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Abstract

The study of specific hardware circuits for the evalu-
ation of floating-point elementary functions was once an
active research area, until it was realized that these func-
tions were not frequent enough to justify dedicating silicon
to them. Research then turned to software functions. This
situation may be about to change again with the advent of
reconfigurable co-processors based on field-programmable
gate arrays. Such co-processors now have a capacity that
allows them to accomodate double-precision floating-point
computing. Hardware operators for elementary functions
targeted to such platforms have the potential to vastly out-
perform software functions, and will not permanently waste
silicon resources. This article studies the optimization, for
this target technology, of operators for the exponential and
logarithm functions up to double-precision. These opera-
tors are freely available from www.ens-lyon.fr/LIP/
Arenaire/.

Keywords Floating-point elementary functions, hard-
ware operator, FPGA, exponential, logarithm.

1 Introduction

Virtually all the computing systems that support some
form of floating-point (FP) also include a floating-point
mathematical library (libm) providing elementary functions
such as exponential, logarithm, trigonometric and hyper-
bolic functions, etc. Modern systems usually comply with
the IEEE-754 standard for floating-point arithmetic [2] and
offer hardware for basic arithmetic operations in single- and
double-precision formats (32 bits and 64 bits respectively).
Most libms implement a superset of the functions mandated
by language standards such as C99 [14].

The question wether elementary functions should be im-
plemented in hardware was controversial in the beginning
of the PC era [18]. The literature indeed offers many arti-
cles describing hardware implementations of FP elementary

functions [10, 26, 12, 4, 23, 24, 25]. In the early 80s, Intel
chose to include elementary functions to their first math co-
processor, the 8087.

However, for cost reasons, in this co-processor, as well
as in its successors by Intel, Cyrix or AMD, these functions
did not use the hardware algorithm mentioned above, but
were microcoded, which leads to much slower performance.
Indeed, software libms were soon written which were more
accurate and faster than the hardware version. For instance,
as memory went larger and cheaper, one could speed-up the
computation using large tables (several kilobytes) of pre-
computed values [20, 21]. It would not be economical to
cast such tables to silicon in a processor: The average com-
putation will benefit much more from the corresponding sil-
icon if it is dedicated to more cache, or more floating-point
units for example. Besides, the hardware functions lacked
the flexibility of the software ones, which could be opti-
mized in context by advanced compilers.

These observations contributed to the move from CISC
to RISC (Complex to Reduced Instruction Sets Comput-
ers) in the 90s. Intel themselves now also develop software
libms for their processors that include a hardware libm [1].
Research on hardware elementary functions has since then
mostly focused on approximation methods for fixed-point
evaluation of functions [13, 19, 15, 8].

Lately, a new kind of programmable circuit has also been
gaining momentum: The FPGA, for Field-Programmable
Gate Array. Designed to emulate arbitrary logic circuits, an
FPGA consists of a very large number of configurable ele-
mentary blocks, linked by a configurable network of wires.
A circuit emulated on an FPGA is typically one order of
magnitude slower than the same circuit implemented di-
rectly in silicon, but FPGAs are reconfigurable and there-
fore offer a flexibility comparable to that of the micropro-
cessor.

FPGAs have been used as co-processors to accelerate
specific tasks, typically those for which the hardware avail-
able in processors is poorly suited. This, of course, is not
the case of floating-point computing: An FP operation is, as
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already mentioned, typically ten times slower in FPGA than
if computed in the highly optimized FPU of the processor.
However, FPGA capacity has increased steadily with the
progress of VLSI integration, and it is now possible to pack
many FP operators on one chip: Massive parallelism allows
one to recover the performance overhead [22], and accel-
erated FP computing has been reported in single precision
[16], then in double-precision [5, 9]. Mainstream computer
vendors such as Silicon Graphics and Cray now build com-
puters with FPGA accelerators—although to be honest, they
do not advertise them (yet) as FP accelerators.

With this new technological target, the subject of hard-
ware implementation of floating-point elementary functions
becomes a hot topic again. Indeed, previous work has
shown that a single instance of an exponential [7] or log-
arithm [6] operator can provide ten times the performance
of the processor, while consuming a small fraction of the
resources of current FPGAs. The reason is that such an op-
erator may perform most of the computation in optimized
fixed point with specifically crafted datapaths, and is highly
pipelined. However, the architectures of [6, 7] use a generic
table-based approach [8], which doesn’t scale well beyond
single precision: Its size grows exponentially.

