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MAXIMUM INDEPENDENT SET
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MAXIMUM INDEPENDENT SET (MIS)
@ Input: A graph G = (V,E).
@ Output: An independent set of G of maximum cardinality.

@ / C Vis an independent set if the vertices in I are pairwise
non-adjacent.

Introduction




Branching Algorithm

Branching

Branching A|gor|thm algorithms

Selection: Select a local configuration of the problem
instance

Inspection: Determine the possible values this local
configuration can take

Recursion: Recursively solve subinstances based on these
values

Combination: Compute an optimal solution of the instance
based on the optimal solutions of the subinstances

Introduction

Reduction: transformation (selection, inspection and the
creation of the subinstances for the recursion) of the initial
instance into one or more subinstances

Simplification: reduction to 1 subinstance
Branching: reduction to > 2 subinstances




3 elseif v € V:d(v) =1 then // v has degree 1

8 else

Branching Algorithm for MIS
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Algorithm mis(G)
Input :Agraph G = (V,E). Introduction
Output: The size of a maximum i.s. of G.

if A(G) <2then // G has max degree <2
L return the size of a maximum i.s. of G in polynomial time

| return 1+ mis(G \ N[v])

else if G is not connected then
Let G, be a connected component of G
return mis(G;) + mis(G \ V(G)))

Selectv € Vs.t. d(v) = A(G) // v has max degree
return max (1 + mis(G \ N[v]), mis(G \ v))
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Simple Analysis

Lemma 1

Let A be an algorithm for a problem P, and « > 0, ¢ > 0 be
constants such that for any input instance I, A reduces I to
instances I, . . ., I, solves these recursively, and combines their
solutions to solve I, using time at most O(|1|°) for the reduction
and combination steps (but not the recursive solves) and such
that for any reduction done by Algorithm A,

(Vis1<i<k) |1 <)i|-1,and (1)
gerlhl 4 L. gkl < geelIl] 2)

Then A solves any instance I in time at most O(|1/°t1)22 /11,
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Simple Analysis for mis
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@ Reduction and combination steps: O(n?)
o G dISCOf'lneCted Simple Analysis

(Vs:1<s<n—1) 2% 42x0=9) <gan (3)

always satisfied by convexity of the function 2*
@ branch on vertex of degree d > 3

(Vd:3<d<n—1) 200D poxb=l=d) <gan (4
Dividing all these terms by 2", the constraints become

2 o> (1= <, (5)



Compute optimum «

Branching

By standard techniques [Kullmann 99], the minimum « satisfying algorithms
the constraints is obtained by setting x := 2%, computing the
unique positive real root of each of the characteristic polynomials

Simple Analysis
calx) :=x'Hx 17— 1,

and taking the maximum of these roots.

X o
1.3803 0.4650
1.3248 0.4057
1.2852 0.3620
1.2555 0.3282
1.2321 0.3011

N O W

Alternatively, solve a mathematical program minimizing « subject
to the constraints (the constraint for d = 3 is sufficient as all other
constraints are weaker).
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Simple Analysis: Result
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@ use Lemma 1 with ¢ = 2 and a = 0.464959

@ running time of Algorithm mis upper bounded by
(’)(n3) . 20446495941 — 0(20.4650~n) or 0(1380311)

11/45



Lower bound
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ﬁm -

Vi A% V3 V4 Vs Ve

T(n)=Tn—-5)+T(n—-3)

@ for this graph, run time is 1.1938. ... - poly(n)
@ Run time of algo mis is (1.1938")
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Worst-case running time — a mystery
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What is the worst-case running time of Algorithm mis? I

@ lower bound ©(1.1938")
@ upper bound O(1.3803")
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Measure based analysis

