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@ Definitions and examples
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Minors

G'is a radius 2 witness of H
H e GV2 (even in GV3/2)

H minor of G iff exists subgraph G’ C G which is witness of H

G’ witness of H iff exists partition of V¢ into connected
VA,..., Vp, such that contracting G’ gives H

H is a r shallow minor of G (H € GVr) iff exists subgraph
G’ C G such that G’ is a radius (dist in G[Vj]) r witness of H

o G’ radius r witness of H iff in addition we have rad(V;) <r
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Minors

G'is a radius 2 witness of H
H € GV2 (even in GV3/2)

In the witness, we can suppose that
@ V; are rooted trees
@ at most one external edge between any pair {V;, V;}
@ all leaves are incident to an external edge
@ He GVr & trees of height < r

He GV(r— %) iff H € GVr and no external edge between to
leaves both at distance r of their root /a6



Topological minors

I

G HeGv2

e H topological minor of G iff exists subgraph G’ C G such that
G’ is a subdivision of H (< 3vi,..., vy, in Vg such that
{vi,vj} € Ey = 3 path P; between v; and v;, where P;; are
verte disjoint paths)

o H r top. shallow minor of G (H € GVr) iff exists subgraph
G' C G G'is a < 2r subdivision of H (path of length
<2r+1)
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Minor Vs Topological minor

e GV0 = GV0 = subgraphs of G
o GVr C GVr
@ beeing a topological minor is not a well quasi ordering relation
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Grad and Top grad

o Greatest reduced average degree: V,(G) = maxycgv, ’:—: J

o Top. Greatest reduced average deg: V,(G) = MaXyc oy, no

Thank you Felix Reidl!

[E(H)|

Vr(G) = ma )

o ST
B0 Ja T
avi @; y

e V,(G) is the maximum external edges in a radius r witness G’
° vO(G):€O(G):%(G) 7/46



Equivalence beetween grad and top grad

Corollary 4.1 of [dM*12]
For any G and r, V,(G) < V,(G) < 4(4@,(G))(r+1)2
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Bounded Expansion (BE)

© CVr=Jgec GVr
e V,(C) = sup(V,(G))
GeC
o A class C is BE iff :chere exists a function ¢ < oo such that Vr,
V(C) < c(r) (or V,(C) < c(r)).
C is BE iff 3¢ such that Vr, VG € C, VGy € GVr, mg, < c(r)ng,
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Bounded Expansion (BE): examples

BE = V(C) < ¢(0) = for any G: constant mad(G) < constant
degeneracy = x(G) constant

v

Examples of BE class

o constant A (V,(G) < A1)

o H minor free = : implies K,,, minor free, and thus for any
minor G, mg < f(ny)ng (and thus c(r) is even a constant)

= (and thus planar graphs, bounded treewidth graphs are BE)
@ bounded stack number, bounded queue number (see [dM*12])

@ bounded crossing number
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@ A graph G has crossing number cr(G) = k iff it can be drawn
in the plane such that there is at most k crossing on each edge.

o Let C = {G|cr(G) < k}. C has BE

o Let He GVr. H has at most cr’ = k(2r + 1) crossing per
edge.

o thus m’ < f(r)n’, and V,(G) < f(r), and V,(G) < g(r)
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© Equivalent characterization of bounded expansion
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The most beautiful slide

There are MANY characterizations of BE (Thm 13.2 in [dMT12])
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Characterization of BE with weak coloring

Consider a permutation 7 of the vertices of a graph G

Ow O O O

u is weakly 4 accessible from v

e We say that u is weakly r-accessible from v iff u < v and there
exists a u — v path P of length at most r with u < min(P)

o We denote N[ (v) = {u weakly r-accessible from v} the
number of "backward" neighbors

o We denote col(G) = max, NF(v) + 1.

@ The weak r-coloring number of G is wcol,(G) = min col"(G).
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Characterization of BE with weak coloring

Example of G with wcol,(G) = k.

0QQL 9006000

at most k — 1 weakly accesible vertices from v

Observe that x(G) < wcoh(G)
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Characterization of BE with weak coloring

A class C have bounded generalized colouring number iff for any r,
there exists ¢(r) such that wcol,(G) < ¢(r) for any G € C.

