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Résumé. Dans cet article nous présentons une série d’adaptations del’algorithme du "cadre d’apprenstis-
sage guidé" pour résoudre différentes tâches d’étiquetage. La spécificité du système proposé réside dans sa capa-
cité à apprendre l’ordre de l’inférence avec les paramètresdu classifieur local au lieu de la forcer dans un ordre
pré-défini (de gauche à droite). L’algorithme d’entraînement est basé sur l’algorithme du "perceptron". Nous ap-
pliquons le système à différents types de tâches d’étiquetage pour atteindre des résultats au niveau de l’état de l’art
en un court temps d’exécution.

Abstract. In this paper we present a series of adaptations of the GuidedLearning framework to solve
different tagging tasks. The specificity of the proposed system lies in its ability to learn the order of inference
together with the parameters of the local classifier insteadof forcing it into a pre-defined order (left-to-right). The
training algorithm is based on the Perceptron Algorithm. Weapply the system to different kinds of tagging tasks
reaching state of the art results with short execution time.
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1 Introduction
The system described in this paper carries out tagging taskswith semi-supervised training.We extend to the Guided
Learning (GL) framework presented in (Shenet al., 2007). This approach has been applied in the past to POS
tagging task with excellent results. One of the aims of this paper is to show that GL can be adapted to solve a wide
set of tagging and chunking tasks obtaining good performances with short execution time. This framework is more
complex than supervised learning. The system can learn the parameters for the local classifier from gold standard
labels, but has no indications on the order of inference. Basing the learning algorithm on the Perceptron scheme
allows one to keep a low system complexity and moderate execution time, without sacrificing learning capability
and quality of the results. Compared to other systems that use a Perceptron algorithm, such as (Collins, 2002),
GL introduces a bidirectional search strategy. Instead of forcing the order of the tagging in a left-to-right fashion,
any tagging order is allowed. GL follows an easiest-first approach and incorporates the learning of the order of
inference in the training phase. In this way right-context and bidirectional-context features can be used at little
extra cost. In a direct comparison with (Collins, 2002) we show that it is possible to achieve better accuracy with
shorter execution time allowing the inference order to be predicted by the system instead of using an exhaustive
search strategy.

We test the effectiveness of this approach applying it to different tagging tasks, taking part in shared tasks or
experimenting on widely used corpora, this allows us to makea comparison between our system and the state of the
art. The tasks we focus on are : Part of Speech Tagging, Noun Phrase Chunking, and Named Entity Recognition.
NP chunking and NER are defined as chunking tasks, but following the general guidelines of (Ramshaw & Marcus,
1995) we can solve these problems as tagging tasks. For the chunking tasks, we apply a voting system between
multiple data representations of text chunks (Shen & Sarkar, 2005).

2 Bidirectional Guided Classification

The input of the Inference Algorithm is a sequence of tokenst1t2 · · · tn. For each tokenti, we have to assign a
labelli ∈ L, with L being the label set. A subsequenceti · · · tj is called a span, and is denoted[i, j]. To each span
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s is associated a set of hypothesesHs, and each hypothesishs ∈ Hs is composed by a sequence of length|s| over
L.

Spans are started and grown by means of tagging actions. Three kinds of actions are available : it is possible to
start a new span by labeling a token which doesn’t have any context, or expand an existing span by labeling a
token adjacent to the span, or merging two spans by labeling the token between them. In this last case, the two
originating spans become subsequences of the resulting span, and the labeling action of the token between the
spans use both right and left context information. In our system a trigram model is used. So if the span[i, j] has
already been tagged, we can use its hypothesized two left boundary labels(li, li+1) as right context when choosing
the label for the tokenti−1.

