Edge coloring: not so simple on multigraphs?

Marthe Bonamy

May 10, 2012
Edge coloring

\[\chi : \text{Minimum number of colors to ensure that } a \neq b. \]

\[\chi' : \text{Minimum number of colors to ensure that } a \neq b. \]

\[\Delta : \text{Maximum degree of the graph.} \]

\[\Delta \leq \chi' \leq 2\Delta - 1. \]
χ: Minimum number of colors to ensure that

$\Rightarrow \ a \neq b$.

χ': Minimum number of colors to ensure that

$\Rightarrow \ a \neq b$.

Δ: Maximum degree of the graph.

$\Delta \leq \chi' \leq 2\Delta - 1$.

Edge coloring: not so simple on multigraphs?
Edge coloring

χ: Minimum number of colors to ensure that

\[a \rightarrow b \Rightarrow a \neq b. \]

χ': Minimum number of colors to ensure that

\[a \rightarrow b \Rightarrow a \neq b. \]
Edge coloring

\(\chi: \) Minimum number of colors to ensure that

\[a \rightarrow b \Rightarrow a \neq b. \]

\(\chi': \) Minimum number of colors to ensure that

\[\bigcirc a \bigcirc b \Rightarrow a \neq b. \]

\(\Delta: \) Maximum degree of the graph.

\[\Delta \leq \chi' \]
Edge coloring

\(\chi \): Minimum number of colors to ensure that

\[\circ \quad a \quad \circ \quad b \quad \Rightarrow \quad a \neq b. \]

\(\chi' \): Minimum number of colors to ensure that

\[\circ \quad a \quad \circ \quad b \quad \Rightarrow \quad a \neq b. \]

\(\Delta \): Maximum degree of the graph.

\[\Delta \leq \chi' \leq 2\Delta - 1. \]
Simple graphs

Theorem (Vizing '64)

For any simple graph G, $\Delta(G) \leq \chi'(G) \leq \Delta(G) + 1$.

Theorem (König '16, Sanders Zhao '01)

For any simple graph G, if G is bipartite, or G is planar with $\Delta(G) \geq 7$, then $\chi'(G) = \Delta(G)$.

Theorem (Erdős Wilson '77)

Almost every simple graph G verifies $\chi'(G) = \Delta(G)$.

Marthe Bonamy

Edge coloring: not so simple on multigraphs?
Simple graphs

<table>
<thead>
<tr>
<th>Theorem (Vizing '64)</th>
</tr>
</thead>
<tbody>
<tr>
<td>For any simple graph G, $\Delta(G) \leq \chi'(G) \leq \Delta(G) + 1$.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (König '16, Sanders Zhao '01)</th>
</tr>
</thead>
<tbody>
<tr>
<td>For any simple graph G, if G is bipartite, or G is planar with $\Delta(G) \geq 7$, then $\chi'(G) = \Delta(G)$.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (Erdös Wilson '77)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Almost every simple graph G verifies $\chi'(G) = \Delta(G)$.</td>
</tr>
</tbody>
</table>
Simple graphs

Theorem (Vizing '64)

For any simple graph G, $\Delta(G) \leq \chi'(G) \leq \Delta(G) + 1$.

Theorem (Holyer '81)

It is NP-complete to compute χ' on simple graphs.
Theorem (Vizing '64)

For any simple graph G, $\Delta(G) \leq \chi'(G) \leq \Delta(G) + 1$.

Theorem (Holyer '81)

It is **NP-complete** to compute χ' on simple graphs.

Theorem (Misra Gries '92 (Inspired from the proof of Vizing’s theorem))

For any simple graph $G = (V, E)$, a $(\Delta + 1)$-edge-coloring can be found in $O(|V| \times |E|)$.
Both theorems are optimal!

$\Delta = 2p.$
$\chi' = 3p.$
$\mu = p.$

μ: Maximum number of edges sharing the same endpoints.
Multigraphs

\[\Delta = 2p. \]
\[\chi' = 3p. \]
\[\mu = p. \]

\(\mu \): Maximum number of edges sharing the same endpoints.

