
Efficient polynomial L∞-approximations

Nicolas Brisebarre
LaMUSE, Université J. Monnet

23, rue du Dr P. Michelon, 42023 St-Étienne Cedex 02
and Projet Arénaire, LIP, 46 allée d’Italie, 69364 Lyon Cedex 07, France

Nicolas.Brisebarre@ens-lyon.fr

Sylvain Chevillard
LIP (CNRS/ENS Lyon/INRIA/Univ. Lyon 1),

Projet Arénaire, 46 allée d’Italie, 69364 Lyon Cedex 07, France
Sylvain.Chevillard@ens-lyon.fr

Abstract

We address the problem of computing a good
floating-point-coefficient polynomial approxima-
tion to a function, with respect to the supremum
norm. This is a key step in most processes of eval-
uation of a function. We present a fast and efficient
method, based on lattice basis reduction, that of-
ten gives the best polynomial possible and most of
the time returns a very good approximation.

Keywords: Efficient polynomial approxima-
tion, floating-point arithmetic, absolute error, L∞

norm, lattice basis reduction, closest vector prob-
lem, LLL algorithm.

1. Introduction

To evaluate a mathematical function on a com-
puter, in software or hardware, one frequently re-
places the function with good polynomial approx-
imations of it. This is due to the fact that floating-
point (FP) addition, subtraction and multiplica-
tion are carefully and efficiently implemented on
modern processors and also because one may take
advantage of existing efficient schemes of poly-
nomial evaluation. Such polynomial approxima-
tions are used in several recent elementary func-
tion evaluation algorithms [15, 17, 20, 6].

The first natural goal for someone who tries to
evaluate a function f is thus to obtain a polynomial
p which is sufficiently close to f for the approxi-
mation required by the application.

Hence, we are naturally led to consider the

problem of getting for a given continuous real-
valued function f , a real interval [a, b], and a de-
gree n ∈ N, the polynomial p ∈ Rn[X] that ap-
proximates f the best way, where Rn[X] is the
R-vector space of the polynomials with real co-
efficients and degree less than or equal to n. The
optimal polynomial depends on the way used to
measure the quality of the approximation. The
most usual choices are the supremum norm (or L∞

norm or absolute error)

||p − f ||∞,[a,b] = sup
a≤x≤b

|p(x) − f(x)|,

or the relative error

||p − f ||rel,[a,b] = sup
a≤x≤b

1
|f(x)| |p(x) − f(x)|

or least squares approximations norm

||p−f ||2,[a,b] =

(∫ b

a

w(x) (f(x) − p(x))2 dx

)1/2

,

where w is a continuous weight function.
The method proposed in this paper aims at min-

imizing the absolute error between f and polyno-
mials with FP coefficients. In practice, people are
mostly interested in minimizing the relative error.
This second problem is in general more difficult
than the first one (even when searching real coef-
ficient polynomials) and we are currently working
on this issue. But we can remark that there are
numerous situations where the two problems do
not differ so much. For example, there are a lot
of applications where the domain of definition of

the function is firstly cut into small intervals where
the order of magnitude of the function is constant.
In these cases, the absolute and relative errors be-
come almost proportional. Hence minimizing the
absolute error instead of the relative one is in gen-
eral quite satisfying.

From now on, we will focus on the supre-
mum norm that we shall write || · ||[a,b] instead
of || · ||∞,[a,b] in the sequel. Among impor-
tant theoretical works by various mathematicians
(like Bernstein, Weierstrass, Lagrange for ex-
ample), the work of Chebyshev in this area of
function L∞-approximation, is especially remark-
able. He showed in particular that when p runs
among Rn[X], ||f − p||∞ reaches a minimum at
a unique polynomial and gave a very precise char-
acterization of this best polynomial approximant
(see [5] for example). From that characterization,
Remez [19] designed an algorithm that makes it
possible to compute the best L∞-polynomial ap-
proximation, also called minimax approximation
(see [5] for a proof of the algorithm) in a fairly
short time (see [24] for a proof of its quadraticity).
Therefore, we see that the general situation for L∞

approximation by real polynomials can be consid-
ered quite satisfying. The problem for the scientist
that implements in software or hardware such ap-
proximations is that he uses finite-precision arith-
metic and unfortunately, most of the time, the min-
imax approximation given by Chebyshev’s theo-
rem and computed by Remez’ algorithm has co-
efficients which are transcendental (or at least ir-
rational) numbers, hence not exactly representable
with a finite number of bits.

