Formal Verification of Floating-Point Programs

Sylvie Boldo
INRIA Futurs
Sylvie.Boldo@inria.fr

Jean-Christophe Filliatre
CNRS

Jean-Christophe.Filliatre @Iri.fr

ProVal, Parc Orsay Université, F-91893
LRI, Univ Paris-Sud, CNRS, Orsay, F-91405

Abstract

This paper introduces a methodology to perform formal
verification of floating-point C programs. It extends an ex-
isting tool for the verification of C programs, Caduceus,
with new annotations specific to floating-point arithmetic.
The Caduceus first-order logic model for C programs is ex-
tended accordingly. Then verification conditions expressing
the correctness of the programs are obtained in the usual
way and can be discharged interactively with the Coq proof
assistant, using an existing Coq formalization of floating-
point arithmetic. This methodology is already implemented
and has been successfully applied to several short floating-
point programs, which are presented in this paper.

1 Introduction

Critical applications, such as numeric simulations in nu-
clear physics or aeronautics, do require a high level of guar-
antee. But, as soon as floating-point computations are in-
volved, the level of guarantee is usually rather low. This
may be due to the difficulty of a sharp analysis of floating-
point computations (rounding and exceptions). Even if each
step is required to be correct by the IEEE-754 standard
[23, 24], whole numeric programs’ behaviors are often dif-
ficult to foresee, and exceptional behaviors disturb intuition.

Some algorithms have a pen and paper proof, but this
has proved not to be enough [16, 20]. Some programs need
a high level of reliability that only formal proofs can pro-
vide. Formal methods have been successfully used both
for hardware-level and high-level floating-point arithmetic
[2,6,21,10,11,19,7, 14].

This paper introduces a new approach to the formal ver-
ification of floating-point C programs, which consists in a
specification language at the C source level and in a method-
ology to get verification conditions to be discharged with
the Coq proof assistant [1]. This work is based on two ex-

isting works: the Caduceus tool for the verification of C
programs [9, 15] and a Coq model of floating-point arith-
metic [7]. Our main contribution is the extension of the Ca-
duceus specification language to handle floating-point arith-
metic. To our knowledge, such a specification language
has never been designed before. The main difficulty lies
in the fact that we want to express not only properties about
what is actually computed (floating-point numbers) but also
about what would be ideally computed (with real numbers
and without any rounding) and even sometimes about what
the user intends to compute (which may be only approxi-
mated by the program).

This paper is organized as follows. Section 2 gives an
overview of the Caduceus tool. Then Section 3 introduces
our extension to support floating-point arithmetic. Finally,
Section 4 illustrates our verification methodology on several
examples.

2 The Caduceus tool

Caduceus [9, 15] is a tool for the formal verification of
C programs at the source code level. The properties that
may be checked are of two kinds: first, the program may be
checked to be free of threats (null pointer dereferencing or
out-of-bounds array access) and second, it may be proved
to satisfy functional properties given as annotations in the
source. These annotations include functions’s preconditions
and postconditions, global invariants, loop invariants, etc.,
as usual in Hoare logic frameworks [12]. They are inserted
in the source as comments of a specific shape /+@...x/
and written in a first-order specification language largely
inspired by the Java Modeling Language [17]. A significant
part of ANSI C is supported, including pointer arithmetic
and possible pointer aliasing.

Here is for instance a possible specification for a function
math_mod computing the modulo:

/*@ requires
@ x > 0 & y > 0

@ ensures
@ 0 <= \result < y &&

@ \exists int d; x == d * y + \result
@x/
int math_mod(int x, int y) { ... }

The keyword requires introduces the function’s precon-
dition, that is a property to be satisfied whenever the func-
tion is called. The keyword ensures introduces the func-
tion’s postcondition, that is a property which must be es-
tablished whenever the function returns. As one can notice,
the specification language augments the usual C syntax (& &,
==, etc.) with new constructs such as \result denoting
the value returned by the function, the existential quantifier
\exists, etc. Contrary to JML, program annotations are
not intended to be executable.

