A Software Implementation of the IEEE 754R Decimal Floating-Point
Arithmetic Using the Binary Encoding Format

Marius Cornea, Cristina Anderson, John Harrison,
Ping Tak Peter Tang, Eric Schneider, Charles Tsen'
Intel Corporation, 'University of Wisconsin

Abstract

The IEEE Standard 754-1985 for Binary Floating-Point
Arithmetic [1] was revised [2], and an important addition
is the definition of decimal floating-point arithmetic. This is
intended mainly to provide a robust, reliable framework for
financial applications that are often subject to legal require-
ments concerning rounding and precision of the results, be-
cause the binary floating-point arithmetic may introduce
small but unacceptable errors. Using binary floating-point
calculations to emulate decimal calculations in order to
correct this issue has led to the existence of numerous pro-
prietary software packages, each with its own characteris-
tics and capabilities. IEEE 754R decimal arithmetic should
unify the ways decimal floating-point calculations are car-
ried out on various platforms. New algorithms and prop-
erties are presented in this paper which are used in a soft-
ware implementation of the IEEE 754R decimal floating-
point arithmetic, with emphasis on using binary operations
efficiently. The focus is on rounding techniques for decimal
values stored in binary format, but algorithms for the more
important or interesting operations of addition, multiplica-
tion, division, and conversions between binary and decimal
floating-point formats are also outlined. Performance re-
sults are included for a wider range of operations, showing
promise that our approach is viable for applications that
require decimal floating-point calculations.

1. Introduction

There is increased interest in decimal floating-point
arithmetic in both industry and academia as the IEEE 754R
[2]. Draft approaches the stage where it may soon become
the new standard for floating-point arithmetic. The P754
Draft describes two different possibilities for encoding deci-
mal floating-point values: the binary encoding, based on us-
ing a Binary Integer [3] to represent the significand (BID, or
Binary Integer Decimal), and the decimal encoding, which

uses the Densely Packed Decimal (DPD) [4] method to rep-
resent groups of up to three decimal digits from the signifi-
cand as 10-bit declets. In this paper, we present results from
our work toward a 754R decimal floating-point software im-
plementation based on the BID encoding. We include a dis-
cussion of our motivation, selected algorithms, performance
results, and future work. The most important or typical op-
erations will be discussed: primarily decimal rounding, but
also addition, multiplication, division, and conversions be-
tween binary and decimal floating-point formats.

1.1 Motivation and Previous Work

An inherent problem of binary floating-point arith-
metic used in financial calculations is that most decimal
floating-point numbers cannot be represented exactly in bi-
nary floating-point formats, and errors that are not accept-
able may occur in the course of the computation. Deci-
mal floating-point arithmetic addresses this problem but a
degradation in performance will occur compared to binary
floating-point operations implemented in hardware. Despite
its performance disadvantage, decimal floating-point is re-
quired by certain applications which need results identical
to those calculated by hand [5]. This is true for currency
conversion [6], banking, billing, and other financial applica-
tions. Sometimes these requirements are mandated by law
[6], other times they are necessary to avoid large accounting
discrepancies [7].

Because of the importance of this problem a number of
decimal solutions exist, both hardware and software. Soft-
ware solutions include C# [8], COBOL [9], and XML [10],
which provide decimal operations and datatypes. Also, Java
and C/C++ both have packages, called BigDecimal [11] and
decNumber [12], respectively. Hardware solutions were
more prominent earlier in the computer age with the ENIAC
[13] and UNIVAC [14]. However, more recent examples
include the CADAC [15], IBM’s z900 [16] and z9 [17] ar-
chitectures, and numerous other proposed hardware imple-
mentations [18] [19] [20]. More hardware examples can
be found in [21], and a more in-depth discussion is found

in Wang’s Processor Support for Decimal Floating-Point
Arithmetic [22].

Estimations have been made that hardware approaches to
decimal floating-point will have average speedups of 100-
1000 times over software [7]. However, results from our im-
plementation show that this is unlikely, as maximum clock
cycle counts for decimal operations implemented in soft-
ware are in the range of tens or hundreds on a variety of
platforms. Hardware implementations would undoubtedly
yield a significant speedup but not as dramatic, and that will
make a difference only if applications spend a large percent-
age of their time in decimal floating-point computations.

2. Decimal Rounding

A decimal floating-point number n is encoded using
three fields: sign s, exponent e, and significand o with at
most p decimal digits, where p is the precision (p is 7, 16, or
34 in IEEE 754R, but p = 7 for the 32-bit format is for stor-
age only). The significand can be scaled up to an integer C,
referred to as the coefficient (and the exponent is decreased
accordingly): n = (—1)* - 10¢ - o = (—1)* - 10¢ - C.

