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A Simple Stochastic Game (Condon 1989) is defined by a directed graph
with :

three sets of vertices VMAX , VMIN , VAVE , all of which have outdegree 2
two ’sink’ vertices 0 and 1
a start vertex

2 1/2 players : MAX and MIN, and a ’chance’ player

max A A

0 1

A min A

player MAX wants to reach the 1 sink
player MIN wants to prevent him from doing so



A play consists in moving a pebble on the graph :
on a MAX (resp. MIN) node player MAX (resp. MIN) decides where
to go next ;
on a AVE node the next vertex is randomly determined (simple coin
toss)
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General definition of a strategy σ for a player MAX :

σ : history of play ending in VMAX 7−→ probability distribution on outneighbours

The value of a vertex x is

v(x) = sup
σ strategy

forMAX

inf
τ strategy
for MIN

Pσ,τ (1 is reached | game starts in x)︸ ︷︷ ︸
vσ,τ(x)

to compute values we can restrict our attention to pure, stationnary,
memoriless strategies (positional strategies for short) :

σ : VMAX −→ V , τ : VMIN −→ V

max

min



Theorem (Condon 89)
For all vertices x,

v(x) = max
σ positional strategy

forMAX

min
τ positional strategy

for MIN

vσ,τ(x)

= min
τ positional strategy

for MIN

max
σ positional strategy

forMAX

vσ,τ(x)



main lines of a proof ...

1 sups and infs are maxs and mins : optimal strategies and best
responses exists (compacity and continuity arguments)

2 against a positional strategy σ, MIN might as well respond
positional :

σ positional ⇒ min
τ general

vσ,τ(x) = min
τ positional

vσ,τ(x)

min A A

0 1

A max A

When reaching any x MIN plays the first move of any optimal
strategy starting in x
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idea of proof ...

3 so

max
pos

min
pos

= max
pos

min
gen

≤ max
gen

min
gen

≤ min
gen

max
gen

≤ min
pos

max
gen

= min
pos

max
pos

4 However
max

pos
min
pos

= min
pos

max
pos

finite number of strategies → zero-sum matrix game (exponentially
sized)

max t
for all pure τ, vσ,τ ≥ t
σ prob. on pure strategies

=


min t
for all pure σ, vσ,τ ≤ t

τ prob. on pure strategies

by strong duality theorem

5 Finally, random strategies are useless since the game is positional
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Computing values

Fix σ,τ positional strategies.

if x ∈ VMAX , vσ,τ(x) = vσ,τ(σ(x))

if x ∈ VMIN , vσ,τ(x) = vσ,τ(τ(x))

if x ∈ VAVE , vσ,τ(x) = 1
2 vσ,τ(x1)+ 1

2 vσ,τ(x2))
x

x1

x2

Let S = {
vertices having a directed path to a sink

}

if x 6∈ S then vσ,τ(x) = 0

previous system :

vS = QvS +b

with I −Q nonsingular so

vS = (I −Q)−1b

I −Q and b have entries in {0,±1,±1
2 }

vσ,τ has rational entries with denominator at most 4n.
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stopping SSGs
A SSG is stopping if for all strategies, the game reaches a sink vertex
almost surely.

Theorem (Condon 89)
For every SSG G, there is a polynomial-time computable SSG G’ such that

G’ is stopping

size of G’ = poly(size of G)

for all vertices x, vG′(x) > 1
2 if and only if vG(x) > 1

2

Idea of proof

1 vG(x) > 1
2 ⇐⇒ vG(x) ≥ 1

2 +4−n

2 values are stable under perturbations,

3 replace all arcs

a b

by

a

.
.

.
.

.
0

b

.

average vertex

giving a small probability to every vertex to go reach the 0 sink
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From now on we suppose SSGs stopping

(even if I forget to write / say it)



the switch operation

Let x be a MIN vertex.
Suppose vσ,τ(x) = vσ,τ(x1) > vσ,τ(x2))

x

vσ,τ = 0.7

x1

vσ,τ = 0.7

x2

vσ,τ = 0.4

switching τ at x :
τ′(x) = x2 and equal to τ′ = τ elsewhere.

x

x1

x2

Such a switch is profitable for MIN : τ′ < τ

for all y, vσ,τ′(y) ≤ vσ,τ(y)

in particular vσ,τ′(x) < vσ,τ(x)



the switch operation

τk = time-dependent strategy equal to

τ′ at times 0,1, · · ·k−1

τ thereafter.
x

x1

x2

Then against σ : (following Gimbert & Horn)

τ0 = τ

τ1(x) < τ(x)

for all k ≥ 0 : τk+1 ≤ τk

conditionnal on token not in x at time k same probability of reaching 1
conditionnal on token in x at time k the probability of reaching 1 is
smaller

τ= τ0 > τ1 ≥ τ2 ≥ ·· · lim∞ τk = τ′
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optimality conditions
Suppose σ fixed, we want to compute a best-response τ(σ).

Lemma
Let G be a stopping SSG, and σ a positional strategy for MAX. Then τ is a
best-response to σ if and only

for all x ∈ VMIN , vσ,τ(x) = min(vσ,τ(x1),vσ,τ(x2))

proof : if not, switch.