Once a C source code is adequately annotated, the Ca-
duceus tool produces verification conditions. These are log-
ical statements expressing that code is free of threats and
fulfills the given specification. The verification conditions
are then discharged using a general purpose theorem prover.
A key feature of the Caduceus tool is its independence with
respect to the prover. It indeed supports a wide panel of
existing provers, ranging from interactive proof assistants
such as Coq, PVS or Isabelle to automatic theorem provers
such as Simplify, Yices or CVC Lite.

Before presenting our extension of the Caduceus tool to
handle floating-point arithmetic, we need to give a few de-
tails about its architecture. Caduceus is actually built on
top of another tool, called Why. The combination of these
two tools is illustrated in Figure 1. Caduceus first translates
the C source code into an intermediate code written in the
syntax of the Why language. This in an alias-free Hoare
logic-like language suitable for program verification. This
intermediate program uses a first-order logic model of C
programs (pointer arithmetic, layout of the memory heap,
etc.) which is itself written in the syntax of the Why tool.
This model is made of declarations of function symbols,
predicates and axioms. Then the Why tool computes veri-
fication conditions and translates them to the native syntax
of the various provers. Depending on the prover, the model
can be simply axiomatized or fully implemented.

To add floating-point arithmetic support to Caduceus, we
are going to operate at several levels:

o the specification language is extended with new anno-
tations specific to floating-point arithmetic;

e the Why model is extended accordingly;

e the Why model is realized within the Coq proof as-
sistant to allow the user to discharge the verification
conditions.

The next section describes this extension.

C source file

v

| Caduceus |

Why model Why source file

| |
Vv

Why

verification conditions

Figure 1. The Caduceus / Why combination

3 Adding floating-point arithmetic
3.1 A model of floating-point arithmetic

The main idea is the following: each floating-point value
is modelled as a triple consisting of

o the floating-point number of the given type (typically
single or double), as computed by the program;

e a real number, which would be the value if all previ-
ous computations were performed on real numbers and
thus exact;

e and another real number, which is the value which
should be ideally computed.

If x is a floating-point value, we refer to its three compo-
nents respectively as the floating-point part, written x ¢, the
exact part, written z. and the model part, written x,,.

For example, let us assume that we have a C variable x
of type double and the following definition of the variable

Y
double y=1+x=* (1+x/2);

Then the floating-point part of y is o(1 4+ o(zy x o(1 +
o(x¢/2)))) where o denotes the current rounding mode (by
default, rounding to nearest, ties to even). The exact part of
yis 1+ x. + xgz.

Contrary to the floating-point part and the exact part, the
model part can be assigned an arbitrary real number. Thus it
must be seen as a ghost variable' automatically assigned to
each floating-point expression. In this example, it could be

A ghost variable is a program variable which does not interfere with
the program computations but is only used in the specification.

assigned the value exp(z,,) to express the intent to compute
(an approximation of) the exponential of x. This example
is developed in more details in Section 4.3.

‘When conditional instructions are involved, the test must
be performed on the floating-point part, in accordance to
the program execution. Thus the exact and model parts
are computed following the program path defined by the
floating-point part. This is mandatory, as programs such as
example 4.2 would not even have a resulting value if the
tests were performed on the exact part.

Rounding modes are correctly handled: if the rounding
mode is not modified by the program, it has a known value,
which can be specified on Caduceus’s command line and
which defaults to rounding to nearest, ties to even. If it is
modified by the program, then it becomes a dynamic value
and floating-point expressions are interpreted according to
its current value.

3.2 Syntax of annotations

Our abstract model of floating-point arithmetic being de-
fined, we now extend the Caduceus specification language
to give access to this model. We only describe here the new
constructs introduced to deal with floating-point arithmetic;
a comprehensive description of the Caduceus specification
language can be found in its reference manual [15].

First, all operations appearing inside annotations are in-
terpreted as exact operations on real numbers. Thus 0.1 is
exactly %0 and 1 4 0.1 is a real addition which value is thus
1.1. Similarly, one can use 7, v/2 or exp(1) in annotations
with their usual mathematical meaning.

A floating-point program variable is interpreted as its
floating-point part and implicitly converted to a real number.
Two constructs are introduced to access the other two parts
of the model: \exact(e) is the exact part of the floating-
point expression e and \mode1(e) its model part.

