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Abstract

An emerging nanotechnology, quantum-dot cellular au-
tomata (QCA), has the potential for attractive features such
as faster speed, smaller size, and lower power consumption
than transistor based technology. Quantum-dot cellular au-
tomata has a simple cell as the basic element. The cell is
used as a building block to construct gates, wires, and mem-
ories. Several adder designs have been proposed, but mul-
tiplier design in QCA is a rather unexplored research area.
This paper utilizes the QCA characteristics to design serial
parallel multipliers. Two types of serial parallel multipliers
are designed and simulated with several different operand
sizes. Those designs are compared in terms of complexity,
area, and latency. The serial parallel multipliers have sim-
ple and regular structures.

1. Introduction

Current transistor based semiconductor devices are be-
coming resistent to scaling. Due to the decreasing supply
voltage and increasing threshold voltage, the power con-
sumption from leakage current is one of the big challenges
of transistor circuits. Nanotechnology is an alternative to
these problems and the ITRS report [1] summarizes possi-
ble technology solutions. Quantum-dot cellular automata
(QCA) is one of the attractive alternatives. Since QCAs
were introduced in 1993 [2], several experimental devices
have been developed [3–7]. Recent papers show that QCAs
can achieve high density [8], fast switching speed [9], and
room temperature operation [5, 10].

ALU design is one of the fundamental circuit design
issues and several adder designs in QCA have been pro-
posed [11–13], but multiplier design has not been widely
considered by QCA designers. There is a QCA multiplier
design in [14, 15], but it is not an optimized design. Pre-

vious adder designs show that complex designs generally
incur longer delays in QCA, so a simple structure is a good
choice for the starting point. A large word size parallel mul-
tiplier has quite a complex structure. Due to the complex
wiring, parallel multipliers in QCA are likely to incur long
delays. This paper investigates the serial parallel multiplier.
Based on FIR filter equations, the serial parallel multiplica-
tion equation is derived and using QCA characteristics, op-
timized serial parallel multipliers are presented. The final
designs show simple and regular structures with an attrac-
tive bit slice structure.

The paper is organized as follows. In Section 2, the
background of QCA technology and the design approaches
are presented. Section 3 shows the algorithmic design of
multiplication networks based on filter networks and Sec-
tion 4 discusses multiplier implementation for QCA cir-
cuits. Analyses of simulation results and comparisons fol-
low in Section 5 and conclusions are presented in Section 6.

2. QCA design schemes

2.1. QCA cell

A quantum-dot cellular automata (QCA) is a square
nanostructure of electron wells confining free electrons.
Each cell has four quantum dots which can hold a single
electron per dot. The four dots are located at the corners of
the cell and only two electrons are injected into a cell. By
the clocking mechanism, the electrons can tunnel through
to neighboring cells during the clock transition by the inter-
action between electrons. A high potential barrier at the set-
tled clock signal locks the state and results in a local polar-
ization which is determined by Coulombic repulsion. The
two electrons reside in opposite corners so that two polar-
izations are possible as seen in Fig. 1. Those two binary
states can be used to make QCA cell a storage cell, a com-
puting cell, or a wire.
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Figure 1. Basic QCA cell and two possible po-
larizations

2.2. Signal flow

A series of QCA cells act like a wire. An illustration of
a QCA wire is shown in Fig. 2. During each clock cycle,
half of the wire is active for signal propagation, while the
other half is stable. During the next clock cycle, half of the
previous active clock zone is deactivated and the remaining
active zone cells trigger the newly activated cells to be po-
larized. Thus signals propagate from one clock zone to the
next.

Figure 2. QCA wire

2.3. Clock zones

The circuit area is divided into four sections and they
are driven by four phase clock signals. As shown in Fig. 3,
there is a 90◦ phase shift from one section to the next. In
each clock zone, the clock signal has four states: high-to-
low, low, low-to-high, and high. The cell begins computing
during the high-to-low state and holds the value during the
low state. The cell is released when the clock is in the low-
to-high state and inactive during the high state.

Clock Zone 0

Clock Zone 1

Clock Zone 2

Clock Zone 3

Figure 3. QCA clock zones

The cells in each clock zone behave like a single latch.
To be used as a memory cell, a loop of the cells is needed, in
which a series of clock zones are used. Because of the signal
flow control and synchronization, QCA naturally accepts
pipeline designs.

2.4. Logic gates

Logic gates are required to build arithmetic circuits. In
QCA, inverters and three-input majority gates serve as the
fundamental gates. The governing equation for the majority
gate is M(a, b, c) = ab + bc + ca. Fig. 4 shows the gate
symbols and their layouts. Two input AND and OR gates
can be implemented with 3 input majority gates by setting
one input to a constant. With ANDs, ORs, and inverters,
any logic function can be realized.

a · b = M(a, b, 0)

a + b = M(a, b, 1) (1)

Figure 4. QCA inverter and majority gate

2.5. Design rules

The cell is assumed to have a width and height of 18nm
and 5nm diameter quantum-dots. The cells are placed on a
grid with a cell center-to-center distance of 20nm. Thus the
cell size can be defined as 20nm for the nominal design.