Lemma
G stopping SSG, and σ,τ are optimal strategies if and only if

for all x ∈ VMIN , vσ,τ(x) = min(vσ,τ(x1),vσ,τ(x2))

for all x ∈ VMAX , vσ,τ(x) = max(vσ,τ(x1),vσ,τ(x2))

SSG ⇐⇒ max / min / average systems
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computing a best response

Suppose G is an SSG and σ is fixed.

Define

Fσ :


[0,1]V −→ [0,1]V

vx 7−→


min(vx1 ,vx2 ) if x ∈ VMIN

vσ(x) if x ∈ VMAX
1
2 vx1 + 1

2 vx2 if x ∈ VAVE

where the values of sinks are replaced by 0 or 1.

Operator Fσ is contracting (sup norm)
→ single fixed point = value vector of σ (values vs best response)

solving Fσv = v by linear programing

max
∑

i
vi

Fσ(v) ≤ v
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algorithmic complexity

Value computation problem : given a SSG and a vertex x, does

v(x) > 1

2
?

Theorem
The value complexity problem for SSG lies in complexity class NP∩co−NP.

Guess a couple (σ,τ) of positional strategies, compute the values (linear
system) and check optimality conditions.

Theorem
The value complexity problem for SSG lies in complexity class UP∩co−UP.



strategy improvement algorithms

The strategy improvement algorithm a.k.a Hoffman-Karp algorithm
(1966, MDP context) is

0 choose σ0 and let τ0 = τ(σ0) (best response)
1 while (σk,τk) is not optimal, obtain σk+1 by switch σk ; let
τk+1 = τ(σk+1)

based on :

Lemma
vσk+1,τk+1 > vσk ,τk

Theorem

The HK algorithm makes at most O(2n/n) iterations

Unfortunately : this can take exponential time :

Friedmann (2009) gives a counter-example for parity game
(2

p
n iterations, claimed 2cn)

Andersson (2009) shows that this counterexample survives the
reduction (to come on last slides)
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the ’counter-example’ of Friedman



SSG without average vertices

a.k.a. deterministic graphical
games (Washburn 1966,
Andersson et al. 2012)

Definition = SSG without average
vertices, but allow sinks with
arbitrary payoffs

Solving DGG in linear time by backtracking
While possible :

1 sink s with maximal payoff : if an incoming MIN arcs never go there if
they have a choice : delete arc or merge

2 Do the opposite for the minimum payoff sink.

In the end remain vertices with no connection to sinks, their value is 0.
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an FPT algorithm on the number of average nodes (Gimbert & Horn
2009)

Theorem
There is an algorithm which computes values and optimal strategies of
SSGs with n vertices and k average vertices in time O ((k ! ·n).

(Moreover the outdegree of nodes is unlimited)

a strategy consists in choosing among nodes. Hence an preference
order on all nodes yields a strategy.

but an order on VAVE is enough

0 < a1 < a2 · · ·ak < 1

MIN tries to force the next average vertex to be great
MIN tries to force the next average vertex to be small
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an FPT algorithm on the number of average nodes (Gimbert & Horn
2009)

0

D0

a1

D1

a2

D2

... ak−2

Dk−2

ak−1

Dk−1

ak

Dk+1

1

D(1)

Di = Deterministic Attractor of {ai,ai+1, · · · ,ak,1}

The deterministic attractor D(X) of X is the set of MAX ,MIN vertices from
where MAX has a strategy forcing X to be reached.



an FPT algorithm on the number of average nodes (Gimbert & Horn
2009)

0

D0

a1

D1

a2

D2

... ak−2

Dk−2

ak−1

Dk−1

ak

Dk+1

1

D(1)

For every order f on AVE vertices, two strategies σf ,τf such that
game is in Di \ Di+1 at any time ⇒ next average vertex is ai

Theorem
If the order f is coherent with the real values of the game (+small condition if

some values are equal) then strategies σf ,τf are optimal.



an FPT algorithm on the number of average nodes (Gimbert & Horn
2009)

The O ((k ! ·n) was improved to :

O
(
(4kkcnc

)
(Chaterjee et al 2009)

O
(
(k2k(k logk+n)

)
(Ibsen-Jensen et al 2012), using involved extremal

combinatorics to establish the bound.

Question : here is my simple idea for O
(
2kn2

)
, what do you think ? (oral

only, sorry)
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parity games

two player game
on a graph (no
random)

Play goes on
forever

every vertex has
a priority

strategies fixed,
moves are
determistic

a cycle is
repeated

If the greatest priority on the cycle is even, player 0 wins
if it is odd player 1 wins.
Every vertex is either a win for 0 or 1



parity games

Theorem
Determining the winner of a parity game for a given start vertex is in
NP∩ co−NP (in fact UP∩ co−UP)

Open Question : Is it in P ?

Theorem
There is a Karp reduction from parity games to stochastic parity games,
such that a vertex is winning for 1 in the PG if the corresponding vertex has
value > 1

2 in the SSG

idea :

add two sinks 0 and 1

assign for every transition a small probability to go to sink 0 (nodes of
player 0) or sink 1 (nodes of player 1)

Open Question : is there a polynomial reduction in the other direction ?
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thank you !
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