In addition, several derived constructs are introduced to
ease the writing of annotations:

e \abs (e) or |e|: the absolute value of the real ex-
pression e;

\round_error (e): a shortcut for
le — \exact(e)|, that is the difference between
the floating-point part of e and its exact part;

\total_error (e): a shortcut for
le — \model(e)|, that is the difference between
the floating-point part of e and its model part;

e e1” "es: the exponentiation of real numbers;

\'sgrt (e) : the square root of the real expression e.

3.3 Why specification of the model

We now specify the model of floating-point arithmetic as
a Why theory, that is a set of types, constants and function
declarations. It must be seen as the interface of our model.
In order to use a given prover to discharge the verification
conditions, this model has to be realized first (see next sec-
tion). An excerpt of this theory is given in Appendix (the
full theory can be found in the Caduceus distribution in file
lib/why/floats.why).

The main elements of this theory are the following:

e atype for the rounding modes and five constants of this
type (the four rounding modes of IEEE-754, plus the
rounding to nearest, ties away from zero of the revision
of the IEEE-754 standard [13]);

e the single and double types;

e the basic operations (addition, subtraction, division,
square root, negation, absolute value, etc.) on these
types, used in the interpretation of the program com-
putations;

o the functions to access the floating-point part, the exact
part and the model part, used in the interpretation of
the annotations;

e the rounding functions (to interpret the constants);

e the maximum float allowed in each type, as a real num-
ber;

e the coercions between the different types (single to
double and double to single).

In addition, this Why theory also contains variants of the
floating-point operations with overflow checks. Such oper-
ations perform the same computations as the ones above,
but have preconditions enforcing the user to prove that the
resulting value is not greater than the maximal float allowed
in the given type. Thus we can actually choose between
two different models: one model where we assume that
there is no overflow during the program execution, and one
model where we have to prove that there is no overflow (a
Caduceus command-line option switches between the two
models). We could also implement a third model where
overflows are taken into account (and thus where NaN is an
explicit value). But this would require much work for the
very few situations where a program is correct in spite of
overflows. We do not consider floating-point flags and ex-
ceptions at all. It could be added to this model but it would
make it much more complex, as each operation should also
return flags. Since such flags are rarely and hardly accessed
in C programs, we prefer not handling them.

Note that we do handle underflows: our model of
floating-point numbers contains subnormal numbers and
tiny enough values will be rounded into subnormals. This
means that we may have to add hypotheses on some pro-
grams such as “the input values are normal floats”.

3.4 Coq implementation of the model

At this point, we are now able to produce the verification
conditions for any prover supported by the Why tool. But
none of these provers is able to discharge any of the veri-
fication conditions, since our model is merely a set of dec-
larations without definitions. Thus the last step of the ver-
ification chain consists in implementing the floating-point
model for a particular prover, in order to be able to conduct
proofs. We focus here on the Coq proof assistant [1].

Our Coq implementation of the model is based on an ex-
isting formalization of the IEEE-754 standard by M. Dau-
mas, L. Rideau and L. Théry [7]. This formalization is
radix-independent and format-independent. To correspond
to floating-point processors, we choose the radix 2 and we
use single and double floating-point numbers that have the
required mantissa and exponent size. To be in accordance
with the Why model, the Coq implementation of a floating-
point number is a three fields record composed of:

o the floating-point value, of type £1loat as defined in
[71;

e a proof that the float fits in the given format (single or
double precision);

e an exact value of type R, where R is the Coq type of
real numbers;

e a model value of type R.

For the rounded operations, we define only the basic op-
erations defined by the IEEE-754 standard (addition, sub-
traction, multiplication, division and square root), plus op-
posite and absolute value. These are defined using rounding
functions that were previously developed [3]. We also de-
fine functions for jumping from one format to another (with-
out rounding for single to double, but with rounding from
double to single).

We also need a function to round a constant value: if
0.1 appears in a program, it will be seen as the single (or
double) floating-point number with a floating-point part that
is the rounded (with the current rounding mode) of the real
value % and an exact and a model parts that are exactly 1—10.

It is important to notice that our architecture based on
a model written in the syntax of the Why tool offers a
great flexibility. It is indeed very easy to switch to an-
other floating-point computational model, such as radix 10
or fixed-point arithmetic. All the user has to do is to replace

the Coq implementation of the Why model. Similarly, it is
easy to switch to another prover, as soon as a floating-point
formalization is available (e.g. HOL and PVS [6]).