For each hypothesish associated with a spans, we maintain its most recent tagging actiona(h), and the hypo-
theses, if any, that have been used as left contextĥl(h) and right context̂hr(h). ĥl(h) is the top hypothesis among
the hypothesesHl that are compatible with the left context used by the taggingaction ; and similarlŷhr(h) is the
top hypothesis among the hypothesesHr that are compatible with the right context used by the tagging action. The
score function for hypotheses is computed in a recursive fashion, adding the score of the tagging actionU(a(h))

to the scores of the left contextV (ĥl(h)) and right contextV (ĥr(h)) hypotheses :

V (h) = V (ĥl(h)) + V (ĥr(h)) + U(a(h)) (1)

The score of the tagging actionU(a(h)) is computed through a linear combination of the weight vector w and the
feature vector of the actionf(a(h)) :

U(a(h)) = w · f(a(h)) (2)

We define the top hypothesish∗
s for a spans to be the hypothesis inHs with highestV (h) score. So at each step

of the algorithm we keep two kind of scores :U(·) the score of an action represents the confidence for the next
labeling action, andV (·) the score of a hypothesis represents the overall quality of apartial result. The selection for
the next tagging action directly depends on the score of the action. On the other hand, the score of the hypothesis
is used to maintain the top partial results for each span. To reduce the search space explored during inference
we apply a beam search strategy. For each span we consider only theB hypotheses with highest scoreV (h). So
in the worst case the computation of the top B hypotheses for anew span involves the scoring of every possible
combination of the most recent action, left context, and right context, for a complexity ofO(B2|L|).

Algorithm 1 Inference Algorithm
initialize the set of accepted spans S ;
initialize the queue of candidate spans Q ;
while (Q 6= ∅) do

spans′ ← argmaxs∈Q U(a(h∗

s)) ;
updateS with s′ ;
updateQ with s′ andS ;

1 [w−2],[w−1],[w0],[w1],[w2],[w−1,w0],[w0,w1]
2 [l−2], [l−1], [l−2,l−1],

[l−2,w0], [l−1,w0], [l−2,l−1,w0]
3 [l1], [l2], [l1,l2], [l1,w0], [l2,w0], [l1,l2,w0]
4 [l−1,l1], [l−1,l1,w0]

TABLE 1: Context feature templates :1) word features,
2) left context features,3) right context features,4) bidi-
rectional features.

Algorithm 2 Guided Learning
for (i← 1; i ≤ I ; i++) do

for (r ← 1; r ≤ R; r++) do
initialize the set of accepted spansS ;
initialize the queue of candidate spansQ ;
while (Q 6= ∅) do

spans′ ← argmaxs∈Q U(a(h∗

s)) ;
if h∗

s′ = gold then
updateS with s′ ;
updateQ with s′ andS ;

else
promote(w, f(gold)) ;
demote(w, f(a(h))) ;

TA UWTA
(Dell’Orletta, 2009) 96.34% 91.07%

GL (Gesmundo, 2009b) 95.85% 91.41%

TABLE 2: Top two systems in Evalita 2009 POS task.

Algorithm 1 describes the Inference Algorithm. The token sequencet1 · · · tn, the beam widthB and the weight
vectorw are provided as input. The algorithm works using two groups of spans :S is the list of accepted spans,
andQ is the a queue of candidate spans. At the beginning of the inference algorithm,S is initialized with the
empty set, andQ is filled with candidate spans[i, i] for each tokenti ; to these spans are associated theB best
hypotheses consisting of a single tagging action, with no context, associating a labell ∈ L to ti. This provides
the set of starting hypotheses. The loop of the algorithm repeatedly selects a candidate spans′ fromQ, so that its
top hypothesish∗

s′ has the highest tagging action scoreU(a(·)). Thus we pick the span that results from the next
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tagging action we are most confident about. Then we uses′ to updateS andQ. First we updateS, addings′ and
removing the spans included ins′. Then letS− be the set of spans removed fromS. We updateQ replacing each
span adjacent tos′ or which takes as context one of the spans inS− with a new candidate span takings′ as its
new context. The algorithm terminates whenS contains a single span covering the whole token sequence andQ

becomes empty. The loop is guaranteed to terminate since at each iteration a span is expanded or added inS, and
considering thatS cannot have overlapping spans we can conclude that the number of iterations needed is linear
with the size of the token sequence.

