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Abstract 

 
This paper presents the detailed design of the ARM 

VFP11 Divide and Square Root synthesisable 
macrocell.  The macrocell was designed using the 
minimum-redundancy radix-4 SRT digit recurrence 
algorithm, and this paper describes a novel 
acceleration technique employed to achieve the 
required processor clock frequency of up to 750MHz in 
90nm CMOS.  Logical Effort theory is used to provide 
a delay analysis of the unit, which demonstrates the 
balanced nature of the two critical paths therein.   
 
 
1. Introduction 
 

The VFP11 coprocessor [1] is an implementation of 
the ARM Vector Floating-point Architecture for 
integration with ARM11-family cores.  The VFP11 
implements IEEE 754 compliant single-precision and 
double-precision operations with software support for 
operations and data types rarely used in an embedded 
context.  The arithmetic pipeline is optimized for 3D 
graphics processing [2] on a chained multiply-
accumulate engine with a throughput of one FMAC 
instruction per cycle for single-precision data and one 
per two cycles for double-precision data.  Hardware 
divide and square root are optimized for 2 bits per 
cycle throughput and parallel execution with data 
transfer operations and operations on the FMAC 
pipeline.  Vector operations provide the capability to 
issue up to 8 single-precision operations in a single 
instruction.  A vector operation will run in parallel with 
data transfer operations and divide/square root 
operations and result in nearly optimum utilization of 
the FMAC pipeline for graphics operations and other 
high data throughput computations.  The VFP11 is 
designed for low power consumption and small die 
size. 

This paper presents the detailed design of the 
VFP11 divide and square root synthesisable macrocell.  
The major design requirement was to achieve a logic 
depth of as close to 15 logic levels as possible so as to 
meet a variety of performance targets for the whole 
chip.  This led to the minimum-redundancy radix-4 
SRT algorithm being used because multiplicative 
solutions were unattractive at the required high clock 
rate for two reasons:  

• fast multipliers are large and power-hungry – it 
was infeasible to use the extant VFP11 multiplier-
accumulator chain for performing division and square 
root operations, and wasteful in area and power terms 
to build a second multiplier dedicated to square root 
and division  

• in a deeply-pipelined processor design, Newton-
Raphson and Goldschmidt iterations take many cycles 
to complete due to dependencies between and within 
successive iterations – see [3], for example  
By contrast, using radix-4 SRT, VFP11 takes 15 cycles 
(single precision) or 29 cycles (double precision) to 
compute either correctly rounded quotients or square 
roots.   

Some details of this block were presented 
previously in [4], including:  

• the digit selection Table constants 
• logic for partial remainder m.s.b. compression that 

is needed to preserve sign information while discarding 
the m.s.b.’s of the partial remainder between iterations 
(the unit was designed using signed-digit 
representation of the partial remainder) 

• the use of comparators instead of a look-up table 
to implement digit selection   

• an adaptation of “on-the-fly” conversion to derive 
updated square root estimates in minimal logic depth 

This paper reveals further parallelisation of the SRT 
recurrence so as to remove one of two “back-to-back” 
carry-propagate additions from the digit selection logic 
[5].   



2. VFP11 Divide and Square Root Macro-
cell Implementation 
 

The recurrence equation for SRT division is: 

11 ++ ⋅−⋅= iii qDRrR  
 ___ (1) 
and that for SRT square root is: 
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where Rx is the remainder after the xth iteration, r is the 
radix of the SRT algorithm, D is the divisor, qx is the 
xth digit of Rx, and Qx is the x-digit result computed 
after the xth iteration.  In SRT division, the divisor is 
assumed to be in the range 1 ≤ D < 2 in keeping with 
the significand range of the IEEE floating-point 
standard.  For consistency between the SRT division 
implementations, the root estimate is constrained to 
satisfy 1 ≤ 2Qi < 2, implying that the radicand must be 
in the range 0.25 ≤ Ri < 1.  This range of radicand 
ensures that the exponent can always be even.  To 
initialise the square root recurrence, q0 is forced to 1 so 
that if Qi > u, the redundancy factor defined as qmax/(r-
1), the result is still obtainable. For minimum-
redundancy radix-4 SRT iterations, u = 2/3.  These two 
equations are frequently combined into one unified 
expression by writing: 

11 ++ ⋅−⋅= iiii qFRrR  ___ (3) 
where Fi is the appropriate value for division or square 
root derived from (1) and (2). 