4 Examples

This section illustrates the use of our verification frame-
work on several short floating-point programs.

4.1 Sterbenz theorem

The well-known Sterbenz theorem [22] states that if x
and y are floating-point numbers not too far away (y/2 <
x < 2y), then x — y is computed exactly.

This can be formally stated as the specification of a sin-
gle precision C function computing x — y:

/*@ requires y/2 <= x <= 2%y
@ ensures \result == x-y
@/

float Sterbenz (float x,float vy){
return x-y;

Let us denote © = (2¢,%e, Tm) and y = (Yf, Ye, Ym)-
The result of the function call, denoted \result, is the
triple (o(xf —yy), Te — Ye; Tm — Ym). The annotation states
that the floating-point part is exactly the subtraction of the
floating-point parts of x and y, thatis o(z s —yy) = x5 —yy.

Since there is no modification of the rounding mode
in the source code, all computations are assumed to be
in rounding to nearest, ties to even and the rounding is
statically set in the verification conditions. A Caduceus
command-line option can be used to specify a different
rounding mode. When run on the above source code, Ca-
duceus produces a single verification condition, which is the
following statement:

Vz : single. Vy : single.

s_to_r(y)/2 < s_tor(x) <2 xs_tor(y) =
s_to_r(sub_single(nearest_even,z,y)) =
s_tor(zx) — s_torx(y)

where all inequalities and equalities are on real numbers,
s_to_r is the projection to access the floating-point part (as
a real number), sub_single the subtraction on the type
single and nearest_even the rounding mode (see the
Appendix for the signatures of all these symbols). This ver-
ification condition is easily discharged with a dozen lines of
Coq tactics using previous results from [7].

This function could be given a different, strengthened
specification. Indeed, if we know beforehand that x and
y have no rounding error, i.e. are exact representations of
real numbers, then so is the result. This can be formally
expressed as follows:

/*@ requires y/2 <= x <= 2%y
@ && \round_error (x)==
@ && \round_error (y)==0
@ ensures
@ \round_error (\result)==
@x/
double Sterbenz (double x,double y) {
return x-y;

}

This variant was also proved correct using a few lines of
Coq tactics.

4.2 Malcolm’s algorithm

In the early seventies, Malcolm and Gentleman proposed
an algorithm to deduce from some given computations the
characteristics of the floating-point system (radix, precision,
rounding mode, etc.) [18]. The most famous of these algo-
rithms is the following one, which computes the radix of the
floating-point system:

1. A2

2. whileA#A+1doA«— Ax2

3. B+1

4. while(A+B)—A)#BdoB«— B+1
5. return B

In our case the result should be 2, since we are consid-
ering IEEE-754 double precision. Nevertheless, the simple
fact that this algorithm does terminate is a challenge in it-
self. Indeed, the first loop multiplies a variable A by 2 until
A equals A + 1. This would clearly never halt if the com-
putations were error-free.

To annotate the C implementation of the algorithm
above, we need to introduce first two functions over real
numbers:

/*@ logic int IRNDD (real s) =/
/*@ logic int my_log(real s) =x/

Such 1ogic declarations make Caduceus aware of the ex-
istence of such logical functions. They are defined on the
prover side and do not require any definition at the source
code level. These are two Coq functions from R to Z de-

fined as TRNDD(z) = || and my_log(x) = Liﬁg;j
Then we can annotate a C version of Malcolm’s algo-

rithm:

/*@ ensures \result == 2 x/
double malcolm() {

double A, B;

A=2;

/*@ assert A==2 «*/

/*@ invariant A == " my_log (A)

@ && 1 <= my_log(A) <= 53
@ variant (53-my_log(A)) =*/
while (A != (A+1)) Ax=2;
/%@ assert A == "t (53) */

B=1;
/*xQ@ assert B==1 */

/*@ invariant B == IRNDD (B)
@ &§& 1 <= B <= 2
@ variant (2-IRNDD(B)) =«/
while ((A+B)-A != B) B++;

return B;

Let us detail the annotations:

e The postcondition states that the result is the expected
radix, that is 2.

