The k-Sparsest Subgraph Problem in (Proper) Interval Graphs

Rémi Watrigant, Marin Bougeret and Rodolphe Giroudeau

LIRMM, Montpellier, France

Séminaire AlGCo, 20/09/2012
Contents

1. **Introduction**

2. **FPT Algorithm in Interval Graphs**

3. **PTAS in Proper Interval Graphs**

4. **Open Problems and Future Work**
Introduction

k-Sparsest Subgraph Problem (k-SS)

Input: a graph $G = (V, E)$, $k \leq |V|$.

Output: a set $S \subseteq V$ of size exactly k.

Goal: minimize $E(S)$ (the number of edges induced by S)
Introduction

k-Sparsest Subgraph Problem (k-SS)

Input: a graph $G = (V, E)$, $k \leq |V|$.

Output: a set $S \subseteq V$ of size exactly k.

Goal: minimize $E(S)$ (the number of edges induced by S)

- generalization of independent set
 - k-SS NP-hard in general graphs (+ $W[1]$-hard, inapproximable)

Watrigant, Bougeret, Giroudeau
Introduction

k-Sparsest Subgraph Problem (k-SS)

Input: a graph $G = (V, E)$, $k \leq |V|$.
Output: a set $S \subseteq V$ of size exactly k.
Goal: minimize $E(S)$ (the number of edges induced by S)

- generalization of independent set
 \Rightarrow k-SS NP-hard in general graphs (+ $W[1]$-hard, inapproximable)

- maximization version (k-Densest Subgraph) NP-hard on chordal graphs
 \Rightarrow k-SS NP-hard in co-chordal \subseteq perfect graphs
Introduction

k-Sparsest Subgraph Problem (k-SS)

Input: a graph $G = (V, E)$, $k \leq |V|$.

Output: a set $S \subseteq V$ of size exactly k.

Goal: minimize $|E(S)|$ (the number of edges induced by S)

- Generalization of independent set
 - k-SS NP-hard in general graphs (+ $W[1]$-hard, inapproximable)

- Maximization version (k-Densest Subgraph) NP-hard on chordal graphs
 - k-SS NP-hard in co-chordal \subseteq perfect graphs

- k-SS polynomial in split graphs
Introduction

k-Sparsest Subgraph Problem (k-SS)

Input: a graph $G = (V, E)$, $k \leq |V|$.

Output: a set $S \subseteq V$ of size exactly k.

Goal: minimize $E(S)$ (the number of edges induced by S)

- generalization of independent set
 \Rightarrow k-SS NP-hard in general graphs (+ W[1]-hard, inapproximable)

- maximization version (k-Densest Subgraph) NP-hard on chordal graphs
 \Rightarrow k-SS NP-hard in co-chordal \subseteq perfect graphs

- k-SS polynomial in split graphs

- complexity of k-DS unknown in (proper) interval graphs. PTAS in interval graphs, 3-approximation in chordal graphs
k-Sparsest Subgraph Problem (k-SS)

Input: a graph $G = (V, E)$, $k \leq |V|$.

Output: a set $S \subseteq V$ of size exactly k.

Goal: minimize $E(S)$ (the number of edges induced by S)

In this talk:
Introduction

k-Sparsest Subgraph Problem (k-SS)

Input: a graph $G = (V, E)$, $k \leq |V|$.

Output: a set $S \subseteq V$ of size exactly k.

Goal: minimize $E(S)$ (the number of edges induced by S)

In this talk:

- FPT algorithm in interval graphs (parameterized by the cost of the solution)
- PTAS in proper interval graphs
Introduction

k-Sparsest Subgraph Problem (k-SS)

Input: a graph $G = (V, E)$, $k \leq |V|$.

Output: a set $S \subseteq V$ of size exactly k.

Goal: minimize $E(S)$ (the number of edges induced by S)

In this talk:
- FPT algorithm in interval graphs (parameterized by the cost of the solution)
- PTAS in proper interval graphs

FPT Algorithm

An *FPT* algorithm for a parameterized problem is an algorithm that exactly solves the problem in $O(f(k) \cdot poly(n))$ where n is the size of the instance and k the parameter of the instance.