A block diagram of the divide and square root 
synthesisable macrocell is shown in Figure 1, and 
Figures 2 - 4 provide more detail of the three critical 
logic blocks.   

 

 
 

Figure 1  Block diagram of divide and square 
root macrocell 

 
 
 

 

Figure 2  8-bit comparator:  
ck = sign(Ri[3:-4] – Mk[3:-4]) 

 
Before the first iteration, the four selection 

constants used to select qi+1, denoted Mk, are loaded 
into registers, and the D, Ri, Qi

+ and Qi
− registers are 

initialised with the appropriate values.  Then, at each 
subsequent iteration, the top eight bits of the partial 
remainder, Ri, are compared with the four selection 
constants, Mk (Figure 2), and the four 1-bit results of 
these comparisons, ck, are combined to derive the value 
of the next result digit, qi+1, in a 1-hot encoding.   

In parallel with these comparisons, the five possible 
updated remainders R*i+1 = Ri − Fk for k = -2 … +2 are 
computed, but with the top 8 bits in non-redundant 
format, as shown in Figure 3.  In this way, no 3:2 
reduction is needed ahead of the Mk comparators on the 
next iteration, thus minimising the logic depth of the 
critical path through the comparators.   

As discussed in [4], these short carry-propagate 
additions across the m.s.b.’s also have the effect of 
“compressing” the speculative signed-digit remainders, 
so that sign information is not lost when the top two 
bits of the remainder are discarded between iterations.  
Also as discussed in [4], the four possible updated 
subtrahends, Fk, (for k ∈ {−2, −1, +1, +2} only) are 
formed by a circuit whose logic depth comprises a 
NOR gate driving into the data input of a 2:1 
multiplexer.  The multiplexer is needed to select the 
correct set of Fk values depending on whether a 
division or a square root operation is being executed.   

Finally, the new value of qi+1 as derived from the 
four values of ck selects the appropriate value of Ri+1 
(in redundant format except for the 8 m.s.b.’s) and the 
updated range estimates of the square root, Qi+1

+ and 
Qi+1

−, and the iteration is complete (see Figure 4, where 
the logic that derives and concatenates the 2 l.s.b.’s of 
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the updated square root range estimates Qi+1
+ and Qi+1

− 
is not shown).  

The performance of the macrocell is summarised in 
Table 2 for three different technology nodes.  The 
ranges of frequency at 130nm and 90nm reflect 
different process technologies at those nodes that trade 
off speed for leakage power.  

 
Table 2  Operating frequencies of macrocell 

 
Technology Frequency Delay / CMOS gate

180nm 270 MHz 142 ns 
130nm 350 – 550 MHz 78 – 122 ns 
90nm 450 – 750 MHz 57 – 95 ns 

 
There were 18 stages of CMOS logic and buffers 

along the critical path (that ran through the qi+1 logic), 
which after allowing for clock insertion, translated to 
142 ns per logic stage at 180nm.  This was deemed 
near enough to the initial specification (of 15 CMOS 
stages) to be acceptable.  

  
3. Logical Effort analysis of VFP11 divide 
and square root macrocell 
 

In this Section, the macrocell is analysed using 
Logical Effort [6] to provide further insight into the 
balanced nature of the two critical paths through the 
design.  Logical Effort is a design methodology for 
estimating the number of CMOS stages (including 
buffers) required to implement a given logic function.  
While Logical Effort is not a substitute for detailed 
simulation, it is excellent at comparing different 
CMOS digital designs.  The method described below 
has been applied to Knowles’ “Family of Adders” [7], 
where it identified the same trade-offs between delay 
and area as were described in that paper, even to the 
extent of providing the same ranking of the adders for 
speed.  There was also no greater than a 5% difference 
in delay estimate between the Logical Effort model and 
Knowles’ reported delays [8]. 