Theorem (Shannon ‘49)

For any multigraph \(G \),
\[\chi'(G) \leq \frac{3\Delta(G)}{2}. \]

Theorem (Vizing ‘64)

For any multigraph \(G \),
\[\chi'(G) \leq \Delta(G) + \mu(G). \]
Multigraphs

Both theorems are optimal!

$\Delta = 2p$.
$\chi' = 3p$.
$\mu = p$.

μ: Maximum number of edges sharing the same endpoints.

Theorem (Shannon ’49)

For any multigraph G, $\chi'(G) \leq \frac{3\Delta(G)}{2}$.

Theorem (Vizing ’64)

For any multigraph G, $\chi'(G) \leq \Delta(G) + \mu(G)$.
Linear relaxation of edge coloring

$M(G)$: set of all matchings.

$w : M(G) \rightarrow \{0; 1\}$.

$\forall e \in E, \sum_{M \mid e \in M} w(M) = 1.$
Linear relaxation of edge coloring

\[M(G) : \text{set of all matchings.} \]
\[w : M(G) \rightarrow \{0; 1\}. \]
\[\text{Minimise } \sum_M w(M) \text{ s.t. } \]
\[\forall e \in E, \sum_{M|e \in M} w(M) = 1. \]

\[w' \text{ optimal solution } \iff \]
\[\sum_M w'(M) = \chi'(G). \]
Linear relaxation of edge coloring

\(M(G) \): set of all matchings.
\[w : M(G) \rightarrow [0; 1]. \]

Minimise \(\sum_M w(M) \) s.t.
\[\forall e \in E, \sum_{M|e \in M} w(M) = 1. \]

\(w' \) optimal solution \(\iff \)
\[\sum_M w'(M) = \chi'_f(G). \]

\(\chi'_f(G) \): Minimum number of colors to ensure that
\[a_1 a_2 \ldots a_p b_1 b_2 \ldots b_p \Rightarrow \forall i, j, a_i \neq b_j. \]

Property \(\chi'_f(G) = \inf_p \chi'_p(G) \).
Linear relaxation of edge coloring

\[M(G) : \text{set of all matchings.} \]
\[w : M(G) \to [0; 1]. \]

Minimise \(\sum_M w(M) \) s.t.
\[\forall e \in E, \sum_{M | e \in M} w(M) = 1. \]

\(w' \) optimal solution \(\iff \)
\[\sum_M w'(M) = \chi'_f(G). \]

\(\chi'_p \): Minimum number of colors to ensure that

\[a_1 a_2 \ldots a_p b_1 b_2 \ldots b_p \quad \Rightarrow \quad \forall i, j, a_i \neq b_j. \]
$M(G)$: set of all matchings.

$w : M(G) \rightarrow [0; 1]$.

Minimise $\sum_M w(M)$ s.t.

$\forall e \in E, \sum_{M \mid e \in M} w(M) = 1$.

w' optimal solution $\iff \sum_M w'(M) = \chi'_f(G)$.

χ'_p: Minimum number of colors to ensure that

$$a_1 \ a_2 \ldots a_p \ b_1 \ b_2 \ldots b_p \Rightarrow \forall i, j, a_i \neq b_j.$$
Edge colorings and matchings

Edge coloring \approx Decomposition into matchings.
Edge colorings and matchings

Edge coloring \approx Decomposition into matchings.
Maximum size of a matching: $\left\lfloor \frac{|V|}{2} \right\rfloor$.
Edge coloring \approx Decomposition into matchings.

Maximum size of a matching: $\left\lfloor \frac{|V|}{2} \right\rfloor$.

$$\chi'(G) \geq \max \frac{|E(H)|}{\left\lfloor \frac{|V(H)|}{2} \right\rfloor} = m(G).$$

$m(G)$: density of G.

Theorem (Edmonds '65)

For any multigraph G, $\chi'(G) = \max (\Delta(G), m(G))$.

Conjecture (Goldberg '73)

For any multigraph G, $\chi'(G) \leq \max (\Delta(G) + 1, \lceil m(G) \rceil)$.

Which would be optimal.

And is computable in polynomial time.