Because there are propagation delays between cell-to-
cell reactions, there should be a limit on the maximum cell
count in a clock zone. This insures proper propagation and
reliable signal transmission. If there is no restriction on the
maximum length, the design might have fewer clock cycles,
but due to the increased propagation delays, the operating
frequency would be reduced.

From a physical design perspective, there are several cir-
cuit operation issues. Long span wires are vulnerable to
noise and possibly signal back propagation. The current
QCA technology doesn’t specifically set the possible op-
erating frequency and actual propagation delays. Thus the
maximum cell count can be set as a design parameter. In
this paper, 15 cells maximum length is chosen empirically.
That was determined to provide freedom to make possible
wire routes and a reasonable propagation length for each
clock zone. The minimum separation between two differ-
ent signal wires is the width of two cells.



Multi-layer crossovers are used for wire crossings in
this paper. They use more than one layer of cells like a
bridge. An example of a multi-layer wire crossing is shown
in Fig. 5. The multi-layer crossover design is straightfor-
ward although there are questions about how it can be re-
alized in practice, since it requires two overlapping active
layers with via connections.
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Figure 5. Layout of multi-layer wire crossing

2.6. Simulations

For circuit layout and functionality checking, a simula-
tion tool for QCA circuits, QCADesigner [16], is used. This
tool allows users to do a custom layout and then verify QCA
circuit functionality by simulations. It includes two differ-
ent simulation engines such as a bistable approximation and
a coherence vector.

3. Algorithmic design

3.1. Filter networks

To consider the multiplication of two numbers, start with
a FIR filter example [17]. The filter output is defined by
Equation (2).

yi =

N−1
∑

k=0

bkxi−k (2)

Let Z−1 be the one cycle delay operator such that
Z−1xi = xi−1. Z0 is defined to be the unit operator and
Z−n is defined by Z−n = Z−1Z−n+1. The characteristics
are as follows.

1. Z−nxi = xi−n.
2. Z−1F (x) = F (Z−1x).
3. If C is time invariant, Z−1C = C.

yi =

N−1
∑

k=0

bkxi−k

=

N−1
∑

k=0

bkZ−kxi

=

(

N−1
∑

k=0

bkZ−k

)

xi (3)

Equation (3) can be implemented by the network shown
in Fig. 6. The circles in the figure with the bi’s represent
multiplication by the constants written inside them and

⊕

means the addition of two inputs. Data xi, bi and yi are
words of arbitrary size.
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Figure 6. FIR filter network

To use a pipeline design, both upper and lower signal
lines include the same additional delay units. Assume that
Z−

1

4 is possible and apply the Z−
1

2 delay element to each
section with upper and lower lines. Equation (4) proves that
Fig. 7 gives the correct filter output result with N/2 cycle
delays.

Pipelined FIR filter output
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Figure 7. Pipelined FIR filter network

3.2. Multiplication networks

These relations can be applied to multiplication. Assume
an unsigned number system. Fig. 8 illustrates the bit prod-
uct matrix for an unsigned multiplication. In this case, only
one digit calculations are used in the network, so all addi-
tions and multiplications use binary computations. A one
digit multiplication is represented by a logical AND and a
one digit addition corresponds to a full adder. The main



difference between the FIR filter and the multiplication net-
work is the handling of the carry-out of the adder. The fil-
ter networks internally use carry flow, but the multiplica-
tion network needs distinct signal flows, so the network for
multiplication should be changed accordingly from the filter
network.
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Figure 8. Bit product matrix for unsigned mul-
tiplication

Let (ai, bi) be the multiplicand and multiplier pair and
pi be the product sum of the bit position i. Bits ai and pi

correspond to words xi and yi of the filter example. The po-
sition i is considered as the input applied at time i. Define
the sum and carry-out of full adder at ith time and jth loca-
tion as (sij , cij) when 0 ≤ i ≤ 2N − 1 and 0 ≤ j ≤ N − 1
where j is numbered from right to left. Assume that the
sum generation takes at least Z−

1

2 and the carry generation
takes at least Z−

1

4 . Even though Figs. 6 and 7 ignored the
zeroth full adder, the derivation includes that adder. The im-
plementation can be done in two ways. Equations (5) and
(6) represent the two alternatives.