In this article, we demonstrate a more algorithmic ap-
proach, which is a synthesis of much older works, includ-
ing the Cordic/BKM family of algorithms [17], the radix-16
multiplicative normalization of [10], Chen’s algorithm [26],
an ad-hoc algorithm by Wong and Goto [24], and proba-
bly many others [17]. All these approaches boil down to
the same basic properties of the logarithm and exponential
functions, and are synthesized in Section 2. The specificity
of the FPGA hardware target are summarized in Section 3,
and the optimized algorithms are detailed and evaluated in
Section 4 (logarithm) and Section 5 (exponential). Section 6
provides performance results (area and delay) from actual
synthesis.

2 Iterative exponential and logarithm

Wether we want to compute the logarithm or the expo-
nential, the idea common to most previous methods may be
summarized by the following iteration. Let (xi) and (li) be
two given sequences of reals such that ∀i, xi = eli . It is
possible to define two new sequences (x′i) and (l′i) as fol-
lows: l′0 and x′0 are such that x′0 = el′0 , and

∀i > 0
{

l′i+1 = li + l′i
x′i+1 = xi × x′i

(1)

This iteration maintains the invariant x′i = el′i , since
x′0 = el′0 and xi+1 = xix

′
i = eliel′i = eli+l′i = el′i+1 .

Therefore, if x is given and one wants to compute l =
log(x), one may define x′0 = x, then read from a table a se-
quence (li, xi) such that the corresponding sequence (l′i, x

′
i)

converges to (0, 1). The iteration on x′i is computed for in-
creasing i, until for some n we have x′n sufficiently close
to 1 so that one may compute its logarithm using the Taylor
series l′i ≈ x′n−1− (x′n−1)2/2, or even l′i ≈ x′n−1. This
allows one to compute log(x) = l = l′0 by the recurrence
(1) on l′i for i decreasing from n to 0.

Now if l is given and one wants to compute its expo-
nential, one will start with (l′0, x

′
0) = (0, 1). The tabulated

sequence (li, xi) is now chosen such that the corresponding
sequence (l′i, x

′
i) converges to (l, x = el).

There are also variants where x′i converges from x to 1,
meaning that (1) computes the reciprocal of x as the product
of the xi. Several of the aforementioned papers explicitely
propose to use the same hardware to compute the reciprocal
[10, 24, 17].

The various methods presented in the literature vary in
the way they unroll this iteration, in what they store in ta-
bles, and in how they chose the value of xi to minimize the
cost of multiplications. Comparatively, the additions in the
l′i iteration are less expensive.

Let us now study the optimization of such an iteration
for an FPGA platform.

3 A primer on arithmetic for FPGAs

We assume the reader has basic notions about the hard-
ware complexity of arithmetic blocks such as adders, mul-
tipliers, and tables in VLSI technology (otherwise see text-
books like [11]), and we highlight here the main differences
when implementing a hardware algorithm on an FPGA.

• An FPGA consists of tens of thousand of elementary
blocks, laid out as a square grid. This grid also in-
cludes routing channels which may be configured to
connect blocks together almost arbitrarily.

• The basic universal logic element in most current FP-
GAs is the m-input Look-Up Table (LUT), a small
2m-bit memory whose content may be set at config-
uration time. Thus, any m-input boolean function can
be implemented by filling a LUT with the appropri-
ate value. More complex functions can be built by
wiring LUTs together. For most current FPGAs, we
have m = 4, and we will use this value in the sequel.
However, older FPGAs used m = 3, while the most
recent Virtex-5 uses m = 6, so there is a trend to in-
crease granularity, and it is important to design algo-
rithm parameterized by m.

For our purpose, as we will use tables of precomputed
values, it means that m-input, n-output tables make the
optimal use of the basic structure of the FPGA. A table
with m + 1 inputs is twice as large as a table with m
inputs, and a table with m− 1 inputs is not smaller.



