Computing clique and chromatic number
for circular-perfect graphs
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A celebrated result of Grotschel, Lovasz and Schrijver $2hiat computing clique numbexG)
and chromatic numbeg(G) of a perfect graph can be done in polynomial time.

This result relies on a polyhedral characterization of @etrigraphs [1] showing that for such a
graphG the stable set polytope STAB) coincides with its linear relaxation QSTAB). However,
optimizing over QSTABG) does not work directly [2], but only via a detour involving eametric
representation of graphs. The resulting convex segt@)Hatisfies STABG) C TH(G) C QSTAB(G)
and has the key property tha{G) = max1'x, x € TH(G) can be computed in polynomial time for
any graphG [2]. For perfect graphs, STA®) and THG) coincide and, thus, the clique number
equalsw(G) = 9(G) which also allows to compute(G) = w(G) in polynomial time.

We address the question whether this result can be extendgdph classe§ whose members
G satisfy the best possible bound on the chromatic numberrgptgclasses containing imperfect
graphs, namely(G) < x(G) < w(G) + 1. For such graph§ € G clearlyw(G) < 3(G) < x(G) <
w(G) + 1 holds. Hence

W(G) = [9(G) andx(G) = [3(G)]

follows for §(G) ¢ Z and the two parameters can be computed in polytime for aphg& < G,
provided that we can decide which of the three cases

w(G) < [9(G)| =x(G
w(G)=[3(G)| <x(G
w(G) =[3(G)] =x(G

occurs if§ (G) € Z holds. We apply this method to a superclass of perfect grapé<sircular-perfect
graphs defined by a more general coloring concept. The mauitrss that cligue and chromatic
number can be computed in polynomial time for all circularfpct graphs [4] and, using similar
techniques, further graph parameters for subclassesaflairperfect graphs [3, 4].

In contrary, we exhibit that the same approach fails for twonginent graph classe$ with the
studied property, namely line graphs and planar graphgssRl= NP.
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