Thus, the coefficients of the approximation usu-
ally need to be rounded according to the require-
ments of the application targeted (for example, in
current software implementations, one often uses
FP numbers in IEEE single or double precision for
storing the coefficients of the polynomial approxi-
mation). But this rounding, if carelessly done, may
lead to an important loss of accuracy. For instance,
if we choose to round to the nearest each coeffi-
cient of the minimax approximation to the required
format (this yields a polynomial that we will call
rounded minimax in the sequel of the paper), the
quality of the approximation we get can be very
poor. To illustrate that problem, let us look at the
following simple example. We want to approach
the function f : x �→ √

2 + πx + ex2 on the in-
terval [2, 4] by a degree-2 polynomial with IEEE
double precision FP coefficients. The minimax ap-
proximation is the function f itself. If we round
the coefficients of f to the closest double, we

obtain the polynomial

P̂ =
6369051672525773
4503599627370496

+
884279719003555
281474976710656

X +
6121026514868073
2251799813685248

X2

and we have ‖f − P̂‖∞ � 2.70622 · 10−15. But
the best degree-2 polynomial with double preci-
sion coefficients is

P ∗ =
6369051672525769
4503599627370496

+
3537118876014221
1125899906842624

X+
6121026514868073
2251799813685248

X2

for which ‖f − P ∗‖∞ � 2.2243 · 10−16. There-
fore, there is a factor bigger than 10 between the
optimum and the rounded polynomial.

In 2005, Brisebarre, Muller and Tisserand pro-
posed in [3] a first general method for tackling
this problem. Given m0, m1, . . . , mn a fixed fi-
nite sequence of natural integers, they search for
the polynomials of the form

p(x) =
a0

2m0
+

a1

2m1
x+ · · · +

an

2mn
xn with ai ∈ Z

that minimize ||f − p||∞. The approach given
in [3] consists in, first, constructing with care
a certain rational polytope containing all the
(a0, . . . , an) ∈ Zn+1 solution and as few as possi-
ble other elements of Zn+1 and, in a second time,
efficiently scanning all the points with integer co-
ordinates that lie inside this polytope.

This approach, that currently makes it possible
to obtain polynomials of degree up to 10, has two
major drawbacks. First of all, its complexity is not
precisely estimated but it might be exponential in
the worst case, since the scanning of the integer
points of the polytope is done using linear ratio-
nal programming. The other problem is that the
efficiency of the method relies on the relevance
of the estimation beforehand of the optimal error
‖f − p‖∞. If this error is overestimated, then the
polytope may contain too many integer points and
the scanning step may become intractable. If this
error is underestimated, then the polytope contains
no solution. Hence, we were led to design a tool
that could give us a better insight of the value of the
optimal error, in order to speed up the method of
[3]. To do so, we developed a new approach based
on Lattice Basis Reduction and in particular on the
LLL algorithm. But, indeed, that tool proved to be
far more useful than expected: it gives most of the
time an excellent approximant (if not the best) and

this is done quickly and at low memory cost. The
goal of that paper is to present this new approach.

The outline of the paper is the following. In the
second section, we recall basic facts about lattices,
about the closest vector problem (CVP), an algo-
rithmic problem related to lattices and that appears
naturally in our approach, and some algorithm that
solves an approximated version of the CVP. Then
we present our new approach in Section 3 and give
some worked examples in Section 4, before giving
a brief conclusion in the last section.

2. A reminder on Lattice Basis Reduc-
tion and the LLL Algorithm

Let x = (x1, . . . , x�) ∈ R�. We set
||x||2 = (x|x)1/2 = (x2

1 + · · · + x2
�)

1/2 and
||x||∞ = max1≤i≤� |xi|.