• As addition is an ubiquitous operation, the elementary
blocks also contain additional circuitry dedicated to
addition. As a consequence, there is no need for fast
adders or carry-save representation of intermediate re-
sults: The plain carry-propagate adder is smaller, and
faster for all but very large additions.

• In the elementary block, each LUT is followed by a
1-bit register, which may be used or not. For our
purpose it means that turning a combinatorial circuit
into a pipelined one means using a resource that is
present, not using more resources (in practice, how-
ever, a pipelined circuit will consume marginally more
resources).

• Recent FPGAs include a limited number of small mul-
tipliers or mult-accumulators, typically for 18 bits
times 18 bits. In this work, we choose not to use them.

4 A hardware logarithm operator

4.1 First range reduction

The logarithm is only defined for positive floating-point
numbers, and does not overflow nor underflow. Exceptional
cases are therefore trivial to handle and will not be men-
tioned further. A positive input X is written in floating-
point format X = 2EX−E0 × 1.FX , where EX is the ex-
ponent stored on wE bits, FX is the significand stored on
wF bits, and E0 is the exponent bias (as per the IEEE-754
standard).

Now we obviously have log(X) = log(1.FX) + (EX −
E0)·log 2. However, if we use this formula, for a small ε the
logarithm of 1−ε will be computed as log(2−2ε)− log(2),
meaning a catastrophic cancellation. To avoid this case, the
following error-free transformation is applied to the input:{

Y0 = 1.FX , E = EX − E0 when 1.FX ∈ [1, 1.5),
Y0 = 1.FX

2 , E = EX − E0 + 1 when 1.FX ∈ [1.5, 2).
(2)

And the logarithm is evaluated as follows:

log(X) = log(Y0) + E · log 2 with Y0 ∈ [0.75, 1.5).
(3)

Then log(Y0) will be in the interval (−0.288, 0.406).
This interval is not very well centered around 0, and other
authors use in (2) a case boundary closer to

√
2, as a well-

centered interval allows for a better approximation by a
polynomial. We prefer that the comparison resumes to test-
ing the first bit of F , called FirstBit in the following
(see Figure 1).

Now consider equation (3), and let us discuss the nor-
malization of the result: We need to know which will be
the exponent of log(X). There are two mutually exclusive
cases.

• Either E 6= 0, and there will be no catastrophic cancel-
lation in (3). We may compute E log 2 as a fixed-point
value of size wF + wE + g, where g is a number of
guard bit to be determined. This fixed-point sum will
be added to a fixed-point value of log(Y0) on wF +1+g
bits, then a combined leading-zero-counter and barrel-
shifter will determine the exponent and mantissa of the
result. In this case the shift will be at most of wE bits.

• Or, E = 0. In this case the logarithm of Y0 may vanish,
which means that a shift to the left will be needed to
normalize the result1.

– If Y0 is close enough to 1, specifically if Y0 =
1+Z0 with |Z0| < 2−wF /2, the left shift may be
predicted thanks to the Taylor series log(1+Z) ≈
Z − Z2/2: Its value is the number of lead-
ing zeroes (if FirstBit=0) or leading ones
(if FirstBit=1) of Y0. We actually perform
the shift before computing the Taylor series, to
maximize the accuracy of this computation. Two
shifts are actually needed, one on Z and one on
Z2, as seen on Figure 1.

– Or, E = 0 but Y0 is not sufficiently close to 1
and we have to use a range reduction, knowing
that it will cancel at most wF /2 significant bits.
The simpler is to use the same LZC/barrel shifter
than in the first case, which now has to shift by
wE + wF /2.

Figure 1 depicts the corresponding architecture. A detailed
error analysis will be given in 4.3.

4.2 Multiplicative range reduction

This section describes the work performed by the box
labelled Range Reduction on Figure 1. Consider the cen-
tered mantissa Y0. If FirstBit= 0, Y0 has the form
1.0xx...xx, and its logarithm will eventually be posi-
tive. If FirstBit= 1, Y0 has the form 0.11xx...xx
(where the first 1 is the former implicit 1 of the floating-
point format), and its logarithm will be negative.