Polynomial-Time Approximation Scheme

A *PTAS* for a minimization problem is an algorithm A_ϵ such that for any fixed $\epsilon > 0$, A_ϵ runs in polynomial time and outputs a solution of cost $< (1 + \epsilon)OPT$
Introduction

k-Sparsest Subgraph Problem (k-SS)

Input: a graph $G = (V, E)$, $k \leq |V|$.
Output: a set $S \subseteq V$ of size exactly k.
Goal: minimize $E(S)$ (the number of edges induced by S)

In this talk:
- FPT algorithm in interval graphs (parameterized by the cost of the solution)
- PTAS in proper interval graphs
Introduction

k-Sparsest Subgraph Problem (k-SS)

Input: a graph $G = (V, E)$, $k \leq |V|$.

Output: a set $S \subseteq V$ of size exactly k.

Goal: minimize $E(S)$ (the number of edges induced by S)

In this talk:
- FPT algorithm in interval graphs (parameterized by the cost of the solution)
- PTAS in proper interval graphs

Interval graphs = intersection graphs of intervals in the real line.
Introduction

\textbf{\textit{k}-Sparsest Subgraph Problem (k-SS)}

\textbf{Input:} a graph \(G = (V, E) \), \(k \leq |V| \).

\textbf{Output:} a set \(S \subseteq V \) of size exactly \(k \).

\textbf{Goal:} minimize \(E(S) \) (the number of edges induced by \(S \)).

In this talk:

- FPT algorithm in interval graphs (parameterized by the cost of the solution)
- PTAS in proper interval graphs

Interval graphs = intersection graphs of intervals in the real line.

Proper interval graph = no interval contains properly another one = unit interval graphs.
Introduction

k-Sparsest Subgraph Problem (k-SS)

Input: a graph $G = (V, E)$, $k \leq |V|$.

Output: a set $S \subseteq V$ of size exactly k.

Goal: minimize $E(S)$ (the number of edges induced by S).

In this talk:
- FPT algorithm in interval graphs (parameterized by the cost of the solution)
- PTAS in proper interval graphs

Interval graphs = intersection graphs of intervals in the real line.

Proper interval graph = no interval contains properly another one = unit interval graphs
Contents

1 Introduction

2 FPT Algorithm in Interval Graphs

3 PTAS in Proper Interval Graphs

4 Open Problems and Future Work
FPT Algorithm in Interval Graphs

Given a set \mathcal{I} of intervals, $k \leq |\mathcal{I}|$ and a cost C^*
FPT Algorithm in Interval Graphs

Given a set \mathcal{I} of intervals, $k \leq |\mathcal{I}|$ and a cost C^*

Idea of the algorithm:
FPT Algorithm in Interval Graphs

Given a set \mathcal{I} of intervals, $k \leq |\mathcal{I}|$ and a cost C^*

Idea of the algorithm:

- we sort intervals according to their right endpoints
FPT Algorithm in Interval Graphs

Given a set \mathcal{I} of intervals, $k \leq |\mathcal{I}|$ and a cost C^*

Idea of the algorithm:

- we sort intervals according to their right endpoints
- parameters of the dynamic programming:
 $s \leftarrow$ left endpoint of the leftmost interval, $k' \leftarrow k$, $C' \leftarrow C^*$
FPT Algorithm in Interval Graphs

Given a set \mathcal{I} of intervals, $k \leq |\mathcal{I}|$ and a cost C^*

Idea of the algorithm:

- we sort intervals according to their right endpoints
- parameters of the dynamic programming:
 $s \leftarrow$ left endpoint of the leftmost interval, $k' \leftarrow k$, $C' \leftarrow C^*$
- given the parameters, we construct all subsets T s.t.
FPT Algorithm in Interval Graphs

Given a set \mathcal{I} of intervals, $k \leq |\mathcal{I}|$ and a cost C^*

Idea of the algorithm:

- we sort intervals according to their right endpoints
- parameters of the dynamic programming:

 $s \leftarrow$ left endpoint of the leftmost interval, $k' \leftarrow k$, $C' \leftarrow C^*$

- given the parameters, we construct all subsets T s.t.