The need to round an exact result to the precision p of
the destination format occurs frequently for the most com-
mon decimal floating-point operations: addition, subtrac-
tion, multiplication, fused multiply-add, and several conver-
sion operations. For division and square root this happens
only in certain corner cases. If the decimal floating-point
operands are encoded using the IEEE 754R binary format,
the rounding operation can be reduced to rounding of an in-
teger binary value C to p decimal digits. Performing this
operation efficiently on decimal numbers stored in binary
format is very important, as it enables good software im-
plementations of decimal floating-point arithmetic on ma-
chines with binary hardware. For example assume that the
exact result of a decimal floating-point operation has a co-
efficient C' = 1234567890123456789 with ¢ = 19 decimal
digits that is too large to fit in the destination format, and
needs to be rounded to the destination precision of p = 16
digits.

As mentioned, C is available in binary format. To round
C to 16 decimal digits, one has to remove the lower z = 3
decimal digits (x = ¢ — p = 19 — 16) and possibly to
add one unit to the next decimal place, depending on the
rounding mode and on the value of the quantity that has
been removed. If C' is rounded to nearest, the result will be
C = 1234567890123457-103. If C is rounded toward zero,
the result will be C' = 1234567890123456 - 103.

The straightforward method to carry out this operation is
to divide C by 1000, to calculate and subtract the remainder,
and possibly to add 1000 to the result at the end, depending
on the rounding mode and on the value of the remainder.

A better method is to multiply C by 102 and to trun-
cate the result so as to obtain the value 1234567890123456.
However, negative powers of 10 cannot be represented ex-
actly in binary, so an approximation will have to be used.
Let k3 ~ 1072 be an approximation of 10~ and thus
C - k3 =~ 1234567890123456. If k3 overestimates the value
of 1073 then C - k3 > 1234567890123456 Actually, if k3
is calculated with sufficient accuracy it will be shown that
|C - ks3] = 1234567890123456 with certainty.

(Note: the floor(z), ceiling(x), and fraction(x) func-
tions are denoted here by |z |, [2], and {x} respectively.)

Let us separate the rounding operation of a value C' to
fewer decimal digits into two steps: first calculate the result
rounded to zero, and next apply a correction if needed, by
adding one unit to its least significant digit. Rounding over-
flow (when after applying the correction the result requires
p + 1 decimal digits) is not considered here.

The first step in which the result rounded toward zero is
calculated can be carried out by any of the following four
methods:

Method 1. Calculate k3 ~ 102 as a y-bit approxi-
mation of 1072 rounded up (where y will be determined
later). Then, |C - k3] = 1234567890123456, exactly the
same value as |C/10%]. It can be noticed however that
1073 = 573 . 273 and that multiplication by 272 is sim-
ply a shift to the right by 3 bits. Three more methods to
calculate the result rounded toward zero are then possible:

Method 1a. Calculate h3 ~ 53 as a y-bit approxima-
tion of 5~3 rounded up (where y will be determined later).
Then [(C - h3) - 273| = 1234567890123456, the same
as |C/103]|. However, this method is no different from
Method 1, so the approximation of 5~2 has to be identical
in number of significant bits to the approximation of 1073
from Method 1 (but it will be scaled up by a factor of 23).

A third method is obtained if instead of multiplying by
273 at the end, C is shifted right and truncated before mul-
tiplication by hg:

Method 2. Calculate h3 ~ 53 as a y-bit approximation
of 573 rounded up (where y will be determined later). Then
[|C-273] - ha| = 1234567890123456, which is identical
to [C/103]. It will be shown that h3 can be calculated to
fewer bits than k3 from Method 1.

A final and fourth method is obtained by multiplying C'
by hs and then truncating, followed by a multiplication by
273 and a second truncation:

Method 2a. Calculate hz =~ 53 as a y-bit approxima-
tion of 573 rounded up (where y can be determined later).
Then | |C - h3| -273] = 1234567890123456. However, it
can be shown that in this last case h3 has to be calculated to
the same number of bits as k3 in Method 1, which does not
represent an improvement over Method 1.

Only Method 1 and Method 2 shall be examined next.

We will solve next the problem of rounding correctly a

number with ¢ digits to p = ¢ — z digits, using approxima-
tions to negative powers of 10 or 5. We will also solve the
problem of determining the shortest such approximations,
i.e. with the least number of bits.

2.1 Method 1 for Rounding a Decimal Co-
efficient

For rounding a decimal coefficient represented in binary
using Method 1, the following property specifies the mini-
mum accuracy y for the approximation k, =~ 10~* which
ensures that a value C with q decimal digits represented in
binary can be truncated without error to p = ¢ — x digits by
multiplying C by k, and truncating. Property 1 states that
ify > [{log210- 2} +10g210 - q] and k, is a y-bit approxi-
mation of 10~* rounded up, then we can calculate |C - k|
in the binary domain and we will obtain the same result as
for [C//10% | calculated in decimal.