Let A0 be the first 5 bits of the mantissa (including
FirstBit). A0 is used to index a table which gives an

approximation Ỹ −1
0 of the reciprocal of Y0 on 6 bits. Not-

ing Ỹ0 the mantissa where the bits lower than those of A0

are zeroed (Ỹ0 = 1.0aaaaa or Ỹ0 = 0.11aaaaa, depending
on FirstBit), the first reciprocal table stores

1This may seem a lot of shifts to the reader. Consider that there are
barrel shifters in all the floating-point adders: In a software logarithm,
there are many more hidden shifts, and one pays for them even when one
doesn’t use them.
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Figure 1. Overview of the logarithm

Ỹ −1
0 = 2−5

⌈
26

Ỹ0

⌉
(4)

The reader may check that these values ensure Y0 ×
Ỹ −1

0 ∈ [1, 1 + 2−4]. Therefore we define Y1 = 1 + Z1 =

Y0 × Ỹ −1
0 and 0 ≤ Z1 < 2−p1 , with p1 = 4. The mul-

tiplication Y0 × Ỹ −1
0 is a rectangular one, since Ỹ −1

0 is a
6-bit only number. A0 is also used to index a first loga-
rithm table, that contains an accurate approximation L0 of

log(Ỹ −1
0 ) (the exact precision will be given later). This pro-

vides the first step of an iteration similar to (1):

log(Y0) = log(Y0 × Ỹ −1
0 )− log(Ỹ −1

0 )

= log(1 + Z1)− log(Ỹ −1
0 )

= log(Y1)− L0

(5)

and the problem is reduced to evaluating log(Y1).
The following iterations will similarly build a sequence

Yi = 1 + Zi with 0 ≤ Zi < 2−pi . Note that the sign of
log(Y0) will always be given by that of L0, which is itself
entirely defined by FirstBit. However, log(1 + Z1) will
be non-negative, as will be all the following Zi (see Fig-
ures 2 and 3).

Let us now define the general iteration, starting from
i = 1. Let Ai be the subword composed of the αi lead-

Y0 : 1.0011001100110011001100110 t=0
Z1 : 00110011001100110011000010 t=2
Z2 : 010101011001100110000100001101 t=4
Z3 : 011010110100101011101110110 t=6
Z4 : 100110100000110110110010 t=8

Z4Sq : 0101110010 t=9
LogY4 : 100110100000110001000000 t=10

L0 : .0010101101111110100000001101011010101 t=1
L1 : 001010000011001001010011111100101 t=3
L2 : 010010000001010001000111100110 t=5
L3 : 010110000000001111001000001 t=7

LogY0 : .0010111010101100100111111111100100001 t=11

Figure 2. Single-precision computation of
log(Y0) for Y0 = 1.2

ing bits of Zi (bits of absolute weight 2−pi−1 to 2−pi−αi).
Ai will be used to address the logarithm table Li. As sug-
gested in Section 3, we choose αi = 4 ∀i > 0 to minimize
resource usage, but another choice could lead to a different
area/speed tradeoff. For instance, the architecture by Wong
and Goto [24] takes αi = 10. Note that we used α0 = 5,
because α0 = 4 would lead to p1 = 2, which seems a worse
tradeoff.

The following iterations no longer need a reciprocal ta-
ble: An approximation of the reciprocal of Yi = 1 + Zi is
defined by

Ỹ −1
i = 1−Ai + εi. (6)

The term εi is a single bit that will ensure Ỹ −1
i ×Yi ≥ 1.

We define it as

{
εi = 2−pi−αi if αi + 1 ≥ pi and MSB(Ai) = 0
εi = 2−pi−αi−1 otherwise

(7)
With definitions (6) and (7), it is possible to show that

the following holds:

0 ≤ Yi+1 = 1+Zi+1 = Ỹ −1
i ×Yi < 1+2−pi−αi+1 (8)

The proof is not difficult, considering (9) below, but is
too long to be exposed here. Note that (7) is inexpensive to
implement in hardware: The case αi + 1 ≥ pi happens at
most once in practice, and 2−pi−αi−1 is one half-ulp of Ai.

In other words, (8) ensures pi+1 = pi + αi − 1. Or,
using αi bits of table address, we are able to zero out αi−1
bits of our argument. This is slightly better than [24] where
αi − 2 bits are zeroed. Approaches inspired by division
algorithms [10] are able to zero αi bits (one radix-2αi digit),
but at a higher hardware cost due to the need for signed digit
arithmetic.