 (i) T is connected
 (ii) T starts after s (i.e. to the right of s)
 (iii) $E(T) \leq C'$
FPT Algorithm in Interval Graphs

Given a set \(\mathcal{I} \) of intervals, \(k \leq |\mathcal{I}| \) and a cost \(C^* \)

Idea of the algorithm:
- we sort intervals according to their right endpoints
- parameters of the dynamic programming:
 \(s \leftarrow \) left endpoint of the leftmost interval, \(k' \leftarrow k \), \(C' \leftarrow C^* \)
- given the parameters, we construct all subsets \(T \) s.t.
 (i) \(T \) is connected
 (ii) \(T \) starts after \(s \) (i.e. to the right of \(s \))
 (iii) \(E(T) \leq C' \)
- recursive call with :
 - \(k' \leftarrow k' - |T| \)
 - \(C' \leftarrow C - E(T) \)
 - \(s \leftarrow \) left endpoint of the rightmost interval after \(T \)
FPT Algorithm in Interval Graphs

Given a set \mathcal{I} of intervals, $k \leq |\mathcal{I}|$ and a cost C^*

Idea of the algorithm:

- we sort intervals according to their right endpoints
- parameters of the dynamic programming:
 - $s \leftarrow$ left endpoint of the leftmost interval, $k' \leftarrow k$, $C' \leftarrow C^*$
- given the parameters, we construct all subsets T s.t.
 - (i) T is connected
 - (ii) T starts after s (i.e. to the right of s)
 - (iii) $E(T) \leq C'$
- recursive call with :
 - $k' \leftarrow k' - |T|$
 - $C' \leftarrow C - E(T)$
 - $s \leftarrow$ left endpoint of the rightmost interval after T
- \Rightarrow at most $k.C^*.n$ different inputs
 - what about the running time of one call?
FPT Algorithm in Interval Graphs

Given a set \mathcal{I} of intervals, $k \leq |\mathcal{I}|$ and a cost C^*

Idea of the algorithm:
- we sort intervals according to their right endpoints
- parameters of the dynamic programming:
 - $s \leftarrow$ left endpoint of the leftmost interval, $k' \leftarrow k$, $C' \leftarrow C^*$
- given the parameters, we construct all subsets T s.t.
 1. T is connected
 2. T starts after s (i.e. to the right of s)
 3. $E(T) \leq C'$
- recursive call with:
 - $k' \leftarrow k' - |T|$
 - $C' \leftarrow C - E(T)$
 - $s \leftarrow$ left endpoint of the rightmost interval after T

\Rightarrow at most $k.C^*.n$ different inputs
what about the running time of one call?

Let $\Omega_s(C')$ be the set of all subsets satisfying (i), (ii) and (iii)
FPT Algorithm in Interval Graphs

- Given the parameters, we construct all subsets T s.t.
 - (i) T is connected
 - (ii) T starts after s (i.e. to the right of s)
 - (iii) $E(T) \leq C'$

Let $\Omega_s(C')$ be the set of all subsets satisfying (i), (ii) and (iii)
FPT Algorithm in Interval Graphs

Given the parameters, we construct all subsets T s.t.

(i) T is connected
(ii) T starts after s (i.e. to the right of s)
(iii) $E(T) \leq C'$

Let $\Omega_s(C')$ be the set of all subsets satisfying (i), (ii) and (iii)

Lemma

$\Omega_s(C')$

\[\begin{array}{c}
T_1 \\
T_2 \\
\vdots \\
T_l
\end{array} \]

\[\Gamma_s(C') \]

\[\begin{array}{c}
T'_1 \\
T'_2 \\
\vdots \\
T'_{l'}
\end{array} \]

Cost

Restructuration

Can be enumerated in FPT time

$< y_1, \ldots, y_i, \ldots, y_t >$
FPT Algorithm in Interval Graphs
FPT Algorithm in Interval Graphs

S

I_{i_1}: leftmost interval of T crossing s
FPT Algorithm in Interval Graphs

\(l_{i_1} \): leftmost interval of \(T \) crossing \(s \)

\(l^* \): leftmost interval after \(s \) overlapping \(l_{i_1} \)
FPT Algorithm in Interval Graphs

\[l_{i_1} : \text{leftmost interval of } T \text{ crossing } s \]

\[\tilde{l} : \text{leftmost interval of } T \text{ overlapping } l_{i_1} \]

\[l^* : \text{leftmost interval after } s \text{ overlapping } l_{i_1} \]
FPT Algorithm in Interval Graphs

