
Fixed parameter tractability and kernels for
feedback set problems on generalization of

tournaments

Alessandro Maddaloni

University of Southern Denmark

LIRMM, February 7

Joint work with

Jørgen Bang-Jensen and Saket Saurabh



Feedback sets

Problem (FVS (FAS))
Given a digraph D, find a minimum F ⊂ V (D) (F ⊂ A(D)) s.t.
D − F is acyclic?

It is known that Both problems are NP-complete (even if
restricted to tournaments).

Problem (Parametrized feedback set problems)
Given D and k ∈ N, is there F ⊂ V (D) (F ⊂ A(D)) s.t. |F | ≤ k
and D − F is acyclic?

Theorem (Chen,Liu,Lu,O’Sullivan,Razgon)
Parametrized FVS (and thus FAS) is FPT.
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Polynomial kernels for FVS

Problem
Given D and k ,g ∈ N, is there F ⊂ V (D) s.t. |F | ≤ k and
g(D − F ) > g?

A sunflower with h petals is a collection of sets S1, ...,Sh s.t.
∀i 6= j Si ∩ Sj = Y .

Lemma (Erdös-Rado)

Among d !kd sets of size ≤ d there is a sunflower with k + 1
petals.
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Theorem
The previous problem has an O(g · g! · kg) kernel.

Proof sketch.
Make a list F of all the cycles of length ≤ g
For every sunflower with > k + 1 petals in F . Delete one of
the petals. (If the Y = ∅ answer NO)
If no sunflower is found there are O((k + 1)g · g!) sets.
Output the digraph induced by all the edges of the sets
(size O(kg · g! · g)).



D acyclic iff g(D) > 2α(D) + 1.
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Corollary

k-FVS has an O(k2α+1) kernel for digraph with independence
number α, (in particular O(k3) for tournaments)



Modules

H an induced subdigraph of D is a module if

∀a,b ∈ V (H), v ∈ V (D \ H) µ(va) = µ(vb), µ(av) = µ(bv).

(If D is simple, we simply say that every vertex of H must have
the same in and out neighborhood)

H2 H2



Decomposable digraphs

D is decomposable if ∃ partition of V into modules H1, ...Hs,
s ≥ 2. We write D = S[H1, ...,Hs], where S is the adjacency (or
quotient) digraph of H1, ...Hs.
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Φ class of digraphs. D is totally Φ-decomposable if either D ∈ Φ
or D = S[H1, ...,Hs], with S ∈ Φ and Hi totally Φ-decomposable,
i = 1, ..., s.
The digraph in the figure is totally Φ-decomposable with
Φ = P3 ∪ C3 ∪ P1
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Round digraphs

D is round if we can label its vertices v1, ..., vn so that ∀ i ,
N+(vi) = {vi+1, ..., vi+d+(i)} and
N−(vi) = {vi−d−(i), ..., vi−1}.

D is round decomposable if D = R[H1, ...,Hr ], where R is a
round digraph and H1, ...,Hr are semicomplete digraphs.
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FVS on round (decomposable)

Observation
FVS is poly on round digraphs (One among (N+(v),N−(v))v∈V
must be killed, and it is enough)

Theorem
k-FVS has an O(k3) kernel on round decomposable digraphs.



1 Decompose D = R[H1, ...,Hr ].
2 Find non-trivial modules K1, , , ,Kh and kernelize each of

them (keep the size > k if it was before)
3 Find a min FVS M for Q.
4 Keep M the Ki ’s kernels and the 2k modules around them

(k left and k right).
5 Contract the gaps into Ik+1.
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LSD

Locally semicomplete digraphs (LSD): ∀x ∈ V ,N+(x),N−(x)
are semicomplete :

Theorem (Guo)
A connected LSD is either

round decomposable, or
Every cycle induces a cycle on ≤ 4 vertices.

Theorem
k-FVS has an O(k4) kernel on LSD.



FVS on totally Φ-decomposable

We say that a kernel is virgin if it contains all minimal solutions
Let Φ be s.t.

∃ poly algorithm to find total Φ-decomposition
k -FVS has an O(f (k)) virgin kernel on Φ.

Theorem
k-FVS has a O(k · f (k)) kernel on totally Φ-decomposable
digraphs.



1 Decompose D = Q[M1, ...,Mq]
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1 Decompose D = Q[M1, ...,Mq]

2 Find recursively virgin kernels K1, ...,Kh for the cyclic
modules.
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2 Find recursively virgin kernels K1, ...,Kh for the cyclic
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3 Find a virgin kernel K for Q.
4
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1 Decompose D = Q[M1, ...,Mq]

2 Find recursively virgin kernels K1, ...,Kh for the cyclic
modules.

3 Find a virgin kernel K for Q.
4 Output (K ∪

⋃
Ki 6CK Ki , k).

