·|Bn) if and only if these conditional lower
previsions are coherent.

2. They are the smallest coherent extensions of P(·|B1), . . . ,P(·|Bn) to all gambles.

3. They are the lower envelope of a family of coherent conditional linear previsions,
{Pγ(·|B1), . . . ,Pγ(·|Bn) : γ ∈ Γ}.

Hence, when the partitions are finite, the notion of natural extension of a number of
conditional lower prevision also provides us with the consequences of the assessments
present on these previsions and the notion of (joint) coherence, to all gambles in the
domain, and it can also be given a Bayesian sensitivity analysis interpretation. This is
interesting for many applications, where we must deal with finite spaces only; however,
there are also interesting situations, such as parametric inference, where we must deal
with infinite spaces and where we end up with partitions that have an infinite number
of different elements. In that case, it is easy to see that in order to achieve coherence,
P( f |B0) must be at least as large as the supremum µ that satisfies Equation (12) for
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some fi ∈Hi, i = 1, . . . ,n. However, and unlike the case of finite partitions, we cannot
guarantee that these values provide coherent extensions of P(·|B1), . . . ,P(·|Bn) to all
gambles: in general these will only be lower bounds of all the coherent extensions.
Indeed, when the partitions are infinite, we can have a number of problems:

1. There may be no coherent extensions, and as a consequence the natural exten-
sions may not be coherent [71, Sections 6.6.6 and 6.6.7].

2. Even if the smallest coherent extensions exist, they may differ from the natural
extensions, which are not coherent [71, Section 8.1.3].

3. The minimal coherent extensions, and as a consequence also the natural ex-
tensions, may not be lower envelopes of coherent linear collections [71, Sec-
tions 6.6.9 and 6.6.10].

The natural extensions are the minimal coherent extensions of the lower previsions
P(·|B1),. . . ,P(·|Bn) if and only if they are jointly coherent themselves. But we need
some additional conditions to guarantee the joint coherence of E(·|B1),. . . ,E(·|Bn).
One of these conditions is that all the partitions Bi are finite. But even when the
partitions are infinite it may happen that we are able to characterize the minimal co-
herent extensions, but they differ from the natural extensions. One of the reasons for
this defective behaviour of the natural extension in the conditional case is the notion of
conglomerability, that we shall treat in detail in the following section, and that becomes
trivial in the case where the partitions are finite.

Example 3. An example where the natural extension fails to provide the minimal co-
herent extensions is given in [48, Example 1]. Let us consider the possibility space
Ω = X1×X2, where X1 = X2 = [0,1], and the partition B = {Bx1 : x1 ∈X1}, where
Bx1 := {x1}×X2. Let K = {λπ1 : λ ∈ R} and H = {gπ2 : g ∈L (X1)}, where the
gamble λπ1 is defined by λπ1(x1,x2) = λx1, and the gamble gπ2 by gπ2(x1,x2) =
g(x1)x2. Let us define the linear (and therefore coherent lower) prevision P on K by

P(λπ1) = λ ,

and the conditional linear prevision P(·|B) on H by

P(gπ2|Bx1) = g(x1)

for all x1 in X1. Then it can be checked that P and P(·|B) are coherent. Given the
gamble f on Ω, given by

f (x1,x2) =

{
0 if (x1,x2) = (1− 1

n ,1− 1
n ) for some n > 0

1 otherwise,

it can be checked that the natural extension E of P, P(·|B) provides E( f ) = 0. How-
ever, in this case the smallest coherent extensions M,M(·|B) of P,P(·|B) can be cal-
culated, and we obtain M( f ) = 1. The reason for this discrepancy is that E only gives
an extension of P which is coherent with P(·|B); if we also want to extend P(·|B) to
all gambles the natural extension may not guarantee coherence. �
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This example provides an instance of the marginal extension of a number of con-
ditional and unconditional lower previsions. When these previsions are conditioning
on a sequence of increasingly finer partitions, the marginal extension can be used to
determine the smallest coherent extensions to all gambles. See [71, Section 6.7.2] and
[48] for more information.

3.3 Coherence of an unconditional and a conditional lower previ-
sion

Let us consider in more detail the case where we have a conditional lower prevision
P(·|B) on some domain H and an unconditional lower prevision P on some set of
gambles K . Assume that they satisfy the following conditions:

(a) K ,H are linear subspaces of L (Ω).

(b) Given f ∈H , the gambles P( f |B) and IB f belong to H for all B ∈B.

(c) P(·|B) is separately coherent on H and P is coherent on K .

As Walley points out, the first two assumptions are made for mathematical convenience
only; (b) can be assumed without loss of generality [71, Section 6.3.1], and the results
can be extended to situations where (a) does not hold [46]. Note that the unconditional
lower prevision can be seen as a conditional lower prevision by simply considering the
partition {Ω}, and then Equation (10) becomes G( f ) = f −P( f ).

The lower previsions P and P(·|B) are jointly coherent, i.e., they satisfy Equa-
tion (11), if and only if

(JC1) supω∈Ω[G( f1)+G(g1|B)−G( f2)]≥ 0.

(JC2) supω∈Ω[G( f1)+G(g1|B)−G(g2|B0)]≥ 0.

for all f1, f2 ∈K ,g1,g2 ∈H and B0 ∈B. These conditions can be simplified under
some additional assumptions on the domains (see [71, Section 6.5] for details).

Again, it can be checked that if any of these conditions fails, the assessments of
our subject produce inconsistencies. Assume first that (JC1) does not hold. If f2 = 0,
then we have a sum of acceptable transactions that produces a sure loss. If f2 6= 0, then
there is some δ > 0 such that the gamble G( f2)− δ dominates the desirable gamble
G( f1)+G(g1|B)+δ . This means that our subject is willing to increase his supremum
acceptable buying price for f2 in δ , a contradiction.