Logical Effort uses a small number of basic 
concepts, which are: 

logical effort, g: total FET gate capacitance of a 
CMOS logic gate relative to that of a minimum-sized 
inverter 

electrical effort, h: ratio of output capacitance to 
input capacitance for each CMOS logic gate along a 
critical path  

branching effort, b: ratio of total capacitative load 
on one CMOS logic gate’s output along the critical 
path to the FET gate capacitance of the next CMOS 
gate on the critical path 

parasitic delay, p: total diffusion capacitance on the 
output node of a CMOS logic gate relative to the input 
FET gate capacitance of a minimum-sized inverter 

Logical Effort operates by calculating the total Path 
Effort along the critical path of a digital CMOS circuit 
as: 

F = GBH ____ (4) 
where G = Πg, B = Πb, and H = Πh.  The last term 
reduces to the ratio of the output capacitance loading 
the last CMOS logic gate to the FET gate capacitance 
of the first CMOS logic gate along the critical path.  
Usually, H is forced to 1 by assuming that the circuit 
being modelled is connected to a copy of itself.  This 
allows input branching effort to be incorporated in a 
delay estimate.  Values of Logical Effort and Parasitic 
Delay for a selection of cells (taken from [6]) are listed 
in Table 3. 

Once the path effort has been calculated, a near-
optimum design for the CMOS circuit can be 
determined by deriving the number of CMOS stages 
(including buffers) required in the circuit as: 

N = log4F ____ (5) 
N is then rounded to the nearest integer to give the 
parameter, α: 

α = F1/N ____ (6) 
 
Table 3  Values of Logical Effort and Parasitic 

Delay for selected CMOS cells 
CMOS gate g p 

NOT 1 1 
NOR2 5/3 2 

NAND2 4/3 2 
NAND3 5/3 3 
AOI21 6/3 7/3 
OAI21 6/3 8/3 
XOR2 12/3 5 

 
The FET’s along the critical path are now sized 

such that the electrical effort of each logic gate (i.e. the 
ratio of the total output load capacitance to the input 
FET gate capacitance), h = α/g.  Then the total delay of 
the CMOS circuit under consideration may be written 
as: 

D = Nα + ∑p ____ (7) 
in arbitrary delay units.  Dividing this expression by 5 
yields an approximation to the delay in terms of fan-
out = 4 (“FO4”) inverter delays.   

Thus, from (4), the Path Effort of a logic circuit, F, 
can be calculated by multiplying together the fan-out 
loads (g⋅b) at each node along the critical path.  In 
computing the fan-outs, track capacitance per logic 
gate fan-out has been assumed to be equivalent to one 
minimum-geometry p-FET, or 2/3 of the gate 



capacitance of a minimum-size inverter.  Hence, a 
track that has a fan-out of three cells is allocated a 
track fan-out of 6/3 = 2 minimum size inverters.  
However, in a datapath component, laid out with two 
cells per bit or column, a track fan-out of 1 p-FET per 
bit traversed is allocated.  Hence, a track that traverses 
4 bits of a comparator would have a lateral distance of 
four columns and would be allocated a track fan-out of 
4 × 2/3 = 8/3 minimum size inverters [8].  Note that in 
the following analysis, the logic diagrams presented 
are indicative only because the macrocell was 
synthesised from a pseudo-behavioural RTL 
description. 

There are two parallel critical paths through the 
macrocell: one starts at the Ri register and goes through 
one of four 8-bit comparators followed by the 1-hot 
encoding of qi+1 and into the select input of the 5:1 
muxes that return the updated values Ri+1, Qi+1

+, and 
Qi+1

−.  The other path starts at the Qi registers and goes 
through the logic that derives the five possible values 
of Fk, then through one of five 56-bit carry-save adders 
with 8-bit carry-propagate subtractors, (“Ri+1 adders”), 
and finally into the data inputs of the 5:1 multiplexer.  
The logic comprising the qi+1 1-hot encoding logic and 
5:1 multiplexer, presented in Figure 4, shows that 
although the logic depths of the Ri+1 and Qi+1 update 
5:1 muxes are essentially the same, the path through 
qi+1=0 has the largest fan-out of four NAND2 gates.   

