
Fast Modular Reduction

William Hasenplaugh, Gunnar Gaubatz, Vinodh Gopal
Intel

{william.c.hasenplaugh, gunnar.gaubatz, vinodh.gopal}@intel.com

Abstract

It is widely acknowledged that efficient modular

multiplication is a key to high-performance
implementation of public-key cryptography, be it
classical RSA, Diffie-Hellman, or (hyper-) elliptic
curve algorithms. In the recent decade, practitioners
have relied mainly on two popular methods:
Montgomery Multiplication and regular long-integer
multiplication in combination with Barrett’s modular
reduction technique. In this paper, we propose a
modification to Barrett’s algorithm that leads to a
significant reduction (25% to 75%) in multiplications
and additions.

1. Introduction

One of the cornerstones of public-key
cryptography is modular arithmetic, on which nearly
all established schemes are based. An efficient
software implementation of modular arithmetic is
therefore desirable. While modular additions and
subtractions are rather trivial cases, efficient modular
multiplication remains an elusive target for
optimization. The two most widely used algorithms
for modular multiplication are Montgomery’s method
[1], and regular 'schoolbook' multiplication in
combination with Barrett’s reduction technique [2].
They are the main representatives of two classes of
modular reduction algorithms, the left-to-right and
right-to-left algorithms. For the sake of simplicity we
will skip over most of the details and simply mention
that Barrett’s method progresses from left to right,
using quotient estimation to subtract a suitable
multiple of the modulus. In Montgomery’s method the
computation progresses from right to left. The least
significant portion of an intermediate result is used to
determine a multiple of the modulus, which when
added, zeros out that least significant portion. Shifting

to the right produces a shorter result congruent to the
remainder. Variations of these two schemes were
reported in [3, 4], but the essential idea is the same. A
common thread to all schemes is the requirement to
pre-compute certain values which depend on the size
of the operands and/or the modulus. In addition,
Quisquater’s and Montgomery’s method both require
normalization and de-normalization steps, although
their impact on performance is negligible as long as
the cost can be amortized over sufficiently many
modular reductions, which is indeed the case in most
public-key algorithms. In their most naive version,
both algorithms have a runtime in ()2O n , which is
due to the use of Schoolbook Multiplication. Better
asymptotic behavior is possible if one applies sub-
quadratic time algorithms such as Karatsuba-Ofman
[5], however, this also depends on the relative cost of
multiplications and additions. In the case of
Montgomery’s method, this requires the use of the
separate operand scanning (SOS) variant of the
algorithm [3]. This is because all other variants
employ interleaving of multiplication and reduction
steps, which make the recursive decomposition steps
of the Karatsuba-Ofman method difficult or
impossible.

Recently, Fischer and Seifert [6] made an
interesting observation that there exists a duality
between multiplication and modular reduction.
Specifically, they show that there exists a duality
between the well-known Booth-recoding technique for
efficient multiplication and Sedlak’s modular
reduction method [7]. Based upon this observation and
the premise that Booth multiplication is optimal, they
conclude that Sedlak’s method is also optimal. It is
unclear to us, however, how Booth multiplication can
be viewed as optimal, when other asymptotically
faster algorithms exist, like the ones by Karatsuba-
Ofman and Schönhage-Strassen [8].

In this paper we present a modification to
Barrett’s method which, in combination with the
Karatsuba-Ofman algorithm, results in a significant
reduction of the number of multiplications and
additions on typical computer architectures.

2. Problem definition

Let N and M be multi-precision integers whose
lengths are 2n and n bits, respectively. We want to
efficiently reduce N with respect to the modulus M by
computing the remainder of the division N

M . This need
arises due to the fact that the most popular and widely
used public-key algorithms require modular
exponentiation, which is performed via a sequence of
multiply and square operations, each immediately
followed by reduction [9]. Thus, at any given point
during exponentiation, we have 2 operands, A and B,
that are n bits long and we generate the 2n-bit product
N AB= using multi-precision multiplication. We
then need to produce modR N M= , another n-bit
integer. However, one does not need to guarantee that
R < M at every intermediate step, only that R is an n-
bit integer; the final R computed at the end of the
exponentiation can then be reduced to be less than M.
This allows fewer total computations to be performed.

Many cryptographic algorithms are defined over
very large integer rings, where the operand sizes n are
typically 512 to 4096 bits. We shall assume the use of
a conventional processor which has a native word-size
w, which is smaller than n. We also assume that on
this hypothetical processor, ALU operations (i.e.
additions, subtractions, shift operations) are less
expensive in clock-cycles and / or power than
multiplication for any given word-size w.
Specifically, for the purpose of comparison, an ALU
operation will cost one cycle and a multiply will cost
m cycles. We will calculate the run-time of Word-
Serial Montgomery ()WT and our new algorithm,

Modified Barrett ()MT , showing the latter to be the
superior algorithm.