Similarly, if (JC2) does not hold and g2 = 0 we have a sum of acceptable transac-
tions that produces a sure loss; and if g2 6= 0 there is some δ > 0 such that G(g2|B0)−δ

dominates G( f1)+G(g1|B)+δ and is therefore desirable. Hence, our subject should
be willing to pay P(g2|B0)+δ for g2 contingent on B0, a contradiction.

It is a consequence of the joint coherence of P, P(·|B) that, given f ∈H and
B∈B, P(G( f |B)) = P(IB( f −P( f |B))) = 0, where G( f |B) is defined in Equation (10).
When P(B) > 0, there is a unique value µ such that P(IB( f − µ)) = 0, and therefore
this µ must be the conditional lower prevision P( f |B). This is called the Generalised
Bayes Rule (GBR). This rule has a number of interesting properties:
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1. It is a generalization of Bayes’s rule in classical probability theory.

2. If P(B) > 0 and we define P( f |B) via the Generalized Bayes Rule, then it is the
lower envelope of the conditional linear previsions P( f |B) that we can define
using Bayes’s rule on the elements of M (P).

3. When the partition B is finite and P(B) > 0 for all B∈B, then the GBR uniquely
determines the conditional lower prevision P(·|B).

Example 4. Three horses (a,b and c) take part in a race. Our a priori lower prob-
ability for each horse being the winner is P({a}) = 0.1,P({b}) = 0.25,P({c}) =
0.3,P({a,b}) = 0.4,P({a,c}) = 0.6,P({b,c}) = 0.7. Since there are rumors that c
is not going to take part in the race due to some injury, we may provide our updated
lower probabilities for that case using the Generalised Bayes Rule. Taking into account
that we are dealing with finite spaces and that the conditioning event has positive lower
probability, applying the Generalised Bayes Rule is equivalent to taking the lower en-
velope of the linear conditional previsions that we obtain applying Bayes’s rule on the
elements of M (P). Thus, we obtain:

P({a}|{a,b}) = inf
{

P({a})
P({a,b})

: P ∈M (P)
}

= 0.1/0.5 = 0.2,

P({b}|{a,b}) = inf
{

P({b})
P({a,b})

: P ∈M (P)
}

= 0.25/0.55 = 0.45.�

We saw in the previous section that a number of conditional lower previsions may
be coherent and still have some undesirable properties, when the partitions are infinite.
Something similar applies to the case where we have only a conditional and an uncon-
ditional lower prevision. For instance, a coherent pair P,P(·|B) is not necessarily the
lower envelope of coherent pairs of linear unconditional and conditional previsions,
P,P(·|B) (these even may not exist). On the other hand, there are linear previsions P
for which there is no conditional linear prevision P(·|B) such that P,P(·|B) are co-
herent in the sense of Equation (11), i.e., linear previsions that cannot be updated in a
coherent way to a linear conditional prevision P(·|B), but which can be updated to a
conditional lower prevision.

Taking this into account, given an unconditional prevision P representing our sub-
ject’s beliefs and a partition B of Ω, he may be interested in considering the conditional
lower previsions P(·|B) which are coherent with P, i.e., those for which conditions
(JC1) and (JC2) are satisfied. A necessary and sufficient condition for the existence
of such P(·|B) is that P is B-conglomerable: this is the case when given distinct sets
B1,B2, . . . in B such that P(Bn) > 0 for all n and a gamble f such that P(IBn f )≥ 0 for
all n, it holds that P(I∪nBn f )≥ 0.

The condition of B-conglomerability holds trivially when the partition B is finite,
or when P(B) = 0 for every set B in the partition. It only becomes non-trivial when
we consider a partition B for which there are infinitely many elements B satisfying
P(B) > 0. It makes sense as a rationality axiom once we accept the updating and
conglomerability principles: to see this, consider that if {Bn}n is a partition of Ω with
P(Bn) > 0 and P(IBn f ) ≥ 0, then for every δ > 0 the gamble IBn( f + δ ) is desirable.
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The updating and conglomerative principles imply then that f +δ is desirable, whence
P( f +δ )≥ 0. Since this holds for all δ > 0, we deduce that P( f )≥ 0.

More generally, Walley says that a coherent lower prevision P is fully conglomer-
able when it is B-conglomerable for every partition B. A full conglomerable coherent
lower prevision can be coherently updated to a conditional lower prevision P(·|B) for
any partition B of Ω. Again, full conglomerability can be accepted as an axiom of
rationality provided we accept the updating and conglomerability principles, and also
provided that when we define our coherent lower prevision we want to be able to up-
dated for all possible partitions of our set of values.

There is an important connection between full conglomerability and countable
additivity: given a linear prevision P on L (Ω) taking infinitely many values, it is
fully conglomerable if and only for every countable partition {Bn}n of Ω it satisfies
∑n P(Bn) = 1.

Full conglomerability is one of the points of disagreement between Walley’s and de
Finetti’s work, that we shall present in more detail in Section 5.1. De Fintetti rejects the
assumption of countable additivity on probabilities, and taking into account the above
relationship also the property of full conglomerability. One key observation here is that
de Finetti does not assume the conglomerative principle as a rationality axiom, and full
conglomerability can be seen as a consequence of it.