Algorithm 2 is the pseudocode for the Guided Learning Algorithm that learns the weight vectorw with a Perceptron-
like Approach. A set of input samples{(Tr, Lr)}1≤r≤m is provided as input. To each token sequenceTr =
(t1, t2, · · · tn) is paired a gold standard label sequence of the same lengthLr = (l1, l2, · · · , ln). We provide also
the beam widthB and the number of iterationsI. Before processing every input sample(Tr, Lr), we initialize
S andQ as we do in the inference algorithm. Then we iterate selecting s′ from Q, so that its top hypothesish∗

s′

has the highest tagging action scoreU(a(·)). If the top hypothesis ofs′ matches the gold standard, we updateS

andQ as in the inference algorithm. Otherwise, we update the weight vectorw by promoting the features of the
gold standard, and demoting the features ofa(h∗

s′). Then we use the updated weight vectorw to compute the new
scores of the candidate spans inQ. Note that the update of the weight vectorw is done in an aggressive fashion.
S will not be updated and the weights are repeatedly modified until a correct tagging action is chosen from the
queue of candidate spansQ. In our implementation we have used the Averaged Perceptron(Collins, 2002) and
Perceptron with margin (Krauth & Mézard, 1987).

3 Experiments
In this section we describe the set of experiments conductedfor the different tagging tasks and report and discuss
the results. For all the tasks we set the beam widthB = 3, as a trade-off between speed and accuracy. In Table 1
we report a basic set of context feature templates that we useto exploit the bidirectional context window over the
labels and words. The basic set of lexical features containsfunctions to detect the presence of special characters
as digits or hyphenation, prefixes and suffixes up to length of9 characters, and capitalization pattern of the word
in relation to the capitalization on context words. We use this basic set of contextual and lexical features as base
to be adapted for the different tasks.

For the chunking tasks (NER and NP Chunking), we applied a voting system between multiple data representation
of text chunks, following (Shen & Sarkar, 2005). We consider5 different data representations for text chunks :
IOB1 ; IOB2 ; IOE1 ; IOE2 ; O+C. We generate 5 versions of the corpus, one for each text chunk representation.
Then we train one instance of system on each of the five versions of the corpus. As final step we generate 5 different
predictions for the test set from each of the five representation specific systems, and merge the predictions with
a majority vote. Differently from (Shen & Sarkar, 2005) we associate the votes to chunks instead of associating
them to the single labels. This enforces more consistency inthe output label sequence resulting from the voting
system, and improves accuracy of results.

For some tasks we apply the semi-automatic technique to generate new feature templates described in (Gesmundo,
2007). This technique is based on iterations. During each iteration we aim to select the feature template that
added to the current set of features will give higher performance improvements than any other candidate. The
heuristic function is based on short experiments of 3 training rounds on a development set for each candidate
feature. The value returned by the heuristic is based on a linear combination of parameters resulting from this
short experiments, likeF1, or entropy of the distribution of the new features generated. The search space of
candidate feature templates is restricted with hand written constraints on the size of the feature template or on the
number of different types of labels taken in consideration.

3.1 POS Tagging on Wall Street Journal Corpus

In (Shenet al., 2007) the GL framework has been tested on the POS Tagging task on the Wall Street Journal
corpus, annotated with Penn Treebank tag-set. This is the standard data-set for POS on English corpus. For this
experiment we use the basic feature set. On this corpus the system achieves an error rate of 2.67%, this result is
recognized to be the state of the art result for POS tagging onEnglish.
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3.2 POS Tagging on Evalita 2009 Corpus

For the Evalita 2009 POS Tagging shared task, we used a corpusof 4013 sentences extracted from an Italian news
paper, and tagged with the Tanl tag-set consisting of 328 labels. Each label consists of a combination of lexical
and morphological features.

Considering the fine grained structure of the tag-set used, we introduced a new kind of context feature that consi-
ders just the prefix of the actual POS tag, excluding the morphological information encoded in the last part of the
label, this led to a 3% relative error reduction. We also separated the treatment of the capitalization pattern of the
first word of the sentence obtaining a relative error reduction of 0.9%.