\(l_{i_1} \): leftmost interval of \(T \) crossing \(s \)

\(\tilde{l} \): leftmost interval of \(T \) overlapping \(l_{i_1} \)

\(l^* \): leftmost interval after \(s \) overlapping \(l_{i_1} \)
l_i: leftmost interval of T crossing s

\tilde{l}: leftmost interval of T overlapping l_i

l^*: leftmost interval after s overlapping l_i
FPT Algorithm in Interval Graphs

l_{i_1}: leftmost interval of T crossing s

l^*: leftmost interval after s overlapping l_{i_1}
$y_i = 1$

l_{i_1}: leftmost interval of T crossing s

l^*: leftmost interval after s overlapping l_{i_1}
$y_i = 1 + x$

S

l_{i_1}: leftmost interval of T crossing s

l^*: leftmost interval after s overlapping l_{i_1}
$y_i = 1 + x$

I_i^\ast: leftmost interval after s overlapping I_{i_1}

I_i: leftmost interval of T crossing s
$y_i = 1 + x$

l_{i_1}: leftmost interval of T crossing s

l^*: leftmost interval after s overlapping l_{i_1}

x leftmost intervals after s overlapping l_{i_1}
Any element of $\Gamma_s(C')$ can be encoded by a vector $< y_1, \ldots, y_i, \ldots, y_t >$

We now bound the size of $\Gamma_s(C^*)$:

- $y_i = B \Rightarrow$ there exists a clique of size B in the solution
Any element of $\Gamma_s(C')$ can be encoded by a vector $< y_1, ..., y_i, ..., y_t >$

We now bound the size of $\Gamma_s(C^*)$:

- $y_i = B \Rightarrow$ there exists a clique of size B in the solution
 $\Rightarrow y_i \leq \sqrt{2C^*} + 2$
Any element of $\Gamma_s(C')$ can be encoded by a vector $< y_1, ..., y_i, ..., y_t >$

We now bound the size of $\Gamma_s(C^*)$:

- $y_i = B \Rightarrow$ there exists a clique of size B in the solution
 $\Rightarrow y_i \leq \sqrt{2C^*} + 2$

- for each step $i \in \{0, ..., (t - 1)\}$ and corresponding s, we can find a pair of intervals (crossing or at the right of s) overlapping such that in the next step, one of them is at the left of s (no multiple counts of the same pair)
Any element of $\Gamma_s(C')$ can be encoded by a vector $<y_1, \ldots, y_i, \ldots, y_t>$

We now bound the size of $\Gamma_s(C^*)$:

- $y_i = B \Rightarrow$ there exists a clique of size B in the solution
 $\Rightarrow y_i \leq \sqrt{2C^*} + 2$

- for each step $i \in \{0, \ldots, (t - 1)\}$ and corresponding s, we can find a pair of intervals (crossing or at the right of s) overlapping such that in the next step, one of them is at the left of s (no multiple counts of the same pair)
 $\Rightarrow t \leq C^* + 1$
Any element of $\Gamma_s(C')$ can be encoded by a vector $<y_1, ..., y_i, ..., y_t>$

We now bound the size of $\Gamma_s(C^*)$:

- $y_i = B \Rightarrow$ there exists a clique of size B in the solution
 $\Rightarrow y_i \leq \sqrt{2C^*} + 2$

- for each step $i \in \{0, ..., (t - 1)\}$ and corresponding s, we can find a pair of intervals (crossing or at the right of s) overlapping such that in the next step, one of them is at the left of s (no multiple counts of the same pair)
 $\Rightarrow t \leq C^* + 1$

Thus:

$$|\Gamma_s(C^*)| \leq (\sqrt{2C^*} + 2)^{C^*+1}$$

and each step of the dynamic programming runs in FPT time.
Any element of $\Gamma_s(C')$ can be encoded by a vector $< y_1, \ldots, y_i, \ldots, y_t >$

We now bound the size of $\Gamma_s(C^*)$:

- $y_i = B \Rightarrow$ there exists a clique of size B in the solution
 $\Rightarrow y_i \leq \sqrt{2C^* + 2}$

- for each step $i \in \{0, \ldots, (t - 1)\}$ and corresponding s, we can find a pair of intervals (crossing or at the right of s) overlapping such that in the next step, one of them is at the left of s (no multiple counts of the same pair)
 $\Rightarrow t \leq C^* + 1$

Thus:

$$|\Gamma_s(C^*)| \leq (\sqrt{2C^* + 2})^{C^*+1}$$

and each step of the dynamic programming runs in FPT time.