A lattice is a discrete algebraic object that is en-
countered in several domains of various sciences,
such as Mathematics, Computer Science or Chem-
istry. It is a rich and powerful modelling tool
thanks to the deep and numerous theoretical, al-
gorithmic or implementation available works (see
[4, 9, 14, 22] for example). The lattice structure is
ubiquitous in our approach.

Definition 2.1 Let L be a nonempty subset of R�,
L is a lattice if and only if there exists a set of vec-
tors b1, . . . , bd R-linearly independent such that

L = {λ1b1 + · · · + λdbd : λ1, . . . , λd ∈ Z} .

The family (b1, . . . , bd) is a basis of the lattice L
and d is called the rank of the lattice L.

In the sequel, we’ll have to deal with the fol-
lowing algorithmic problem.

Problem 2.2 Closest vector problem (CVP) Let
|| · || be a norm on R�. Given a basis of a lat-
tice L ⊂ Q� of rank k, k ≤ �, and x ∈ R�, find
y ∈ L s.t. ||x − y|| = dist(x, L), where dist(x, L)
denotes min{||x − y||, y ∈ L}.

Associated approximation problem: find y ∈ L
s.t. ||x − y|| ≤ γ dist(x, L) where γ ∈ R is fixed.

Let us recall some of the complexity results
known about this problem1. In 1981, van Emde
Boas [23] proved that CVP is NP-hard (see also
[16]). On the other hand, Goldreich and Gold-
wasser showed (but their proof is nonconstructive)

1A presentation of different algorithms for solving the CVP
is given in [1].

in [8] that approximating CVP, in the euclidean
norm case (CVP2), to a factor

√
d/ log d is not

NP-hard. Regarding to the infinity norm (CVP∞),
they also show that approximating CVP to a fac-
tor d/ log d is not NP-hard2. Unfortunately, no
polynomial algorithm is known for approximating
CVP to a polynomial factor.

Though, if we relax the constraint on the factor,
the situation becomes far better.

In 1982, Lenstra, Lenstra and Lovász [13] gave
an algorithm that allows one to get “fairly” short
vectors of the lattice in polynomial time. Among
many important applications of that algorithm,
Babai [2] proposed a polynomial algorithm for
solving CVP with an exponential approximation
factor. For x ∈ R, we denote
x� the integer near-
est to x, defined by
x� =
x + 1/2�.

Algorithm: ApproximatedCVP

Data: An LLL-reduced basis (bi)1≤i≤d ; its
Gram-Schmidt orthogonalization
(b∗i)1≤i≤d ; a vector −→v

Result: An approximation to the factor 2d/2

of the CVP2 of −→v
begin−→

t = −→v ;
for (j = d ; j ≥ 1 ; j- -) do

−→
t = −→

t −
⌊

〈−→t ,
−→
b∗j 〉

〈
−→
b∗j ,

−→
b∗j 〉

⌉
−→
bj ;

end
return −→v −−→

t ;
end

Algorithm 1: Babai’s nearest Plane algorithm

Remark 2.3 In practice, the result of Babai’s al-
gorithm is of better quality and given faster than
expected.

For a practical exact CVP, see [12] in which the
given algorithm is super-exponential. This com-
plexity has been recently improved in [10].

3. Our approach

In many applications, scientist and engineers
desire to find the best (or very good) polynomial
approximation among those that have FP coeffi-
cients and this is the problem we address in that
paper. First, let us make the following important

2As it is noted in [18], it seems that the CVP problem when
the norm is the infinity norm is more difficult.

remark: to solve that problem, it is sufficient to be
able to solve the following problem:

Problem 3.1 Let f be a continuous real-valued
function defined on a given real interval [a, b], let
n ∈ N, (mi)0≤i≤n a finite sequence of rational
integers, give one polynomial of the form

p� =
a0

2m0
+

a1

2m1
X + · · · + an

2mn
Xn

where the ai ∈ Z, that minimizes (or at least makes
very small) ‖f − p‖[a, b].

The problem we address can be reduced to this
one by the following heuristic.