Marthe Bonamy

Edge coloring: not so simple on multigraphs?
Edge colorings and matchings

Edge coloring \approx Decomposition into matchings.
Maximum size of a matching: $\lfloor \frac{|V|}{2} \rfloor$.

$$\chi'(G) \geq \max \left\{ \frac{|E(H)|}{\lfloor \frac{|V(H)|}{2} \rfloor} \right\} = m(G).$$

$m(G)$: density of G

Theorem (Edmonds '65)

For any multigraph G, $\chi'_f(G) = \max(\Delta(G), m(G))$.

Conjecture (Goldberg '73)

For any multigraph G, $\chi'(G) \leq \max(\Delta(G) + 1, \lceil m(G) \rceil)$.

Which would be optimal.

And is computable in polynomial time.

Marthe Bonamy
Edge coloring: not so simple on multigraphs?
Edge colorings and matchings

Edge coloring ≈ Decomposition into matchings.
Maximum size of a matching: $\left\lfloor \frac{|V|}{2} \right\rfloor$.

$$\chi'(G) \geq \max \left\{ \frac{|E(H)|}{|V(H)|} \right\} = m(G).$$

$m(G)$: density of G

Theorem (Edmonds ’65)

For any multigraph G, $\chi'_f(G) = \max(\Delta(G), m(G))$.

Conjecture (Goldberg ’73)

For any multigraph G, $\chi'(G) \leq \max(\Delta(G) + 1, \left\lceil m(G) \right\rceil)$.

Which would be optimal.
Edge colorings and matchings

Edge coloring \approx Decomposition into matchings.
Maximum size of a matching: $\lfloor \frac{|V|}{2} \rfloor$.

$$
\chi'(G) \geq \max \frac{|E(H)|}{\lfloor \frac{|V(H)|}{2} \rfloor} = m(G).
$$

$m(G)$: density of G

Theorem (Edmonds '65)

For any multigraph G, $\chi'_f(G) = \max(\Delta(G), m(G))$.

Conjecture (Goldberg '73)

For any multigraph G, $\chi'(G) \leq \max(\Delta(G) + 1, \lceil m(G) \rceil)$.

Which would be optimal. And is computable in polynomial time.
Goldberg’s conjecture

Theorem (Yu ’08)

For any multigraph G, $\chi'(G) \leq \max(\Delta(G) + \sqrt{\frac{\Delta(G)}{2}}, w(G))$.

Theorem (Kurt ’09)

For any multigraph G, $\chi'(G) \leq \max(\Delta(G) + \frac{\Delta(G) + 22}{24}, w(G))$.
Seymour’s conjecture

Conjecture (Seymour)

For any \(k \)-regular planar multigraph \(G \) s.t. every odd subset \(H \) has \(d(H) \geq k \) verifies \(\chi'(G) = k \).

- \(k = 3 \iff 4\text{CT. (Tait)} \)
- \(k = 4, 5 \) (Guenin)
- \(k = 6 \) (Dvorak, Kawarabayashi, Kral)
- \(k = 7 \) (Edwards, Kawarabayashi)
- \(k = 8 \) (Chudnovsky, Edwards, Seymour)
Seymour’s conjecture

Conjecture (Seymour)

For any \(k \)-regular planar multigraph \(G \) s.t. every odd subset \(H \) has \(d(H) \geq k \) verifies \(\chi'(G) = k \).

- \(k = 3 \iff 4\text{CT. (Tait)} \)
- \(k = 4, 5 \) (Guenin)
- \(k = 6 \) (Dvorak, Kawarabayashi, Kral)
- \(k = 7 \) (Edwards, Kawarabayashi)
- \(k = 8 \) (Chudnovsky, Edwards, Seymour)

Sketch of the proof.
Conclusion

Conjecture (Jensen Toft ’95)

For any simple graph G on an even number of vertices,

\[\chi'(G) = \Delta(G) \text{ or } \chi'(\overline{G}) = \Delta(\overline{G}). \]
Conclusion

Conjecture (Jensen Toft ’95)

For any simple graph G on an even number of vertices,

$$\chi'(G) = \Delta(G) \text{ or } \chi'({\overline{G}}) = \Delta({\overline{G}}).$$

Thanks for your attention.

Any questions?