When P is B-conglomerable and B ∈B, the conditional lower prevision P( f |B) is
uniquely determined by the Generalised Bayes Rule if P(B) > 0. If P(B) = 0, however,
there is not a unique value for P( f |B) for which we achieve coherence. The smallest
conditional lower prevision P(·|B) which is coherent with P is the vacuous conditional
prevision, given by P( f |B) = infω∈B f (ω), and if we want to have more informative
assessments we may need some additional assumptions. Indeed, the approach to con-
ditioning on sets of probability zero is one of the differences in the approach to condi-
tioning by Walley (and also by de Finetti and Williams) and that by Kolmogorov. In
Kolmogorov’s approach, conditioning is made on a σ -field A , and a conditional pre-
vision P( f |A ) is any A -measurable gamble which satisfies P(gP( f |A )) = P(g f ) for
every A -measurable gamble g. In particular, if we consider an event B of probability
zero, Kolmogorov allows the prevision P(·|B) to be completely arbitrary. Walley’s co-
herence condition is more general because it can be applied on previsions conditional
on partitions, and is more restrictive when dealing with sets of probability zero than
Kolmogorov’s (although it may be argued that it also makes more sense). In particular,
for a given linear prevision P there may not exist linear conditional previsions which
are coherent with P.

One interesting approach to conditioning on sets of probability zero in a coherent
setting is the use of zero-layers by Coletti and Scozzafava [8, Chapter 12], which also
appears in some earlier work by Krauss [38]. Their approach to conditioning is nev-
ertheless slightly different from Walley, since they consider conditional previsions as
previsions whose domain is a class of conditional events. See [6, 7, 8] for further infor-
mation on Coletti and Scozzafava’s work, and [71, Section 6.10] and [78, Section 1.4]
for further details on Walley’s approach to conditioning on events of lower probability
zero.
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4 Independence
Next, we see how we can define the concept of independence in the context of coherent
lower previsions. Let us consider two random variables X1,X2 taking values in respec-
tive sets X1,X2. In the classical setting, we call the two variables (stochastically)
independent when, given the probability measure P that models the value that (X1,X2)
assume jointly, any of the following conditions holds6

(a) P(X1 = x1,X2 = x2) = P(X1 = x1) ·P(X2 = x2) for all x1 ∈X1,x2 ∈X2 [decom-
position].

(b) P(X1 = x1|X2 = x2) = P(X1 = x1) for all x1 ∈X1,x2 ∈X2 [marginalization].

Remark 2. These two conditions are equivalent provided the marginal distributions
are everywhere non-zero, that is, provided we are not conditioning on sets of probability
zero. But if P(X2 = x2) = 0 for instance, then condition (a) holds trivially, while there
are many values of P(X1 = x1|X2 = x2) for which condition (b) may not hold, and this
even under the more restrictive treatment of conditioning of sets of probability zero
that we presented in the previous section. To simplify this section, we shall assume
throughout that the conditioning events have all positive lower probability. �

Provided we are conditioning on sets of positive probability, independence is a
symmetrical notion: if (b) holds, then we also have

P(X2 = x2|X1 = x1) = P(X2 = x2)

for all x1 ∈X1,x2 ∈X2.
When our knowledge about the value that (X1,X2) assume jointly is represented by

means of a coherent lower prevision P on L (X1×X2), there is no unique way of
extending the notion of independence. The properties of decomposition and marginal-
ization are no longer equivalent, and moreover symmetry is not immediate anymore,
meaning that we must distinguish between irrelevance (an asymmetrical notion) and
independence (its symmetric counterpart). On the other hand, all our definitions must
be made in terms of variables and not of events, since events do not keep all the infor-
mation about the coherent lower prevision P.

In this section, we shall present some of the generalizations proposed in the lit-
erature and the relationships between them. To fix things, consider a coherent lower
prevision P on L (X1×X2) representing our knowledge about the value that X1,X2
assume jointly. 7 We shall assume throughout that these two variables are logically
independent, meaning that the joint variable (X1,X2) can assume any value in the prod-
uct space X1×X2. Our information about the random variable X1 is given by the
marginal lower prevision P1, where

P1( f ) = P( f̂ )
6In this definition we assume that the sets X1,X2 are finite in order to simplify the notation; in the

infinite case we would simply consider density functions instead of probability mass functions. We also use
X1 = x1 for denoting the event X−1

1 ({x1}) to simplify the notation.
7Although here we are assuming for simplicity that the domain of P is L (X1×X2), all the developments

we shall make in this section can be generalized to the case where the domain of P is some subset K of
L (X1×X2).
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for all f ∈L (X1), where f̂ is the gamble given by f̂ (x1,x2) = f (x1) for all (x1,x2)
in X1×X2 (such a gamble is called X1-measurable). Similarly, we can express our
information about the outcome of X2 by means of a coherent lower prevision P2 on
L (X2), given by

P2(g) = P(ĝ)

for all g ∈ L (X2), where ĝ is the gamble given by ĝ(x1,x2) = g(x2) for all (x1,x2)
in X1×X2. We shall also assume that we have conditional lower previsions P(·|X1),
P(·|X2) on L (X1×X2) such that P,P(·|X1) and P(·|X2) are jointly coherent (i.e., they
satisfy Equation (11)). These conditional lower previsions represent our beliefs about
the outcome of one of the experiments provided we observe the outcome of the other.
P(·|X1) is a lower prevision conditional on the partition {X1 = x1 : x1 ∈X1} of Ω, and
similarly P(·|X2) is a lower prevision conditional on the partition {X2 = x2 : x2 ∈X2}
of Ω. To simplify the notation we shall sometimes use P(·|x1) to denote P(·|X1 = x1)
and P(·|x2) to denote P(·|X2 = x2) for any x1 ∈X1,x2 ∈X2.

In the examples we shall consider in this section we shall deal with finite spaces
only, and the conditioning events shall always have positive lower probability; this will
simplify the calculations of the conditional lower probabilities, because (i) they will
be uniquely determined by the Generalised Bayes Rule and (ii) they will also be the
lower envelope of the conditional precise probabilities that can be obtained by applying
Bayes’s rule to the set of compatible (precise) models.