Figures 5 and 6 present logic diagrams of the 8-bit 
subtractor (with its carry input held at logic ‘1’) and 
full adder and also found on the critical paths of the 
macrocell.  Note that the i1 input of the full adder has a 
shorter critical path through the full adder than the 
other two. 

 
 
 
 
 
 
 
 

Figure 5  Logic diagram of full adder 

 
Figure 6  Logic diagram of 8-bit subtractor 
 
The Logical Effort analyses of the two critical paths 

through the macrocell are laid out below, and show 
that the estimated delays of the two paths are 16.0 and 
15.4 FO4.  Thus, the design is well balanced between 
the two critical paths (only a 3.8% difference), with the 
path delay through the slower subtractor matched by 
that through the comparator and the multi-stage buffer. 

 
Critical path 1: through Fk logic (output connected 

back onto input) 
gate load g⋅b p 
buf* 4 × nor2’s + wire 4×5/3 + 4×2/3 2 
nor2 mux2 + wire 6/3 + 2/3 2 
mux2 xnor2 + min + wire 12/3 + 12/3 + 4/3 4 
xnor nand2 + nor2 +wire 4/3 + 5/3 + 4/3 5 
nor2 oai21 + wire 6/3 + 2/3 2 
oai21 inv + 2×aoi21 + wire 1 + 2×2 + 6/3 8/3
aoi21 inv + 3×oai21 + wire 1 + 3×2 + 8/3 7/3
oai21 xnor + wire 12/3 + 2/3 8/3
xnor aoi22 + wire 6/3 + 2/3 5 
aoi22 nand3 + wire 5/3 + 2/3 4 
nand3 buf + wire 1 + 2/3 3 
*Buf is multi-stage due to large fan-out loading 

 
F = Πg⋅b = 8.8 × 106;  P = Σp = 34.7 
N = rnd(log4F) = 12; α = 3.79 
D = (Nα+P)/5 = (12×3.79+34.7)/5 = 16.0 FO4 delays 

!c     !s 

maj 

i1 i2 i3 

cin = 1 
(implicit) 



Critical path 2: through Mk comparators (output 
connected back onto input) 

gate load g⋅b p 
buf* 4×(nand2+nor2) + 

5×(min+xor2) + wire 
4×9/3 + 5×24/3

+ 36/3 
2 

nand2 oai21 + wire 6/3 + 2/3 2 
oai21 aoi21 + wire 6/3 + 4/3 8/3
aoi21 oai21 + wire 6/3 + 8/3 7/3
oai21 2×buf + wire 2×1 + 4/3 8/3
inv nor2 + wire 5/3 + 2/3 1 

nor2 2×buf + wire 2×1 + 4/3 2 
buf* 56×(4×nand2) + wire 896/3 + 448/3 3 

nand2 nand3 + wire 5/3 + 2/3 2 
nand3 buf + wire 1 + 2/3 3 
*Bufs are multi-stage due to large fan-out loading 

  
F = Πg⋅b = 1.2 × 108;  P = Σp = 22.67 
N = rnd(log4F) = 13; α = 4.18 
D = (Nα+P)/5 = (13×4.18+22.67)/5 = 15.4 FO4 delays 

 
Interestingly, the synthesis results showed that the 

second path (through the comparators) was slightly the 
slower of the two, whereas the Logical Effort analysis 
has the path through the 8-bit subtractors as slightly 
slower.  This reflects inaccuracies in the Logical Effort 
modelling approach (discussed later), but may also be 
due to less than optimal placement in the synthesised 
circuit resulting in longer wires and more buffers than 
assumed in the analysis.  Indeed, in the synthesised 
macrocell, the sets of comparators were actually 
duplicated to help achieve timing closure. 
 