Property 1: Let ¢ € N,¢ > 0,C € N,1097! < C <
109—-1,z € {1,2,3,...,q—1},and p = log210. If y € N
satisfies y > [{p-x}+p-q| and k, is a y-bit approximation
of 1077 rounded up (the subscript R P, y indicates rounding
up to y bits), i.e. k; = (107%)gp,y = 1077 - (1 +¢) where
0<e<2¥tlthen |C -k,] =[C/10%]

Proof outline:

The proof can be carried out starting with the represen-
tation of C'in decimal, C' = do - 10971 +dy - 10972 + ...+
dg—2 - 10! + dg—1, where do,dy,...dg—1 € {0, 1,... 79}
and dy # 0. The value of C can be expressed as C' =
10% - H + L, where H = |C/10%| = dp - 1097~ + d -
1097272 4 dp - 107" 3 + .+ dyy2-101 +dyp 1 €
(10972711097 —1]and L = C % 10% = dg_, - 10*71 +
dg—zt1- 10772 4 ...+ dy_o- 10" +dy—1 € [0,10% — 1].
Then the minimum value of y can be determined such that
|Cky]=H<H<H+10"-L)-(1+e) < H+1&
107 e <1072 /(H +1—1077) (1)

But 10~* - ¢ is the absolute error in k, = 1077 - (1 4 ¢),
and it is less than one unit-in-the-last-place (ulp) of k,. It
can be shown that for all = of interest in the context of the
IEEE 754R floating-point formats, = € {1,2,3,...,34},
k, is in the same binade as 10~ %, because one cannot find
a power of 2 to separate 107" and k, = 107% - (1 + ¢)
(that would place the two values in different binades) with
k. represented with a reasonable number of bits y. This
can be checked exhaustively for x € {1,2,3,...,34}. For
this, assume that such a power of 2 exists: 1077 < 27° <
1077 (1+¢) & g5 <2° < 10" & o5 < 2° <207,
Even for those values of where p - x is slightly larger
than an integer (z = 22, x = 25, and x = 28), ¢ would
have to be too large in order to satisfy % < 2%. The

conclusion is that k, is in the same binade as 10~%, which
will let us determine ulp(k;) = 2-le2]=v_ n order to sat-
isfy inequality (1), it is sufficient to have (increasing the

left hand side and decreasing the right hand side of the in-
equality): ulp(k,) < (10;277_2;,1.)
y > [{p-z}+p-q], qed. Inour example from Method
1 above, y = [{p- 3} + p-19] = 65 (so 1073 needs to be
rounded up to 65 bits).

The values k, for all x of interest are pre-calculated and
are stored as pairs (K, e;), with K, and e, positive inte-
gers, and k, = K, - 27°%. This allows for efficient im-
plementations, exclusively in the integer domain, of sev-
eral decimal floating-point operations, in particular addi-
tion, subtraction, multiplication, fused multiply-add, and
certain conversions.

The second step in rounding correctly a value C' to fewer
decimal digits consists of applying a correction to the value
rounded to zero, if necessary. The inexact status flag has to
be set correctly as well. For this we have to know whether
the original value that we rounded was exact (did it have
z trailing zeros in decimal?) or if it was a midpoint when
rounding to nearest (were its x least significant decimal dig-
its a 5 followed by — 1 zeros?).

Once we have the result truncated to zero, the straight-
forward method to check for exactness and for midpoints
could be to calculate the remainder C' % 10* and to com-
pare it with O and with 50...0 (z decimal digits), which is
very costly. However, this is not necessary because the in-
formation about exact values and midpoints is contained in
the fractional part f of the product C' - k.

The following property states that if C' - 10™% covers an
interval [H, H+1) of length 1 where H is an integer, then C -
k.. belongs to [H, H+1) as well and the fraction f discarded
by the truncation operation belongs to (0, 1) (so f cannot
be 0). More importantly, we can identify the exact cases
C -107® = H (then rounding C' to p = g — x digits is an
exact operation) and the midpoint cases C'- 107% = H + %

Property 2: Letq € N,q > 0,z € {1,2,3,...,q — 1},
C € N,107 < C <107 —~1,C = 10° - H + L where
H € [1097*=1109=® — 1], L € [0,10® — 1], H,L € N,
f=C ky—|C-ky],p=10g210,y € N,y > 1+ [p-q],
ky =107% - (1 4+¢),0 < e < 27¥"!. Then the following
are true:

(aC=H- -10°iff0 < f <10™*

(b)H-10° < C < (H+3)-10%iff 107° < f < &

©C=(H+1) 10%iff ; < f <1410

() (H+1)10"<C < (H+1)-10%iff 1 +107* <
f<1

(Proof not included, but straightforward to obtain.) This
property is useful for determining the exact and the mid-
point cases. For example if 0 < f < 10~" then we can be
sure that the result of the rounding from ¢ decimal digits to
p = q — x digits is exact.

