
A Distributed Method for Dynamic Resolution of BGP Oscillations

Ehoud Ahronovitz1, Jean-Claude König1, Clément Saad1

1Université Montpellier 2 - LIRMM
161 Rue Ada

F-34392 Montpellier Cedex 5, France
{aro,konig,saad}@lirmm.fr

Abstract

Autonomous Systems (AS) in the Internet use dif-
ferent protocols for internal and external routing. BGP
is the only external protocol. It allows ASes to define
their own routing policy independently. Many papers
cited in reference deal with a divergence behavior due
to this flexibility. In fact, when routing policies are not
conflicting, BGP is self-stabilising, which means that
whatever the network configuration, BGP converges to
a stable solution. Unfortunately, as experienced on the
Internet, AS routing policies may be uncoherent, thus
generating oscillations. In this paper we propose a dis-
tributed dynamic method for detecting and solving os-
cillations of BGP. It respects private policy choices and
requires only a few low level constraints in order to con-
verge to a stable solution. Essentially, a router has to
maintain only local path stateful information to detect
instabilities. In this case, it generates and launches a
token linked to a route. Each router makes the decision
to forward or not the token according to local data and
local policy. If the originating router receives back the
token, then it marks the route as barred. Nevertheless,
routes may furtherly be unmarked.

Finally, we express and define what coherence be-
tween routing policies means.

1. Introduction

Border Gateway Protocol (BGP) is the only inter-
domain routing protocol used on the Internet. It al-
lows Autonomous Systems (hereafter denoted AS) to
exchange routing data. An AS is a set of networks and
routers managed by a unique administration. Each AS
uses an internal routing protocol such as RIP, OSPF,...
and defines its own external routing policy for BGP.

These external routing policies allow the definition
of preferences in choosing routes.

As policies may be based on commercial, perfor-
mance, security criterions, etc. BGP was designed to
let ASes freely choose their own policies. Thus, ASes
define an ordered list of preferred paths according to
the adopted policy and will try to maintain the best
path as long as possible for each destination. Unfor-
tunately, locally preferred paths may lead to global in-
consistencies expressed by oscillations of routes.

Varadhan & al [9] have already shown that ASes
private policies may lead to global inconsistencies.
Lobavitz & al [8, 7] have studied the origins of routing
instability.

ASes involved in oscillations of routes will exchange
successively and repeatedly BGP routing messages,
and never converge to a set of stable routes. Such a
divergent behavior would degrade the routing perfor-
mance of the Internet.

Many suggestions were made to solve instability.
In particular Griffin suggested a dynamic solution
[5, 3, 6, 4] called SPV P3. This method consits in man-
aging a history related to the choice of routes. Thanks
to history, an oscillating route can be detected and lead
to consider a path as being “bad”. Unfortunately, ex-
changing history messages imply a large amount of up-
dates and do not garantee policy confidentiality.

Gao & Rexford [2, 1] estabished conditions to avoid
oscillations, using the commercial relationship between
ASes (peer-peer, or provider-customer).

A pair of ASes have a provider-customer relationship
if one offers Internet connectivity to the other. They
have a peer-peer relationship if they are mutually pro-
viding connectivity to their customers. To ensure the
stability of the global BGP routing system, each AS
is supposed to follow policy configuration guidelines
which suggest preferring customers announced routes
to providers or peers announced routes. While this

solution guarantees stability, it may unnecessarily dis-
allow the use of many routes.

Recently, Yilmaz & Matta [10] developed a dynamic
solution using a randomized algorithm to reduce local
preference of paths. If a path is adopted and later on
abandoned n times by an AS, then it is invalidated and
put in the set of bad paths as soon as n is bigger than
a predefined threshold. But in the worst case of this
algorithm, each AS is forced to add a bad path to the
set of bad paths.

In this paper we propose a dynamic method for de-
tecting and solving oscillations. Each AS maintains
local stateful information on routes in order to detect
any oscillation and the route involved in. Then it gen-
erates a token linked to the oscillating route. The token
is sent to the neighbouring AS routers. Routers that
receive the token have to decide whether to forward
or drop the token depending on BGP local updates.
If the generator receives back the token, we conclude
that it is responsible for solving locally the problem.
The solution consists in marking the associated route
as barred. We show that if more tokens are generated
by other routers for the same oscillation, then only one
route will be marked.