4.1 Epistemic irrelevance
The first generalization of the concept of independence to imprecise probabilities is
based on the marginalization property, and is called epistemic irrelevance. We say that
the experiment X1 is epistemically irrelevant for X2 when our beliefs about the value
that X2 takes do not change after we learn the value that X1 has taken. Formally, this
holds if and only if

P( f |X1 = x1) = P2( f )

for all X2-measurable gambles f , and all x1 ∈X1.
The notion of epistemic irrelevance can also be defined in terms of sets of linear

previsions [10, 11]: we say that X1 is epistemically irrelevant for X2 when

{P2(·|x1) : P2 ∈M (P)}= M (P2),

for all x1 in X1, i.e., when learning the outcome about the first experiment does not
change our uncertainty (the set of possible precise models) about the second experi-
ment. Similarly, this notion can also be expressed in terms of sets of desirable gam-
bles: epistemic irrelevance means that the set of acceptable gambles for X2 should not
change after learning the outcome of X1 [49].

Example 5. We consider three urns with green and red balls. The first urn has one red
ball and one green ball. In the second urn, we have two green balls, one red ball and
two other balls of unknown color (they may be red or green). In the third urn, we have
one green ball, two red balls and two other balls of unknown color.
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We select a ball from the first urn. If it is green, then we select a ball from the
second urn; if it is red, we select a ball from the third urn. Let X1 be the color of the
first ball selected and X2 the color of the second ball. We have

P( the second ball is green | the first ball is green) = 2/5
P( the second ball is green | the first ball is red) = 1/5,

and thus the first experiment is not epistemically irrelevant to the second. �

4.2 Epistemic independence
The notion of epistemic irrelevance is an asymmetric notion, meaning that X1 can be
epistemic irrelevant for X2 while X2 is not epistemic irrelevant for X1. When X1 and X2
are epistemically irrelevant to each other, we say that the two experiments are epistem-
ically independent. This holds if and only if

P( f |X1 = x1) = P2( f ) and P(g|X2 = x2) = P1(g)

for all X2-measurable gambles f , X1-measurable gambles g, x1 ∈X1, and x2 ∈X2.
In terms of sets of linear previsions, the notion of epistemic independence means

that, for every x1 ∈X1 and x2 ∈X2,

{P2(·|x1) : P2 ∈M (P)}= M (P2) and {P1(·|x2) : P1 ∈M (P)}= M (P1).

The behavioural interpretation of these definitions is that our sets of desirable gam-
bles for either experiment do not change after we learn the outcome of the other exper-
iment.

Example 5(cont.). Assume now that in the third urn we also have 2 green balls, 1 red
ball and 2 balls of unknown color. We have

P( the second ball is green | the first ball is green) = 2/5 and
P( the second ball is green | the first ball is red) = 2/5,

and similarly

P( the second ball is red | the first ball is green) = 1/5 and
P( the second ball is red | the first ball is red) = 1/5.

Hence, the first variable is epistemically irrelevant for the second. However,

P( the first ball is green | the second ball is green) = 1/3;

(use the composition where we have 2 green balls in the second urn and 4 in the third
one) while P( the first ball is green ) = 0.5. We conclude that the second variable is
not epistemically irrelevant to the first, and therefore they are not epistemically inde-
pendent. �
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This example provides an instance of the phenomena of dilation, where by updating
our beliefs we make them more imprecise. We indeed have

P( the first ball is green | the second ball is green) = 2/3 and
P( the first ball is green | the second ball is green) = 1/3,

so knowing the color of the second ball makes our beliefs about the probability of
drawing a red ball in the first urn change from being precise in 0.5 to belong to the
interval [ 1

3 , 2
3 ]. See [54] for more information about dilation.

4.3 Independent envelopes
As we said before, in the classical case, if all the marginals are everywhere non-zero,
then independence can be expressed equivalently through the decomposition and the
marginalization notions. These two properties, however, are no longer equivalent in the
imprecise case, and we can have two epistemically independent experiments for which
P(x1,x2) 6= P1(x1) ·P2(x2) for some x1 ∈X1,x2 ∈X2.

The first two notions we have considered are based on extending the marginaliza-
tion property to the imprecise case. Next, we introduce two conditions of independence
which are based on the decomposition property. These conditions are only applied to
the extreme points of the set M (P), because these keep all the information about P
and moreover it can be checked that a decomposition property cannot hold for all the
elements of the convex set M (P).

We say that P is an independent envelope when every extreme point P of M (P)
factorizes as P = P1×P2, where P1 is the marginal distribution of P on X1 and P2 is the
marginal distribution of P on X2. This concept is called independence in the selection
in [10] and type-2 independence in [14].

It is easier to understand the ideas behind this notion if we consider the Bayesian
sensitivity analysis interpretation of our beliefs. Assume then that we have two exper-
iments X1, X2, and that the probability modelling the first experiment belongs to some
set M (P1), while the probability modelling the second experiment belongs to another
set M (P2). Let M (P) be the set of possible models for the behavior of the two exper-
iments, taken together. This set of models can be characterized by its set of extreme
points. Independence in the selection means that each of these extreme points satisfies
the classical notion of independence, in the sense that it can be written as a product of
its marginals.

Example 5(cont.). Assume now that in the first urn we have one red ball, one green
ball and one ball of unknown color, and that in the second and third urns we have two
green balls, one red ball and two balls of unknown color. Then the variables X1 and X2
are epistemically independent: reasoning as in the example in Section 4.2 we deduce
that the color of the first ball drawn is irrelevant for the second; conversely, we have
that P( the first ball is green ) = P(the first ball is red ) = 1

3 , and we deduce from the
same example that the color of the second ball is epistemically irrelevant for the first.

Let P be the probability distribution associated to the following composition or the
urns:
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Urn 1 Urn 2 Urn 3
2 red, 1 green 2 green, 3 red 4 green, 1 red

It is easy to check that this is an extreme point of the set of all the probability
distributions compatible with the available information (i.e., those associated to the
possible compositions of the urns). However, it does not factorize: we have for instance

P( the 2nd ball is green and the 1st is red )

= P( the 2nd ball is green| the 1st is red ) ·P( the 1st ball is red ) =
4
5
· 2

3
=

8
15

,

while
P( the 2nd ball is green) ·P( the 1st ball is red ) =

2
3
· 2

3
=

4
9
.

