Generalized power domination in regular graphs

Paul Dorbec
Université de Bordeaux - CNRS

Graph protection Workshop, 2012 July 8th
Electrical system management

Problem:
Monitor all vertices and edges of a network with PMU (Phase Measurement Units) using rules:

1. a PMU monitors its vertex and its incident edges
2. vertex incident to a monitored edge \Rightarrow monitored (Ohm law)
3. edge joining 2 monitored vertices \Rightarrow monitored (Ohm law)
4. degree d monitored vertex incident to $d - 1$ monitored edges $\Rightarrow d^{th}$ edge monitored (Kirchhoff law).

Equivalent rules:
Monitor all vertices of the network (\Rightarrow edges monitored from 3)

- **domination**: a PMU monitors the closed neighborhood of its vertex $(1 + 2)$
- **propagation**: degree d monitored vertex with $d - 1$ monitored neighbours $\Rightarrow d^{th}$ neighbour monitored $((3 + 4) + 2)$.
Example: $\gamma_P(P_4 \square P_5) \leq 2$
Example: $\gamma_P(P_4 \square P_5) \leq 2$
Example: $\gamma_P(P_4 \square P_5) \leq 2$

Propagation 2
Example: $\gamma_P(P_4 \Box P_5) \leq 2$
Does $\gamma_P(G)$ decrease when you

- add edges?
- delete edges?
- delete vertices?
- add vertices?
Generalized power domination in regular graphs

Introduction

Definition of power domination

Difficulties...

Does $\gamma_P(G)$ decrease when you

- add edges?
- delete edges?
- delete vertices?
- add vertices?
Difficulties...

Does $\gamma_P(G)$ decrease when you

- add edges?
- delete edges?
- delete vertices?
- add vertices?
Difficulties...

Does $\gamma_p(G)$ decrease when you

- add edges?
- delete edges?
- delete vertices?
- add vertices?
Difficulties...

Does $\gamma_P(G)$ decrease when you

- add edges?
- delete edges?
- delete vertices?
- add vertices?
Difficulties...

Does $\gamma_P(G)$ decrease when you

- add edges?
- delete edges?
- delete vertices?
- add vertices?
Difficulties...

Does $\gamma_P(G)$ decrease when you

- add edges?
- delete edges?
- delete vertices?
- add vertices?
Generalized power domination in regular graphs

Introduction

Definition of power domination

Difficulties...

Does $\gamma_P(G)$ decrease when you

- add edges?
- delete edges?
- delete vertices?
- add vertices?

\Rightarrow No obvious heredity
Monitored vertices

Definition:

G a graph, S a subset of vertices
The set $\mathcal{P}^i(S)$ of vertices monitored by S at step i
is defined by

- (domination)

$$\mathcal{P}^0(S) = N[S]$$

- (propagation)

$$\mathcal{P}^{i+1}(S) = \left\{ N[v] \mid v \in \mathcal{P}^i(S), \left| N[v] \setminus \mathcal{P}^i(S) \right| \leq 1 \right\}$$
Monitored vertices

Definition: [CDMR2012]

Let G be a graph, S a subset of vertices. The set $\mathcal{P}^i(S)$ of vertices monitored by S at step i is defined by:

- **(domination)**
 \[
 \mathcal{P}^0(S) = N[S]
 \]

- **(propagation)**
 \[
 \mathcal{P}^{i+1}(S) = \left\{ N[v] \mid v \in \mathcal{P}^i(S), \ |N[v] \setminus \mathcal{P}^i(S)| \leq k \right\}
 \]

$k = 2, \mathcal{P}^0(S)$
Monitored vertices

Definition : [CDMR2012]

Let G be a graph, S a subset of vertices. The set $\mathcal{P}^i(S)$ of vertices monitored by S at step i is defined by:

- (domination)

 $\mathcal{P}^0(S) = N[S]$

- (propagation)

 $\mathcal{P}^{i+1}(S) = \left\{ N[v] \mid v \in \mathcal{P}^i(S), |N[v] \setminus \mathcal{P}^i(S)| \leq k \right\}$

For $k = 2$, $\mathcal{P}^1(S)$
Monitored vertices

Definition : [CDMR2012]