Theorem

k-Sparsest Subgraph in Interval Graphs is FPT parameterized by the cost of the solution.
1 Introduction

2 FPT Algorithm in Interval Graphs

3 PTAS in Proper Interval Graphs

4 Open Problems and Future Work
PTAS in Proper Interval Graphs

Idea of the algorithm:
PTAS in Proper Interval Graphs

Idea of the algorithm:

- sorting intervals according to their right endpoints
PTAS in Proper Interval Graphs

Idea of the algorithm:

- sorting intervals according to their right endpoints
- greedy decomposition of the graph into a path of separators
PTAS in Proper Interval Graphs

Idea of the algorithm:
- sorting intervals according to their right endpoints
- greedy decomposition of the graph into a path of separators
- re-structuration of an optimal solution into a near optimal solution such that all near optimal solutions can be enumerated in polynomial time
Idea of the algorithm:

- sorting intervals according to their right endpoints
- greedy decomposition of the graph into a path of separators
- re-structuration of an optimal solution into a near optimal solution such that all near optimal solutions can be enumerated in polynomial time
- dynamic programming processes the graph through the decomposition, enumerating all possible solutions.
PTAS in Proper Interval Graphs

The decomposition:
PTAS in Proper Interval Graphs

The decomposition:

\[l_{m_1} \]
PTAS in Proper Interval Graphs

The decomposition:

\[R_1 \quad I_{m_1} \quad B_1 \]
PTAS in Proper Interval Graphs

The decomposition:

\[R_1 \quad \text{or} \quad B_1 \]
PTAS in Proper Interval Graphs

The decomposition:

\[I_{m_1} \quad R_1 \quad L_2 \quad B_1 \quad I_{m_2} \]
PTAS in Proper Interval Graphs

The decomposition:
PTAS in Proper Interval Graphs

The decomposition

Remark

The only edges between blocks B_i and B_{i+1} are between R_i and L_{i+1}. Given $S \subseteq \mathcal{I}$ we have:

$$E(S) = \sum_{i=1}^{a} E(B_i \cap S) + \sum_{i=1}^{a-1} E(R_i \cap S, L_{i+1} \cap S)$$
Compaction

Let $S \subseteq \mathcal{I}$ be a solution, and $S^c = \text{comp}(S) \subseteq \mathcal{I}$ such that for each block $i \in \{1, \ldots, a\}$:

- for all $I \in L_i$, $\text{comp}(I) \in L_i$ and is at the right of I (we may have $\text{comp}(I) = I$)
- for all $I \in R_i$, $\text{comp}(I) \in R_i$ and is at the left of I (we may have $\text{comp}(I) = I$)
Compaction

Let $S \subseteq \mathcal{I}$ be a solution, and $S^c = comp(S) \subseteq \mathcal{I}$ such that for each block $i \in \{1, ..., a\}$:

- for all $I \in L_i$, $comp(I) \in L_i$ and is at the right of I (we may have $comp(I) = I$)
- for all $I \in R_i$, $comp(I) \in R_i$ and is at the left of I (we may have $comp(I) = I$)
Compaction

Let $S \subseteq I$ be a solution, and $S^c = \text{comp}(S) \subseteq I$ such that for each block $i \in \{1, ..., a\}$:

- for all $l \in L_i$, $\text{comp}(l) \in L_i$ and is at the right of l (we may have $\text{comp}(l) = l$)
- for all $l \in R_i$, $\text{comp}(l) \in R_i$ and is at the left of l (we may have $\text{comp}(l) = l$)
Compaction

Let $S \subseteq \mathcal{I}$ be a solution, and $S^c = \text{comp}(S) \subseteq \mathcal{I}$ such that for each block $i \in \{1, \ldots, a\}$:

- for all $l \in L_i$, $\text{comp}(l) \in L_i$ and is at the right of l (we may have $\text{comp}(l) = l$)
- for all $l \in R_i$, $\text{comp}(l) \in R_i$ and is at the left of l (we may have $\text{comp}(l) = l$)
PTAS in Proper Interval Graphs
Re-structuration of optimal solutions

Compaction

Let $S \subseteq \mathcal{I}$ be a solution, and $S^c = \text{comp}(S) \subseteq \mathcal{I}$ such that for each block $i \in \{1, ..., a\}$:
- for all $I \in L_i$, $\text{comp}(I) \in L_i$ and is at the right of I (we may have $\text{comp}(I) = I$)
- for all $I \in R_i$, $\text{comp}(I) \in R_i$ and is at the left of I (we may have $\text{comp}(I) = I$)

Lemma

If comp is a compaction of a solution S such that for all block $i \in \{1, ..., a\}$, we have

$$E(\text{comp}(S \cap B_i)) \leq \rho E(S \cap B_i)$$

Then $\text{comp}(S)$ is a ρ-approximation of S.
PTAS in Proper Interval Graphs

Re-structuration of optimal solutions

Let us build a compaction that yields a \((1 + \frac{4}{P})\)-approximation for any fixed \(P\).
PTAS in Proper Interval Graphs

Re-structuration of optimal solutions

Let us built a compaction that yields a \((1 + \frac{4}{P})\)-approximation for any fixed \(P\). Let \(X \subseteq B_i\) be a solution. We note \(X = X_L \cup X_R\). Set sizes are in lowercase.
PTAS in Proper Interval Graphs

Re-structuration of optimal solutions

Let us built a compaction that yields a \((1 + \frac{4}{P})\)-approximation for any fixed \(P\).

Let \(X \subseteq B_i\) be a solution. We note \(X = X_L \cup X_R\). Set sizes are in lowercase.

- we divide \(X_L\) into \(P\) consecutive subsets of same size \(q_L \rightarrow X^L_1, \ldots, X^L_P\)
- we divide \(X_R\) into \(P\) consecutive subsets of same size \(q_R \rightarrow X^R_1, \ldots, X^R_P\)

Then define the compaction: for any \(t \in \{1, \ldots, P\}\)
PTAS in Proper Interval Graphs

Re-structuration of optimal solutions

Let us built a compaction that yields a \((1 + \frac{4}{P})\)-approximation for any fixed \(P\). Let \(X \subseteq B_i\) be a solution. We note \(X = X_L \cup X_R\). Set sizes are in lowercase.

- we divide \(X_L\) into \(P\) consecutive subsets of same size \(q_L \rightarrow X_{L1}^L, \ldots, X_{LP}^L\)
- we divide \(X_R\) into \(P\) consecutive subsets of same size \(q_R \rightarrow X_{R1}^R, \ldots, X_{RP}^R\)

Then define the compaction: for any \(t \in \{1, \ldots, P\}\)

- \(Y_{Lt}^L\) are the \(q_L\) rightmost intervals at the left of the rightmost interval of \(X_{Lt}^L\)
- \(Y_{Rt}^R\) are the \(q_R\) leftmost intervals at the right of the leftmost interval of \(X_{Rt}^R\)
PTAS in Proper Interval Graphs

Re-structuration of optimal solutions

What do we need to construct such a solution?
PTAS in Proper Interval Graphs

Re-structuration of optimal solutions

What do we need to construct such a solution?

- the leftmost interval of X_t^L for $t \in \{1, ..., P\}$
- the rightmost interval of X_t^R for $t \in \{1, ..., P\}$
- x_R, x_L (plus remainders of divisions by P...)