Hence, the set of possible models is not an independent envelope. �

It is important to remark that this condition does not prevent the existence of some
dependence between the experiments: we could think for instance of two urns with one
ball of the same color, but such that we do not know if it is red or green. Then knowing
the color of the ball in the first urn completely determines the color of the second, so
there is no independence; however, the set of possible models is an independent enve-
lope. Another example, where we do not condition on events with lower probability
zero, is given in next section.

4.4 Strong independence
Independence in the selection implies that M (P) is included in the convex hull of the
product set

{P1×P2 : P1 ∈M (P1),P2 ∈M (P2)},
but the two sets are not necessarily equal. When we do have the equality, we say that
the two experiments are strongly independent. This is called type-3 independence in
[14]. This equality means that if we consider a compatible model with our beliefs for
each of the experiments, then we can construct their independent product and we obtain
a compatible model with the information we have about the behavior of the two exper-
iments, taken together. Hence, we do not have any information about the experiments
that allows us to rule out any of the combinations of the marginal distributions.

Note nevertheless that this information may be misleading: if we have no informa-
tion at all about the two experiments, we should consider the set of all previsions on
L (X1×X2), and this set satisfies strong independence. Hence, strong independence
implies that we have no information pointing towards some dependence between the
two experiments.

Example 6. Consider that we have two urns with one red ball, one green ball and one
ball of unknown color, either red or green, but the same in both cases. The set of
possible compositions is given by the following table:

Let us select a ball at random from each of the urns, and let Xi be the random
variable denoting the color of the ball selected in the urn i, for i = 1,2. Let P be the
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Urn 1 Urn 2
Composition 1 2 red, 1 green 2 red, 1 green
Composition 2 1 red, 2 green 1 red, 2 green

lower prevision associated to (X1,X2), and let Pi be its marginals, representing our
information about the outcome of Xi, for i = 1,2. The associated lower prevision P is
the lower envelope of the previsions P,P′ that are determined by the compositions in
the table above. Both these previsions factorise, and from this we can deduce that P
is an independent envelope. However, we do not have strong independence: consider
the previsions P1, P2 given by P1(red) = 1/3, P2(red) = 2/3. Then P1 ≥ P1 and P2 ≥
P2. However, their product satisfies (P1×P2)( first red, second green ) = 1/9 < 4/9 =
P( first red, second green ). �

To summarize, and assuming that we are not conditioning on sets of probability
zero, we have that Strong independence⇒ Independence in the selection⇒ Epistemic
independence ⇒ Epistemic irrelevance, and all these conditions are equivalent in the
precise case.

There are other conditions of independence that can be considered for convex sets
of probabilities, or coherent lower previsions [10, 14]. In particular, the important
notion of conditional independence is studied in [14]. On the other hand, it has also
been studied how to extend the assessment given by marginal distributions under some
assumption of independence. This is the basis for the notions of independent natural
extension, and type-1 or type-2 products [71, Chapter 9]), that we do not present here.

5 Relationships with other uncertainty models
In this section, we survey briefly a number of mathematical models which are closely
related to the Walley’s behavioural theory of coherent lower previsions. We refer also
to [71, Chapter 5] for some additional discussion.

5.1 The work of de Finetti
As we mentioned in the introduction, the behavioural theory of coherent lower previ-
sions is based on the behavioural approach to subjective probability, championed by
Bruno de Finetti [21, 23]. In this approach, the probabilistic information is represented
by means of a prevision on a set of gambles. This prevision can be interpreted as an
expectation, but bearing in mind that it is defined directly, without using integration.
From a mathematical point of view this distinction is not important in the precise case,
because the restriction of the prevision to events determines the prevision on all gam-
bles using integration; however, lower previsions are in general more informative than
their restrictions to events, as we have said.

De Finetti defined the prevision of a gamble f for a subject as the unique value µ

such that he accepts the transaction c( f − µ) for every real number c: this means that
he is disposed to buy f for the price µ and also to sell it for the same price, so µ is a
fair price for the gamble f . Then a prevision is coherent when there is no combination
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of acceptable transactions which leads to a sure loss. Mathematically, this is expressed
by

sup
n

∑
i=1

λi( fi−P( fi))≥ 0

for every natural number n, real λ1, . . . ,λn and gambles f1, . . . , fn in K . It is easy to
see that this condition is equivalent to the coherence condition we have given in Eq. (2)
for linear previsions.

Even if most of de Finetti’s work on coherent previsions can be embedded in Wal-
ley’s theory of coherent lower and upper previsions, Walley’s work is not a generaliza-
tion of de Finetti’s work, because there are substantial differences between the two:

• The most fundamental one is that Walley does not require our subject to de-
termine a fair price for all gambles f in the domain. See [71, Section 5.7] for
Walley’s arguments against the assumption of precision.

• Although he did not provide a detailed theory of conditional previsions, his in-
terpretation for them is slightly different from Walley’s: he regards them as pre-
visions defined on a family of conditional events E|H, where E|H is a logical
entity which is true if both E and H are true, false if H is true and E is false, and
void if H is false.

• Another difference between the two approaches is their regard towards the con-
dition of conglomerability, which is rejected by de Finetti in [23, Section 4.19]:
he gives two examples where conglomerability is not satisfied. One argument
here is that full conglomerability rules out linear previsions which are not count-
ably additive (see Section 3.3 for a more precise formulation). The key of the
matter, as Walley says in [71, p. 327] is that

“Those who insist on additivity and linearity must either reject con-
glomerability or the possibility of extensions to larger domains.”