@ Means

e potential-function method, such as

@ Example: Algorithm mis
e advantage when degrees of vertices decrease

@ Goal, idea

e capture more structural changes when reducing an instance
to subinstances
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Measure Based
Analysis

measure used by [Kullmann 1999],

quasiconvex analysis of backtracking algorithms [Eppstein
2004],

Measure & Conquer [FominGK 2005],

linear programming approach [ScottS 2007], and

much older potential-function analyses in mathematics and
physics



Multivariate recurrences
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@ Model running time of mis by Measure Based

Analysis
T(ni,ny,...), short T <{"i}i21) ,

where n; == |{v € V :d(v) = i}|.
@ G\ v: neighbors’ degree decreases
@ G\ N[v]: a vertex in N?[v] has its degree decreased
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Multivariate recurrences (2)
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@ We obtain the following recurrence where the maximum
ranges over all d > 3, all p;,2 < i < d suchthat ¢, p; = d
and a” k SUCh that 2 S k S d: Measure Based

Analysis

T({ni —pi+piy1 —Ks(d = i)}iZI)
X +T({ni — pi = Ks(d = i) = Ks(k = i) (6)
+Ks(k =i+ 1)},-21)

1if F true
0 otherwise

where Ks(F) = {



Solve multivariate recurrence
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@ restrict to max degree 5
Measure Based

@ [Eppstein 2004]: there exists a set of weights Analysis
wi,...,ws € RT such that a solution to (6) is within a
polynomial factor of a solution to the corresponding
univariate weighted model (7(3>)_, win;) = max...).

Definition 2

A measure p for a problem P is a function from the set of all
instances for P to the set of non negative reals

18/45



From recurrences ...
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5
w(G) == Z win;
i=1

:2<d< = mi P — Wi_
(Vd2_d_5) hd 2Iéliléld{w, wi 1}

By Eppstein, there exist weights w; such that a solution to (6)
corresponds to a solution to the following recurrence, where the
maximum ranges over all d,3 < d < 5, and all p;,2 <i <d, such
that 37, pi = d,

) T (1(G) = wa = S ypi- (wi = wi))
TG =, max \ or (1(6) = wa = S pi - wi = ha)
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. to constraints
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T(u(6)) = T (w(G) = wa = YLapi- (wi—winy))

£ T (1(G) — wa = XLy piwi— ha)

forall d,3 < d < 5,and all p;,2 < i < d, such that >, p; = d.
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Measure Based Analysis

Lemma 3

Let A be an algorithm for a problem P, ¢ > 0 be a constant, and
u(+),n(-) be two measures for the instances of P, such that for
any input instance I, A reduces I to instances I, . . ., I, solves
these recursively, and combines their solutions to solve I, using
time at most O(n(1)°) for the reduction and combination steps
(but not the recursive solves) and such that for any reduction
done by Algorithm A,

(Vi) n(l:) <n() -1, and (7)
out) o prll) < o) 8)

Then A solves any instance I in time at most O(n(I)<+")2r(0),

Branching
algorithms

S. Gaspers

Measure Based
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Applying the lemma
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21(G) > 2#(0)—Wd—2f’=zpi'(wi—wi—l) + 2#(G)—Wd—Zf=zm~wz-—hd

1> 2_Wd_2:-1=zpi‘(wi_wi—l) + 2—W4—Zf=zpi~wi—hd

Measure Based
Analysis

Wi h;
0 0
0.25 | 0.25
0.35 | 0.10
0.38 | 0.03
510.40 | 0.02

AW N =~

With these values for w;, the constraints are satisfied and
u(G) < 2n/5 for any graph of max degree < 5.

Taking ¢ = 2 and n(G) = n, Lemma 3 shows that mis has run
time O(n*)2*"/> = O(1.3196") on graphs of max degree < 5.
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Compute optimal weights
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@ random local search [Fomin, Grandoni, Kratsch 2005, 2007]
@ quasiconvex programming [Eppstein 2004, 2006]
@ convex programming [Gaspers, Sorkin 2009]

Optimizing the
measure

All constraints are already convex, except conditions for &,

(Vd 12 < d < 5) hd = 221};1 {Wi — W,'_l}
U

(Vl,dZSlSdSS) hdSW,'—W,‘_l.