Let’s denote by P the best polynomial with FP
coefficients and by R the minimax. For the sake
of simplicity, we will assume here that all the co-
efficients of P have the same precision t (but the
arguments would be the same with several differ-
ent precisions for the coefficients). In many cases
(in particular if t is big enough), the order of mag-
nitude of the i-th coefficient of P is the same as
the corresponding coefficient of R. Hence, we can
suppose, initially, that the exponents of these coef-
ficients are the same. From Remez’ algorithm, we
know the i-th coefficient of R and thus its exponent
e. Since the i-th coefficient of P is a FP number
with precision t and since we may suppose that its
exponent is e, we can write it 1.u1 . . . ut−1 · 2e

where 1u1 . . . ut−1 is the unknown binary man-
tissa of the coefficient. This can be rewritten
1u1...ut−1

2t−1−e and we can set mi = t − 1 − e.
However the guessed exponent may slightly

differ from the real optimal one. In that case,
the computed coefficient of P will be of the form
ai/2mi but where ai needs more than t bits to be
written. Our heuristic is then to use this computed
coefficient as a new insight for the order of magni-
tude of the optimal one. We note e′ its exponent,
and we set mi to t − 1 − e′ and we try again until
we reach a fixed point.

This is just a heuristic and we have no proof
of convergence for that process. However, in ev-
ery practical case we met, this procedure was ob-
served to converge in at most two or three steps. In
particular, we (sometimes, but rarely) encountered
situations where the initial assumption that the co-
efficients of P and R have the same order of mag-
nitude were completely wrong. But in those cases,
this heuristic also converged in two or three steps
and let us find a polynomial with FP coefficients
which was really good.

Now that we reduced our general problem to
Problem 3.1, we start explaining how we solve it.

The first idea is to discretize the continuous
problem: let � ≥ n+1, let x1, · · · , x� in [a, b], we
want a0

2m0 + a1
2m1 xi + · · · + an

2mn xn
i to be as close

as possible to f(xi) for all i = 1, . . . , �. That is to
say we want the vectors

a0
2m0 + a1

2m1 x1 + · · · + an

2mn xn
1

a0
2m0 + a1

2m1 x2 + · · · + an

2mn xn
2

...
a0

2m0 + a1
2m1 x� + · · · + an

2mn xn
�

 and

f(x1)
f(x2)

...
f(x�)

︸ ︷︷ ︸−→y

to be as close as possible, with respect to the
|| · ||∞ norm. This can be rewritten as: we want
the vectors

a0

1

2m0
1

2m0

...
1

2m0

︸ ︷︷ ︸−→v0

+a1

x1

2m1
x2

2m1

...
x�

2m1

︸ ︷︷ ︸−→v1

+ · · · + an

xn
1

2mn

xn
2

2mn

...
xn

�

2mn

︸ ︷︷ ︸−→vn

and −→y to be as close as possible. Hence, we
have to find (a0, . . . , an) ∈ Zn+1 that minimize
||a0

−→v0 + · · · +an
−→vn −−→y ||∞: this is an instance of

CVP∞.
Two problems arise at this moment: first, how

to choose the points xi and then how do we deal
with the CVP∞ associated?

3.1. Choice of the points xi

This is a critical step in our approach. We want
that a small value of ‖a0

−→v0 + · · · + an
−→vn −−→y ‖∞

means a small value of the supremum norm
||p − f ||[a,b]. More precisely, requiring
‖a0

−→v0 + · · · + an
−→vn −−→y ‖∞ to be small can

be viewed as an approximate interpolation prob-
lem and it is well known that, if the points xi are
carelessly chosen, one may find a polynomial that
coincides with the function on the points xi but
is pretty far from it on the whole [a, b] (one may
consider the classical Runge’s example [7, Chap.
2] for instance).

Our choice of the points relies on the observa-
tion that when the imposed precision of the coef-
ficients is big enough (i.e. with mi big enough,
which is the case with double FP coefficients for
instance), the good polynomial approximants to
the function will be close to the minimax approx-
imation. Hence, we generally choose the points
where f and the degree-n minimax polynomial R

are the closest possible, i.e. when f − R cancels.
The following classical result (see [5, Chap. 3] for
a more general statement) tells us that there are at
least n + 1 such points.