5.2 The work of Williams
A first approach to generalizing de Finetti’s work taking into account the presence of
imprecision was considered by Peter Williams in [84, 85, 86] (see also [67] for a recent
review of Williams’ work). It was also motivated by the treatment of conditional pre-
visions in de Finetti’s work. Williams defines a coherent conditional lower prevision
by means of a set of acceptable gambles, in the sense that P( f |B) is defined as the
supremum value of µ such that IB( f −µ) is an acceptable transaction for our subject.
In particular, if we consider B = Ω, P( f |Ω) agrees with Walley’s behavioural interpre-
tation of a lower prevision (see [86] for a more detailed account of the unconditional
case). Similarly, P( f |B) is defined as the infimum value of µ such that the gamble
IB(µ − f ) is acceptable for our subject, which in the case of unconditional lower pre-
visions (B = Ω) becomes the infimum selling price for f .
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In order to define coherence, he requires the set of acceptable gambles to satisfy
conditions which are slightly weaker than (D0)–(D3).8 He proves then that a necessary
condition for coherence is that

sup
x∈∪n

i=0Bi

[
n

∑
i=1

λiIBi( fi−P( fi|Bi))−λ0IB0( f0−P( f0|B0))](x)≥ 0, (13)

for every natural number n, Bi included in Ω, non-negative real λi and fi in the domain
of P(·|Bi) for i = 0, . . . ,n. This condition is sufficient if we require the set of acceptable
gambles to satisfy (D0)–(D3).

Let us compare this Condition, that we shall call W -coherence, with Walley’s no-
tion of coherence for conditional lower previsions (11). We see that, under Walley’s
terminology (see Section 3.2), Condition (13) corresponds to the particular case of
Equation (11) where the sets Si( fi) are finite for all i. Hence, if we consider a num-
ber of conditional lower previsions P(·|B1), . . . ,P(·|Bn) where B1, . . . ,Bn are finite
partitions of Ω, then they are coherent in the sense of Walley if and only if they are
W-coherent. However, for arbitrary (not necessarily finite) partitions B1, . . . ,Bn, Wal-
ley’s notion of coherence is stronger than that of Williams.

The use of W-coherence for conditional lower previsions has a number of technical
advantages over Walley’s condition:

• W-coherent conditional lower previsions are always lower envelopes of sets of
W-coherent conditional linear previsions ([85, Theorem 2], see also [71, Sec-
tion 8.1]), and as a consequence they can be given a Bayesian sensitivity analysis
interpretation.

• We can always construct the smallest W-coherent extension of a W-coherent
conditional lower prevision [85, Theorem 1]. Moreover, this result can be gen-
eralised towards unbounded gambles [63].

There are also, however, a number of drawbacks:

• If we express the condition using Walley’s terminology, it assumes the finite-
ness of the sets Si( fi) involved, whereas for many statistical applications it is
important to consider non-finite spaces and partitions.

• It does not satisfy in general the conglomerability condition, as a consequence
when we consider infinite partitions we may end up with acceptable transactions
(W-coherent) which incur in a sure loss [71, Example 6.6.9].

As a summary, Williams’ definition of coherence is a valid and interesting alter-
native to Walley, that avoids some of the drawbacks of Walley’s approach to condi-
tional lower previsions. Moreover, it seems to be better suited for extending the theory
to unbounded gambles. The choice between the two is based in whether we accept
full conglomerability as a rationality requirement, which means essentially that we
assume countable additivity of the involved previsions (but without measurability re-
quirements): see Section 3.3 and [71, Section 6.9] for more details.

8The difference is that he does not require a gamble f 6= 0 with infx∈supp( f ) f (x) = 0 to be accepted, nor
a gamble f 6= 0 with supx∈supp( f )(x) = 0 to be rejected, where supp( f ) = {ω ∈Ω : f (ω) 6= 0} is the support
of f . This is related also to Walley’s discussion of really desirable gambles [71, Appendix F].
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5.3 Kuznetsov’s work on interval-valued probabilities
In a relatively unknown book on interval valued probabilities [40], the Russian math-
ematician V. Kuznetsov established, in parallel to Walley, a theory of interval-valued
probabilities and previsions which has many things in common with the behavioural
theory we have presented. Starting from some axioms which are equivalent to Walley,
he deduces many of the properties that can also be found in Walley’s book. He also ob-
tains some interesting limit results for coherent lower and upper previsions. The main
differences between both theories are:

• Kuznetsov does not consider the behavioural interpretation for coherent lower
and upper previsions in terms of buying and selling prices.

• He makes some assumptions in the domains, and therefore we cannot consider
previsions with arbitrary domains as is the case with Walley’s theory.

• His theory is valid for unbounded gambles, and the domain of his upper previ-
sions contains at least those gambles which are bounded above (and similarly, the
domain of his lower previsions includes at least the gambles which are bounded
below).

• When conditioning on a set B of lower probability zero and positive upper prob-
ability, he suggests taking the limit on conditional dominating previsions, which
give positive probability to B. This is related to the notion of regular extension
in Walley [71, Appendix K].

See [41, 42] for two short papers in English presenting Kuznetsov’s work, and
[12, 66] for some works derived from his theory.

5.4 Weischelberger’s F- and R-probabilities
Recently, Kurt Weischleberger and some of his colleagues have also established a the-
ory of interval-valued probabilities [79, 80, 81] that is more statistically oriented than
Walley’s. This theory considers two non-additive measures L ≤ U determining the
lower and upper bounds for our probabilities. The set of (finitely additive) probabili-
ties M that lie between L and U are called the structure determined by L,U .

L and U are said to determine an R-probability with structure M when M 6= /0, and
an F-probability when L,U are the infimum and the supremum of the probabilities in
M , respectively. Hence, these concepts are equivalent to the notions of avoiding sure
loss and coherence for imprecise probabilities.