Use existing convex programming solvers to find optimum
weights.

24/45



convex program in AMPL
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param maxd integer >= 3;
set DEGREES := 0..maxd;
var W {DEGREES} >= 0; # weight for vertices according to their degrees
var g {DEGREES} >= 0; # weight for degree reductions from deg i

var h {DEGREES} >= 0; # weight for degree reductions from deg \le i
var Wmax; # maximum weight of W[d]

minimize Obj: Wmax; # minimize the maximum weight Optimizing the
measure

subject to MaxWeight {d in DEGREES}:
Wmax >= W[d];
subject to gNotation {d in DEGREES : 2 <= d}:
gld] <= W[d]-W[d-1];
subject to hNotation {d in DEGREES, i in DEGREES : 2 <= i <= d}:
hid] <= W[i]-W[i-1];
subject to Deg3 {p2 in 0..3, p3 in 0..3 : p2+p3=3}:
27 (-W[3] -p2xg[2] -p3*g[3]) + 2" (-W[3] -p2+W[2] -p3*W[3] -h[3]) <=1;
subject to Deg4 {p2 in 0..4, p3 in 0..4, p4 in 0..4 : p2+p3+p4d=4}:
272 (-W[4] - p2xg[2] - p3*g[3] - pdxgl4])
+ 27 (-W[4] - p2+W[2] - p3xW[3] - p4xW[4] - h[4]) <=1;
subject to Deg5 {p2 in 0..5, p3 in 0..5, p4 in 0..5, p5 in 0..5
p2+p3+p4+p5=5}:
272 (-W[5] - p2xg[2] - p3%g[3] - pdxg[4] - p5*g[5])
+ 27 (-W[5] - p2+xW[2] - p3»W[3] - pd4xW[4] - p5*W[5] - h[5]) <=1;

25/45



Optimal weights
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wi hi
0 0
0.206018 | 0.206018 optmiang the
0.324109 | 0.118091 measue
0.356007 | 0.031898
0.358044 | 0.002037

DN AW =~

@ use Lemma 3 with 14(G) = 37, win; < 0.358044 - n, ¢ = 2
and n(G) =n
@ mis has run time O(n?)20338044n — ©(1.2817")

26/45
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Search Trees
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Search Trees and

Example: execution of mis on a P2 IR R
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Branching number: Definition

Branching
algorithms

Given a constraint

on—ar o g pp)—a < (D)

its branching number is

Search Trees and

2_01 4+ 2_ak’ Branching Numbers

and is denoted by
(ah. .. ,ak) .

Clearly, any constraint with branching number at most 1 is
satisfied.

29/45



Branching numbers: Properties
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Dominance For any a;,b; such thata; > b; forall i, 1 <i <k,

(al,...,ak) S (b],...,bk),

as2 ™M 4 - 427 % <27h 27l
In particular, for any a,b > 0,

Search Trees and
Branching Numbers

either  (a,a) < (a,b) or (b,b)<(a,b).
Balance If 0 < a < b, then for any ¢ such that 0 < e < q,
(a,b) < (a—e,b+¢)

by convexity of 2*.

30/45
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G Exponential Time Subroutines
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Exponential time subroutines

Lemma 4

Let A be an algorithm for a problem P, B be an algorithm for
(special instances of) P, ¢ > 0 be a constant, and u(-), 1’ (+),n(-)
be three measures for the instances of P, such that for any input
instance I, 1/ (I) < p(I) and for any input instance I, A either
solves P on I by invoking B with running time at most
O(n(1)*t1)2#' "), or reduces I to instances Iy, . . ., I;, solves these
recursively, and combines their solutions to solve I, using time at
most O(n(I)¢) for the reduction and combination steps (but not
the recursive solves) and such that for any reduction done by
Algorithm A,

(Vi) n(L) <n() -1, and 9)
2“(11) Al ooodk 2N(lk) < 2;1(1)' (10)