Our work relies on Griffin’s model called Stable Path
Problem, described in section 2. We show that man-
aging histories is a lot resource consuming.

In section 3 we explain the principles of our method.
Contrary to Griffin’s method, we maintain local state-
ful information without having to transmit it. We
study the properties, advantages and constraints of
such a method.

Section 4 deals with the token solution for oscilla-
tions. We show why it works then we study some ex-
tensions as well as limitations. Finally, in section 5
we give a characterisation of coherent routing policies.
We do that because when routing policies are coher-
ent, BGP is self-stabilizing. So we try to connect the
divergent behavior with uncoherent routing policies.

2. SPP and dispute digraph

2.1. The Stable Path Problem (SPP)

The Stable Path Problem (SPP) proposed by Grif-
fin and Wilfong in [6] is a modelisation giving a simple
view on routing instabilities. It allows to focus on the
origins of instabilities. SPP consists of an undirected
graph with a single destination. All functionalities and
attributes of BGP which are not involved with insta-
bilities, such as MED, aggregation of paths,..., are not
considered in SPP.

Instance construction. Let G = (V,E) be a
graph such that the vertices (elements of V) and edges
(element of E) represent respectively the autonomous
systems and the BGP links. Each AS defines a list of
paths ordered with a ranking function from the most to
the least preferred path. For example, in figure 1, AS1
has two different paths to the destination AS0. Path
130 means the path that goes from node 1 to node 0
via node 3, wherease path 10 is the direct path. AS1
prefers path 130 to 10.

Each AS will try to find and maintain the best rank-
ing path for each destination. An AS can choose a path,
only if all ASes belonging to this path adopt the cor-
responding sub-path. For example, in figure 1 if AS3
adopts path 30 then AS1 can select path 130.

Figure 1a, represents the BAD GADGET instance
of SPP. This example is frequently used in [3] to show
the divergent behavior. We assume that each AS de-
fines its own path to destination AS0. A possible sim-
ulation of BGP is: initially, each AS adopts either a
direct path to AS0, or the empty path noted ε. AS1
does not know the paths of its neighbours. So, it adopts
path 10 and broadcasts this to its neighbours. When
AS2 receives this information, it can select path 210
and inform AS3. As path 20 is not available, AS3 main-
tains path 30. When AS1 will receive this information,
it will select path 130, thus loosing path 210, and so on
... This process cycles and illustrates a case of BGP
oscillation. Griffin & al. show in [4] that the detec-
tion of oscillations in a SPP instance is NP-Complete,
through a reduction to 3-SAT.

2.2. Dispute digraph

Griffin & al. [6], construct a dispute directed graph,
deduced from the SPP instance. In this graph, nodes
represent paths extracted from ASes preference list,
while arcs represent either compatibilities or conflicts
between paths.

Construction. Let G = (V,E) be a dispute graph,
each node representing a path (figure 1b). There are
two types of arcs, defined as follows:

• Transmission arc: Let u, v be two ASes, uvP and
vP two paths belonging respectively to u and v.
If v adopts path vP then u can adopt path uvP .
In this case, there is an arc from vP to uvP called
transmission arc, represented by a dotted line (fig-
ure 1b). In this figure, there is a transmission arc
from node 30 to 130: if AS3 adopts path 30 then
AS1 may adopt 130.

• Dispute arc: consider figure 2. Let vQ and vP be
two possible paths for AS v, vQ being preferred

130 320 210

 30 20 10

1

3 2

0

130
10

320
30

210
20

a) b)

Figure 1. BAD GADGET - A problem with no stable solution and its corresponding dispute digraph

to vP . Let uvP and uvQ be two possible paths
for AS u, uvP being preferred to uvQ. If v adopts
vQ (preferred to vP) then u cannot adopt uvP ,
since path vP is not available. Thus u will choose
another path with a lower rank than uvP . In this
case, there is an arc from vQ to uvP called dispute
arc, represented by a full line (figure 1b). In this
figure, there is a dispute arc from 210 to 320: the
adoption of path 210 prohibits the choice of 320.