In Table 2 we report the results for the top two systems in the final rank of the EVALITA 2009 POS shared
task. GL is the only single system among the top performers, the other models are based on the combination
of multiple systems. For example, the top ranking (Dell’Orletta, 2009) proposed a combination of 6 different
single models. We can also notice that the Guided Learning approach obtained the best result on the Unknown
Words Tagging Accuracy (UWTA). We consider this as a consequence of the freedom in the inference order :
as explained earlier, the Guided Learning approach followsa tagging order based on an easiest-first heuristic, so
difficult labeling decisions (as is the case for unknown words) are postponed, and a label is assigned when more
context is available.

We recorded short execution times despite the large tag-set. The 20 rounds of training were completed in 12 hours,
and the prediction of the test set was done in 2 minutes. During the training phase 1M features were generated.

3.3 Named Entity Recognition on CoNLL2003 Corpus

The experiments for NER on English are executed on the CoNLL 2003 data-set, this dataset is based on the
Reuters Corpus, consisting on a total of 20717 sentences extracted from news articles. The corpus is annotated
with 4 NE classes : Person ; Organization ; Location ; Miscellaneous. As additional input data were provided POS
and Syntactic Chunk labels.

To exploit the Syntactic Chunk tags we added 3 feature templates manually selected to the basic features set, these
features are reported in Table 3 line 6, adding these features led to a relativeF1 improvement of 3.21%. Then we
preprocessed the Syntactic Chunk tags removing all the chunks different from the Noun Phrase Chunks. With the
idea that all the NE chunks are contained in a Noun Phrase, removing the useless information should reduce noise
in the decoding phase. Our intuition was confirmed by aF1 relative improvement of 0.38%. At this point we tried
to add manually selected context features that exploit the POS tags information, but any candidate added to the
feature set resulted in a performance decrement. So we decided to resort to the semi-automatic feature selection
technique to find new feature templates that exploit POS tagsand NP chunks tags. These automatically selected
feature templates are reported in Table 3 line 7 and 8. Addingthese feature resulted in a relativeF1 improvement
of 1.09%.

As external data for the final experiment we used gazetteers with 10k names of organizations, 42k names of
locations and cities, 38k English proper names, and 7k miscellaneous named entities. Comparing our performances
with the CoNLL rank we can see that our system surpasses the third best result. In Table 6 we report our best
result , along with the two systems that perform better at theCoNLL 2003 task. (Chieu & Ng, 2003) uses global
features, extracting information about words in same document. (Florianet al., 2003) applies a combination of
4 different NER systems. Even if our system uses only local features, small gazetteers and no combination of
different systems, it was able to reach a competitive resultcompared to the CoNLL rank.

Recently (Ratinov & Roth, 2009) recorded the best result on this corpus applying to a standard model a rich set
of calibrated features like : wide scope global features, context aggregation, large gazetteers and word clusters
generated from unlabeled text. As extension of this work, itwould be interesting to apply these effective features
to the GL approach.

The 13 rounds of training were completed in 2 hours, and the prediction of the test set was done in 1 minute.
During the training phase 425k features were generated.
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5 [l0, c0], [l0,l−1, c0, c−1], [l0,l1, c0, c1]
6 [l0, c1, c2], [l0, l−1, l1, l2, c1],

[l0, l−1, l1, l2, c−2, c−1, c1, c2],
7 [l0, l1, p−1, p1], [l0, l1, l2, p2],

[l−2 ,l0, p−1], [l0, p−2, p−1, p0, p1, p2]

TABLE 3: Features added for CoNLL 2003 NER.

5 [l0,l−1], [n−2,n1,l−1], [n−2,n1,l−2,l−1,l1]

TABLE 4: Features added for EVALITA 2009 NER.

5 [w−2, w−1], [w1, w2]
6 [p−2],[p−1],[p0],[p1],[p2]
7 [p−2,p−1],[p−1,p0],[p0,p1],[p1,p2]
8 [p−2,p−1,p0],[p−1,p0,p1],[p0,p1,p2]

TABLE 5: Feature templates added for NP Chunking.

F1

1 (Florianet al., 2003) 88.76
2 (Chieu & Ng, 2003) 88.31
3 GL with voting & gazetteers 87.53

TABLE 6: Results for the Conll2003 NER.