Theorem 3.2 (Chebyshev) A polynomial p ∈
Rn[X] is the best approximation of f in [a, b] if
and only if there exist a ≤ y0 < y1 < · · · < yn+1

≤ b such that

• ∀i ∈ {0, · · · , n+1}, |f(yi)−p(yi)| = ‖f −
p‖∞,

• ∀i ∈ {0, · · · , n}, f(yi+1) − p(yi+1) =
−(f(yi) − p(yi)).

Another possible choice are the Chebyshev points
[7, Chap. 2]. They are known to be good choices in
some approximation problems (for example, they
are the starting points in Remez’ algorithm). They
proved to be a pretty valuable choice in the experi-
ments we made, especially when the size of the mi

is low.

3.2. Solving of the CVP∞

Kannan’s algorithm [12] makes it possible to
solve either CVP2 or CVP∞ but its complexity is
super-exponential. Since the euclidean and infinity
norms have the same order of magnitude (remem-
ber that, in R�, || · ||∞ ≤ || · ||2 ≤ √

� || · ||∞),
we preferred to use Babai’s algorithm that solves
CVP2 with, in theory, an exponential approxima-
tion factor but whose performance, in time, space
and quality of the result, is directly related to LLL’s
one, hence very good in practice for n, say, not
greater than 50.

We may then consider the approximation of
CVP2 provided by Babai’s algorithm as the ap-
proximation of CVP∞ searched. But we can also
refine that result in the following way. We can
use the LLL-reduced basis to explore the neighbor-
hood of the computed approximated CVP2. Let’s
denote by v the vector given by Babai’s nearest
plane algorithm and denote by (ε0, · · · , εn) the
LLL-reduced basis. LLL gives pretty short vectors
in the lattice: for small values of n (say up to 50),
ε0 is often the shortest nonzero vector in the lattice
(in norm || · ||2) and the other vectors of the basis
are also short. Since || · ||∞ ≤ || · ||2 ≤ √

�|| · ||∞
in R�, they are also pretty short vectors for || · ||∞.
If v is not the exact CVP∞, it is maybe not so far
from it: the exact CVP∞ is probably of the form
v + a0ε0 + · · · + anεn where the ai are rational
integers with small absolute value. We can thus

explore the neighborhood of v, with the following
(convergent) method:

1. Let w denote successively the 2n + 2 follow-
ing vectors: v+ε0, v−ε0, . . . , v+εn, v−εn.

2. If there is no w such that

||w − y||∞ < ||v − y||∞,

we may think that the quality of v is quite
good: return v.

3. Else, denote by wopt one w such that

||w − y||∞ is minimal.

Set v := wopt and goto 1.

4. Examples

We will now present two examples that illus-
trate the behavior of our algorithm in real situa-
tions. Our first example shows the possible ben-
efit that may come from the use of our method
in the implementation of a function for the Intel
Itanium. The second example well illustrates the
gap between an (almost) optimal polynomial and
the rounded minimax. This example comes from
the implementation of the function arcsin in the
library CRlibm [21].

To implement our method, we have used Maple
and GP3. Maple lets us compute the minimax
polynomial R (Remez’ algorithm is available in
Maple with the function minimax of the pack-
age numapprox) which is used to determine the
points xi by solving the equation R(x) = f(x).
Then, we use GP to compute a LLL-reduced basis
and to solve the approximated CVP2 by Babai’s
nearest-plane algorithm. We thus get a polyno-
mial P and we finally use Maple to compute ||P −
f ||[a,b] (with Maple’s numapprox[infnorm])
and compare it to ||R − f ||[a,b].