Figure 1b shows the whole dispute digraph for BAD
GADGET.

Dispute cycle. A dispute cycle in the dispute di-
graph represents conflicting routing paths.

Definition 1. From [6], a dispute cycle in the dispute
digraph is a cycle containing at least two dispute arcs.

Let S be a SPP instance. Griffin shows in [6] that if
the dispute digraph of S is acyclic then S has a unique
solution.

2.3. A dynamic solution using histories

We explain hereafter how the dynamic method,
SPV P3 works, using histories as proposed by Griffin
and Wilfong ([6]).

Background. While in BGP ASes exchange paths,
in SPV P3, Ases exchange pairs m = {P, h} where P
is a path and h a history related to P . Two functions
path(m) and hist(m) are defined to return respectively
P and h.

Let B(u) be a set of bad paths. Let function
choice(u) return the whole paths of AS u. Then
best(u) = max(choice(u) − B(u)) returns the best
choice for AS u among the possible paths.

In SPV P3, When AS u receives a pair m from a
neighbour, it compares path(m) to best(u). If the re-
sult is better, then it updates its path and the related
history. Finally, u sends its updated route and the re-
lated history to all its neighbours. With histories, ASes
can detect cycles. If an AS detects a cycle, then it adds
the current path to B(u).

u v 0
P

Q...
...

uvP

uvQ
...
...

 vQ

 vP

vQ uvP

situation result

Figure 2. Dispute arc

History construction. Each AS manages a his-
tory tracing all events that happened to its paths as
well as their causes. For each announce of a path P ,
a router joins the associated history h. When an AS
u receives the pair m = {P, h} from a neighbour, if
P implies a modification (i.e. path X containing sub-
path P replacing Y), then the following is added to the
history of u:

• h

• (+X), if X is preferred to Y (u got a better
choice),

• (−Y), if Y is preferred to X (u lost a better
choice).

To illstrate the history management in SPV P3, here
is a sequential execution of the BAD GADGET pre-
sented in figure 3. Table 1 follows this history manage-
ment.

Initially, ASes 1,2,3 and 4 have adopted respectively
paths 10, 20, 3420, 420. All histories are empty. When
AS1 announces path 10 to AS2, AS2 selects path 210
and updates its own history adding the event “(+210)”
because path 210 is preferred to 20. Then AS2 an-
nounces both its new path 210 and the associated his-
tory “(+210)”. When AS4 receives this information, it
deduces that path 20 is no longer available and must
choose a path with lower preference. But path 430
cannot be selected, because 30 is not available. So
path ε is mandatory, and AS4 adds to its own history
both the event “(-420)” and the history received from
AS2 containing “(+210)”. AS4 sends path ε and the

newly associated history “(-420 +210)” to AS3. AS3
can no longer maintain path 3420, so chooses path 30
and updates its own history. The new history for AS3
becomes “(-3420 -420 +210)”. When AS1 gets this
new information from AS3, it selects path 130 as path
30 is available and as path 130 is preferred to path 10.
Then AS1 updates its own history to “(+130 -3420 -420
+210)”. Finally, when AS2 gets this information, path
10 being no longer available, it chooses path 20 and
updates its history to “(-210 +130 -3420 -420 +210)”.
Hence, an oscillation is detected by AS2 because path
210 changed from state + to -. SPV P3 considers path
20 as “bad”.

step u best(u) hist(u)
0 1 (10) *

2 (20) *
3 (3420) *
4 (420) *

1 1 (10) *
2 (210) (+210)
3 (3420) *
4 (420) *

2 1 (10) *
2 (210) (+210)
3 (3420) *
4 (ε) (-420) (+210)

3 1 (10) *
2 (210) (+210)
3 (30) (-3420) (-420) (+210)
4 (ε) (-420) (+210)

4 1 (10) *
2 (210) (+210)
3 (30) (-3420) (-420) (+210)
4 (430) (+430) (-3420) (-420) (+210)

5 1 (130) (+130) (-3420) (-420) (+210)
2 (210) (+210)
3 (30) (-3420) (-420) (+210)
4 (430) (+430) (-3420) (-420) (+210)

6 1 (130) (+130) (-3420) (-420) (+210)
2 (20) (-210) (+130) (-3420) (-420)

(+210)
3 (30) (-3420) (-420) (+210)
4 (430) (+430) (-3420) (-420) (+210)

Table 1. History management for the BAD
GADGET example in figure 3. *:empty his-
tory. Underlined paths are newly selected
paths.