4. Timing and Area comparisons 
 

Fandrianto [9] was the first to publish a combined 
radix-4 SRT divide and square root unit, but this 
design employed a complicated digit selection 
algorithm and a PLA to provide an initial estimate of 
the radicand.  Ercegovac and Lang [10] showed how 
the initial estimate PLA could be dispensed with and 
refined Fandrianto’s digit selection technique.  The 
cycle time of their design comprised the following 
delays: 

• register load (& clocking) 
• 4-to-1 multiplexer 
• 3:2 carry-save adder 
• digit selector (8-bit carry-propagate adder & 12-

input logic network) 
The 12-input logic network contains a short 

wordlength comparison which requires a carry-
propagate subtraction, so that each SRT iteration 
contains two sequential short wordlength carry-
propagate additions, considerably impacting on the 

cycle time.  Harris et al described a variety of methods 
for accelerating radix-2 and radix-4 SRT division, 
achieved by overlapping non-dependent elements of 
successive iterations [11].  However, none of these 
methods can be readily extended to square root 
calculations because of the need to generate updated 
root estimates every cycle (Qi+1

+ and Qi+1
− in Figures 1 

and 4 above) which have a dependency on the new 
result digit produced that same cycle.  Most recently, 
two new approaches to designing low-power combined 
divide / square root units have both focussed on using 
radix-4 SRT [12,13]: however, these proposals have 
the equivalent of two back-to-back short-wordlength 
carry-propagate adders on their critical paths.  The 
proposal of [13] also uses a retiming technique to 
reduce power consumption, and a block diagram of the 
critical path of the retimed architecture is presented in 
Figure 7.  It comprises three main blocks:  

• DSMUX / FGEN, which is akin to the Fk logic of 
Figure 1;  

• CSA, which is a 3:2 carry-save adder; 
• SEL, which provides the next quotient digit, qi+1, 

and in turn comprises two sub-blocks – an 8-bit carry 
propagate adder and 4 6-bit comparators followed by a 
small logic network to return qi+1 in a zero/one-hot 
format. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7  Block diagram of retimed low-power 
combined SRT divide / square root unit [13] 
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The FGEN unit comprises a 2-to-1 multiplexer (to 
select between D or Qi depending on whether a 
division or square root operation is being performed) 
driving a 4-to-1 multiplexer (to return the new value of 
Fi depending on the most recent quotient digit).  The 
output of the FGEN unit is connected to the fast input 
of the CSA unit.  Finally, in SEL, the most significant 
8 output digits of the CSA unit (in redundant format) 
are assimilated in an 8-bit carry-propagate adder and 
then broadcast to 4 6-bit comparators to derive the next 
value of qi+1 using logic similar to that in Figure 4.  
Logic diagrams of circuits unique to this architecture 
are presented below in Figures 8 and 9. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8  6-bit comparator 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 9  1-hot logic and 4:1 multiplexer for 

SRT divider  
 

The Logical Effort analysis of this architecture 
proceeds as before by computing the capacitative load 
on each cell along the critical path of the logic circuit, 
assuming 2/3 inverter wire load per fan-out or per bit 
across a datapath element.  The full analysis is laid out 
below: 

 
Critical path: through FGEN, CSA, and SEL 

(output connected back onto input) 
gate load g⋅b p 
buf* 56 × mux2’s 

+ wire 
56×2 + 56×2/3 3 

mux2 4 × aoi22 + wire 4 × 6/3 + 8/3 4 
aoi22 nand2 + wire 6/3 + 2/3 4 
nand2 xnor2 + min + wire 12/3 + 12/3 + 4/3 2 
xnor nand2 + nor2 +wire 4/3 + 5/3 + 4/3 5 
nor2 oai21 + wire 6/3 + 2/3 2 
oai21 inv + 2×aoi21 + wire 1 + 2×2 + 6/3 8/3
aoi21 inv + 3×oai21 + wire 1 + 3×2 + 8/3 7/3
oai21 xnor + wire 12/3 + 2/3 8/3
xnor 4×min + wire 4×6/3 + 8/3 5 
min oai21 + wire 2 + 2/3 2 

oai21 aoi21 + wire 2 + 4/3 8/3
aoi21 oai21 + wire 2 + 8/3 7/3
oai21 2×nor2 + wire 2×5/3 + 6/3 8/3
nor2 mux2 + wire 6/3 + 2/3 2 

*Buf is multi-stage due to large fan-out loading 
F = Πg⋅b = 9.1 × 1011;  P = Σp = 41.33 
N = rnd(log4(F) = 20; α = 3.96 
D = (Nα+P)/5 = (20×3.96+44.33)/5 = 24.7 FO4 delays 
 