Another important result of Property 2 was that it helped
refine the results of Property 1. Although the accuracy y of
k. determined in Property 1 is very good, it is not the best

This leads eventually to

possible. For a given pair ¢ and x = ¢ — p, starting with
the value y = [{p - «} + p - ¢| one can try to reduce it
one bit at a time, while checking that the corresponding k,
will still yield the correct results for rounding in all cases
and it will also allow for exactness and midpoint detection
as shown above. To verify that a new (and smaller) value
of y still works, just four inequalities have to be verified for
boundary conditions related to exact cases and midpoints:
H-10° k, <H+107", (H+1/2—-10"%) - 10" - k, <
H+1/2,(H+1/2)-10° -k, < H+1/2+10"%, and
(H4+1-10"7)-10" - k, < H + 1. Because the functions
of H from these inequalities can be reduced to monotonic
and increasing ones, it is sufficient to verify the inequalities
just for the maximum value H = 1097 —1 = 99...9
(¢ — x decimal digits). For example, this method applied to
the constant k3 used to illustrate Method 1 (for truncation
of a 19-digit number to 16 digits) allowed for a reduction
of the number of bits from y = 65 to y = 62 (important,
because k3 fits now in a 64-bit integer).

2.2 Method 2 for Rounding a Decimal Co-
efficient

This method has the advantage that the number of bits in
the approximation of 577 is less by « than that for 10™* in
Method 1, as stated in Property 3.

Property 3: Letq € N,qg > 0,C € N,107°! < C <
109—1,z € {1,2,3,...,9—1},and p = log>10. Ify € N,
y > [{p-z}+p-q] —x and h, is a y-bit approximation of
5~ rounded up, i.e. hy = (57 %)gpy =57 (1 +¢),0 <
e <27Vl then | |C-27%] - h,| = |C/107|

However, determining exact cases and midpoints is
slightly more complicated than with Method 1. Two frac-
tions are removed by truncation: the firstin |[C' - 27%] and
the second in ||C - 27%] - h,|. To determine whether the
rounding was exact, test first whether the lower z bits of C
are 0 (if they are not, C' could not have been divisible by
107). If C was divisible by 2* we just need to test |C'-277% |
for divisibility by 5*. This is done examining the fraction
removed by truncation in | |[C' - 277] - h, |, using a property
similar to Property 2 from Method 1. Actually, exact and
midpoint cases can be determined together if the first shift
is by — 1 bits only (and not by « bits). If C had the = lower
bits equal to 0, the rounding might be exact. If it had only
x — 1 bits equal to zero, the rounding might be for a mid-
point. In both cases, the answer is positive if the fraction f
removed by the last truncation in [[C - 27| - h, | satis-
fies conditions similar to those from Property 2. The least
significant bit in [[C - 27"]| . h, | and the values of the
fractions removed in the two truncations will tell whether
the rounding was exact, for a midpoint, or for a value to the
left or to the right of a midpoint.

3. Addition and Multiplication

Addition and multiplication were implemented using
straightforward algorithms, with the rounding step carried
out as explained in the previous section. The following
pseudo-code fragment describes the algorithm for adding
two decimal floating-point numbers encoded using the bi-
nary format, n1 = C1 - 10°' and n2 = C2 - 10,
whose significands can be represented with p decimal dig-
its (C1,C2 € Z,0 < C1 < 107, and 0 < C2 < 10P).
For simplicity it is assumed that n1 > 0 and el > e2,
and that the rounding mode is set to rounding to nearest:
n = (nl +n2)gn, = C - 10° In order to make round-
ing easier when removing = decimal digits from the lower
part of the exact sum, 1/2 - 10* is added to it and rounding
to nearest is reduced to truncation except possibly when the
exact sum is a midpoint:

q1l, q2 = nr. of decimal digits needed to represent
C1, C2 // table lookup
if|lgl+el—q2—e2|>p
n=C1-10 orn = C1-10° £ 10¢1+91-P
(inexact)
else//if|[gl +el —g2—e2| <p-—1
C’ = C1-10°'=°2 + C2 // binary integer
g = number of decimal digits needed to
represent C’ // table lookup
ifg<p
return n = C’ - 102 (exact)
else//ifge [p+1,2-p]
continue
r = q—p, decimal digits to be removed from
lower part of C’, x € [1, p|
c’'=Cc"+1/2-10"
kp=10"% - (14¢),0 < e < 27 [2rP]
cr=0". km =" Kx . 2—E’m
f* =the fractional part of C* // lower E'x bits
of product C” - K,
if0< f*<107?
if |C*] is even
C=1C*]
else
c=|C*"]-1
else
C=1[C*]
n=C-10*=
if C' = 10P
n = lopfl . 1062+z+1
/l rounding overflow
if0o< f*—1/2<107?
the result is exact
else
the result is inexact
endif