Weischleberger’s theory is more related to the classical works on probability theory,
in the sense that it focuses on probabilities instead of previsions and that it also makes
some measurability assumptions that are not present in Walley’s theory. Another dif-
ference is that Weischelberger’s work does not use a subjective interpretation of lower
and upper probabilities, and it allows to connect the notions of avoiding sure loss and
coherence with a frequentist interpretation of probability (see also [69] for another pa-
per in this direction). The treatment of conditional lower and upper probabilities and
of the notion of independence is also different [82].

See [2, 82] for some recent work based on this theory.
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5.5 The Dempster-Shafer theory of evidence
Next, we outline the main features of the Dempster-Shafer theory of evidence [57]. The
origin of this theory is in Dempster’s work on random sets, or measurable multi-valued
mappings [24, 25].

Let A be a field of subsets of Ω, and consider a lower probability P : A → [0,1]
that satisfies P( /0) = 0,P(Ω) = 1. P is said to be completely monotone if it is monotone
and for any events A1, . . . ,An in A and n≥ 2,

P(∪n
i=1Ai)≥ ∑

I⊆{1,...,n}
(−1)|I|+1P(∩i∈IAi), (14)

where |I| denotes the cardinality of the set I. A lower probability that satisfies Equa-
tion (14) for all k ≤ p is called p-monotone. A complete monotone lower probability
is then one that is n-monotone for every natural number n. When Ω is a finite space,
and the field A is the class of all subsets of Ω, a completely monotone lower proba-
bility is called a belief function. A belief function is determined by its so-called basic
probability assignment m, which is given by

m(A) = ∑
B⊆A

(−1)|A−B|P(B).

Then P is given, for all A ⊆ X , by P(A) = ∑B⊆A m(B). The upper probability that we
can generate from a completely monotone lower probability using conjugacy is said to
be completely alternating, and, in the particular case where Ω is finite, a plausibility
function. The relationship between a plausibility function P and the basic probability
assignment m of its conjugate belief function P is P(A) = ∑B∩A 6= /0 m(B). The basic
probability assignment of a set A can be interpreted as the measure of belief that is
committed exactly to A. Then P(A) would be our subject’s belief that the result of
the experiment belongs to the set A, while P(A) is the measure of his belief that the
outcome of the experiment may belong to A (or, perhaps more clearly, the measure of
belief that does not rule out that the outcome is in A). This is the so-called evidential
interpretation.

From the behavioural point of view, multi-valued mappings have been studied in
[71, Section 4.3.5] and in [47]. On the other hand, 2- (and in particular completely-)
monotone functions were studied by Walley in [68]. Some of his results generalize to
the case where the domain is a lattice of events instead of a field [18]. It can be checked
[68] that a 2-monotone lower probability is in particular coherent, and therefore so are
n- and completely monotone capacities. More generally, we can consider n-monotone
lower previsions, which appeared in [5, Chapter 3] as functionals between an Abelian
semigroup and an Abelian group, and were studied from a behavioural point of view in
[17, 18]. Hence, from a static point of view (without considering updating or combi-
nation of information) Dempster-Shafer theory can be embedded into Walley’s theory
of coherent lower previsions.

One of the main features of the evidential theory, and Walley’s main point of crit-
icism (see [71, Section 5.13] and [74]) is Dempster’s Rule of Combination [24, 57].
It is used to combine several belief functions which are based on different sources of
information into one belief function. Let P1,P2 be two belief functions with basic
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probability assignments m1,m2, respectively. The combined belief function P is the
one related to the basic probability assignment

m(C) = ∑
A∩B=C

m1(A)m2(B), (15)

where, if necessary, we normalize it by multiplying by[
1− ∑

A∩B= /0
m1(A)m2(B)

]−1

,

which is a measure of the extent of the conflict between P1 and P2.
This rule of combination is only reasonable for Walley provided we make some ad-

ditional assumptions on the relationship between the experiments that underlie P1,P2
([71, Section 5.13.7]). In particular, the conditioning rule that we may derive from it
may fail to produce conditional lower previsions which are coherent with the uncondi-
tional ones. We may have to make some extra assumptions of conditional independence
if we want it to satisfy coherence, and this requirement may be unreasonable in some
cases. See also [44, 50, 87] for further criticism of this rule.

5.6 The game-theoretic approach to imprecise probabilities
We would like to conclude this section by making a brief summary of recent work by
Shafer and Vovk [59], where a connection is established between probability and fi-
nance through a game-theoretic approach to coherent lower previsions. The ideas of
this approach are roughly similar to the ones behind the behavioural theory we have
outlined: we also have here acceptable transactions and study whether they can lead to
a sure loss. There are, however, a number of important differences between the two:
Shafer and Vovk consider a game between two players, whereas Walley’s theory is fo-
cused on one subject who establishes buying and selling prices;9 there is no assumption
of boundedness of the variables involved; and they focus on the consequences and not
so much on probability.

Let us make a short summary of the main ideas in this work. We refer to [60, 59]
for more details. Consider a game between two players, called World and Skeptic, who
play according to a certain protocol. The first player (World) can make a number of
moves, where the next move may depend on his previous moves, but not on the ones
made by Skeptic. These moves can be represented in a tree, and we call a situation
some connected path in the tree that starts at the root of the tree.

In each situation t, Skeptic has a number of possible moves, and a gain function
associated to the move he makes and World’s next move, representing the change in
Skeptic capital associated to these two moves. A strategy is then a function determining
Skeptic next move for each non-final situation in the tree representing World’s moves,
and the associated capital if he starts the game with zero capital is his capital process.

Under this interpretation, Shafer and Vovk define upper and lower prices for real
variables. The upper price for a variable f in a non-final situation t is the lowest price

9A two player model is already present in [61].
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at which Skeptic can buy the variable f at the end of the game, no matter what moves
World makes, using some strategy. The lower price for a variable f in a non-final
situation t can be given an analogous interpretation using conjugacy.