G a graph, S a subset of vertices
The set $P^i(S)$ of vertices monitored by S at step i is defined by

- (domination)

$$P^0(S) = N[S]$$

- (propagation)

$$P^{i+1}(S) = \left\{ N[v] \mid v \in P^i(S), |N[v] \setminus P^i(S)| \leq k \right\}$$

$k = 2, P^2(S)$
Generalized power domination in regular graphs

Introduction

Definition of power domination

Monitored vertices

Definition: [CDMR2012]

Let G be a graph, and S be a subset of vertices. The set $\mathcal{P}^i(S)$ of vertices monitored by S at step i is defined by:

- (domination)

 \[\mathcal{P}^0(S) = N[S] \]

- (propagation)

 \[\mathcal{P}^{i+1}(S) = \left\{ N[v] \mid v \in \mathcal{P}^i(S), \ |N[v] \setminus \mathcal{P}^i(S)| \leq k \right\} \]

The diagram illustrates the concept for $k = 2$, $\mathcal{P}^{>3}(S)$. The nodes and edges represent the monitored vertices and their dependencies in the graph.
Generalized power domination in regular graphs

Introduction

Definition of power domination

Generalized power domination

Problem
Given a graph G, find its k-power domination number $\gamma_{P,k}(G)$

$$\gamma_{P,k}(G) = \text{smallest size of } S \text{ such that } P^\infty(S) = V(G).$$

- generalizes power domination ($\gamma_{P,1} = \gamma_P$)
- generalizes domination ($\gamma_{P,0} = \gamma$)
- helps to understand how power-domination is related to domination:
 - critical graphs: $(k + 1)$-crowns
 - general bounds
 - common linear algorithm on trees (and bounded treewidth)
 - other bounds for families of graphs...
Common general bound

For G connected of order n

Lemma
If $\Delta(G) \leq k + 1$, $\gamma_{P,k}(G) = 1$

Lemma
Otherwise, there exist a minimum k-power dominating set containing only vertices of degree $\geq k + 2$

Theorem
If G is of order $n \geq k + 2$, then $\gamma_{P,k}(G) \leq \frac{n}{k + 2}$
Relation between $\gamma_{P,k}$ for different k

Question

Clearly, $\gamma_{P,k}(G) \geq \gamma_{P,k+1}(G)$. Can we say more?
Relation between $\gamma_{P,k}$ for different k

Question
Clearly, $\gamma_{P,k}(G) \geq \gamma_{P,k+1}(G)$. Can we say more?

Obs : No
For any sequence $(x_k)_k > 0$ finite and non-increasing, there exist G such that $\gamma_{P,k}(G) = x_k$.

\[K_7 \]

A graph for the sequence $(7, 5, 5, 3, 2)$
On regular graphs

Theorem [Zhao, Kang, Chang, 2006]
G connected claw-free cubic $\Rightarrow \gamma_P(G) \leq \frac{n}{4}$.

Theorem [CDMR2012]
G connected claw-free $(k + 2)$-regular
$\Rightarrow \gamma_{P,k}(G) \leq \frac{n}{k+3}$.

both with equality iff G is isomorphic to the graph:
On regular graphs

Theorem [Zhao, Kang, Chang, 2006]
G connected claw-free cubic $\Rightarrow \gamma_P(G) \leq \frac{n}{4}$.

Theorem [CDMR2012]
G connected claw-free $(k + 2)$-regular
$\Rightarrow \gamma_{P,k}(G) \leq \frac{n}{k+3}$.

both with equality iff G is isomorphic to the graph:

Theorem [DHLMR2012+]
G connected $(k + 2)$-regular, $G \neq K_{k+2,k+2}$, $\Rightarrow \gamma_{P,k}(G) \leq \frac{n}{k+3}$.
(A, B)-configurations

Let G be a connected (k + 2)-regular graph.

▶ For each vertex taken, find $k + 3$ new monitored vertices typically: its neighbours \Rightarrow a 2-packing.
(A, B)-configurations

Let G be a connected \((k + 2)\)-regular graph.

- For each vertex taken, find \(k + 3\) new monitored vertices typically: its neighbours \(\Rightarrow\) a 2-packing.
- then look for obstructions... = (A, B)-configurations:
 - \(\exists\) a monitored vertex \(v(\in B)\) that has unmonitored neighbours \((\in A)\).
 - \(v\) does not propagate so at least \(k + 1\),
 - \(v\) is monitored so at least one monitored neighbour.

