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Generalized power domination in regular graphs

Introduction

L Definition of power domination

Electrical system management

Problem :
Monitor all vertices and edges of a network with PMU (Phase
Measurement Units) using rules :

1.

a PMU monitors its vertex and its incident edges

2. vertex incident to a monitored edge = monitored (Ohm law)
3.
4

. degree d monitored vertex incident to d — 1 monitored edges = d*" edge

edge joining 2 monitored vertices = monitored (Ohm law)

monitored (Kirchhoff law).

Equivalent rules :
Monitor all vertices of the network (= edges monitored from 3)

domination a PMU monitors the closed neighborhood of its vertex (1 + 2)

propagation degree d monitored vertex with d — 1 monitored neighbours =

d™ neighbour monitored ((3 + 4) + 2).
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Definition of power domination

Difficulties...

Does vp(G) decrease when you

add edges?
delete edges?
delete vertices?

vV v v Vv

add vertices ?

= No obvious heredity
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Monitored vertices

Definition

G a graph, S a subset of vertices
The set P'(S) of vertices monitored by S at step i
is defined by

» (domination)

P°(S) = NIS]
> (propagation)

PHHS) = {N[v]

v ePi(S),

INVI\PI(S)| < 1 }
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Monitored vertices

Definition

. [CDMR2012]

G a graph, S a subset of vertices

The set P'(S) of vertices monitored by S at step i
is defined by

» (domination)

P°(S) = NIS]
> (propagation)

PHY(S) = {N[v]
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Monitored vertices

. .. = 1
Definition : [CDMR2012) k=2P(3)
G a graph, S a subset of vertices O O O O
The set P'(S) of vertices monitored by S at step i
is defined by

» (domination)
P°(S) = NIS]

> (propagation)

v € P(S), } @) O

77:'+1(5) = {N[v] |N[v] \Pi(5)| <k
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_ 2
Definition : [CDMR2012)] k=2P%3)
G a graph, S a subset of vertices ) ) O O
The set P'(S) of vertices monitored by S at step i
is defined by f ?
» (domination) z - ; —© O
PY(S) = N[S
(5) = NIS] ) S ! S
> (propagation) ¢ t
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Monitored vertices

Definition : [CDMR2012]

G a graph, S a subset of vertices
The set P'(S) of vertices monitored by S at step i
is defined by

» (domination)
P°(S) = NIS]

> (propagation)

PHY(S) = {N[v]

v E 77"(5).7 }
INVINP'(S)] < k
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Generalized power domination

Problem
Given a graph G, find its k-power domination number vp 1 (G)
= smallest size of S such that P>(S) = V(G).

> generalizes power domination (vp,1 = p)
» generalizes domination (yp,o =)
> helps to understand how power-domination is related to
domination :
» critical graphs : (k + 1)-crowns
general bounds

>
» common linear algorithm on trees (and bounded treewidth)
> other bounds for families of graphs...
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Common general bound

For G connected of order n

Lemma
If A(G) < k+1, ypu(G) =1

Lemma
Otherwise, there exist a minimum k-power dominating set containing
only vertices of degree > k 4 2

Theorem

If G is of order n > k + 2, then yp 1 (G) < —

k+2

EI( A A A A )
AN A AN . A
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Clearly, vp x(G) > vp k+1(G). Can we say more?



Generalized power domination in regular graphs
Introduction

Definition of power domination

Relation between ~vp i for different k

Question
Clearly, vp x(G) > vp k+1(G). Can we say more?
Obs : No

For any sequence (xk)x > O finite and non-increasing, there exist G such
that 7p k(G) = Xk

K7 e 9 Q Q 2 2 R
TN AN el

A graph for the sequence (7,5,5,3,2)
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On regular graphs

Theorem [Zhao,Kang,Chang,2006]
G connected claw-free cubic = 1p(G) < 7.

Theorem [CDMR2012]

G connected claw-free (k + 2)-regular

= 1pi(G) < 5.

both with equality iff G is isomorphic to the graph :
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On regular graphs

Theorem [Zhao,Kang,Chang,2006]
G connected claw-free cubic = 1p(G) < 7.

Theorem [CDMR2012]

G connected claw-free (k + 2)-regular
=1 k(G) < 5.

both with equality iff G is isomorphic to the graph :

Theorem [DHLMR2012+]
G connected (k + 2)-regular, G # Kiy2,k42, = 1px(G) < 5.
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> We have :
Definition : (A, B)-configurations
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(P2). B=N(A)\ A.
(P3). da(v) = k + 1 for each vertex v € B.
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> We can add more :
(P5). dg(v) > 1 for each vertex v € A.
(P6). If k is odd, then |A| = k + 1.
(P7). B < k+2.
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Regular graphs

On the blackboard

> We have :
Definition : (A, B)-configurations
(P1). |Al € {k+ 1,k +2}.
(P2). B= N(A)\ A.
(P3). da(v) = k + 1 for each vertex v € B.
(P4). B is an independent set.
> We can add more :
(P5). dg(v) > 1 for each vertex v € A.
(P6). If k is odd, then |A| = k + 1.
(P7). |B| < k+2.
» then we show they can't intersect too much... exemple AN A" > 1.

» Remains some family F...
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Regular graphs

Final trick

Remove from G any edge not in a C3 or a (4.
every Fi in G remain and is isolated : take a vertex in each

>
>
> take a vertex in every other (A, B)-configurations.
» complete into a maximal packing of G.

>

propagate, then increase the set iterately : possible since no
(A, B)-configurations left...
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Summary
Recall that if A(G) < k+1, px(G) =1
We proved :

Theorem [DHLMR2012+]
G connected (k + 2)-regular, G # Kiy2 k+2, = 1px(G) < 5.

What next 7 Another bound ? (I think not -77)

u]
o)
I
i
it




e
Generalized power domination in regular graphs
[ Regular graphs

:

Thanks for your attention.

CDMR2012 : Chang, Dorbec, Montassier, Raspaud, Discrete Appl. Math.
DHLMR2012+ : Dorbec, Henning, Lowenstein, Montassier, Raspaud,
manuscript
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