3. Montgomery Modular Multiplication

There are different forms of Montgomery that can
be applied to the modular exponentiation problem.
There are bit-serial architectures [10], where special
purpose circuits perform multiplication and reduction
simultaneously. However, our analysis assumes a
general purpose processor and we therefore describe
the Montgomery algorithm in terms of word-serial

operations. Word-Serial Montgomery interleaves
vector multiplication and reduction steps and has an

asymptotic run-time of ()()2n
wO . The precise run-

time is given by (),WT n w :

() () () ()2, 2 4n n
W w wT n w m m= + +

In order to more easily compare with other
methods, we let ()2log n

wk = . Then, equivalently,

()WT k is the number of cycles required to execute
one n-bit Word-Serial Montgomery Modular
Multiplication [3]:

() ()4 2 4 2k k
WT k m m= + +

4. Barrett Modular Multiplication

The Barrett reduction method requires the pre-
computation of one parameter, 22 n

Mµ  =   , which does

not change as long as the modulus remains constant.
The reduction then takes the form

2 2n n
NR N Mµ  = −    , which requires two n-bit

multiplies and one n-bit subtract, leaving the total at
three multiplications and one subtraction. Clearly, R
is congruent to modN M , and it can be shown that

3R M< [2].

5. Karatsuba Multiplication

A simple approach to multiplying large integers is

an ()()2n
wO technique, Schoolbook Multiplication.

Let 2n s= . Here, the n-bit multiply is broken down
into four s -bit multiplies and two n-bit adds. An
optimization to the carry handling problem is that at
each recursion we do two 2 1k + word adds and one
branch (on carry), which almost always falls through.

() ()
[]

1 0 1 0

2
1 1 1 0 0 1 0 0

2 2

2 2

s s

s s

N a a b b

a b a b a b a b

= + ⋅ +

= + + +

This technique can be applied recursively such
that two n-bit integers can be multiplied in ()ST k
cycles:

() ()

()

1

1
1

0

1

4 1 2 3

4 2 3 4

4 3 2 1

k
S S

k
i k i k

i

k k

T k T k

m

m

+

−
+ −

=

+

= − + +

 = + + 

= + − −

∑

Karatsuba's algorithm can be used to trade
multiplications for adds. Specifically, an n-bit
multiply is reduced to three s -bit multiplies, two s -
bit adds and three n-bit adds.

() ()
() ()

1 0 1 0

2
1 1 1 0 1 0 1 1 0 0 0 0

2 2

2 2

s s

s s

N a a b b

a b a a b b a b a b a b

= + ⋅ +

= + + ⋅ + − − +  

This technique can also be applied recursively
such that two n-bit integers can be multiplied in

()KT k cycles. Notice that when s is much greater
than the machine word-size, w , this tradeoff is quite
sensible. However, when s is comparatively small, it
could be less compelling. So, in this derivation, we
assume that the last L recursions make use of
Schoolbook Multiplication, then we optimize for L .

() ()

()

() ()

2

1
2

0
23 14

3

2 3 4
3

3 1 2 8

3 2 8 3

3 2 4 3 2 1

3 2 4 3 when =1

k
K K

k L
i k i k L

i

L k k k L L

k k k

T k T k

S L

m

m L

+

− −
+ − −

=

+ − +

+ +

= − + +

 = + + 

= − − + +

= − − +

∑

The derivation has been omitted for brevity,
however, if 2 9m≤ ≤ , 1L = in order to minimize

()KT k . In the event that 1m = , only two percent
more work is done via the use of 1L = instead of the
optimal point, 2L = . The astute reader may also
notice that Karatsuba presents an awkward challenge
concerning the handling of carries. The derivation
above assumes the use of an important software
technique; rather than multiply two integers of
inconvenient size, we use branches and adds to
assemble the correct product. For instance, suppose

() ()2 2s s
h l h lN a a b b= + ⋅ + , where la and lb are s -

bit integers and ha and hb are booleans. Then,

[]22 2s s
h h h l h l l lN a b a b b a a b= + + + , which can be

computed with an average of three branches and one
s -bit add. Furthermore, this construction does not
propagate inconveniently sized operands to lower
level recursions; at each recursion, we call three
multiply routines of power-of-two size and patch up
the result, as above.