1

2

0 4

3

210
20

130
10

3420
30

420
430

Figure 3. BAD GADGET with five ASes

3. Maintaining path local stateful infor-
mation (PLSI)

The history management seen above involves a lot
of local and network resources. So we rather propose to
maintain local stateful information on routes allowing
to detect oscillations. The advantages of this method
are described hereafter.

3.1. Characterisation of oscillations

General properties. Let us pay attention to the
history in table 1. We can observe that cycle (-210
+130 -3420 -420 +210) has been detected because path
210 changed from state + to state -. We generalize to
the following property:

Property 1. In the case of an oscillation, a state
change occurs in all paths of a cycle in the dispute di-
graph. We call oscillating cycle such a cycle.

proof elements: Let C be an oscillating cycle. The
proof relies on the following: if C oscillates then a state
change occurs for at least one path. However, accord-
ing to the definitions of transmission and dispute arcs,
if there is an arc from X to Y , it means that Y ’s state
depends on X’s state. So if a state change occurs in
X then a state change occurs in Y . Therefore a state
change occurs for all paths in cycle.

Remarks

• If a given path appears twice with state +, then
necessarily it appeared with state - between those
two.

• At the beginning of the protocol, ASes adopt ei-
ther the empty path ε or a direct path if it exists.
Therefore each AS will begin with a + state on
one path.

Property 2. In an oscillating cycle, when we follow
the cycle, at least one path changes from state + to
state -.

proof: First, if a cycle occurs at the begining of the
protocol then the property is prooved due to the above
remarks.

Now, assume that all currently adopted paths
changed from state - to state +. We know that an
oscillating cycle contains at least two dispute arcs [6].
Let C be an oscillating cycle and X and Y be two paths
in C with a dispute arc from X to Y . This means that
if X is adopted then Y cannot be chosen. From our
hypothesis, X changed from state - to state +. Conse-
quently, Y cannot change from state - to state +. Thus,
it is impossible that all paths in the cycle changed from
state - to state +. According to the above remarks, an
oscillation occurs in all paths, so the oscillation in Y is
necessarily due to a state change from + to -.

Oscillations and cycles. These remarks allow us
to consider only the state change from + to -. So, we
can now call oscillation on a path the state change from
+ to -.

Important note: A state change for a path
means that there is an oscillation but we don’t
know if this path belongs to the cycle or not.

This phenomenon is illustrated in figure 4a: AS1
detects an oscillation on path 1240 caused by a BAD
GADGET situation. But 1240 does not belong to the
cycle in the dispute digraph figure 4b.

3.2. Identifying oscillating paths

Each AS maintains only the state of its own paths.
Thus we have only local management of path states.
Moreover, messages exchanged between ASes contain
only paths. Thus, we consume only low resources
amount: histories are not forwarded. Table 2 repre-
sents this local management. When moving from step
5 to step 6 in table 2, AS2 detects an oscillation on
210. If this path is involved in a dispute cycle then it
will be marked barred.

4. Detecting and resolving oscillations

As each AS maintains only local information, ac-
tions beetween ASes must be coherent. There are two
problems :

• The first concerns the detection of cycles. As we
have seen, if there is an oscillating path that does
not necessarily mean that this path belongs to a
cycle. So after detecting an oscillation, we have to
search if a cycle exists.

• The second problem is: when a cycle is detected,
which path among all paths involved in the cycle
should be marked?

4.1. Detecting cycles with a token

We describe hereafter how a token allows to detect
cycles and why it works.

