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Abstract 

 
It is widely acknowledged that efficient modular 

multiplication is a key to high-performance 
implementation of public-key cryptography, be it 
classical RSA, Diffie-Hellman, or (hyper-) elliptic 
curve algorithms. In the recent decade, practitioners 
have relied mainly on two popular methods: 
Montgomery Multiplication and regular long-integer 
multiplication in combination with Barrett’s modular 
reduction technique. In this paper, we propose a 
modification to Barrett’s algorithm that leads to a 
significant reduction (25% to 75%) in multiplications 
and additions.  
 
 
1. Introduction 
 

One of the cornerstones of public-key 
cryptography is modular arithmetic, on which nearly 
all established schemes are based. An efficient 
software implementation of modular arithmetic is 
therefore desirable. While modular additions and 
subtractions are rather trivial cases, efficient modular 
multiplication remains an elusive target for 
optimization. The two most widely used algorithms 
for modular multiplication are Montgomery’s method 
[1], and regular 'schoolbook' multiplication in 
combination with Barrett’s reduction technique [2]. 
They are the main representatives of two classes of 
modular reduction algorithms, the left-to-right and 
right-to-left algorithms. For the sake of simplicity we 
will skip over most of the details and simply mention 
that Barrett’s method progresses from left to right, 
using quotient estimation to subtract a suitable 
multiple of the modulus. In Montgomery’s method the 
computation progresses from right to left. The least 
significant portion of an intermediate result is used to 
determine a multiple of the modulus, which when 
added, zeros out that least significant portion. Shifting 

to the right produces a shorter result congruent to the 
remainder. Variations of these two schemes were 
reported in [3, 4], but the essential idea is the same. A 
common thread to all schemes is the requirement to 
pre-compute certain values which depend on the size 
of the operands and/or the modulus. In addition, 
Quisquater’s and Montgomery’s method both require 
normalization and de-normalization steps, although 
their impact on performance is negligible as long as 
the cost can be amortized over sufficiently many 
modular reductions, which is indeed the case in most 
public-key algorithms. In their most naive version, 
both algorithms have a runtime in ( )2O n , which is 
due to the use of Schoolbook Multiplication. Better 
asymptotic behavior is possible if one applies sub-
quadratic time algorithms such as Karatsuba-Ofman 
[5], however, this also depends on the relative cost of 
multiplications and additions. In the case of 
Montgomery’s method, this requires the use of the 
separate operand scanning (SOS) variant of the 
algorithm [3].  This is because all other variants 
employ interleaving of multiplication and reduction 
steps, which make the recursive decomposition steps 
of the Karatsuba-Ofman method difficult or 
impossible. 

Recently, Fischer and Seifert [6] made an 
interesting observation that there exists a duality 
between multiplication and modular reduction. 
Specifically, they show that there exists a duality 
between the well-known Booth-recoding technique for 
efficient multiplication and Sedlak’s modular 
reduction method [7]. Based upon this observation and 
the premise that Booth multiplication is optimal, they 
conclude that Sedlak’s method is also optimal. It is 
unclear to us, however, how Booth multiplication can 
be viewed as optimal, when other asymptotically 
faster algorithms exist, like the ones by Karatsuba-
Ofman and Schönhage-Strassen [8]. 



In this paper we present a modification to 
Barrett’s method which, in combination with the 
Karatsuba-Ofman algorithm, results in a significant 
reduction of the number of multiplications and 
additions on typical computer architectures. 
 
2. Problem definition 
 

Let N and M be multi-precision integers whose 
lengths are 2n and n bits, respectively. We want to 
efficiently reduce N with respect to the modulus M by 
computing the remainder of the division N

M . This need 
arises due to the fact that the most popular and widely 
used public-key algorithms require modular 
exponentiation, which is performed via a sequence of 
multiply and square operations, each immediately 
followed by reduction [9]. Thus, at any given point 
during exponentiation, we have 2 operands, A and B, 
that are n bits long and we generate the 2n-bit product 
N AB=  using multi-precision multiplication. We 
then need to produce modR N M= , another n-bit 
integer. However, one does not need to guarantee that 
R < M at every intermediate step, only that R is an n-
bit integer; the final R computed at the end of the 
exponentiation can then be reduced to be less than M.  
This allows fewer total computations to be performed. 

