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Interval graphs

Intersection graphs of intervals

every v represented by an interval
graph edges < interval intersections

=

e classical graph class
e cfficient recognition
e chordal & perfect
e many applications
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graph edges < interval intersections



Intersection graphs of systems of intervals

every v represented by < £ intervals
graph edges < interval intersections

on one line

Interval number




Intersection graphs of systems of intervals

every v represented by < £ intervals
graph edges < interval intersections

at most one on each of k lines

on one line

Track number

Interval number




Intersection graphs of systems of intervals

every v represented by < £ intervals

grap

edges < interval intersections

at most one on each of k lines

on one line

at most one on each line

'

Track number

Local track number

Interval number




Some Results

track nr. | local track nr. | interval nr.
outerplanar 2
bip. planar _
planar ?
tw < k
dg < k

Kostochka, West '99 Scheinermann, West '83
Goncalves, Ochem '09 KU '12
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Global, Local, and Folded Covers

o Templates = Interval Graphs

Local and Folded Linear Arboricity
o Templates = Collections of Paths

Interrelations
o Templates = Forests, Pseudo-Forests, Star Forests

What i1s known and what is open



o T U UT, = G

edge-surjective homomorphism

~~ o restricted to each T; injective
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o T U UT, = G

edge-surjective homomorphism

«~ o restricted to each 7; injective

«~ 4 template graphs in preimage

= min{size of ¢ : ¢ injective cover of G} |

= min{max,cy(q) [¢~ " (v)| : ¢ injective cover of G} ‘

= min{max,cv () ¢~ ' (v)| : ¢ cover of G of size 1}




We consider template classes that are
closed under disjoint union.

[Lemma:
1) ¢/ (G) > ¢/ (G) > ¢} (G) for every G
define ¢/ (G) :=sup{c/ (G) : G € G} (G graph class)

2) ¢] (G) <] (G) GCg

3) 7 (G) > T (G) TCT




star arboricity arboricity outer-thickness
caterpillar arboricity edge-chromatic number

clique covering number thickness bipartite dimension
track number
linear arboricity

bar visibility number

interval number
bipartite degree splitting number
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Global, Local, and Folded Covers

o Templates = Interval Graphs

Formal Definitions

Interrelations
o Templates = Forests, Pseudo-Forests, Star Forests

What i1s known and what is open
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Global and Local Linear Arboricity

_ o template class
linear arboricity e

CT(G) _ la(G) — 9 ./0\./.

9

host graph
G = Petersen Graph



Global and Local Linear Arboricity

_ o template class
linear arboricity e

T(G) = 1a(G) = 2 AN

9
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Akiyama et. al. '80
Linear Arboricity Conjecture

host graph 13(G) < (%W
G = Petersen Graph




local linear arboricity

c] (G) =lay(G) =2
Z_\

host graph
G = Petersen Graph

template class
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Global and Local Linear Arboricity
template class

local linear arboricity e

CZ-(G) _ lag(G) —9 /""‘ 0/\/.
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Unear e

Local Linear Arboricity
Conjecture

host graph 1a€(G) < (%W
G = Petersen Graph




Folded Linear Arboricity

template class

folded linear arboricity

T(G) = lap(G) =2
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host graph
G = Petersen Graph
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Folded Linear Arboricity
_ o template class
folded linear arboricity e

TG =lag(G) =2 T s
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Folded Linear Arboricity

Theorem|[KU]
host graph 1af(G) < _%W

G = Petersen Graph




Folded Linear Arboricity

Theorem|

lag(G) <

KUJ

Ea




Folded Linear Arboricity

Theorem|

lag(G) <

KUJ

Ea

Proof: (easy)

A even:
o add vertices and edges to
obtain Eulerian
o take Eulertour
o all visited < % times
o start-vertex once more
145 = A




Folded Linear Arboricity

Theorem[KU]
lay(G) < [557]
Proof: (easy)
A even: A odd:

o add vertices and edges to
obtain Eulerian
o take Eulertour
o all visited < % times
o start-vertex once more
114 =[5

o add vertices and edges to
obtain Eulerian

o take Eulertour

o all visited < % times

o Start-vertex once more

o start on added vertex
. (A—l—l“
2
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Global, Local, and Folded Covers

o Templates = Interval Graphs

Formal Definitions

Local and Folded Linear Arboricity
o Templates = Collections of Paths

What i1s known and what is open
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[Nash-Williams '64] [Picard et al. '82]

Hf\ SIEGE seve [%W

a(G) = max
SCV (@)
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[Nash-Williams '64] [Picard et al. '82]

9= e [i5io1] 0= e [t

p(G) < a(G) <p(G) +1
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Star Arboricity
c® (G) = sa(Q)

g

[Nash-Williams '64] [Picard et al. '82]
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a(G) = max
SCV (@)

p(G) < a(G) < <p(G)+1
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Star Arboricity
c® (G) = sa(Q)

g

[Nash-Williams '64] [Picard et al. '82]

Hf\ SIEGE s [%W

a(G) = max
SCV (@)

p(G) < a(G) < <p(G)+1



Thm.: We have | p(G) < a(G) < <p(G)+1.
(where any of these inequalites can be strict)
Moreover, p(G) = say(G) iff G has an orientation with:
G) for every v € V(G)
G) only if deg(v) = p(G)

o outdeg
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o outdeg(v) < p(G) for every v € V(G)
o outdeg(v) = p(G) only if deg(v) = p(G)
Proofsketch:
\

Pk
AN



Thm.: We have | p(G) < a(G) < <p(G)+1.