For multiplication the algorithm to calculate n = (nl -
n2)grn,p = C - 10° for rounding to nearest is very similar.
There are only two differences with respect to addition: the
multiplication algorithm begins with

C’' = C1-C2// binary integer
q = number of decimal digits needed to represent
C' // table lookup

and at the end, before checking for rounding overflow and
inexactness, the final result is n = C - 10¢1¢2+% jpstead of
n=C-10%"®,

The most interesting aspects are related to the rounding
step. For addition and multiplication, the length of the exact
result is at most 2 - p decimal digits (if this length is larger
for addition then the smaller operand is just a rounding er-
ror compared to the larger one and rounding is trivial). This
also means that the number = of decimal digits to be re-
moved from a result of length ¢ € [p + 1,2 - p] is between
1 and p. It is not difficult to prove that the comparisons for
midpoint and exact case detection can use the constant 1077
instead of 10~ thus saving a table read.

Note that 1077 (or 10™%) cannot be represented exactly
in binary format, so approximations of these values have
to be used. It is sufficient to compare f* or f* — % (both
have a finite number of bits when represented in binary)
with a truncation ¢* of 107P whose unit-in-the-last-place is
no larger than that of f* or f* — % The values t* are cal-
culated such that they always align perfectly with the lower
bits of the fraction f*, which makes the tests for midpoints
and exactness relatively simple in practice.

The IEEE status flags are set correctly in all rounding
modes. The results in rounding modes other than to near-
est are obtained by applying a correction (if needed) to the
result rounded to nearest, using information on whether the
precise result was exact in the IEEE sense, a midpoint less
than an even floating-point number, a midpoint greater than
an even number, an inexact result less than a midpoint, or
an inexact result greater than a midpoint.

4. Division and Square Root

The sign and exponent fields are easily computed for
these two operations. The approach used for calculating the
correctly rounded significand of the result was to scale the
significands of the operands to the integer domain and to
use a combination of integer and floating-point operations.

The division algorithm is summarized below. The nota-
tion digits(X) is used for the minimum number of decimal
digits needed to represent the integer value X, and p is the
maximum digit size of the decimal coefficient, as specified
by the format: p = 16 for the 64-bit decimal and p = 34 for
the 128-bit decimal format. EMIN is the minimum dec-
imal exponent allowed by the format. Overflow situations

are not explicitly treated in the algorithm description below;
they can be handled in the return sequence, when the result
is encoded in BID format.

ifCl < C2
nd = digits(C2) — digits(C1)
C1 =C1-10m
scale =p—1

if(C1 < C2)
scale = scale + 1

endif

cC1*=C1 - 1oscale

QO=0

e = el —e2 — scale — nd /I expected

// exponent
else

Q0= 1[C1/C2|,R=C1-Q0-C2//long

/ integer divide and remainder

if (R == 0)
return QO - 101 ~¢2 // result is exact
endif

scale = p — digits(QO)
Cl1*=R- 1oscale
QO — QO . loscale
e = el — e2 — scale // expected exponent
endif
Q1=C1*"/C2,R=C1* —Q1-C2
// multiprecision integer divide
Q=00+Q1
if (R==0)
eliminate trailing zeros from Q:
find largest integer d s.t. Q/10% is exact
Q = Q/10°
e = e + d // adjust expected exponent
if (e > EMIN)
return (Q - 10¢
endif
if (e > EMIN)
round (- 10¢ according to current rounding
mode
/l rounding to nearest based on comparing
//C2and2- R
else
compute correct result based on Property 1
// underflow
endif

The square root algorithm is somewhat similar, in the
sense that it requires computing an integer square root of
2 - p digits (while division required an integer divide of 2 - p
by p digits). Due to lack of space we cannot cover the im-
plementation of these integer operations. Rounding of the
square root result is based on a test involving long integer

multiplication.

5. Conversions Between Binary and Decimal
Formats

Conversions between IEEE 754R binary formats and the
new decimal formats may sometimes be needed in user ap-
plications, and the revised standard draft specifies that these
should be correctly rounded. We first sketch the general
implementation for two typical cases, and then consider in
more detail the intermediate accuracy required to ensure
correct rounding.

5.1. Conversion from Double Precision to
64-bit Decimal

The double precision argument encodes the value

a = (71)50‘ . 9ea . My = (71)50, . 2k: . Oa,
with C,, an integer in the range [0, 2°%) and & an integer in
the range [—1074, 971]. We first check for and handle zeros,
infinities and NaNs, and normalize denormal inputs, so we
can thereafter assume 2°2 < C, < 2%% and —1126 < k <
971 (the lower exponent range expands because we force
normalization).

The standard specifies that when a binary-decimal con-
version is exact, the preferred exponent is zero, and other-
wise is as small as possible. The main path of the algorithm
is for the inexact case, where the preferred exponent choice
implies that the output should be normalized. However, first
we intercept the exact cases where the main path might re-
sult in a suboptimal choice of exponent. These cases can be
checked for based only on the input exponent and the num-
ber of trailing zeros in the significand, using a small table
of upper limits; no divisibility testing is needed.