With αi = 4 on an FPGA, the main cost is not in the
Li table (at most one LUT per table output bit), but in the
multiplication. However, a full multiplication is not needed.
Noting Zi = Ai + Bi (Bi consists of the lower bits of Zi),



Z0 : 0.11110011001100110011001100110011001100110011001100110
Z1 : 100111111111111111111111111111111111111111111111110010
Z2 : 110101111111111111111111111111111111111111111110010011100000
Z3 : 011101010111001111111111111111111111111111110010100001010011000100000
Z4 : 011010110100000010010001101111111111111110010100001101000111101111001
Z5 : 100110011111101101010110011100110111011000100001101011010010000110
Z6 : 100011111101100000100101001011111000000110100010101100101111110
Z7 : 101111101100000011100110000011101011101110100111010100110001
Z8 : 101101100000011100100000110100000000101001011011011000110
Z9 : 011100000011100100000100101000101000000000100100111101

Z9Sq : 0011000100110001111100001
LogY9 : 011100000011100100000100101000001111011010010101011100

L0 : -0.001011011110000110100101000101011100101011010110100101110011011111001001001100110
L1 : 100000100000101011101100010011110011101000100010001000111000000010111001111000
L2 : 110010001001110011100011100000100101011001101101111001011000011100100110100
L3 : 011010000000010101001000010110111001000110100100010010111100000000111110
L4 : 010110000000000001111001000000001101110111010111000111101110000101000
L5 : 100010000000000000100100001000000000110011001011010110100110111001
L6 : 011110000000000000000011100001000000000000100011001010000000000
L7 : 101010000000000000000000110111001000000000000001100000011110
L8 : 101010000000000000000000000110111001000000000000000001100

LogY0 : -0.000110100100001100011101010110111100110000011001001111100100101101101001100010101

Figure 3. Double-precision computation of log(Y0) for Y0 = 0.95.

we have 1 + Zi+1 = Ỹ −1
i × (1 + Zi) = (1 − Ai + εi) ×

(1 + Ai + Bi), hence

Zi+1 = Bi −AiZi + εi(1 + Zi) (9)

Here the multiplication by εi is just a shift, and the only real
multiplication is the product AiZi: The full computation of
(9) amounts to the equivalent of a rectangular multiplication
of (αi + 2) × si bits. Here si is the size of Zi, which will
vary between wF and 3wF /2 (see below).

An important remark is that (8) still holds if the product
is truncated. Indeed, in the architecture, we will need to
truncate it to limit the size of the computation datapath. Let
us now address this question.

We will stop the iteration as soon as Zi is small enough
for a second-order Taylor formula to provide sufficient
accuracy (this also defines the threshold on leading ze-
roes/ones at which we choose to use the path computing
Z0−Z2

0/2 directly). In log(1+Zi) ≈ Zi−Zi
2/2+Zi

3/3,
with Zi < 2−pi , the third-order term is smaller than
2−3pi−1. We therefore stop the iteration at pmax such that
pmax ≥ dwF

2 e. This sets the target absolute precision of
the whole datapath to pmax + wF + g ≈ d3wF /2e + g.
The computation defined by (9) increases the size of Zi,
which will be truncated as soon as its LSB becomes smaller
than this target precision. Figures 2 and 3 give an in-
stance of this datapath in single and double precision re-
spectively. Note that the architecture counts as many rect-
angular multipliers as there are stages, and may therefore
be fully pipelined. Reusing one single multiplier would be
possible, and would save a significant amount of hardware,
but a high-throughput architecture is preferable.

Finally, at each iteration, Ai is also used to index a log-
arithm table Li (see Figures 2 and 3). All these logarithms
have to be added, which can be done in parallel to the re-
duction of 1 + Zi. The output of the Range Reduction box
is the sum of Zmax and this sum of tabulated logarithms, so
it only remains to subtract the second-order term (Figure 1).

4.3 Error analysis

We compute E log 2 with wE + wF + g1 precision, and
the sum E log 2 + log Y0 cancels at most one bit, so g1 =
2 ensures faithful accuracy of the sum, assuming faithful
accuracy of log Y0.