e Two assertions state that A is 2 (resp. B is 1) after
the assignment A=2 (resp. B=1). Though it may seem
obvious and redundant, it actually states that the exact
parts of A and B are 2 and 1 respectively, i.e. that A
and B are computed exactly.

e The first loop is annotated with an invariant stating that
A is exactly of power of 2 and that its logarithm is be-
tween 1 and 53. It is also given a variant to guarantee
its termination. The variant is here a nonnegative de-
creasing integer, namely 53 — my_log(A).

e Right after the first loop, we can prove that A = 2°3,
which is also inserted as an annotation.

e The annotation of the second loop is much simpler
since we know that this loop will be executed exactly
twice, B taking the values 1 and 2 successively. The
only difficulty is here to state in the invariant that B is
always an integer that is either 1 or 2.

When run on this annotated source code, Caduceus pro-
duces four verification conditions. All of them were proved
correct using 163 lines of Coq tactics.

It is important to notice that this is not a proof that the
Malcolm’s algorithm returns the radix of the floating-point
system. We knew beforehand that the radix was 2 and we
used this information in the annotations to make the proof
simpler.

4.3 An exponential

The purpose of this last example is to illustrate the use
of the third component of our floating-point abstractions,
which we called the model part.

It is a toy example computing the exponential of a
double-precision float x around zero. A small Taylor poly-
nomial is evaluated using Horner’s rule, namely 1 + (1 +
x/2). In this case, the computation will be faithful [4, 5]
so the rounding and total error can be bounded. More pre-
cisely, the source code can be annotated as follows:

~
*
™

requires |[x| <= 2 77 (=-3)
ensures
\model (\result)==exp (\model (x))
&& (\round_error (x)==
=> \round_error (\result)
<=2 7 (=52))
&& \total error (\result)
<= \total_ error (x)
+ 2 °7 (=51)

@ ® ® ® ® ® ® @

*/

double my_exp (double x) {
double y=1l+xx* (1+x/2);
/+@ \set_model y exp(\model(x)) */
return y;

}
Let us detail the annotations:

e The precondition states that the input must be small
enough: the function will not compute an approxi-
mation of the exponential for x = 100. We require
lz] <273

e The postcondition then states that

— the output is a float whose model part (its ideal
value) is the exponential of the (ideal value of
the) input;

— the rounding error inside the function is bounded
by 27%2;

— the total error of the function (i.e. the difference
between the floating-point value and the ideal
value) is bounded by 27°! plus the total error of
the input.

It may seem somewhat redundant to set the model part to
exp z in the code and to state the corresponding equality in
the postcondition. As far as the correctness of my_exp is
concerned, this is indeed a tautology, but it will be needed
when calling my_exp.

On the annotated code above, Caduceus produces a sin-
gle verification condition, which reads as follows:

Vz : double. [d_tor(z)| <273 =

Vy : double. Vy; : double.

y = add_double(nearest_even,
r_to_d(nearest_even, 1),
mul_double(nearest_even, z,

add_double(nearest_even,
r_to_d(nearest_even, 1),
div_double(nearest_even, z,
r_to_d(nearest_even, 2))))) =

y1 = double_set_model(y, exp(d_tomodel(z))) =

d_tomodel(y;) = exp(d-tomodel(z)) A

(double_round error(z) =0 =

double_round error(y;) < 27°2) A
double_total _error(y;) <
double_total_error(x) + 27!

This has not yet been proved in Coq. Indeed, we do not
want to perform an interactive proof but we rather plan to
generate a proof automatically using the tool Gappa [8]; this
is discussed in the next section.

Note that we choose on this example an annotation style
where the function requires that || < 273, which means
that a callmy_exp (1) would generate the unprovable ver-
ification condition 1 < 273. To be able to call this function
on big inputs (but with no guarantee on the output) we could
adopt a more liberal specification with no precondition and
a postcondition of the shape |x| < 272 = Thisis sim-
ilar to the usual choice of defensive programming versus
programming with assumptions.

S Conclusions and perspectives

We have presented a formal verification framework for
floating-point programs. From C programs annotated at the
source code level, we get verification conditions that can
be manually discharged using the Coq proof assistant. This
work extends the existing tool for the verification of C pro-
grams Caduceus [15] with a new set of annotations to ex-
press properties of floating-point programs. On the prover
side, it is based on a existing formalization of the IEEE-
754 standard [7]. This verification methodology is already
implemented and has been successfully used on several pro-
grams (which are quite short but require complex proofs).