$\Rightarrow 2P + O(1)$ variables ranging in $\{0, ..., n\}$
Sketch of proof of the \((1 + \frac{4}{\bar{P}})\) approximation ratio:
PTAS in Proper Interval Graphs

Sketch of proof of the $(1 + \frac{4}{P})$ approximation ratio:

- **OPT** = $\binom{x_L}{2} + \binom{x_R}{2} + \sum_{t=1}^{a} \sum_{u=1}^{a} E(X^L_t, X^R_u)$
- **SOL** = $\binom{y_L}{2} + \binom{y_R}{2} + \sum_{t=1}^{a} \sum_{u=1}^{a} E(Y^L_t, Y^R_u)$
Sketch of proof of the $(1 + \frac{4}{P})$ approximation ratio:

- $OPT = (\frac{x_L}{2}) + (\frac{x_R}{2}) + \sum_{t=1}^{a} \sum_{u=1}^{a} E(X_t^L, X_u^R)$
- $SOL = (\frac{X_L}{2}) + (\frac{X_R}{2}) + \sum_{t=1}^{a} \sum_{u=1}^{a} E(Y_t^L, Y_u^R)$

But:
PTAS in Proper Interval Graphs

Sketch of proof of the \((1 + \frac{4}{P})\) approximation ratio:

- **OPT** = \((\frac{x_L}{2}) + (\frac{x_R}{2}) + \sum_{t=1}^{a} \sum_{u=1}^{a} E(X_t^L, X_u^R)\)
- **SOL** = \((\frac{y_L}{2}) + (\frac{y_R}{2}) + \sum_{t=1}^{a} \sum_{u=1}^{a} E(Y_t^L, Y_u^R)\)

But:

- if some intervals of \(Y_t^L\) overlap some intervals of \(Y_u^R\)

Then:

- all intervals of \(X_{t+1}^L\) overlap all intervals of \(\bigcup_{i=1}^{u-1} X_i^R\)
Sketch of proof of the \((1 + \frac{4}{P})\) approximation ratio:

- \(OPT = \binom{x_L}{2} + \binom{x_R}{2} + \sum_{t=1}^{a} \sum_{u=1}^{a} E(X_t^L, X_u^R)\)
- \(SOL = \binom{x_L}{2} + \binom{x_R}{2} + \sum_{t=1}^{a} \sum_{u=1}^{a} E(Y_t^L, Y_u^R)\)

But:
- if some intervals of \(Y_t^L\) overlap some intervals of \(Y_u^R\)
Then:
- all intervals of \(X_{t+1}^L\) overlap all intervals of \(\bigcup_{i=1}^{u-1} X_i^R\)

Finally, we can prove that \(\frac{SOL}{OPT} \leq 1 + \frac{4}{P}\)
Concentration:

Theorem

For any P, the previous algorithm outputs a $(1 + \frac{4}{P})$-approximation for the k-Sparsest Subgraph in Proper Interval graphs in $O(n^{O(P)})$.
Contents

1 Introduction

2 FPT Algorithm in Interval Graphs

3 PTAS in Proper Interval Graphs

4 Open Problems and Future Work
Open problems and Future Work

Complexity of k-Sparsest Subgraph:

- Perfect
- Bipartite
- Chordal
- Tree
- Interval
- Split
- Proper Int.
Open problems and Future Work

Complexity of k-Sparsest Subgraph:
Open problems and Future Work

Complexity of k-Sparsest Subgraph:

- Perfect
 - NP-hard

- Bipartite

- Chordal
 - Tree
 - Poly.

- Interval
 - Split
 - Poly.
 - Proper
 - Int.
Open problems and Future Work

Complexity of k-Sparsest Subgraph:

- Perfect: NP-hard
- Bipartite: NP-hard?
- Chordal: Poly.
- Tree Poly.
- Interval: Poly.
- Split Poly.
- Proper Int.
Open problems and Future Work

Complexity of k-Sparsest Subgraph:

- Perfect: NP-hard
- Bipartite: NP-hard?
- Chordal: Poly.
- Tree: Poly.
- Interval: Split Poly.
- Proper Int. PTAS
Open problems and Future Work

Complexity of k-Sparsest Subgraph:

- Perfect: NP-hard
- Bipartite: NP-hard?
- Chordal: Tree Poly.
- Interval: FPT
- Split Poly.
- Proper Int. PTAS

Watrigant, Bougeret, Giroudeau
Open problems and Future Work

Complexity of k-Sparsest Subgraph:

2 main objectives:
- extend FPT and/or approximation results to Chordal graphs
- NP-hardness for Chordal graphs
Thank you for your attention!