The token method. Assume AS A detects an os-
cillation on path X. Therefore, AS A generates a token
related to X and sends the new chosen path with the
token in the classical BGP announce. If an AS B has
not to update its path when receiving this message then
it drops the token. But, if B has to update its selection,
then it forwards the token with its own newly selected
path to all its neighbours, and so on . . . If A receives
back its own token with path Y and if Y implies the
choice of X then A concludes that X belongs to an
oscillating cycle and marks X barred.

Note that the token value does not reveal the oscil-
lating path (e.g. the token value can be assigned with
a hashtable). Thus, when B receives the token, it does
not know which path oscillates.

Figure 5 is an example of a token flow. AS2 de-
tects an oscillation on 210. It generates a token re-
lated to 210 (denoted j210) and sends its new path (20)
with the token. When AS3 receives this information it
chooses path (320) instead of (30). So it forwards token
j210 with (320). AS1 receives the message from AS3
and modifies its path to (10). It forwards token j210
with path (10) and when AS2 receives this message it
retreives its token and adopts (210). AS2 concludes
that 210 is involved in a cycle. Then AS2 marks barred
this path and a new stable solution is found.

Why does it works ? Assume the dispute digraph
of BAD GADGET (figure 1b). We state that the token
follows the dispute cycle. In fact, as AS2 detects the
oscillation on 210, this means that 210 changed from
state + to state - and then 210 is downgraded and 20
is selected. Thus 320 may be adopted by AS3 making
impossible the choice of 130 for AS1. Then AS2 may
adopt 210 and concludes that 210 is involved in a cy-
cle. If the cycle oscillates, the above listed events did
happen and a token was generated by the first event.
This token was forwarded during the following events.
Therefore the token follows exacly the cycle in the dis-
pute digraph.

Which path should be barred? When an oscil-
lating cycle is detected, all ASes having a path involved
in this cycle will notice oscillation. So all these ASes
will generate a token. Each of them will retreive its
own token and will mark barred the associated path.
It is not reasonable to mark barred all paths involved

1 2

3

4

0

240
210

1240
10

430
40

3210
30 430 3210 240 1240

 30 210 40

 10
a) b)

Figure 4. Path 1240 does not belong to a cycle

AS1 AS2 AS3 AS4
step 130 10 SP 210 20 SP 3420 30 SP 420 430 SP
1 * * 10 * * 20 * * 3420 * * 420
2 * * 10 + * 210 * * 3420 * * 420
3 * * 10 + * 210 * * 3420 - * ε
4 * * 10 + * 210 - * 30 - * ε
5 + * 130 + * 210 - * 30 - + 430
6 + * 130 - * 20 - * 30 - + 430
7 + * 130 - * 20 - * 30 + + 420
8 + * 130 - * 20 + * 3420 + + 420
9 - * 10 - * 20 + * 3420 + + 420

Table 2. Local management for BAD GADGET figure 3. SP: currently selected path. *: empty entry. +
or -: path state

in a cycle since marking only one is sufficient to break
the cycle. But, ASes manage only local information.
Any total order relation on tokens allows to solve this
problem. In fact, a total order allows to always forward
only the highest priority token. So, only one token will
be retreived by its generator. Let ≺ be this order re-
lation. When the AS who generated token j1 receives
a token j2 it checks if j1 ≺ j2. If this is true, j2 is not
forwarded.

Conditions on the order relation. The order
relation has to take into account the oscillating path
length. In our method, the lower path length, the
higher priority. This phenomenon is caused by trans-
mission arc: when a path P oscillates all paths Q con-
taining P also detect an oscillation.

Figure 4 illustrates this case. Indeed, path 1240 os-
cillates because path 240 oscillates. 1240 is not in-
volved in a cycle contrary to 240. It is necessary to
mark barred path 240 and not 1240.

Hereafter, we define ≺ as follows: Let j1 and j2 be
two tokens, |jX | be the length of token jX and <L be
the lexicographical order. Then,

j1 ≺ j2 ⇔ if |j1| = |j2| then j1 <L j2 else |j1| < |j2|.
For example, in figure 6, ASes 1, 2, 3, detect an oscil-

lation on respectively paths 130, 210 and 320. Assume
that the order relation is the lexicographic order and
that the token value is “j” followed by the path value.
AS1 generates token “j130”. When AS1 receives to-
ken “j320” it drops it. Idem when AS1 receives “j210”.
AS1 will retreive its token “j130” and will mark barred
path 130.