For the main path, normalization constrains the input in
some range 2 < a < 2%*1, 50 there are at most two possi-
ble choices for the decimal exponent, say f and f + 1. For
each input exponent k& we tabulate the corresponding f as
well as the significand breakpoint m so that if C, < m the
provisional exponent selected is f and otherwise is f + 1.
(Once we get down to the minimal output exponent we need
to set f to that value and choose a dummy value of m so
that the test will always select f. In the present example,
this cannot occur anyway, but it can for other format com-
binations.) So we test if C; < m and select the provisional
output exponent, say f, and then obtain from another table
an approximation to 2 /107, scaled to an integer. The accu-
racy of these tables was selected (see the discussion below)
so that from the product of this multiplier » with C, we can
determine correct rounding in all modes. Rounding may re-
sult in an overspill of the output to exactly 109 where d is
the output precision; in this case we use 109~ ! instead and

increment the provisional exponent (this is why we called it
“provisional”).

5.2. Conversion from 64-bit Decimal to
Double Precision

This conversion is very similar in overall structure to the
conversion in the other direction. In some respects it is sim-
pler, because we need no special treatment of exact results
and always aim for a normalized output, though we do need
to handle overflow and underflow. We force normalization
of the input in the same ‘binary’ sense, constraining the in-
put coefficient to a range 2 < C, < 2°*! by shifting it
appropriately; this is easier than testing for divisibility by
10 and also gives a tighter range. We cannot compensate
for this shift [by modifying the input exponent (which is
decimal), but rather need to incorporate the difference into
the output exponent by a simple subtraction. The only com-
plication is that now we cannot build the minimal exponent
into the tables, because it may be modified by this subtrac-
tion. Thus, in the case of underflow we need to manually
shift the intermediate result of the product r - C, right by
[bits before deducing the rounded result. (Just shifting the
rounded output afterwards might result in incorrect double
rounding in rare cases.)

5.3. Required accuracy

Here we explain how bounds were obtained on the re-
quired accuracy in the table entries approximating 2* /10
and 107 / 2k as well as in the calculations involving them.
We seek to determine how “hard to round” a conversion can
be, i.e. the minimum nonzero relative difference between a
floating-point number in the input binary or decimal format
and a rounding boundary (floating-point number or mid-
point) in the output decimal or binary format. In each case
we need to find how small an expression of the following
form can become:

2¢-m
104 - n

where the possible e and d are determined by the exponent
ranges of the formats, and the possible sizes of the integers
m and n by their precision. (When we want to consider
midpoints, we simply permit twice the range in that signifi-
cand.) If we seek a purely analytical answer, we can observe
that either the numbers are exactly equal or else:

2°-m ~[2¢-m — 107 n] 1
104 - n N |10% - n| = 104 - n|

because all quantities are integers. However, this bound is
somewhat discouraging, because the exponent may be very

large. For example, in the decimall28 format, we could
conceivably have d = 6111, meaning that we would need
to perform a computation accurate to thousands of bits to
be sure of rounding correctly. We can get a sharper bound
by systematically examining the possible exponent combi-
nations. The relative difference can be written as

2¢/10¢ — n/m
n/m

By slightly expanding the exponent ranges, we can as-
sume without loss of generality that both significands m and
n are normalized. This means that there is a tight correla-
tion between the two exponents, so for a given value of e,
there are only a few non-trivial cases for d, or vice versa.
With 2¢/10¢ fixed it suffices to find the minimal absolute
difference:

|2¢/10% — n/ml|

and for each e and d we find lower bounds on this quantity
subject to the size constraints on m and n, using a variant
of the usual algorithms in diophantine approximation based
on computing a sequence of convergents using mediants or
continued fractions. As we might expect from a naive sta-
tistical argument, the bounds determined are much sharper,
typically a few bits extra beyond the sum of the precisions of
the input and output formats. For example, one of the hard-
est cases for converting from binaryé4 to decimalé4
is the following, with a relative distance of 9—115.53,

1
2479 . 5789867926332032 ~ 1044 . 90372559027740405

and a difficult case for conversion from decimalé64 to
binaryé4 is a relative difference of 271462 for:

1
10~19.3743626360493413 ~ 2—549-68985865317742005

6. Performance Data

In this section we present performance data in terms of
clock cycle counts needed to execute several library func-
tions. Median and maximum values are shown. Minimum
values were not considered very interesting (usually a few
clock cycles) because they reflect just a quick exit from the
function call for some special-case operands. To obtain the
results shown here, each function was run on a set of tests
covering corner cases as well as ordinary cases. The mix of
data has been chosen to exercise the library (including spe-
cial cases such as treatment of NaNs and infinities) rather
than to be representative of a specific decimal floating-point
workload.