K2

K1



Justification

If YES, then O(k) kernels recursively constructed.
KERNEL ⊂ ORIGINAL DIGRAPH
VIRGINITY⇒ (YES KERNEL↔ YES ORIGINAL)



Quasi-transitive digraphs

Quasi-transitive digraphs: xy , yz ∈ A implies that zx ∈ A or
xz ∈ A:

Theorem (Bang-Jensen and Huang)

D be quasi-transitive, then either
D = T [H1, . . . ,Ht ], T acyclic and H1, . . . ,Ht (strong)
quasi-transitive, or
D = S[Q1,Q2, . . . ,Qs], S semicomplete and Q1, . . . ,Qs
(non-strong) quasi-transitive.



Quasi-transitive digraphs

Observation
Quasi-transitive are totally Φ1-decomposable, where

Φ1 = { Semicomplete ∪ Acyclic }

Observation
There is a virgin O(k3) kernel for FVS on Φ1

Theorem
FVS has an O(k4) kernel on quasi-transitive digraphs.

We hit also other classes:
1 Directed cographs
2 Extended semicomplete digraphs
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FAS

Observation (Speckenmeyer)

A 2o(k) algorithm for k-FAS is unlikely to exist

Theorem (Bessy, Fomin, Gaspers, Paul, Perez, Saurabh,
Thomassé)
There is an O(k) kernel for k-FAS on tournaments
(semicomplete digraphs).

Theorem (Alon, Lokshtanov, Saurabh)

There is a 2o(k) algorithm for k-FAS on tournaments
(semicomplete digraphs). (Best complexity nO(1)2O(

√
k) by

Feige).
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FAS on totally Φ-decomposable

A kernel (x ′, k ′) of (x , k) is tight if k ′ = k and

∀h ≤ k , (x ′,h) is a YES⇔ (x ,h) is a YES

Let Φ s.t.
∃ poly algorithm for total Φ-decomposition
k -FAS has an O(f (k)) tight kernel on Φ.

Theorem
k-FAS has an O(k · f (k)) kernel on totally Φ-decomposable
digraphs



FAS on totally Φ-decomposable

Totally decompose D: Get D1, ...,Dp ∈ Φ

Find non-acyclic digraphs in the decomposition Di1 , ...,Dic

Output (Di1 ∪ .... ∪ Dic , k).

Key lemma
Given D = Q[M1, ...,Mq], there is a min fas F = F1∪ ...∪Fq ∪F ∗

s.t. Fi is a min fas of Mi and F ∗ is a min fas of QD.



FAS on totally Φ-decomposable

Φ2 = { Semicomplete ∪ Acyclic ∪ Round }

Corollary

There is an O(k2) kernel for k-FAS on totally Φ2-decomposable
digraphs

In particular for quasi-transitive or extended semicomplete or
directed cographs or round decomposable.
In fact there is an O(k) kernel for totally Φ2-decomposable.



fast FAST+

Theorem

There is an O(n3 · 2O(
√

k log k)) algorithm for k-FAS has on lsd.

An lsd is either
Round decomposable= round + semicomplete, or
Has vertex set partitionable into two tournaments

First case: Round part is poly semicomplete part reduces to
second case
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Fast FAST+

Fix a random partition V1, ...,Vl of V . l = O(
√

k).

Theorem (Alon, Lokshtanov, Saurabh)
P( "arcs of a fas of size ≤ k belong to different Vi ’s ") ≥
(2e)−

√
k/8

Objective: Find a partition and a fas of size ≤ k with arcs
belonging to different Vi ’s.

Expected number of iterations is O(2
√

k ).

Derandomize (use Õ(2
√

k ) iterations)
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fast FAST+

p = (a1, ...,al), 0 ≤ ai ≤ |Vi |
Define FAS(p) = min fas of D〈p〉.

FAS(p) = min
i∈[l]

(FAS(p − ei) + d+
D〈p〉(vi,ai ))

Do dynamic programming over a restricted table: size
O(n2 · 2O(

√
k log k)).

Theorem

There is an O(n3 · 2O(
√

k log k)) algorithm for k-FAS on digraphs
such that V (D) = V1 ∪ V2, V1,V2 semicomplete.
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Open problems

Conjecture
There is a poly kernel for k-FAS on lsd

Problem
Is there a poly kernel for k-FAS on digraph with bounded
independence number?

Problem
Is there a poly kernel for k-FAS (and thus k-FVS) on general
digraphs?
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