The low-power design is more than 50% slower 
than the VFP11 design, mostly because of the two 
successive carry-propagate structures (8-bit adder and 
6-bit comparator).  Incidentally, [13] reported a logic 
delay (excluding flop and clock insertion delays) of 
6.2ns in 0.6um CMOS, equivalent to 28.7 FO4 
(assuming 1 FO4 = 360 × 0.6 = 216ps [14]).  The 
theoretical result given by Logical Effort is optimistic 
compared to the synthesis result of [13], probably due 
to Logical Effort’s ignoring of slew effects and its 
implicit assumption that logic gates are available in an 
infinite number of logic strengths.  

By contrast, the ARM VFP11 unit has two well-
matched critical paths, each with only one carry-
propagate operation on them, allowing the design to fit 
in a processor with a shallow pipeline.  This was 
achieved by using the next result digit, qi+1, to select 
one of five speculative results; moreover, by 
performing an 8-bit carry-propagate addition across the 
msb’s of the speculatively updated partial remainders, 
the result digit comparisons needed to derive the next 
result digit were also accelerated. 

maj

ck 

Fk(q=2) 

Fk(q=1) 
Fk(q=-2)

Fk(q=-1)

Fk 

c2 c1 c0 c-1 

pipeline cut 



However, the speculative computations needed to 
accelerate the SRT iteration have come at a major 
hardware cost.  Table 4 compares the cell counts of the 
VFP11 design with the low-power design counting 2 
for XOR cells, 5 for flops, and assuming that the qi+1 
and Qi+1 logic is negligible.  The area of the low-power 
design is much smaller than that of the high-
performance divide and square root macrocell because 
the 5 full-length carry-save adders that formed the 
speculative values of the new remainder in the VFP11 
macrocell have been replaced by a single carry-save 
adder, and the four full-length multiplexers used to 
return the speculative values of Fk in the VFP11 
macrocell have been replaced by one multiplexer in the 
low-power design.  Moreover, the number and sizes of 
the required registers have been reduced in the low-
power design.  Excluding buffers, the overall hardware 
saving is around a factor of 4.5.  This is an excellent 
illustration of the perennial trade-off in high-
performance VLSI design between delay and area: in 
this case, in order to meet the required processor clock 
rate, quintuple parallel speculation was required; if the 
required clock rate were relaxed, considerable 
hardware savings could have been implemented 
because speculation would not have been necessary.   

 
Table 4  Estimated cell counts for combined 

and divide-only macrocells 
Logic block # CMOS 

cells 
ARM 
macrocell 

Low-power 
unit [13] 

Fk / qkD logic  
(Figs. 4 & 9) 

10 or  
3 / bit  

10×56 = 560 3×56 = 168 

Comparators 
(Figs. 2 & 8) 

26 or  
20 

26×4 = 104 20×4 = 104 

8-b subtractor 
(Fig. 6) 

65 65×5 = 325 65 

(3:2) adders 
(Fig. 5) 

5 5×(5×48) = 
1200 

5×56 = 280 

half adders 3 3×(5×6) = 90 - 
5-to-1 mux  
(Fig. 4) 

14 54×14 = 756 - 

Flops 5  5×(54×6 + 
10×4) = 1820 

5×(56 + 24 
+ 4) = 420 

TOTAL (exc. 
buffers, etc) 

 4855 1037 

 
 
5. Summary 
 

This paper has presented the ARM VFP11 divide 
and square root unit, which makes use of partial 
remainder speculation to achieve a cycle time that is 
50% faster than the best previous proposal.  However, 
the amount of speculation required led to a significant 

increase in area when compared with a recently-
proposed low-power design making use of a retiming 
technique.  It may yet prove possible to combine the 
retiming technique with the speculation employed in 
this unit: after a small number of iterations, the top few 
bits of the root estimate do not change, thus facilitating 
both short-wordlength speculation and delayed long-
wordlength reduction, as described recently in a 
hardware-efficient yet comparably fast divide-only 
architecture [15].   
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Figure 3  M.s.b.’s of Ri+1 adder and 5:1 multiplexer 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4  Logic diagram of qi+1 1-hot encoding and 5:1 multiplexers 
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