(where any of these inequalites can be strict)

Moreover, p(G) = say(G) iff G has an orientation with:

o outdeg(v) < p(G) for every v € V(G)
o outdeg(v) = p(G) only if deg(v) = p(G)
Proofsketch:
\ orient edges /

/I T< “fowards center /f;: . l\
TN TN

outdeg(v) < says(G)



Thm.: We have | p(G) < a(G) < <p(G)+1.

(where any of these inequalites can be strict)

Moreover, p(G) = say(G) iff G has an orientation with:

o outdeg(v) < p(G) for every v € V(G)
o outdeg(v) = p(G) only if deg(v) = p(G)
Proofsketch:
\ orient edges /

R
“Towards cen@rb—’ \/
Pk e
4\ Incoming edges /f\




Thm.: We have | p(G) < a(G) < <p(G)+1.
(where any of these inequalites can be strict)
Moreover, p(G) = say(G) iff G has an orientation with:
o outdeg(v) < p(G) for every v € V(G)
o outdeg(v) = p(G) only if deg(v) = p(G)

Remains to show
o W.lo.g. p(G) = sap(G)

Orientation with max outdeg p(G)
attained only at degree-p((G) vertices

@)

@)

Remove degree-p(G) vertices

p(G') < p(G) — 1, thus a(G) < p(G)
Reinsert degree-p(GG) vertices

a(G) < p(G) = say(G)

©)

@)

@)



Thm.: We have | p(G) < a(G) < <p(G)+1.
(where any of these inequalites can be strict)
Moreover, p(G) = say(G) iff G has an orientation with:
o outdeg(v) < p(G) for every v € V(G)
o outdeg(v) = p(G) only if deg(v) = p(G)

Remains to show
o W.lo.g. p(G) = sap(G)

o Orientation with max outdeg p(G)
attained only at degree-p((G) vertices

@)

Remove degree-p(G) vertices
> p(G') < p(G) — 1, thus a(G") < p(G)

° every edge into
o a(G) < p(G) = sa(G) a different forest



Theorem
We have p(G) < a(G) < say(G) < p(G) + 1.

Corollary
Local star arboricity can be computed in polynomial time.

[Hakimi, Mitchem, Schmeichel '96]
Deciding sa(G) < 2 is NP-complete.

[Alon, McDiarmid, Reed '92]
sa(G) < 2a(G) and this is best possible.
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Global, Local, and Folded Covers

o Templates = Interval Graphs

Formal Definitions

Local and Folded Linear Arboricity
o Templates = Collections of Paths

Interrelations
o Templates = Forests, Pseudo-Forests, Star Forests



Star Forests

Caterpillar Forests

g t=17f g ¢ f

outerplanar 3 3 3 3 5!

bip. planar 4 3 4 3 3

planar 5 4 4 4 4
tw < k k+1k+1 | k+1 E+1 k41
dg < k 2k k41 2k k+1 kE+1




Star Forests

Caterpillar Forests

g t=17f g ¢ f

outerplanar 3 E 3 3 5!

bip. planar 4 _3 4 3 3

planar 5 E 4 4 4
tw<k |[k+ifk+1|k+1 k+1 E+1
dg < k 2k |k +1 2k k+1 k+1

KU "12




Star Forests | Caterpillar Forests

g t=f| g l f

outerplanar ES_E 3 3 5!
bip. planarl 4 E 4 3 3
planar ‘l 5:||Z 4 4 4

tw < k k+1E1 E+1 k+1 k+‘
dg < k ‘E23E1 ok | k+1 k+1

Algor, Alon '89 Alon et. al. 92
KU '12 Hakimi et. al. '96




What is open

| ocal

la,(G) < [537]

Linear Arboricity Conjecture

Local track number of planars
3<t, <4

How much can ¢/ (G) and ch(G) differ?

Are there T and k, where ¢/ (G) < k is poly,

g

but ¢/ (G) < k or C}F(G) < k NP-hard?




What is open

Local
Linear Arboricity Conjecture

lay(G) < (%}

Local track number of planars
3<t, <4

How much can ¢/ (G) and c}r(G) differ?

Are there T and k, where c;r(G) < k is poly,
but ¢/ (G) < k or C}-(G) < k NP-hard?

...three ways to pack a graph