These preliminary results give a reasonable estimate of
worst-case behavior, with the median information being a
good measure of the performance of the library.

Function EM64t EM64t 1A-64
Name Xeon 5100 Xeon Itanium 2
3.0 GHz 3.2 GHz 1.4 GHz

abs128 19/1 2/2 44 /44
abs64 1576 6/5 12/12
add128 205 /94 337/ 178 242 /149
addo4 133/71 249 /132 219/118
div128 808 /559 | 1369/1020 | 679 /454
dive4 266/ 171 484 /312 294 /180
fma64 283 /211 487 /365 284 /228
maxnum128 108 / 69 187 /130 120/ 85
minnum128 113/75 182/ 126 117/82
mul128 449 /307 750/ 543 306 /280
mul64 132 /69 227/ 116 149 /102
quantize128 971792 188 /172 100 /98
quantize64 451217 78764 76762
sqrt128 544/ 519 1001 /911 | 458/431
sqrt64 194 /188 292 /287 223 /213

Table 1. Clock cycle counts for a subset of
arithmetic functions {Max / Median Values}

Test runs were carried out on four different platforms to
get a wide sample of performance data. Each system was
running Linux. The best performance was on the Xeon 5100
EM64t platform, where the numbers are not too far from
those for possible hardware solutions.

Table 1 contains clock cycle counts for a sample of arith-
metic functions. These are preliminary results as the library
is in pre-beta development stage. A small number of op-
timizations were applied, and significant improvements are
still possible.

Function EM64t EM64t 1A-64
Name Xeon 5100 Xeon Itanium 2
3.0 GHz 3.2 GHz 1.4 GHz
cvt_bid128_to_int32 127/ 51 240/107 | 143/92
cvt_int32_to_bid64 98/9 167/13 181/13

cvt_int32_to_bid128 97/ 46 169/ 84 182/93
cvt_string_to_bid128 336/ 54 321/133 | 391/95
cvt_string_to_bid64 215/82 553/81 | 332/133
cvt_bid128_to_string | 345/103 | 812/201 | 509/ 198
cvt bid64 _to_string 130/ 84 249 /152 | 281/ 155

Table 2. Clock cycle counts for a subset of
conversion functions {Max / Median Values}

Table 2 contains clock cycle counts for conversion func-
tions. It is worth noting that the BID library performs well

even for conversion routines to and from string format.

Function EMo64t EMo64t TA-64
Name Xeon 5100 Xeon Itanium 2
3.0 GHz 32GHz | 14GHz
class128 116/22 181/31 81/5
class64 30/17 60/23 31/5
quiet_cmp_eq128 111767 1757111 83 /68
quiet_cmp_eq64 74127 145/42 771733
quiet_cmp_gt128 117775 180/120 | 87/73
quiet_cmp_gt_eq64 54741 93/62 53747
qt-cmp_lt_unord128 118774 1827120 | 88/74
qt_cmp_lt_unord64 56/42 93/63 53/48
rnd_integral away128 95/84 190/164 | 113/99
rnd_integral_away64 43740 71/61 781762
rnd_integral zero128 91/78 180/150 | 117/100
rnd_integral zero64 41/13 71740 781751
total _order128 122 /78 194 /128 98 /85
total_order_mag128 109 /72 176 /117 | 96/ 81

Table 3. Clock cycle counts for a subset of
miscellaneous functions {Max / Median Values}

Table 3 contains clock cycle counts for other miscella-
neous IEEE 754R functions. Details on these functions can
be found in the latest draft of the revised IEEE standard for
floating-point arithmetic [2].

It is interesting to compare these latencies with those
for other approaches. For example the decNumber package
[12] run on the same XEON 5100 system has a maximum
latency of 684 clock cycles and a median latency of 486
clock cycles for the add64 function. As a comparison, the
maximum and median latencies of a 64-bit addition on the
3.0GHz Xeon 5100 are 133 and 71 clocks cycles respec-
tively. Another example is that based on its median latency,
the 64-bit BID add is less than four times slower than of a
four clock cycle single precision binary floating-point add
operation in hardware on a 600 MHz Ultra Sparc III CPU
of just a few years ago.

7. Conclusion

In this paper we presented some mathematical properties
and algorithms used in the first implementation in software
of the IEEE 754R decimal floating-point arithmetic, based
on the Binary Integer Decimal encoding. We concentrated
on the problem or rounding correctly decimal values that
are stored in binary format while using binary operations
efficiently, and also presented briefly other important or in-
teresting algorithms used in the library implementation. Fi-
nally, we provided a wide sample of performance numbers

which demonstrate that the possible speedup of hardware
implementations over software may not be as dramatic as
previously estimated.