Applying our method to an Itanium imple-
mentation of a function

The Intel Itanium processor uses a particular
FP format called extended double: it is a FP
format with a 64 bit mantissa. An extended
double allows more accurate computations, but
this gain in accuracy has a cost: extended
doubles must be loaded in cache one after the

3GP is an interactive calculator for number theory al-
gorithms. In particular, it implements LLL algorithm.
It is distibuted under GPL at http://pari.math.
u-bordeaux.fr/

other, whereas two regular doubles may be
loaded at the same time. Moreover, the latency
of such an operation is 6 cycles (when a multipli-
cation costs 4 cycles). Thus the loading time is
quite critical in such a processor and it is very in-
teresting to replace an extended double with
a double when the accuracy doesn’t require it.
See [6] and [11] for more information about the
Itanium architecture.

Intel developed and included in the glibc a
mathematical library optimized for the Itanium.
Let us consider an example inspired by the imple-
mentation of the function erf in this library. The

function erf is defined by erf(x) =
2√
π

∫ x

0

e−t2dt

for all x ∈ R. The domain is cut into several
intervals where the function can be approximated
by polynomials with reasonable degree (say less
than 30). This example deals with erf on the in-
terval [1; 2]. The goal is to provide a polynomial,
with extended and/or regular double co-
efficients, which approximates the function with a
relative error bounded by 2−64. The domain is
first translated to the interval [0, 1]. The problem
is thus reduced to the following: find a polyno-
mial p(x) = a0 + a1x + · · · + anxn such that
||p(x) − erf(x + 1)||rel,[0,1] < 2−64.

The minimax of degree 18 gives an error of
2−61.19. A fortiori, a polynomial of degree 18
with FP coefficients can’t provide the required ac-
curacy. The minimax of degree 19 gives an error
of 2−66.92. Can we find a satisfying polynomial of
degree 19 ?

A common strategy consists, when 0 belongs
to the definition interval, in using a bigger preci-
sion for the first coefficients and a smaller preci-
sion for the last ones. Setting the first 8 coeffi-
cients to be extended doubles and the other
to be doubles, and rounding each coefficient of
the minimax to the nearest in the corresponding
format, we obtain an error of 2−61.13: it is not suf-
ficient. However, using 9 extended doubles
and using the same classical procedure, we obtain
an error of 2−64.74 which is enough.

When we use our method, we obtain a poly-
nomial with an error of 2−64.74 and only two
extended doubles. We saved 7 extended
doubles thanks to our method. The computing
time is the time necessary to Maple for computing
minimax approximation since the other steps are
instantaneously performed.

Second example: an example from CRlibm
The first example showed that our method

makes it possible to reduce the size of the coef-

ficients given a target accuracy. This can be also
very interesting in hardware applications where
each single bit may count.

Another possibility offered by our method is
to improve the accuracy provided by the poly-
nomial approximation (compared to the rounded
minimax for example) while keeping the same pre-
cision for the coefficients. Our second example
comes from the implementation of the function
arcsin in CRlibm. CRlibm is a mathematical li-
brary which provides correct rounding: the value
returned by CRlibmwhen evaluating a function is
the exact mathematical value rounded to the near-
est double. To achieve this goal, the develop-
ers of CRlibm must use a bigger precision than
the standard double precision provided by the pro-
cessor. They use some special formats such as
double-double and triple-doublewhich are un-
evaluated sums of two or three regular doubles.
In particular, they approximate functions by poly-
nomials with double-double and triple-double
coefficients (and also regular doubles).

Basically, a double-double gives the same
precision as a FP number with 106 bits man-
tissa. However, a number of the form
1.x1x2 . . . x52000000001y1y2 . . . y52 · 2e is repre-
sentable by the double-double (1.x1x2 . . . x52 ·
2e + 1.y1y2 . . . y52 · 2e−8−53) and is not repre-
sentable in a 106 bits format. This limitation is not
a problem in general: we can often prove a priori
that to achieve a given precision, the coefficients
of a polynomial are so constrained that the 53 first
bits are fixed. Thus, one of the two doubles of
the double-double is known and we are back to
the problem of searching a regular double (that
is a FP number with at most 53 bits). At worst, we
can’t prove that the first 53 bits are fixed and we
just search for numbers with 106 bits: the resulting
number is representable with a double-double (it
may just be nonoptimal).