Then A solves any instance I in time O (n(I)<*+')2+#(,

Branching
algorithms

S. Gaspers

Exponential Time
Subroutines



Algorithm mis on general graphs
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@ use Lemma 4 with A = B = mis, ¢ = 2, u(G) = 0.35805n,
w'(G) = Zle win;, and n(G) =n

@ for every instance G, 1/(G) < u(G) because Vi, w; < 0.35805

@ foreachd > 6,

Exponential Time
Subroutines

(0.35805, (d + 1) - 0.35805) < 1

@ Thus, Algorithm mis has running time O(1.2817") for graphs
of arbitrary degrees

33/45
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a Towards a tighter analysis
@ Structures that arise rarely
@ State Based Measures
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Rare Configurations
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@ Branching on a local configuration C does not influence
overall running time if C is selected only a constant number
of times on the path from the root to a leaf of any search
tree corresponding to the execution of the algorithm

@ Can be proved formally by using measure

1) = u(l) + ¢ if C may be selected in the current subtree
w): u(l) otherwise. Srice vt

35/45



Avoid branching on regular instances in mis
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else
Select v € V such that
(1) v has maximum degree, and
(2) among all vertices satisfying (1), v has a neighbor of
minimum degree
return max (1 + mis(G \ N[v]), mis(G \ v))

New measure:

5
W (G) = n(G) + Z Ks(G has a d-regular subgraph)C,
d=3

where C;,3 < d < 5, are constants.

36/45




Resulting Branching numbers
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Foreach d,3 <d <5andall p;,2 <i < d such that Zfzzp,- =d
and pq # d,

d d
(Wd + ZP:’ (Wi —wi—1),wa + ZPi “wi+ hd)~
i=2 =2

All these branching numbers are at most 1 with the optimal set of
weights on the next slide

Structures that arise
rarely




Result

Wi

hi

AW N =~

5

0
0.207137
0.322203
0.343587
0.347974

0
0.207137
0.115066
0.021384
0.004387

Thus, the modified Algorithm mis has running time

O(203480m) — (0(1.2728").

38/45

Branching
algorithms

Structures that arise
rarely




State based measures
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@ “bad” branching always followed by “good” branchings
@ amortize over branching numbers

W (1) = (1) + (1),

where ¥ : 7 — R depends on global properties of the instance.

not
regular

39/45
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Measure in Parameterized Complexity
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@ So far: only State Based Measure

@ e.g. Wahlstrém’s 3-HITTING SET algorithm analysed with
measure k — V(1) where ¥ : 7 — R™ depends on the
number of 2-sets

@ Here: use unrestricted measure

Measure Based
Analysis for
Parameterized
Complexity

41/45
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Definition 5

Max Internal Spanning Tree (MIST): Given a graph G = (V,E)
and a parameter k, does G have a spanning tree with at least k
internal nodes?

: /0 .O ®

Measure Based
Analysis for
Parameterized
Complexity

We consider MIST on graphs of maximum degree 3.




Preliminaries
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Lemma 6 (Prieto, Sloper 2005)

An optimal solution T, to MIST is a Hamiltonian path or the
leaves of T, are independent.

MIST on cubic graphs has a (2k + 2) kernel.

Hamiltonian Path can be solved in time O(1.251") = 1.5651%,°()
on cubic graphs.

Measure Based
Analysis for
Parameterized
Complexity
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w(G,T,k) :=k —w|X| — |Y|, where

X:={veV|dslv)=3,dr(v) =2},
Y={veV|ds(v) =dr(v) > 2}, and
w = 0.45346.

Analyse configurations to obtain branching factors (w, 1),
2-w,l-w)and (1 —w,2 —w,2 —w) (see blackboard).

Theorem 8

Measure Based
Analysis for
Parameterized
Complexity

MIST can be solved in time 2.7321*n°(") on cubic graphs.
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Thank you!

Questions? Comments?

Measure Based
Analysis for
Parameterized
Complexity
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