We must notice that making another choice for the
order relation would allow a different solution, some-
times better, sometimes worse.

The process for oscillation detection is given in al-
gorithm 1 and the token management in algorithm 2.

4.2. Discussion on barred paths

May solving one oscillation generate another
one? We claim that the resolution of an oscillation
never generates a bigger oscillation.

proof: Consider figure 7. The system made of ASes
u1, ..., un oscillates. We must check if resolving this sys-
tem does not generate an oscillation of the dotted line
system. Let v be an AS connected to u1 and (x, y, z)
its prefered path list. v does not detect any oscillation.
We deduce two possible cases:

1

23

0

320
30

130
10

210
20

(20, j210)

1

23

0

320
30

130
10

210
20

(320, j210)

1

23

0

320
30

130
10

210
20

(10, j210)

Figure 5. Token flow after an oscillation on path 210

1

23

0

320
30

130
10

210
20

(20, j210)

1

23

0

320
30

130
10

210
20

(320, j210)
1

23

0

320
30

130
10

210
20

(30, j320)

(10, j130)

(210, j130)

(30, j130)

Figure 6. Token ordering and unicity

Algorithm 1: Detection of an oscillation by AS u

Data : Table T of paths’ states
Result: A token if an oscillation occured, broad-

casted to neighbours
/* detectOscillation(T) returns the oscillating
path with table T of paths’ states */
/* creatToken(op) generates a token related to
oscillating path op */
/* bestPath() returns the best path related to
u’s current policy */
/* path the currently selected path */
/* generator is true if u generated a token */

oscillatingPath← detectOscillation(T);
if oscillatingPath �= null then

/* Initialisation for the algorithm 2 */
generator ← false;
myToken← creatToken(oscillatingPath);
path← bestPath();
for v ∈ N(u) do

send(path,myToken, v);

Oscillating system with n ASes

No oscillating system

Does this system oscillate ?

ASx1

un

ui

u1

u2

v

w

a1
b1

a2
b2

x
y
z

s
t

Figure 7. Solving oscillation for system
u1, ..., un never implies oscillations of the dot-
ted line system

• either paths of v have no links with paths of u1

• or paths which could oscillate in v (for example y
and z) are never chosen because v prefers path x.

In this latter case, this means that the configuration
of one of v ’s neighbours allows v to maintain x. This
neighbour has not detected any oscillation; otherwise

Algorithm 2: Processing the reception of a token
by AS u

Data : reception of message < pathv, token, v >

Result: Forward or delete the token received
/* update(p, v) As u take into account the new
path p annouced by AS v */
/* bestPath() returns the best path related to
u’s current policy */
/* markBarred(p) marks barred path p */
/* lgPath(t) returns the length of path related
to token t */
/* getGenerator() returns the local path associ-
ated to the token */
/* path the currently selected path */
/* generator is true if u generated a token */

update(pathv, v)
newPath← bestPath();
if path �= newPath then

path← newPath;
/* token has ≺ higher priority or length of
associated path is less than length of path as-
sociated to own token (myToken) */
if generator = true and
(token ≺ myToken or lgPath(token) <
lgPath(myToken)) then

generator ← false;

if generator = true and token = myToken
then

if path = myToken.getGenerator() then
markBarred(path);
path← bestPath();
for v ∈ N(u) do

send(path, null, v);

else
for w ∈ N(u)− {v} do

send(path, token,w);

x cannot be maintained. So, all the markings which
occured on u1 do not imply any modification on v’s
configuration. Idem for ASes w and u2. Therefore,
resolving system u1, ..., un cannot imply an oscillation
of the bigger dotted line system.

There is no false positive. Our method always re-
solves an oscillation: a route will never be barred if
there is no oscillation, which means that no false pos-
itive detection is possible. In fact, a marking occurs
when an AS gets back its token. It is impossible to
get back a token erroneously, as the token is forwarded
only if an update is done.