We focus here on the approximation of arcsin
on the interval [0.79; 1]. It is a real-life example
we worked on with C. Lauter (who is one of the
developers of CRlibm). After an argument reduc-
tion we obtain the problem to approximate

g(z) =
arcsin(1 − (z + m)) − π

2√
2 · (z + m)

where −0.110 � z � 0.110 and m � 0.110.
The developers know from previous computations
that they need an accuracy of more than 119 bits
to achieve correct rounding. The minimax of
degree 21 provides this accuracy (see Figure 1).

Figure 1. binary logarithm of the ab-
solute error of several approximants

Target -119

Minimax -119.83
Rounded minimax -103.31
Our polynomial -119.77

Our method gives a satisfying polynomial with
two triple-doubles, eight double-doubles and
twelve regular doubles (here again, the comput-
ing time is the time needed by Remez algorithm
for computing the minimax approximation).

More precisely, we searched for a polynomial
of the form

p0︸︷︷︸
173

+ p1︸︷︷︸
159

x + p2︸︷︷︸
106

x2 + · · ·︸︷︷︸
···

+ p9︸︷︷︸
106

x9

+ p10︸︷︷︸
53

x10 + · · ·︸︷︷︸
···

+ p21︸︷︷︸
53

x21

where the pi are FP numbers whose mantissa has
the corresponding size in bits. Note that the first
coefficient is actually searched with the method
described above: we prove that the first 53 bits are
fixed and we then search for a FP number with 106
bits for the two remaining doubles. The number
173 indicated under p0 only means that the 159
bits of this triple-double are nonconsecutive.

The accuracy provided by our polynomial is
very close to the one given by the minimax. How-
ever, without our method, we would have to use
the rounded minimax which gives only 103 bits of
accuracy: it would not be enough to provide cor-
rect rounding. This example illustrates the gap be-
tween the rounded minimax and the optimal poly-
nomial with FP coefficients. Here, 16 precious bits
are lost by the rounding of minimax’ coefficients.
This loss can be seen very well if the absolute er-
rors are plotted: Theorem 3.2 indicates that a poly-
nomial is optimal if and only if the absolute error
oscillates n + 2 times between its extrema. Our
polynomial almost satisfies this theorem (see Fig-
ure 2). On the other hand, one can see on Figure
3 that the rounded minimax does not satisfy this
theorem at all.

5. Conclusion

We have presented a new method for computing
efficient polynomial approximation with machine-

Figure 2. Absolute error between g
and our polynomial

-1e-36

-8e-37

-6e-37

-4e-37

-2e-37

 0

 2e-37

 4e-37

 6e-37

 8e-37

 1e-36

-0.1 -0.05 0 0.05 0.1

Figure 3. Absolute error between g
and rounded minimax

-1e-32

 0

 1e-32

 2e-32

 3e-32

 4e-32

 5e-32

 6e-32

 7e-32

 8e-32

-0.1 -0.05 0 0.05 0.1

number coefficients and in particular FP coeffi-
cients. It improves the results provided by exist-
ing Remez’ based method. The method, based on
lattice basis reduction, is much faster and more ef-
ficient than the one given in [3] and gives a very
good approximant. Moreover, it may considerably
speed up the polytope-based method of [3] that
gives the best polynomial possible, by providing
a relevant (indeed often a very good) estimate of
the L∞ approximation error.

This method can be adapted to several kind of
coefficients: fixed-point format, multi-double or
classical floating point arithmetic with several pre-
cision formats.

For some applications, one may want to set the
value of certain coefficients of the approximant.
For example, one may search for approximants
whose first terms match the corresponding one in
the Taylor expansion of the approximated func-
tion. We should be able to deal with this additional
constraint in a close future.

We are currently working on an adaptation of
that method to the problem of minimizing the rel-
ative error and we plan to extend it to the problem
of approximation by sums of cosines that arise in
the field of Signal Processing and more specially
in FIR filters.

References

[1] E. Agrell, T. Eriksson, A. Vardy, and K. Zeger.
Closest point search in lattices. IEEE Transactions
on Information Theory, 48(8):2201–2214, Aug.
2002.