Definition: (A, B)-configurations

(P1). \(|A| \in \{k + 1, k + 2\}\).

(P2). \(B = N(A) \setminus A\).

(P3). \(d_A(v) = k + 1\) for each vertex \(v \in B\).

(P4). \(B\) is an independent set.
(A, B)-configurations

Let G be a connected $(k + 2)$-regular graph.

- For each vertex taken, find $k + 3$ new monitored vertices typically: its neighbours \Rightarrow a 2-packing.
- then look for obstructions... = (A, B)-configurations:
 - \exists a monitored vertex $v (\in B)$ that has unmonitored neighbours ($\in A$).
 - v does not propagate so at least $k + 1$,
 - v is monitored so at least one monitored neighbour.
- if we find 2 more to put in A, we are done...
(A, B)-configurations

Let G be a connected $(k + 2)$-regular graph.

- For each vertex taken, find $k + 3$ new monitored vertices typically: its neighbours \Rightarrow a 2-packing.
- then look for obstructions... = (A, B)-configurations:
 - \exists a monitored vertex $v(\in B)$ that has unmonitored neighbours ($\in A$).
 - v does not propagate so at least $k + 1$,
 - v is monitored so at least one monitored neighbour.
- if we find 2 more to put in A, we are done...

Definition: (A, B)-configurations

(P1). $|A| \in \{k + 1, k + 2\}$.
(P2). $B = N(A) \setminus A$.
(P3). $d_A(v) = k + 1$ for each vertex $v \in B$.
(P4). B is an independent set.
On the blackboard

- We have:

Definition : \((A, B)\)-configurations

- **(P1).** \(|A| \in \{k + 1, k + 2\} \).
- **(P2).** \(B = N(A) \setminus A\).
- **(P3).** \(d_A(v) = k + 1\) for each vertex \(v \in B\).
- **(P4).** \(B\) is an independent set.
On the blackboard

- We have:

Definition : \((A, B)\)-configurations

(P1). \(|A| \in \{k + 1, k + 2\}\).

(P2). \(B = N(A) \setminus A\).

(P3). \(d_A(v) = k + 1\) for each vertex \(v \in B\).

(P4). \(B\) is an independent set.

- We can add more:

(P5). \(d_B(v) \geq 1\) for each vertex \(v \in A\).

(P6). If \(k\) is odd, then \(|A| = k + 1\).

(P7). \(|B| \leq k + 2\).
On the blackboard

- We have:

Definition: \((A, B)\)-configurations

(P1). \(|A| \in \{k + 1, k + 2\}\).
(P2). \(B = N(A) \setminus A\).
(P3). \(d_A(v) = k + 1\) for each vertex \(v \in B\).
(P4). \(B\) is an independent set.

- We can add more:

(P5). \(d_B(v) \geq 1\) for each vertex \(v \in A\).
(P6). If \(k\) is odd, then \(|A| = k + 1\).
(P7). \(|B| \leq k + 2\).

- then we show they can’t intersect too much... exemple \(A \cap A' > 1\).

- Remains some family \(\mathcal{F}_k\)...
Final trick

- Remove from G any edge not in a C_3 or a C_4.
- every F_k in G remain and is isolated: take a vertex in each
Final trick

- Remove from G any edge not in a C_3 or a C_4.
- Every F_k in G remain and is isolated: take a vertex in each
- take a vertex in every other (A, B)-configurations.
- Complete into a maximal packing of G.
- Propagate, then increase the set iterately: possible since no
 (A, B)-configurations left...
Summary

Recall that if $\Delta(G) \leq k + 1$, $\gamma_{P,k}(G) = 1$
We proved:

Theorem [DHLMR2012+]

G connected $(k+2)$-regular, $G \neq K_{k+2,k+2}$, $\Rightarrow \gamma_{P,k}(G) \leq \frac{n}{k+3}$.

What next? Another bound? (I think not $\frac{n}{r+1}$)
Thanks for your attention.

DHLMR2012+ : Dorbec, Henning, Lowenstein, Montassier, Raspald, manuscript