Theorem (in [Zhu09])

BE < bounded generalized colouring number

Remarks:
e Goal Vr V,(G) < ¢(r) & Vr' weol,/(G) < c(r')
o For example for (r,r') = (0,1):
e Vo(G) = %(G) cst, and thus < G has cst-degeneracy

@ it remains to check that wcoli(G) cst < G has cst-degeneracy
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Characterization of BE with weak coloring

Proof of «

e goal: V,(G) < ¢(r)
o let He GVr such that 7% = V,(G)

o let G’ be a witness of H: G’ = {V4,..., Vy} where V; are
trees of height < r

@ suppose there is an external edge e = {V;, V;}
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Characterization of BE with weak coloring

Proof of <

H

OO0OOO0OO0O0OO0OOOO0O0
mj; Vi vj

o this implies that there is in G a path Pj; of length at most
2r 4+ 1 between v; and v;

let m;; be the minimum (in the best 7) vertices of Pj;

mj; is weakly 2r + 1-accessible from v; and from v;

orient e toward the V) not containing m;

now, given a Vj: each in arc means one disctinct

2r + l-accessible vertex

@ each V; has indegree at most wcoh,11(G)
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Characterization of BE with low tree-depth coloring

The tree-depth td(G) of a connected graph G is the minimum
height of a rooted tree T such that G C clos(T) (clos(T) = T+
add an edge between any vertice and its ancestors)

o td(P7) <3

@ edges in T are not necessarily edges in G

o tw(G) < pw(G) < td(G): pw decomposition from T: 421,
423, 465, 467
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Characterization of BE with low tree-depth coloring

@ no edge in G between T; and T;:
° td(Kn) =n
o the root of T separates T;: the CC of G \ {r} lie inside the T;
o we could have several CC in a T;, but not interesting when
minimizing the height of T
= the T; correspond exactly to the CC of G\ {r}
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Characterization of BE with low tree-depth coloring

Tree-depth of path
td(Pp) = [loga(n+1)]

r
000 0000 00

Pl e P 2 77777777777777
@ let T with root r such that P, C clos(T)

o td(P,) > 1+ max(td(P1), td(P7))
= choose r at the center of the path
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Characterization of BE with low tree-depth coloring
Tree-depth coloring for a graph

o Motivation: coloring G such that every p color classes induce
a "simple" graph

@ Xp(G) minimum number of colors such that each i < p parts
induce a graph with tree-depth at most /

° x1(G) = x(G)
@ x2(G) = xs(G): star coloring: proper coloring and every two
parts induces a star forest

v

Low tree-depth coloring for a class

A class C has low tree-depth coloring iff 3 function ¢ such that Vp,
VG € C, xp(G) < c(p)
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Characterization of BE with low tree-depth coloring

Succession of results described in [NdMO8]

Minor closed class has low tree-width coloring

A

Minor closed class has low tree-depth coloring

 —

Theorem [NdMO08]

BE class has low tree-width coloring (in fact iff!)

Let us prove the easy part of the last result:

Theorem 4

VA(6) < (2r + 1), (6))
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Characterization of BE with low tree-depth coloring

o Let H € GVr such that T =V, (G)

o Let G’ be a witness of H: G’ = {V4,..., Vy} where V; are
trees of height < r

o Let N = x2,42(G), I be a subset of 2r + 2 colors among N

o Let {£} be the external edges whose corresponding path P;;
(of length of at most 2r + 2 vertices) uses only colors of /

o We will prove that |E| <2r+1
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Characterization of BE with low tree-depth coloring

o let G; be the graph induced by vertices of color /
o td(G)) <2r+2
o let e € E; between V; and V;

o let P;; be the corresponding path between v; and v;, and mj;
be the highest vertex in this path

@ orient e towards V) not containing mj;

= each Vj has in-degree at most 2r 41 as each in arc
corresponds to a distinct ancestor or v;
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Characterization of BE with y

We define x(GVr) and x(CVr) = sup(x(GVr)).
GeC

Proposition 5.5 in [dMT12]

C BE < 3c such that Vr, x(CVr) < c(r)
(< Jc such that Vr, x(CVr) < ¢(r))

In fact, we will prove the following property.