(sij , cij) = Add
(

bjZ
−

7

4
jai, Z

−
3

4 si(j−1), Z
−

1

4 ci(j+1)

)
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(

bjai− 7

4
j , s(i− 3

4
)(j−1), c(i− 1

4
)(j+1)

)

(5)
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(

bjZ
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3

2
jai, Z

−
1

2 si(j−1), Z
−1cij

)

= Add
(

bjai− 3

2
j , s(i− 1

2
)(j−1), c(i−1)j

)

(6)

Equation (5) sends the carry-out in a backward direc-
tion with minimum delay. Instead, Equation (6) uses a
feedback loop to the adder itself using a one clock delay
unit. Both handle the carry-out correctly carrying it to the
higher bit calculation. Call them a carry shift multiplica-
tion (CSM) and a carry delay multiplication (CDM), respec-
tively. Figs. 9 and 10 show the network diagrams based on
these equations. In view of the flow direction between in-
put and output, they are named right-to-left (RtL) networks.
The angled output line of a full adder is the carry-out. The
CSM design is optimized for minimum delay of the carry
shift while the CDM design is optimized to minimize the
latency of the output.

In this realization, the minimum latency from the first
input to first output is either 3N/4 or N/2 cycles. Going
to Fig. 6 and redirecting the output to the right side, which
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Figure 9. Right-to-left (RtL) carry shift multi-
plication network

b
1

b
0

a
i

b
N-1

b
N-2

…

…

…+ + +Z-N/2p
i

Z-1/2

Z-3/2 Z-3/2

Z-1

Z-1/2

Z-1 Z-1

Z-1/2

Figure 10. Right-to-left (RtL) carry delay mul-
tiplication network

is the same side to the input, Fig. 11 shows the redirection
graph and for a pipeline design, it can be redrawn as shown
in Fig. 12 by use of Equation (7).
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Figure 11. Redirected FIR filter network
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Finally, Fig. 12 is a network design comparable to Fig. 7.
The main difference is that there is a much smaller latency
from the first input to the first output. Based on Fig. 12, the
multiplication networks are represented by Equations (8)
and (9) according to the carry out handling. Figs. 13 and
14 show respective network implementations. Likewise, the
networks are called a right-to-right (RtR) networks and by
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Figure 12. Redirected pipelined FIR filter net-
work

the carry flow, they are distinguished as either carry shift
multiplication (CSM) or carry delay multiplication (CDM)
networks. The CSM design has the minimum delay of the
carry shift and the CDM design has the minimum latency to
the output.
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Figure 13. Right-to-right (RtR) carry shift mul-
tiplication network
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Figure 14. Right-to-right (RtR) carry delay
multiplication network

4. Multiplier implementation

4.1. Multiplication networks for QCA

The QCA circuit has a four phase clock and the circuit
areas are divided into four clock zones. One clock zone
delay is denoted by the D−1 operator, which corresponds
to a quarter cycle. That is, D−4 = Z−1. Based on the
QCA circuit characteristics, one clock zone delays a quarter
clock, so that delay matches to one D−1 operation. Assume
a logical AND operation delays by one D−1 operation and
one full adder sum and carry-out computation from the in-
put by D−2 and D−1 operations, respectively. Wires also
take some delay based on the wire length. After incorpo-
rating these characteristics, the filter networks are redrawn
as Figs. 15 and 16. Delay amounts in upper and lower sig-
nal flows in either case are chosen to make one clock cycle
differences between the adjacent paths.
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Figure 15. FIR filter network for QCA
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Figure 16. Redirected FIR filter network for
QCA

From the filter network examples, the multiplier net-
works for QCA are drawn. Based on Equations (5-6) and
(8-9), Equations (10-11) and (12-13) are rewritten for QCA
multiplication. The previous figures are modified by the
carry flow options. The serial multiplier can be imple-
mented with four different options as in Figs. 17, 18, 19,
and 20.
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Figure 17. RtL CSM network for QCA
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Figure 18. RtL CDM network for QCA
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Figure 19. RtR CSM network for QCA

D-2 D-2

b
1

b
0

a
i

b
N-1

b
N-2

…

…

… ++ +

D-1 D-1 D-1 D-1

D-2 D-2 D-4p
i

D-2

D-1

D-4D-4D-4

Figure 20. RtR CDM network for QCA

4.2. Multiplier design

Previous literature [14, 15] presented a design for a mul-
tiplier which uses a structure like Fig. 10 except multiply-
ing Z−

1

2 to all the horizontal flow delay units. That design
inherently undergoes a long delay and has an unnecessary
right-most full adder. In this paper, a RtR structure is cho-
sen for the QCA circuit implementation because it reduces
the first input to first output latency. The final design will
have two options as in Figs. 19 and 20. Fig. 21 represents
the general block diagrams of QCA multipliers and Fig. 22
shows the block diagrams of the optimized designs for QCA
layouts.
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Figure 21. Multiplier block diagrams
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4.3. QCA Implementation

For easy comparisons, 4 bit multiplier examples are
shown. Fig. 23 shows the bit product matrix for 4 bit multi-
plication.
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Figure 23. Bit product matrix for 4 bit multi-
plication

Full adders are used for the carry shift multiplier and bit-
serial adders are used for the carry delay multiplier. Those
adders are made using the “carry flow adder (CFA)” which
is a layout optimized ripple carry adder. The bit-serial adder
is similar to the full adder except that the carry-in and carry-
out are connected internally with a one clock delay. Figs. 24
and 25 represent the schematics and layouts of both adders.
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Figure 24. 1 bit adder schematics

Using these adders, 4 bit RtR CSM and CDM designs ac-
cording to Fig. 22 are implemented as shown in Figs. 26 and
27. Multipliers for larger word sizes can be implemented
easily by adding additional bit slices.