A gambling protocol is called a probability protocol when the following two con-
ditions are satisfied:

(PP1) The set of possible moves for Skeptic in any situation t is a convex cone.

(PP2) For each non-final situation, Skeptic’s gain function is linear with respect to
Skeptic’s moves, for any move of World fixed.

It is called coherent when for each non-final situation and each possible move s of
Skeptic there is another move w of World such that the gain associated to (s,w) is
non-positive.

For many of their developments Shafer and Vovk decompose World into multiple
players. They consider for instance Reality and Forecaster, where Forecaster deter-
mines for each non-final situation the set of possible moves and the gain function for
Skeptic, while Reality determines the move of World. Shafer and Vovk establish a
number of limit results, such as weak and strong laws of large numbers, for coherent
probability protocols.

Under the terminology we have considered throughout this survey, our subject
would take the role of Forecaster, in the sense that he establishes the supremum buying
prices for all gambles in the domain. Then, we check the coherence of these prices
using the roles of Skeptic (selecting some gambles in the domain) and Reality (deter-
mining the outcome of the experiment, that is, the value ω in Ω). Walley’s notion of
coherence means that the buying prices established by Forecaster should not be ex-
ploitable by Skeptic in order to assure himself a gain, no matter how World moves.

We see then that, although some of the concepts used by Shafer and Vovk are
similar to the ones in Walley’s theory of coherent lower previsions (the behavioural
interpretation, the notion of coherence, etc), there are also differences between the two
approaches, like the use of two players and the extension to unbounded gambles. It
is therefore interesting that Shafer and Vovk’s work on coherent probability protocols
has been recently connected to Walley’s theory of coherent lower previsions in [19]. It
has been proven that for every coherent probability protocol there exists an immediate
prediction model such that both lead to identical buying prices, and vice versa. See
[19] for more information. In this sense, in spite of some of their differences, the
results from one theory can be embedded into the other.10

6 Applications
Let us give some comments now on the use of the theory of coherent lower previsions
in other contexts. Since the origins of subjective probability are in decision making, it
is not really surprising that much of the work made on practical uses of coherent lower

10The (possible) unboundedness of the variables in the models is overcome in the case of coherent lower
previsions by working with sets of (really) desirable gambles, instead of almost-desirable ones ([19, Sec-
tions 3 and 4]).
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previsions, which stem from subjective probability theory, is related to decision theory.
Indeed, imprecise probabilities can be seen as a more realistic model for practical deci-
sion problems, because they allow us to treat some of the most common problems that
appear in practice: lack of available information, conflicting sources of beliefs, and
difficulties in eliciting expert’s opinions.

The theory of coherent lower previsions, in different forms, has been employed in a
number of applications, in different frameworks such as the environmental [70] or the
bio-medical [64, 72, 90]. One of the consequences of the use of sets of probabilities
will be that sometimes we cannot decide which of two alternatives must be preferred,
something which is to be expected on the other hand in the case of little information.
Another feature is that there are many possible ways of generalizing the principle of
maximum expected utility to coherent lower previsions, such as E-admissibility, inter-
val dominance, Γ-maximinity and maximality, etc. We refer to [65] for an overview of
the different criteria, and to [56] for a comparison of E-admissibility and Γ-maximinity.

There have also been several studies connecting the behavioural theory of coherent
lower previsions with different aspects of statistics [73, 75]. One of the most important
is the work in [73], where Walley defined the so-called Imprecise Dirichlet Model.
This is a model for inference which relates past and future observations about some
variables. See also [3, 76] for additional information about this model. The Imprecise
Dirichlet Model has been applied in different contexts, such as classification [1, 91, 90],
reliability analysis [9] or game theory [52]. See also [16, 89] for further theoretical
developments on this subject.

Finally, coherent lower previsions have also been used for dealing with uncertainty
scenarios in climate change [39] and forestry [28].

7 Strengths and challenges
The results mentioned in this paper constitute an attempt to overview the main features
of the behavioural theory of coherent lower previsions. As a summary, the main virtues
of this theory are:

1. It is better suited for situations where the available information does not justify
the use of a precise probability distribution.

2. It encompasses most of the other generalizations considered in the literature (be-
lief functions, 2-monotone capacities, coherent lower probabilities). This is done
mainly in two ways:

• By focusing on the behavior towards variables (gambles), and therefore on
the notion of expectation, without going through the behavior on events
first.

• By moving away from the measurability requirements on classical proba-
bility theory and considering previsions for arbitrary sets of gambles.

3. It provides a behavioural interpretation that leads naturally to decision making,
and it can at the same time be given a sensitivity analysis representation in some
cases.
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Nevertheless, the theory of coherent lower previsions has a number of challenges
that need to be studied in more detail:

1. The concept of coherence, although a reasonable rationality requirement, may
be too weak to produce informative inferences.

2. The theory is established for bounded random variables, or gambles, and the
generalization towards unbounded random variables is not straightforward.

3. It assumes the linearity of the utility scale, something which may not be reason-
able in practice.11

4. Walley’s notion of natural extension of conditional lower previsions has some
undesirable properties, which do not seem to be resolvable without giving up on
conglomerability.

5. Computing with coherent lower previsions in practice means often solving non-
linear problems, whence for big problems the computational costs may be high.

6. There have been until now relatively few applications, and more are needed in
order to effectively compare the applicability of this theory with classical tools.

7. More generally, we need to develop tools to be able to compare the effectiveness
of precise and imprecise approaches in a number of situations.

8. There are several notions of independence as well as different optimality criteria,
and it is not always clear which of them is better suited for each situation.

9. From the theoretical point of view there are a number of notions and results from
classical probability theory which have not been generalized, such as ergodic
theorems.

These problems constitute the main avenues for future research in the theory.
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