As we look toward the future we expect further improve-
ments in performance through algorithm and code opti-
mizations as well as enhanced functionality, for example
through addition of transcendental function support. Fur-
thermore, we believe that hardware support can be added in-
crementally to improve decimal floating-point performance
as demand for it grows.

References

[1] Institute of Electrical and Electronics Engineers. Stan-
dard for Binary Floating-Point Arithmetic, IEEE Std
754-1985.

[2] Institute of Electrical and Electronics Engineers.
Draft Standard for Floating-Point Arithmetic P754.
http://754r.ucbtest.org/drafts/754r.pdyf.

September 2006.

[3] P. Tang, “Binary-Integer Decimal Encod-
ing for Decimal Floating Point” Techni-
cal Report. Intel Corporation. Available at

http://754r.ucbtest.org/issues/decimal/bid_rationale.pdf

[4] M. F. Cowlishaw, “Densely packed decimal encod-
ing.” IEEE Proceedings - Computers and Digital
Techniques, vol. 149, pp. 102-104. May 2002

[5] W. Buchholz, “Fingers or fists? (The Choice of Dec-
imal or Binary Representation),” Communications of
the ACM, vol. 2, no. 12, pp. 3-11, 1959.

[6] European Commission. “The introduction of the euro
and the rounding of currency amounts.” Available at
http://europa.eu.int/comm/economy_finance /publica-
tions/euro_papers/2001/eup22en.pdf, March 1998.

[71 IBM Corporation. “The telco bench.” Available at
http:/fwww2.hursley.ibm.com/decimal/telco.html,
March 1998.

[8] Standard ECMA-334, “C# language spec-
ification.” Available at http://www.ecma-
international.org/publications/files/ECMA-ST/Ecma-
334.pdf, 2005

[9] “ISO 1989:2002 Programming Languages - COBOL,”
ISO Standards, JTC 1/5C 22, 2002.

[10] W3C, “XML Scheme Part 2: Datatypes Second Edi-
tion.” Available at http://www.w3.0rg/Tr/2004/REC-
xmlschema-2-20041028/, October 2004.

(11]

[12]

[13]

(14]

(15]

[16]

(17]

(18]

[19]

(20]

(21]

Sun Corp. on-line documentation, “Class
BigDecimal” Available at http://java.sun.com/
j2se/1.4.2/docs/api/java/math/BigDecimal.html

M. F. Cowlishaw, “The decNumber library.”
http://www2.hursley.ibm.com/decimal/decnumber/pdf
2006.

M. H. Weik, “The ENIAC Story.” Available at
http://ftp:.arl. mil/ mike/comphist/eniac-story.html

G. Gray, “UNIVAC I Instruction Set,” Unisys History
Newsletter, vol. 2, no. 3, 2001.

M. S. Cohen, T. E. Hull, and V. C. Hamacher,
“CADAC: A Controlled-Precision Decimal Arith-
metic Unit,” IEEE Transactions on Computers, vol.
32, pp. 370-377, April 1983.

FY. Busaba, C.A. Krygowski, W.H. Li, EM.
Schwarz, S.R. Carlough, “The IBM z900 Decimal
Arithmetic Unit,” in Proceedings of the 35th Asilomar
Conference on Signals, Systems and Computers, vol.
2, pp 1335, IEEE Computer Society, November 2001.

A.Y. Duale, M.H. Decker, H.-G. Zipperer, M.
Aharoni, T.J. Bohizic, “Decimal floating-point in
z9: An implementation and testing perspective”
in IBM Journal of Research and Development, at

http:/fwww.research.ibm.com/journal/rd/51 1/duale. html,

2007.

M. A. Erle, J. M. Linebarger, and M. J. Schulte, “Po-
tential Speedup Using Decimal Floating-Point Hard-
ware.” Proceedings of the Thirty Sixth Asilomar Con-
ference on Signals, Systems, and Computers Pa-
cific Grove, California. IEEE Press, pp. 1073-1077,
November, 2002.

M. A. Erle, M. J. Schulte, “Decimal Multiplication Via
Carry-Save Addition.” Proceedings of the IEEE Inter-
national Conference on Application-Specific Systems,
Architectures, and Processors The Hague, Nether-
lands. IEEE Computer Society Press, pp. 348-358,
June, 2003.

G. Bohlender and T. Teufel “A Decimal Floating-Point
Processor for Optimal Arithmetic”, pp 31-58. Com-
puter Arithmetic: Scientific Computation and Pro-
gramming Languages, Teubner Stuttgart, 1987.

M. F. Cowlishaw. “Decimal Floating-Point : Algorism
for Computers,” in Proceedings of the 16th IEEE Sym-
posium on Computer Arithmetic, pp. 104-111, June
2003.

[22] L Wang. “Processor Support for Decimal Floating-

Point Arithmetic.” Technical Report. Electrical and
Computer Engineering Department. University of
Wisconsin-Madison. Available upon request.