Our main contribution is a specification language for
floating-point programs. Such a specification is indeed a
decisive key to the security of numerical programs: even
if the annotations are not formally proved, the mere fact of
precisely specifying what should do each function, what is
its error bound, etc., is a huge step towards program cor-
rectness. Additionally, we provide a way to perform the
full formal proof using the Coq proof assistant, and an open

framework which is amenable to other floating-point mod-
els and/or other provers.

We are aware that the set of examples presented here is
not large enough to convince that our set of annotations is
adapted to all needs. Nevertheless, our annotations have
been devised to be applicable to as many cases as possi-
ble. They will be used in the CerPAN project (http:
//www—1lipn.univ-parisl3.fr/CerPAN/) whose
aim is to prove the soundness of programs from numerical
analysis and especially a program computing the derivatives
of a multivariable function.

A limitation of our current work is that it can only be ap-
plied to programs using basic operations (addition, subtrac-
tion, multiplication, division and square root). Many nu-
merical programs heavily rely on elementary functions such
as exponential or sine/cosine. These functions are harder to
formalize than division as they are not standardized. In-
deed, one may get different results depending on the pro-
cessor used thus one has to turn the processor’s reference
manual into formal statements (e.g. “the maximal error on
the exponential is 0.50 - - - 01 ulp”). Even if such formaliza-
tions are theoretically feasible, this would require a lot of
work to be repeated for each platform.

Another limitation is the assumption that each double
precision computation is performed on exactly 64 bits,
which is not always the case on recent Intel architectures,
where it can be computed using 80 bits. This feature would
be very hard to formalize, as which computations are per-
formed on 64 or 80 bits can not be predicted.

Another perspective is the use of the Gappa tool [8]
which automatically generates formal proofs of floating-
point properties using interval arithmetic. Gappa cannot
solve all the verification conditions but could be of great
help in formally proving error bounds or the absence of
overflows. For instance, Gappa would automatically dis-
charge the verification conditions of example 4.3. More-
over, Gappa builds Coq proofs that can be checked automat-
ically, making the combination of interactive and automatic
proofs trustworthy.

Acknowledgements. The authors wish to thank Marc
Daumas and Guillaume Melquiond for constructive discus-
sions about the possible type of annotations. The authors
are also grateful to Micaela Mayero and Frangois Clément
for careful readings of this paper.

References

[1] The Coq Proof Assistant. http://coqg.inria.fr/.
[2] G. Barrett. Formal methods applied to a floating-point num-

ber system. [EEE Transactions on Software Engineering,
15(5):611-621, 1989.

(3]

(4]

(5]

(6]

(7]

8]

(9]

(10]

(11]

(12]

[13]

(14]

[15]

[16]

(17]

S. Boldo. Bridging the gap between formal specification and
bit-level floating-point arithmetic. In C. Frougny, V. Brattka,
and N. Mller, editors, Proceedings of the 6th Conference
on Real Numbers and Computers, pages 22-36, Schloss
Dagstuhl, Germany, 2004.

S. Boldo and M. Daumas. A simple test qualifying the ac-
curacy of horner’s rule for polynomials. Numerical Algo-
rithms, 37(1-4):45-60, 2004.

S. Boldo and C. Mufioz. Provably faithful evaluation of
polynomials. In Proceedings of the 21st Annual ACM Sym-
posium on Applied Computing, volume 2, pages 1328—-1332,
Dijon, France, Apr. 2006.

V. A. Carrefio and P. S. Miner. Specification of the IEEE-854
floating-point standard in HOL and PVS. In 1995 Interna-
tional Workshop on Higher Order Logic Theorem Proving
and its Applications, Aspen Grove, Utah, 1995. supplemen-
tal proceedings.

M. Daumas, L. Rideau, and L. Théry. A generic library of
floating-point numbers and its application to exact comput-
ing. In 14th International Conference on Theorem Proving
in Higher Order Logics, pages 169-184, Edinburgh, Scot-
land, 2001.