[2] L. Babai. On Lovász’ lattice reduction and the
nearest lattice point problem. Combinatorica,
6(1):1–13, 1986.

[3] N. Brisebarre, J.-M. Muller, and A. Tisserand.
Computing machine-efficient polynomial approx-
imations. ACM Transactions on Mathematical
Software, 32(2), June 2006.

[4] J. W. S. Cassels. An introduction to the geometry
of numbers. Classics in Mathematics. Springer-
Verlag, Berlin, 1997. Corrected reprint of the 1971
edition.

[5] E. W. Cheney. Introduction to approximation the-
ory. AMS Chelsea Publishing, second edition,
1982.

[6] M. Cornea, J. Harrison, and P. T. P. Tang. Scien-
tific Computing on Itanium-Based Systems. Intel
Press, 2002.

[7] W. Gautschi. Numerical analysis. Birkhäuser
Boston Inc., Boston, MA, 1997. An introduction.

[8] O. Goldreich and S. Goldwasser. On the limits of
non-approximability of lattice problems. In Pro-
ceedings of 30th Annual ACM Symposium on The-

ory of Computing (STOC), pages 1–9. ACM, May
1998.

[9] P. M. Gruber and C. G. Lekkerkerker. Geometry
of numbers, volume 37 of North-Holland Mathe-
matical Library. North-Holland Publishing Co.,
Amsterdam, second edition, 1987.

[10] G. Hanrot and D. Stehlé. Tighter analysis of Kan-
nan’s enumeration algorithm. 2007. Submitted.

[11] Intel corporation. Intel Itanium 2 processor ref-
erence manual for software development and op-
timization. Technical Report 251110-003, Intel,
2004.

[12] R. Kannan. Minkowski’s convex body theorem
and integer programming. Math. Oper. Res.,
12(3):415–440, 1987.

[13] A. K. Lenstra, H. W. Lenstra, and L. Lovász.
Factoring polynomials with rational coefficients.
Math. Annalen, 261:515–534, 1982.

[14] L. Lovász. An algorithmic theory of numbers,
graphs and convexity, volume 50 of CBMS-NSF
Regional Conference Series in Applied Mathemat-
ics. Society for Industrial and Applied Mathemat-
ics (SIAM), Philadelphia, PA, 1986.

[15] P. Markstein. IA-64 and Elementary Functions :
Speed and Precision. Hewlett-Packard Profes-
sional Books. Prentice Hall, 2000.

[16] D. Micciancio. The hardness of the closest vector
problem with preprocessing. IEEE Trans. Inform.
Theory, 47(3):1212–1215, 2001.

[17] J.-M. Muller. Elementary Functions, Algorithms
and Implementation. Birkhäuser, Boston, 1997.

[18] P. Q. Nguyen and J. Stern. The two faces of lat-
tices in cryptology. In Proceedings of CALC ’01,
Lecture Notes in Computer Science, volume 2146,
pages 146–180. Springer Verlag, 2001.

[19] E. Remes. Sur un procédé convergent
d’approximations successives pour déterminer
les polynômes d’approximation. C.R. Acad. Sci.
Paris, 198:2063–2065, 1934.

[20] S. Story and P. T. P. Tang. New algorithms for
improved transcendental functions on IA-64. In
Koren and Kornerup, editors, Proceedings of the
14th IEEE Symposium on Computer Arithmetic,
pages 4–11, Los Alamitos, CA, Apr. 1999. IEEE
Computer Society Press.

[21] The Arénaire Project. CRlibm, Correctly
Rounded mathematical library, July 2006.
http://lipforge.ens-lyon.fr/www/
crlibm/.

[22] V. Shoup. NTL, a library for doing number the-
ory, version 5.4. http://shoup.net/ntl/,
2005.

[23] P. van Emde Boas. Another NP-complete problem
and the complexity of computing short vectors in
a lattice. Technical Report 81-04, Mathematische
Instituut, University of Amsterdam, 1981.

[24] L. Veidinger. On the numerical determination of
the best approximations in the Chebyshev sense.
Numerische Mathematik, 2:99–105, 1960.