6. Modification to Barrett’s Method

We propose a modification to Barrett's method
that requires incrementally more pre-computation, but
reduces the overall amount of multiplication and
addition that is required. The modification is called
folding. We will use it to partially reduce N, then use
classical Barrett to complete the reduction step. We
will describe our proposed technique with a single
folding step, and then extend the technique to F
foldings, showing the optimal point.

As with classical Barrett, the basic principle of
this reduction method is to efficiently compute an
estimate of the quotient N

Mq followed by the
subtraction R N qM= − . The resulting bit-length of
R is sufficiently close to the bit-length of the
modulus, M, that the expected number of additional
subtractions, R R M= − , necessary to ensure that
R M< , is less than one.

Given an n-bit modulus, M, we require the pre-
computation of two values which are constant with
respect to the modulus: 32 modsM M′ = and

32 s

Mµ  =   . Notice that both values are by-products of

the division, 32 s

M . The sequence of operations in
Figure 1 illustrates the modular reduction of a 2n-bit
integer, N, by an n-bit modulus, M, according to our
proposed modification of Barrett’s technique with a
single fold.

3
3

2

3 1

mod 2

2

s
s N

s

N N M

N +

 ′ ′= +  
′ <

The result of the folding step is N ′ , a ()3 1s + -bit
integer, calculated via two s -bit multiplications. This
is convenient as it allows the Barrett reduction step to
be computed via smaller multiplications.

22 2s s
NR N Mµ′  ′= −   

We see that R is calculated via three s -bit
multiplications. So, with one fold, Modified Barrett
Reduction requires only five s -bit multiplications.
This is favorable when compared to the two n-bit
multiplications that would be required using classical
Barrett or Large-Digit Montgomery. Assuming the
use of Karatsuba Multiplication, two n-bit
multiplications would be equivalent to six s -bit
multiplications, or 20% more work. It should be noted
that Word-Serial Montgomery can not make use of
Karatsuba Multiplication, putting it at an even greater
disadvantage.

22 s
N µ′    

N

32 modsM M′ =

3
3

2
mod 2 s

s NN N M  ′ ′= +  

32 s
NM  ′ 

32 s

Mµ  =  

M

modR N M≡

22 2s s
N Mµ′    

Figure 1: Modified Barrett with Single Fold

7. Iterative Folding

The ambitious reader may notice that the folding
process can be repeated up to ()2log n

w times. It might
be, however, that there is a point of diminishing
returns on the application of folding. So, we assume
that we will apply the folding technique F times, after
which we will apply the classical Barrett technique to
complete the reduction. For each of the F folds, we

pre-compute each () ()1 22 mod
i niM M

−+= , for
1 i F≤ ≤ . Then, for the final classical Barrett step, we

pre-compute the quotient estimate, 22 2
Fn n

Mµ
− =   ,

which is a 2 F n− -bit integer. The steps are similar to
the single-fold case, except with a loop in the folding
step:

()

() () () ()

()
()

() ()

()

1

1 2

21 2

0

1 21

2

22

mod 2 1
i i

i n

F

FF nn

ni i iN

F N

N N

N N M i F

R N Mµ

− −

−+

−−+

+−

=

 = + ∀ ≤ ≤  
  = −     

Again, we have omitted the proof of convergence
for brevity, so the thorough reader may verify that

()3R F M< + . The number of cycles required to
implement an F-fold Modified Barrett Modular
Multiplication is (),BT k F :

() ()()
() () ()

1 1

1

, 2 2 2 8

 2 1 2 1

F
k i k i

B K
i

F k
K K

T k F T k i

T k F T k

− + −

=

 = + − + + 

+ + − + + +

∑

In order to find the optimal value of F, we
consider the limiting behavior of (),BT k F :

()
() ()
()
()

()

, 1
2,0

, 2 1
3 3,0

2 3

lim 1 3 2 1

lim 2 ln ln 0

log 1 log 2 1.44

B

B

B

B

T k F F F
T kn

T k F Fd
dF T kn

F

− −

→∞

→∞

= − −

= − =

= − − ≈

Of course, F is necessarily an integer, so we
evaluate the difference between the two nearest
integers, since ()

()
,
,0

B

B

T k F
T k is uni-modal in F.

() () 7
2, 1 , 2 16B BT k F T k F n= − = = +

Observe that this result is positive and lacks the
term m, the implication of which is that there is no
difference in the number of multiplies. This is
convenient, as we can always choose 2F = .