5. Design analyses

5.1. Simulation results

With QCADesigner ver. 2.0.3, the circuit functionality
is verified. The following parameters are used for a bistable
approximation: cell size = 20nm, number of samples =
102400, convergence tolerance = 0.00001, radius of effect

(a) Full adder (b) Bit-serial adder

Figure 25. 1 bit adder layouts

Figure 26. Layout of 4 bit carry shift multiplier

Figure 27. Layout of 4 bit carry delay multi-
plier



= 41nm, relative permittivity = 12.9, clock high = 9.8e-
22 J, clock low = 3.8e-23 J, clock amplitude factor = 2,
layer separation = 11.5nm, maximum iterations per sample
= 10000 [18].

4 bit multiplier simulation results are provided with the
input and output waveforms as shown in Fig. 28 for CSM
and Fig. 29 for CDM. First and last input/output pairs are
highlighted. The highlighted protrusion of “0” is only
shown for understandability.
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Figure 28. Simulation result of 4 bit carry shift
multiplier
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Figure 29. Simulation result of 4 bit carry de-
lay multiplier

For an N bit case, multiplier inputs are an N + 1 bit
number (1 bit serial input and N bit parallel inputs) and
output is a 1 bit number (serial output) ignoring a constant
carry-in. The serial input and output use the order from LSB
to MSB and parallel inputs are repeated whenever a new
serial input is available (N cycles). For the initialization of
the multiplier, N +1 zero bits at each cycle are provided for
the period of N clock cycles and padding N +1 zero bits at
each cycle are also provided between the input sets for the
period of N clock cycles. Completion time for one N bit
multiplication takes 2N cycles.

5.2. Comparisons

Various word size carry shift multipliers and carry de-
lay multipliers are implemented and compared in Table 1.
Smaller word size multiplier trends don’t match with the
larger word size multiplier trends. The MSB of input B

needs to be delayed more than the LSB due to the input
synchronization. Because the CSM has one clock zone dif-
ference between the logical AND gate instead of two clock
zones in CDM, the CSM only needs half as many clock
zones for input synchronization. Synchronizing the inputs
in large word size CDMs requires large areas and more cells
even though the base design of CDM is simpler. Figs. 30
and 31 reflect those relations. As a design choice, the CDMs
can be modified to have a smaller synchronizing section by
increasing the latency. Those designs will have the same
latency as the CSMs.

Table 1. Multiplier comparisons

Complexity Area Latency

CSM4 507 cells 1.04× 0.61µm2 1 1
4 clocks

CSM8 1011 cells 1.93× 0.61µm2 1 1
4 clocks

CSM16 2043 cells 3.67× 0.61µm2 1 1
4 clocks

CSM32 4299 cells 7.24× 0.67µm2 1 1
4 clocks

CSM64 9579 cells 14.30× 0.85µm2 1 1
4 clocks

CDM4 406 cells 1.05× 0.47µm2 1 clock
CDM8 903 cells 2.12× 0.47µm2 1 clock

CDM16 1999 cells 4.19× 0.47µm2 1 clock
CDM32 4575 cells 8.47× 0.65µm2 1 clock
CDM64 11264 cells 16.84× 0.95µm2 1 clock

6. Conclusions

Based on the QCA characteristics, a simple structure us-
ing a pipeline design has an advantage of reduced wire de-
lays. The serial parallel multiplier is a possible solution
with this characteristic. This paper presents serial parallel
multiplication networks based on filter networks. The net-
works are derived from multiplication equations and imple-
mented by network graphs. The design uses systolic array
structures to pump out an output on every clock cycle and it
is optimized for low latency to the first output. It also has a
regular design for easy word size extension as well as small
areas and a small number of cells used.

This research extends the QCA circuit designs to mul-
tiplication. For the fast multiplication of large word sizes,
more complex multiplication algorithms should be investi-
gated. Unlike the transistor circuits, added logic units do
not guarantee fast operation. Future research should look
for the optimal point along the delay and complexity trade-
off.



Figure 30. Layout of 32 bit carry shift multiplier

Figure 31. Layout of 32 bit carry delay multiplier
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