But future route updates may lead a mark to be-
come unnecessary. For exemple in figure 8, route 120
is first mark barred. This situation is correct until the
reception of a new announce, for example AS3 receiv-
ing the announce 76540. Such an announce should lead
to rub out the marking for 120.

What happend? Let us recall that ASes do not have
a global view of the network. So when AS1 barres path
120, it is due to local oscillations in ASes 1, 2 and 3
system. When AS3 receives later on from AS7 the an-
nounce 76540, it has a bigger view of the network, so
path 120 may be unmarked. We plan to take into ac-
count this problem in a more general case: failure and
appearence of links and ASes. This is a big problem,
that we are studying currently.

Limits. Our method will not always give an optimal
result. Some network configurations (eg. systems in-
cluding many oscillating cycles) may lead to unecessar-
ily mark barred more than one path though less marks
would be sufficient to solve the oscillation. We can say
that the method always gives a solution but it does not
take into account any optimization criterion. In fact,
minimizing the number of marked paths is not neces-
sarily a good optimization criterion. We think that
any method cannot take into account an optimization
criterion unless it has a global view of the whole BGP
routers network.

The following example (figure 9) illustrates a situa-
tion of two nested BAD GADGETS. Two paths will be
marked barred instead of one. In fact, paths 130 and
150 will be marked barred whereas marking path 320
would be sufficient enough. Nevertheless, one marking
instead of two is not necessarily a better solution.

4.3. Differences with SPV P3

SPV P3 uses histories in order to detect cycles and
has to forward histories between ASes. So policies pri-
vacy is not respected and trafic overload is generated.

2

3 1

0

45

6

7

230
20

120
10

376540
310

30

76540
6540

540
40

Figure 8. Late update

4

2 5

3
0

1

210
20

320
30

410
40

540
50

130
150

10

Figure 9. Two paths marked instead of one

Our method makes only local management of paths.
Tokens circulate in classical BGP announces, so over-
load is minimized to the token size in the BGP an-
nounce.

Another difference is that, contrary to SPV P3, we
prefer marking one of the paths directly involved in a
detected oscillation. For example, when cycle (+210 -
420 -3420 -130 +210) is detected (see table 1), SPV P3

adds 20 to B(u). We prefer considering 210 as wrong
because, if we delete 210 we “break” the dispute cy-
cle in the dispute digraph and due to the previous
note, we obtain a stable solution. In figure 3, SPV P3

converges towards (130),ε,(30),(430) respectively for
ASes 1,2,3,4. Our solution (PLSI) converges towards
(10),(20),(3420),(420).

Note that tokens do not reveal any policy element.
So we respect privacy. Also, the data structures manip-
ulated are local and rather lightweight. Constraints im-
posed to ASes are low: maintenance of paths state and
generation of forwarding of tokens in BGP announces.

5. Coherence between routing policies

We saw that inconsistency of policies may induce
oscillations. So besides solving oscillations, we try to
define what are coherent policies?

5.1. Characterisation

Let <α be an order on paths. Hereafter, we define
locally this order for paths belonging to the same AS,
and globally for inter AS paths. We can interpret <α

as “better than”.

Definition 2. <α locally : Let A be an AS; ∀P,Q
paths of A, if P is preferred to Q then P <α Q.

This definition is coherent with AS policies.

Definition 3. <α globally : ∀P,Q paths belonging
to two differents Ases, if P is a sub-path of Q then
P <α Q.

This definition allows to maintain coherence be-
tween AS policies. Clearly a path containing P cannot
be better than P .

Theorem 1. If <α is a strict order relation then the
policies are coherent between themselves.

proof: There is a connection between these definitions
and the dispute digraph.

• Let be a transmission arc from P to Q. This means
that P is a sub-path of Q. With the definition of
global order we have P <α Q.

• Let be a dispute arc from P (path in AS u) to
Q (path in AS v). This means that if P is not
selected, then there exists a path R in AS u, which
allows the selection of Q in AS v. In other words,
R is a sub-path of Q. So, locally we have P <α R
and globally we have R <α Q. By transitivity we
have P <α Q. Thus, we conclude that the dispute
digraph is acyclic if and only if <α is a strict order
relation. We know that policies are coherent (BGP
converges) if the dispute digraph is acyclic (section
2.2). So, if <α is a strict order relation then the
policies are coherent between themselves.