F. de Dinechin, C. Lauter, and G. Melquiond. Assisted ver-
ification of elementary functions using Gappa. In Proceed-
ings of the 2006 ACM symposium on Applied computing,
pages 1318-1322, 2006.

J.-C. Filliatre and C. Marché. Multi-Prover Verification of
C Programs. In Sixth International Conference on For-
mal Engineering Methods (ICFEM), volume 3308 of Lec-
ture Notes in Computer Science, pages 15-29, Seattle, Nov.
2004. Springer-Verlag.

J. Harrison. Floating point verification in HOL light: the
exponential function. Technical Report 428, University of
Cambridge Computer Laboratory, 1997.

J. Harrison. Formal verification of floating point trigono-
metric functions. In W. A. Hunt and S. D. Johnson, editors,
Proceedings of the Third International Conference on For-
mal Methods in Computer-Aided Design, pages 217-233,
Austin, Texas, 2000.

C. A.R. Hoare. An axiomatic basis for computer program-
ming. Communications of the ACM, 12(10):576-580,583,
1969.

IEEE standard for floating-point arithmetic. Floating-Point
Working Group of the Microprocessor Standards Subcom-
mittee of the Standards Committee of the IEEE Computer
Society, 2004. Work in progress.

C. Jacobi. Formal Verification of a Fully IEEE Compliant
Floating Point Unit. PhD thesis, Computer Science Depart-
ment, Saarland University, Saarbrucken, Germany, 2002.
Jean-Christophe Fillidtre, Claude Marché and Thierry Hu-
bert. The Caduceus tool for the verification of C programs.
http://caduceus.lri.fr/.

L. Lamport and P. M. Melliar-Smith. Synchronizing clocks
in the presence of faults. Journal of the ACM, 32(1):52-78,
1985.

G.T. Leavens, A. L. Baker, and C. Ruby. Preliminary design
of JML: A behavioral interface specification language for
Java. Technical Report 98-06i, Iowa State University, 2000.

[18] M. A. Malcolm. Algorithms to reveal properties of floating-
point arithmetic. Commun. ACM, 15(11):949-951, 1972.

[19] J. O’Leary, X. Zhao, R. Gerth, and C.-J. H. Seger. Formally
verifying IEEE compliance of floating point hardware. Intel
Technology Journal, 3(1), 1999.

[20] J. Rushby and F. von Henke. Formal verification of algo-
rithms for critical systems. In Proceedings of the Conference
on Software for Critical Systems, pages 1-15, New Orleans,
Louisiana, 1991.

[21] D. M. Russinoff. A mechanically checked proof of IEEE
compliance of the floating point multiplication, division
and square root algorithms of the AMD-K7 processor.
LMS Journal of Computation and Mathematics, 1:148-200,
1998.

[22] P. H. Sterbenz. Floating point computation. Prentice Hall,
1974.

[23] D. Stevenson et al. A proposed standard for binary floating
point arithmetic. IEEE Computer, 14(3):51-62, 1981.

[24] D. Stevenson et al. An American national standard: IEEE
standard for binary floating point arithmetic. ACM SIG-
PLAN Notices, 22(2):9-25, 1987.

Appendix: Why Theory

We give here a small excerpt of the Why theory corre-
sponding to the floating-point model presented in this pa-
per. The keyword type introduces a new datatype, which
is abstract and purely applicative (real is the predefined
type of real numbers). The keyword 1ogic introduces a
new function symbol with its arity. Finally, parameter
declares a new program function (with no implementation).
The syntaxisxy : 71 — -+ — Xy, : T, — {P}7{Q} where
the x;s are the function parameters, P the precondition, 7
the type of the result and () the postcondition.

(* rounding modes x)

type mode

logic nearest_even, to_zero, up, down,
nearest_away : mode

(x the type of single precision floats x)
type single

(» operations x)
logic add_single

mode, single, single -> single
logic sub_single

mode, single, single —-> single

(# coercions x)

logic s_to_r, s_to_exact, s_to_model
single —-> real

logic r_to_s mode, real -> single

(» overflow checks x)
logic max_single : real

parameter add_single_

m:mode —-> x:single —-> y:single —>

{ abs_real (s_to_r(add_single(m, x,y)))
<= max_single }

single

{ result = add_single(m,x,vy) }