F1

(Zanoliet al., 2009) 82.00
GL (Gesmundo, 2009a) 81.46
(Mehdadet al., 2009) 81.09

TABLE 7: Top three systems at EVALITA 2009 NER.

P. (%) R. (%) F1

(Shen & Sarkar, 2005)95.11 95.35 95.23
Guided Learning 94.78 94.34 94.56
(Sunet al., 2008) 94.65 94.03 94.34

TABLE 8: Top three systems known for NP Chunking.

3.4 Named Entity Recognition on EVALITA 2009 I-CAB Corpus

The corpus for the Evalita 2009 NER shared task is composed of11227 sentences extracted from an Italian
newspaper, the corpus is labeled with 4 NE classes : Person ; Organization ; Geo-political entity ; Location. As
input data were provided POS labels.

In Table 4 are reported the features obtained with the semi-automatic method for feature selection. Adding these
features that use POS information led to a relativeF1 improvement of 1.1% on the development set. As external
resources, we used gazetteers with 11k names of geographical locations, 49k Italian proper names and names,
14k organizations. The use of external resources led to a 6.89% relativeF1 improvement. After adding the voting
system we recorded a relativeF1 improvement of 0.8% on the development set. In Table 7 we report the official
score for the two best results for the EVALITA 2009 NER SharedTask. Also in this task GL reached the second
position even if competing with more complex models that deploy greater amount of external resources.

The 8 rounds of training were completed in 1 hour and a half, and the tagging of the 4136 sentences of the test set
took less then 2 minutes. During the training phase 500k features were generated.

3.5 Noun Phrase Chunking

The experiments for NP Chunking were executed on the Wall Street Journal Corpus, sections 15-18 (8936 sen-
tences) for the training set and section 20 (2012 sentences)for testing. This dataset is the standard one for NP
Chunking on English (Ramshaw & Marcus, 1995). For this task we used the same set of contextual feature used
in (Collins, 2002), Collins also uses the same corpus to execute NP Chunking experiments. This allows a direct
comparison between our GL and the HMM-Perceptron system proposed by Collins. To apply the same feature set
we extend the base feature set with those features reported in Table 5. In his best system (Collins, 2002) records
anF1 of 93.53, with the same feature set GL obtains 94.44. Even if the Collin’s perceptron deploys an exhaustive
search strategy (Viterbi decoding) and our system applies abeam search approximate inference strategy, the latter
is able to achieve better performance in shorter time. We believe this improvement is due to the ability of the GL
approach to dynamically learn to predict the order of inference, instead of applying a monotonic order of inference
(left-to-right) as in (Collins, 2002).

In Table 8 we report metrics for our best result obtained withvoting scheme, and in the same table we report also
the score of the only system that recorded a better performance in NP Chunking. We believe that the difference
with the top system (Shen & Sarkar, 2005) is due to the use of a specialization technique, that consist in changing
the input and output of the function being learned, enriching the tagset adding POS and lexical information to the
NP labels as proposed in (Molina & Pla, 2002). As an extensionof this work it would be interesting to adapt such
a technique to the GL approach.
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The 25 rounds of training needed for convergence of the Perceptron were completed in 1 hour and 10 minutes,
and the tagging of the 2012 sentences of the test set took 35 seconds. During the training phase 400k features were
generated.

4 Conclusion
In this paper we extended the work on the Guided Learning approach, adapting it to a set of tagging tasks, and
applying new features. The evaluation results show that topthree results are reached for all the tasks tested, proving
the ability of the GL framework to adapt successfully to different tasks and corpora in different languages. We have
shown that GL effectively integrate the order of inference and local classification in the learning phase. This results
in a good generalization behavior during the decoding phaseand allows it to reach good unknown words tagging
accuracy. We have also shown how the ability to learn and predict the inference order allows GL to produce better
results in shorter time when compared to the exhaustive-search left-to-right Perceptron-like approach of (Collins,
2002). The use of simple but effective training and inference algorithms results in moderate execution time. We
have also confirmed the validity of a voting system for different data representations for text chunking, applying
and improving with success the work of (Shen & Sarkar, 2005).
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