Consider figure 10. With the strict order relation we
have

130 <α
︸︷︷︸

local

10 <α
︸︷︷︸

global

210 <α
︸︷︷︸

local

20 <α
︸︷︷︸

global

320 <α
︸︷︷︸

local

30 <α
︸︷︷︸

global

130.

Due to the contradiction, we deduce that BAD
GADGET policies are not coherent between them-
selves.

Note The theorem reciprocal is false: coherent poli-
cies do not imply the existence of a strict order relation.

130 320 210

 30 20 10

1

3 2

0

130
10

320
30

210
20

Figure 10. New dispute digraph

5.2. A new dispute digraph

Now we can suggest a new definition for the dispute
digraph: Let P and Q be two paths. There is an arc
from P to Q if P <α Q. If the digraph is acyclic then
there is a stable solution. Figure 10 shows the new dis-
pute digraph for BAD GADGET. In our future works,
we intend to develop the properties of this graph.

6. Conclusion

As BGP is currently the only external protocol in
the Internet, instabilities such as oscillations should
be resolved as quickly as possible. In this paper, we
studied route oscillations caused by globally incoherent
routing policies. We proposed a distributed dynamic
method to solve the oscillations problem. In fact, it
is distributed because nor global data neither a cen-
tral algorithm are invoked; local data and a circulating
ligthweight token are only required; dynamic because
the network topology may change without affecting the
algorithm. We ended by an attempt to define coherence
between routing policies, which may lead to prevent in-
stabilities, rather than detecting and solving them.

Future work for the short term relies on simulating
the behaviour of our algorithms on different network
topologies. For the mean term, we think that man-
agement of network failures may be treated by such a
method, but unlikely, recovery or appearence of links
looks more difficult : a BGP router does not forward
recovery or appearence information unless it changes
its routing tables.

For the long term, we shall have to study some
byzantine behaviours. For example, what happens
when an AS detects an oscillation, but does not gen-
erate a token, as this may lead to suppress a route.
Another important problem is AS connectivity: should
top priority be given to connectivity or efficiency? In
other words, if sovling an oscillation leads to break-
ing AS connectivity is it worth keeping the oscillation,
rather than disconnecting ASes?

References

[1] L. Gao, T. G. Griffin, and J. Rexford. Inherently safe
backup routing with bgp. in Proc. IEEE INFOCOM,
April 2001.

[2] L. Gao and J. Rexford. Stable internet routing without
global coordination. in Proc. ACM SIGMETRICS,
June 2000.

[3] T. G. Griffin, F. B. Sherpherd, and G. Wilfong. Policy
disputes in path-vector protocols. Proc. 7th Int. Conf.
Network Protocols (ICNP’99), pages pp. 21–30, 1999.

[4] T. G. Griffin, F. B. Sherpherd, and G. Wilfong. The
stable paths problem and interdomain routing. Proc.
IEEE/ACM Transactions on Networking, 2002.

[5] T. G. Griffin and G. Wilfong. An analysis of bgp con-
vergence properties. Proc. ACM SIGCOMM’99, pages
pp. 277–288, 1999.

[6] T. G. Griffin and G. Wilfong. A safe path vector proto-
col. Proc. IEEE INFOCOM, vol.2:pp. 490–499, 2000.

[7] C. Lobavitz, G. R. Malan, and F. Jahanian. Internet
routing instability. IEEE/ACM Trans. Networking,
vol. 6:pp 515–528, October 1998.

[8] C. Lobavitz, G. R. Malan, and F. Jahanian. Origins of
internet routing instability. in Proc. IEEE INFOCOM,
vol. 1:pp. 218–226, 1999.

[9] K. Varadhan, R. Govindan, and D. Estrin. Persistent
route oscillations in inter-domain routing. Computer
Networks, pages 32:1–16, 2000.

[10] S. Yilmaz and I. Matta. A randomized solution to bgp
divergence. in Proc. of the 2nd IASTED Int. Conf. on
Communication and Computer Networks (CCN’04),
November 2004.