() ()2 1 2, 2 32 3 8 3 7 5 2n n n
BT k F m− + += = ⋅ + ⋅ − +

8. Results

We demonstrate the expected performance on
three prominent architectures. First, we consider the
Atmel ATmega128, which is a single-issue 8-bit
microcontroller (AVR architecture), which requires
two cycles per multiply. The ATmega128 has 128 KB
of program memory and 4 KB of data memory, both
of which are sufficient for modern key sizes. Second,
we consider Intel's Microengine, MEv2, from the IXP
family of network processors. The MEv2 is a single-
issue 32-bit processor, which requires seven cycles per
multiply. Finally, we consider Intel's 64-bit Itanium 2
processor, which can issue either six adds per cycle or
four adds and two 64-bit integer multiplies per cycle.
A constraint of the Itanium 2 is that the multiplier can
accept new operands only every other clock cycle. So,
the relative throughput of integer adds is five times
that of integer multiplies.

The ratio of the runtime of Modified Barrett to
Word-Serial Montgomery can be found in figure 2.
Generally, Modified Barrett is superior to
Montgomery in all cases, particularly as key sizes
grow. Note that the relative runtimes represented here
are limited to mathematical operations; loads, stores
and other architecture-specific operations are not
considered. We acknowledge that there may be some
architectures which are particularly well-suited to

Word-Serial Montgomery. However, any architecture
which has sufficient system resources to be dominated
by multiplies and adds should render Modified Barrett
superior. Indeed, the potential speedup of Modified
Barrett is so significant that, at minimum, an
architecture-specific evaluation would be justified.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

512 1024 2048 4096 8192

Atmel AVR 8-bit

Intel MEv2 32-bit

Intel Itanium 2 64-bit

Figure 2: Ratio of Runtime: Modified Barrett /
Montgomery (B

M

T
T) vs. Modulus Length (in bits)

on three architectures.

9. Summary

The performance of Modified Barrett is similar on
all three architectures, lending credence to the
supposition that Modified Barrett is likely to be
compelling for many applications. Relevant to current
implementations, we see that the throughput / power
savings of 1024-bit IKE exchanges would roughly
double through the use of Modified Barrett. As key
sizes grow to address heightened security needs,
Modified Barrett continues to pay dividends; note that
the throughput and power savings of 4096-bit
exponentiations would roughly triple. Also, hardware
implementations of Modified Barrett could be
designed using off-the-shelf multipliers and adders,
obviating the need for the custom logic one might find
in a Bit-Serial Montgomery implementation.

In this paper, we have done two things. First, we
have mitigated the overhead that has previously
rendered Karatsuba Multiplication unattractive to a
general programming environment with clever carry
handling. Second, we have introduced a new pre-
processing step to Barrett Modular Reduction which is
computationally efficient. Finally, we have shown
that Modified Barrett has a sufficiently significant
algorithmic advantage that it should be evaluated in
any application that requires modular multiplication.

10. References

[1] P. L. Montgomery, Modular Multiplication without Trial
Division. Mathematics of Computation, vol. 44, no. 170, pp.
519—521, April 1985.
[2] P. Barrett, Implementing the Rivest Shamir and Adleman
Public Key Encryption Algorithm on a Standard Digital
Signal Processor. Advances in Cryptology – CRYPTO’86,
Santa Barbara, Calif., AM Odlyzko (Ed.), LNCS 263,
Springer, 1987.
[3] C. K. Koç, T. Açar and B. S. Kaliski Jr., Analyzing and
Comparing Montgomery Multiplication Algorithms, IEEE
Micro, June 1996.
[4] J.-J. Quisquater, Encoding system according to the so-
called RSA-method, by means of a microcontroller and
arrangement implementing this system. U.S. Patent
#5,166,978, November 1992.
[5] A. Karatsuba and Y. Ofman. Multiplication of Multidigit
Numbers on Automata. Soviet Phys. Doklady, 7(7):595–596,
January 1963.
[6] W. Fischer and J.-P. Seifert, Duality between
Multiplication and Modular Reduction, IACR ePrint
Archive, 2005.
[7] H. Sedlak, The RSA Cryptography Processor. Advances
in Cryptology – Eurocrypt’88, Amsterdam. D. Chaum and
W.L. Price (Eds.), LNCS 304, Springer, 1988.
[8] A. Schönhage and V. Strassen. Schnelle Multiplikation
grosser Zahlen. Computing, 7:281–292, 1971.
[9] J.-F. Dhem, Design of an efficient public-key
cryptographic library for RISC-based smart cards. Ph.D.
Dissertation, Université Catholique de Louvain, May, 1998.
[10] A. F. Tenca and Ç. K. Koç, A scalable architecture for
Montgomery multiplication. In Proc. 1st Int. Workshop on
Cryptographic Hardware and Embedded Systems
(CHES’99), LNCS 1717, p. 94 ff., Springer, Heidelberg,
August, 1999.