In general, the computation of log Y0 is much too accu-
rate: As illustrated by Figure 2, the most significant bit of
the result is that of the first non-zero Li (L0 in the example),
and we have computed almost wF /2 bits of extra accuracy.
The errors due to the rounding of the Li and the trunca-
tion of the intermediate computations are absorbed by this
extra accuracy. However, two specific worst-case situation
require more attention.

• When Z0 < 2−pmax , we compute log Y0 directly as
Z0−Z2

0/2, and this is the sole source of error. The shift
that brings the leading one of |Z0| in position pmax

ensures that this computation is done on wF + g bits,
hence faithful rounding.

• The real worst case is when Y0 = 1 − 2−pmax+1: In
this case we use the range reduction, knowing that it
will cancel pmax − 1 bits of L0 one one side, and
accumulate rounding errors on the other side. We
have max stages, each contributing at most 3 ulps of
error: To compute (9), we first truncate Zi to min-
imize multiplier size, then we truncate the product,
and also truncate εi(1 + Zi). Therefore we need
g = dlog2(3×max)e guard bits. For double-precision,
this gives g = 5.

4.4 Remarks on the Li tables

When one looks at the Li tables, one notices that some
of their bits are constantly zeroes: Indeed they hold Li ≈
log(1 − (Ai − εi)) which can for larger i be approximated
by a Taylor series. We chose to leave the task of optimiz-
ing out these zeroes to the logic synthesizer. A natural idea



would also be to store only log(1− (Ai − εi)) + (Ai − εi),
and construct Li out of this value by subtracting (Ai − εi).
However, the delay and LUT usage of this reconstruction
would in fact be higher than that of storing the correspond-
ing bits. As a conclusion, with the FPGA target, the simpler
approach is also the better. The same remark will apply to
the tables of the exponential operator.

5 A hardware exponential algorithm

5.1 Initial range reduction

The range reduction for the exponential operator is di-
rectly inspired from the method presented in [7]. The first
step transforms the floating-point input X into a fixed-
point number Xfix thanks to a barrel shifter. Indeed, if
EX > wE − 1 + log2(log 2), then the result overflows,
while if EX < 0, then X is close to zero and its exponen-
tial will be close to 1 + X , so we can loose the bits of X of
absolute weight smaller than 2−wF−g , g being the number
of guard bits required for the operator (typically 3 to 5 bits).
Thus Xfix will be a wE + wF + g-bit number, obtained by
shifting the mantissa 1.FX by at most wE − 1 bits on the
left and wF + g bits on the right.

This fixed-point number is then reduced in order to ob-
tain an integer E and a fixed-point number Y such that
X ≈ E · log 2 + Y and 0 ≤ Y < 1. This is achieved
by first multiplying the most significant bits of Xfix by an
approximation to 1/ log 2 and then truncating the result to
obtain E. Then Y is computed as Xfix−E · log 2, requiring
a rectangular multiplier.

After computing eY thanks to the iterative algorithm de-
tailed in the next section, we have eX ≈ eXfix ≈ eY · 2E ,
and a simple renormalization and rounding step recon-
structs the final result. The approximation to 1/ log 2 is
chosen so that this step shifts by at most one bit.

Figure 4 presents the overall architecture of the exponen-
tial operator. Details for the computation of eY −1 are given
in Figure 5 and presented in the next section.

5.2 Iterative range reduction for the
fixed-point exponential

Starting with the fixed-point operand Y ∈ [0, 1), we
compute eY − 1 using a refinement of (1). Let Y0 = Y .
Each iteration will start with a fixed-point number Yi and
compute Yi+1 closer to 0, until Yk is small enough to evalu-
ate eYk − 1 thanks to a simple table or a Taylor approxima-
tion.

At each iteration, Yi, as for the logarithm operator, is
split into subwords Ai and Bi of αi and βi bits respectively.
Ai addresses two tables (again, the choice of αi = m for
most iterations will optimize FPGA resource usage). The
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Figure 4. Overview of the exponential

first table holds approximations of eYi − 1 rounded to only
αi bits, which we note ẽYi − 1. The second one holds Li =
log

(
ẽYi

)
rounded to αi + βi bits.