Proposition 4.4 in [dM112]

X(GVr) <2(Vi(G)) +1 and V,(G) = O((x(GV(2r + 3))*)
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Characterization of BE with y

Proposition 4.4 in [dMT12]

X(GVr) <2(V,(G)) + 1 and V,(G) = O((x(GV(2r + 3))*)

Proof of the first inequality.
@ for r = 0 this can be rephrased as "any « degenerate graph
can be a + 1 colored".
o let He GVr
o X(H) < mad(H)+1=2Vo(H)+1
e as Vo(H) < V,(G), done!
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Characterization of BE with y

Proposition 4.4 in [dM112]

X(GVr) < 2(V,(6)) + 1 and V,(G) = O((x(G¥(2r + 1))*)

Proof of the second one.
o No hope to bound V,(G) < f(x(GVr)) (think of complete
bipartite, even for r = 0)
e For r = 0: what contains G@%?: graphs H whose
1-subdivision are subgraphs of G

@ For r = 0 the inequality says (we consider the contrapositive)
"if you have a lot of edges then you have one subgraph that is
a 1-subdivision of a graph H with large x"
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Characterization of BE with y

Proposition 4.4 in [dM112]
X(6Vr) <2(V,(6)) + 1 and V(G) = O((x(GV(2r + 3))*)

Thus, we will prove the following Lemma.

Lemma 4.5 in [dMT12]

Let ¢ > 4, G with av degree d > 56(c — 1)2%. Then

G contains a subgraph G’ that is the 1-subdivision of a graph with
chromatic number c.

This implies the result we want:
o Let H € GVr such that my/ny = V,(G)
o Lemma 4.5 says day(H) > (c — 1)* = y(HV1) > ¢, so
dav(H) < x(HV3)*
o however HV3 C GV (2r + 1), so x(HV3) < x(GV(2r + 1)).
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Characterization of BE with y

H'e HVL in H in G

2r+//

H' € GV with 2z +1 = 4r +2

This implies the result we want as:
o Let H € GVr such that my/ny = V,(G)
o Proposition 4.4 says d,, (H) > (c — 1)* = x(HV3) > ¢, so
dav(H) < x(HV3)*
o however HV3 C GV(2r + 1), so x(HV3) < x(GV(2r + 1)).

30/ 46



Characterization of BE with y

Proof of large av deg = contains G’: a 1-sub of a graph with y > ¢
@ There exists a bipartite subgraph G; = (A, B) C G with ad
degree %, and G, C G; with min degree D > 2, and G5 C G,
with vertices of B having degree exactly D

G

X(H)<c—1
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Characterization of BE with y

Proof of large av deg = contains G’: a 1-sub of a graph with y > ¢

@ By contradiction: suppose that VG’ C G3 s.t. sub(H) = G/,
x(H) <c-1.
We forget H and say that G’ has a "coloring" with ¢ — 1
colors, where "coloring" means coloring only vertices in A s.t..
o Let S be the subraphs of G3 where vertices of B have degree 2
@ In particular, VG’ € S have a "coloring" with ¢ — 1 colors

o ldea: if ¢ — 1 is to small (1 for example!) and D is big:
contradiction

Gii

X(H) <e—1
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Characterization of BE with y

Proof of large av deg = contains G’: a 1-sub of a graph with y > ¢
o Let Ns =|S]
o Let N = (c — 1)/4l be the number of coloring of A

o Let N,,.x be the maximum number of graphs of S that can be
colored with a fixed coloring ¢ of A

@ as all graphs of S can be colored, Ns < N¢Npax

(¢ — 1)l colorings of A
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Characterization of BE with y

Proof of large av deg = contains G’: a 1-sub of a graph with x > ¢

o Let Ns =S| = (5)|B|
o Let Nmax < ((.2,)(2)?)/E!

o Now, writing Ns < N¢Np,ax leads to a contradiction .. if % is

large enough
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Characterization of BE with y

Proof of large av deg = contains G': a 1-sub of a graph with y > ¢
o Let Ns =S| = (é)“g'
o Let Npax < (( 2 )(%)2)“3'

c—1/\c—

@ Now, writing Ns < N¢ N, leads to a contradiction .. if TAl is
large enough
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© A property on grad and top grad
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Equivalence beetween grad and top grad

Corollary 4.1 of [dMT12]
For any G and r, V,(G) < V,(G) < 4(4@,((;))(“#1)2

In fact, we will prove the following theorem.

