

	Introduction
LIRMM	
⊠	Minimally invasive surgery [Krupa 02], [Ortmaïer 03]
	 Non damaging tissue manipulation requires accuracy, safety and force control
\boxtimes	Microsurgical manipulation [Kumar 00]
	 Cooperative human/robot force control with hand-held tools for compliant tasks
⊠ 05]	Haptic devices [Hannaford 99], [Shimachi 03], [Duchemin
	 Force sensing for contact rendering, palpation, feeling or estimating mechanical properties of tissue,

	Zero force setpoint	
LIRMM		
To guide control the of 0	the robot by grabbing the end-effector, we may have to e force along non constrained directions with a desired force	
🗵 Assum	e that the robot is subject to a disturbance	
• case 1:		
the di contro	sturbance is applied below the force sensor $\boldsymbol{\Theta}$ the force of is active	
• case 2:	• case 2:	
the di space observ	isturbance is applied before the force sensor ${f 0}$ in free , the robot is not controlled since the disturbance is not ved (and no position control)	
🗵 Neces	sity to use additional sensors	

	Conclusion
LIRMM	
Cha	llenging issues:
\boxtimes	Beating heart surgery (motion, friction compensation,)
\boxtimes	Palpation, tactile information for haptic feedback
<mark>⊠</mark> instr	Small force / torque sensor for sterilizable and reusable ument
⊠ cons	Robustness wrt stiffness variation, transition between free and strained space
Thar	nks to G. DUCHEMIN and E. Dombre who contribute to these slides

5	References
LIRA	IM
[Gin d'ore Frar	noux 03] Ginhoux R., « Application de la commande prédictive à la compensation de mouvements anes répétitifs en chirurgie laparoscopique robotisée », Ph.D. Thesis, University of Strasbourg, ce, 2003.
[Har Gras <i>Bior</i>	naford 99] Rosen J., Hannaford B. <i>et al.</i> , « Force Controlled and Teleoperated Endoscopic sper for Minimally Invasive Surgery – Experimental Performance Evaluation », <i>IEEE Trans. on nedical Engineering</i> , vol. 46(10), 1999, pp. 1212-1221
[Hog Impl	an 85] Hogan N., « Impedance Control: An Approach to Manipulation, Part I – Theory and Part II - ementation », ASME J. Dynamic Systems, Measurement and Control, vol. 107, pp. 1-16.
[Kha Scie	lil 02] Khalil W., Dombre E., « Modeling, Identification and Control of Robots », Hermès Penton nce, 2002.
[Kur « F Micr	nar 00] Kumar R., Bekelman, Gupta P., Barnes A., Jensen P., Whitcomb L.L., Taylor R.H., reliminary Experiments in Cooperative Human/Robot Force Control for Robot Assisted osurgical Manipulation », <i>Proc.of IEEE ICRA'00</i> , 2000.
[Kru Thro	pa 02] Krupa A., Morel G., De Mathelin M., « Achieving High Precision Laparoscopic Manipulation ugh Adaptive Force Control », <i>Proc. of IEEE ICRA'02</i> , 2002.
[Mas IEE	ion 81] Mason M.T., « Compliance and Force Control for Computer Controlled Manipulators », E Trans. on Systems, Man and Cybernetics, vol. 11(6), 1981, pp. 418-432.
[Orti	naïer 03] Ortmaïer T., Ph.D. Thesis, DLR, Munich, 2003.

	References
LIRMM	
[Perdereau 91] I coopération de c	Perdereau V., « Contribution à la commande hybride force-position – Application à la Jeux robots », <i>Ph.D. Thesis</i> , University of Pierre and Marie Curie, Paris, France, 1991
[Pierrot 99] Pier Feedback », <i>Me</i>	rot F. et al., « Hippocrate: a Safe Robot Arm for Medical Applications with Force dical Image Analysis, vol. 3(3), 1999, pp. 285-300.
[Raibert 81] Rail ASME, Journal of	pert M.H., Craig J.J., « Hybrid Force-Position Control of Manipulators », Trans. of the of Dynamic Systems, Measurement and Control, vol. 103, June 1981, pp. 126-133.
[Shimachi 03] S Feedback to Ma	chimachi S. <i>et al.</i> , « Measurement of Force Acting on Surgical Instrument for Force ster Robot Console », International Congres Series 1256, 2003, pp. 538-546.
[Siciliano 00] So <i>Verlag,</i> 2000.	ciavicco L., Siciliano B., « Modelling and Control of Robot Manipulators », Springer-
[Taylor 92] Kaza Surgical Robot »	andides P., Zuhars ., Mittelstadt B., Taylor R.H., « Force Sensing and Control for a , Proc. of IEEE ICRA 92, 1992.