Obviously Li is quite close to Yi. One may check that
computing Yi+1 as the difference Yi −Li will result in can-
celling the αi − 1 most significant bits of Yi. The number
Yi+1 fed into the next iteration is therefore a 1+βi-bit num-
ber.

The reconstruction of the exponential uses the following
recurrence with decreasing i:(

ẽYi − 1
)
×

(
eYi+1 − 1

)
+

(
ẽYi − 1

)
+

(
eYi+1 − 1

)
= ẽYi · eYi+1 − 1 = ẽYi · eYi−Li − 1

= ẽYi · eYi · e− log
“geYi

”
− 1

= eYi − 1.



Here eYi+1 − 1 comes from the previous iterations, and
ẽYi − 1 is an αi-bit number, so the product needs a rectan-
gular multiplier.

This way, the k steps of reconstruction finally give the
result eY0 − 1 = eY − 1. The detailed architecture of this
iterative method is presented Figure 4.

We have performed a detailed error analysis of this al-
gorithm to ensure the faithful rounding of the final result.
Due to space restrictions, this analysis is not presented in
this article.
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Figure 5. Computation of eY − 1

6 Area and performance

The presented algorithms are implemented as C++ pro-
grams that, given wE , wF and possibly the αi, compute the
various parameters of the architecture, and output synthe-
sisable VHDL. Some values of area and delay (obtained us-
ing Xilinx ISE/XST 8.2 for a Virtex-II XC2V1000-4 FPGA)
are given in Table 1 (where a slice is a unit containing two
LUTs).

As expected, the operators presented here are smaller but
slower than the previously reported ones. More importantly,
their size is more or less quadratic with the precision, in-
stead of exponential for the previously reported ones. This
allows them to scale up to double-precision. For compar-
ison, the FPGA used as a co-processor in the Cray XD1
system contains more than 23,616 slices, and the current
largest available more than 40,000, so the proposed opera-
tors consume about one tenth of this capacity. To provide
another comparison, our operators consume less than twice
the area of an FP multiplier for the same precision reported
in [22].

Exponential
Format This work Previous [7]

(wE , wF ) Area Delay Area Delay
(7, 16) 472 118 480 69
(8, 23) 728 123 948 85
(9, 38) 1242 175 – –
(11, 52) 2045 229 – –

Logarithm
Format This work Previous [6]

(wE , wF ) Area Delay Area Delay
(7, 16) 556 70 627 56
(8, 23) 881 88 1368 69
(9, 38) 1893 149 – –
(11, 52) 3146 182 – –

Table 1. Area (in Virtex-II slices) and delay (in
ns) of implementation on a Virtex-II 1000

These operators will be easy to pipeline to function at
the typical frequency of FPGAs—100MHz for the middle-
range FPGAs targeted here, 200MHz for the best current
ones. This is the subject of ongoing work. The pipeline
depth is expected to be quite long, up to about 30 cycles for
double precision, when a double-precision multiplier is typ-
ically about 10 cycles. It will also neead about 10% more
slices. As mentioned in [7] and [6], one exponential or log-
arithm per cycle at 100MHz is ten times the throughput of
a 3GHz Pentium, and comparable to peak Itanium-II per-
formance [3] using loop-optimized elementary functions.
However, the proposed functions consume only a fraction
of the FPGA resources.



7 Conclusion and future work

By retargeting an old family of algorithms to the spe-
cific fine-grained structure of FPGAs, this work shows that
elementary functions up to double precision can be imple-
mented in a small fraction of current FPGAs. The resulting
operators have low resource usage and high troughput, but
long latency, which is not really a problem for the envi-
sioned applications.

FPGAs, when used as co-processors, are often limited by
their input/output bandwidth to the processor. From an ap-
plication point of view, the availability of compact elemen-
tary functions for the FPGA, bringing elementary functions
on-board, will also help conserve this bandwidth.

The same principles can be used to compute sine and co-
sine and their inverses, using the complex identity ejx =
cos x + j sinx. The architectural translation of this iden-
tity, of course, is not trivial. Besides the main cost with
trigonometric functions is actually in the argument reduc-
tion involving the transcendental number π. It probably
makes more sense to implement functions such as sin(πx)
and cos(πx). A detailed study of this issue is also the sub-
ject of current work.
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