Thm 3.9 in [Dvo07]

Let r,d > 1, p = 4(4d)("*D* If V,(G) > p, then G contains a
subgraph F’ that is a < 2r subdivision of a graph F with minimum
degree d.

Theorem 2 says: if V,(G) > p, then @,(G) > d, and thus implies
Theorem 1.
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Equivalence beetween grad and top grad

Lemma in [Dvo07]

o Let G’ be a radius r witness with min degree (of the
corresponding contracted graph) is d.

o Let dy = (£)71.
@ There exists a radius r witness G’ C G with min degree (of
the corresponding contracted graph) is di, such that the

degree in G’ of each center v; € V; is also at least dj.
Moreover there is no useless leaf in G.

Lemma says by loosing a factor Y- on the density of the minor,
we can assume that the centers of the witness have large degree.
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Equivalence beetween grad and top grad

d(v) =4 < dy

@ while there exists a center v; € G with d(v;) < d;
e remove v; and adjacent edges and recursively remove useless
leaves (this can decrease degree of other v;)
o define new trees corresponding to V; \ {v;}
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Equivalence beetween grad and top grad

d(v) =4 < dy

When we stop, the remaining graph G’ is non empty:
o let k be the initial # trees in G, e > %k be # external edges
in G
@ when removing v;, its degree is at most d; = at most djx
external edges removed, where x = # suppressed vertices

@ we bound x by looking what happen to a given tree
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Equivalence beetween grad and top grad

Upper bound on x:
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Equivalence beetween grad and top grad
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Equivalence beetween grad and top grad

Upper bound on x:

o all the suppressed vertices belongs to the red subtree of degree
at most d; and height at most r = x < kdf
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Equivalence beetween grad and top grad

Upper bound on x:

o all the suppressed vertices belongs to the red subtree of degree
at most d; and height at most r = x < kdf

o we take dj such that kdlrJrl < %k
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Equivalence beetween grad and top grad

When we stop, G’ satisfies the two claimed properties:
o all centers v; have d(v;) = dipt + dext > ch

@ there is no useless leaf, implying that each of the d;,; subtrees
"produces" at least one external edge
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Equivalence beetween grad and top grad

Back to Thm 3.9

Let r,d > 1, p = 4(4d)"*D* If V,(G) > p, then G contains a
subgraph F’ that is a < 2r subdivision of a graph F with minimum
degree d.

Sketch of proof
e V,(G) > p implies G contains a subgraph G; which is a radius
r witness of min degree (in the contracted) p
@ using previous lemma, let Go C Gy be a radius r witness of
min degree (in the contracted) di, such that the degree in G’
of each center v; € V; is also at least d;
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Equivalence beetween grad and top grad

.. d(v) large

@ get a subdivided graph G’ C G, by keeping one external edge
out of each subtree (and its corresponding path to the root)
o if you can indeed save these external edges:

o large degree of center implies that we get many edges
o the corresponding subgraph G’ is a subdivided graph

4

o the other vertex of each edge may not be saved

o if the subtrees are very leafy, we have to bound the loss )




@ A word on nowhere dense
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Nowhere Dense (ND)

Definition
A class C is ND iff 3¢ such that Vr, w(CVr) < c(r)

e BE C ND (for BE we even require x(CVr) < ¢(r))

o there exists several equivalent definitions of ND (Thm 13.2 in
[dMT12]).

@ in terms of number of edges: C is ND iff 3¢ such that Vr,
VG € C, VH € GVr, my < ni ™) (with £, = 0,(1))
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Examples

Example of a class C ND but no BE (p105 [dM112])

@ We want C such that for r > ry graphs of CVr have big x and
small w (Erdds classes).

o Let C = {k cages (k-regular graphs with girth=k), k > 0})
@ C is not BE are graphs do not have constant degeneracy
o Cis ND:

o Assume K, € CVr, let us wound n < f(r)

o Let G € C such that K, € GVr

o K3 € GVr = there exists a cycle of length at most
3(2r+1)=g(G) <3(2r+1)
n—1<A(GVr) < A(G) !
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