Many cryptographic algorithms are defined over 
very large integer rings, where the operand sizes n are 
typically 512 to 4096 bits. We shall assume the use of 
a conventional processor which has a native word-size 
w, which is smaller than n. We also assume that on 
this hypothetical processor, ALU operations (i.e. 
additions, subtractions, shift operations) are less 
expensive in clock-cycles and / or power than 
multiplication for any given word-size w.  
Specifically, for the purpose of comparison, an ALU 
operation will cost one cycle and a multiply will cost 
m cycles. We will calculate the run-time of Word-
Serial Montgomery ( )WT  and our new algorithm, 

Modified Barrett ( )MT , showing the latter to be the 
superior algorithm. 
 
3. Montgomery Modular Multiplication 
 

There are different forms of Montgomery that can 
be applied to the modular exponentiation problem. 
There are bit-serial architectures [10], where special 
purpose circuits perform multiplication and reduction 
simultaneously.  However, our analysis assumes a 
general purpose processor and we therefore describe 
the Montgomery algorithm in terms of word-serial 

operations.  Word-Serial Montgomery interleaves 
vector multiplication and reduction steps and has an 

asymptotic run-time of ( )( )2n
wO .  The precise run-

time is given by ( ),WT n w : 

( ) ( ) ( ) ( )2, 2 4n n
W w wT n w m m= + +  

In order to more easily compare with other 
methods, we let ( )2log n

wk = .  Then, equivalently, 

( )WT k  is the number of cycles required to execute 
one n-bit Word-Serial Montgomery Modular 
Multiplication [3]: 

( ) ( )4 2 4 2k k
WT k m m= + +  

 
4. Barrett Modular Multiplication 
 

The Barrett reduction method requires the pre-
computation of one parameter, 22 n

Mµ  =   , which does 

not change as long as the modulus remains constant.  
The reduction then takes the form 

2 2n n
NR N Mµ  = −    , which requires two n-bit 

multiplies and one n-bit subtract, leaving the total at 
three multiplications and one subtraction.  Clearly, R 
is congruent to modN M , and it can be shown that 

3R M< [2].   
 
5. Karatsuba Multiplication 
 

A simple approach to multiplying large integers is 

an ( )( )2n
wO  technique, Schoolbook Multiplication.  

Let 2n s= .  Here, the n-bit multiply is broken down 
into four s -bit multiplies and two n-bit adds.  An 
optimization to the carry handling problem is that at 
each recursion we do two 2 1k +  word adds and one 
branch (on carry), which almost always falls through. 
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This technique can be applied recursively such 
that two n-bit integers can be multiplied in ( )ST k  
cycles: 
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Karatsuba's algorithm can be used to trade 
multiplications for adds.  Specifically, an n-bit 
multiply is reduced to three s -bit multiplies, two s -
bit adds and three n-bit adds. 
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This technique can also be applied recursively 
such that two n-bit integers can be multiplied in 

( )KT k  cycles.  Notice that when s  is much greater 
than the machine word-size, w , this tradeoff is quite 
sensible.  However, when s  is comparatively small, it 
could be less compelling.  So, in this derivation, we 
assume that the last L  recursions make use of 
Schoolbook Multiplication, then we optimize for L .   
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The derivation has been omitted for brevity, 
however, if 2 9m≤ ≤ , 1L =  in order to minimize 

( )KT k .  In the event that 1m = , only two percent 
more work is done via the use of 1L =  instead of the 
optimal point, 2L = .  The astute reader may also 
notice that Karatsuba presents an awkward challenge 
concerning the handling of carries.  The derivation 
above assumes the use of an important software 
technique; rather than multiply two integers of 
inconvenient size, we use branches and adds to 
assemble the correct product.  For instance, suppose  

( ) ( )2 2s s
h l h lN a a b b= + ⋅ + , where la  and lb  are s -

bit integers and ha  and hb  are booleans.  Then, 

[ ]22 2s s
h h h l h l l lN a b a b b a a b= + + + , which can be 

computed with an average of three branches and one 
s -bit add.  Furthermore, this construction does not 
propagate inconveniently sized operands to lower 
level recursions; at each recursion, we call three 
multiply routines of power-of-two size and patch up 
the result, as above. 
 

6. Modification to Barrett’s Method 
 

We propose a modification to Barrett's method 
that requires incrementally more pre-computation, but 
reduces the overall amount of multiplication and 
addition that is required.  The modification is called 
folding.  We will use it to partially reduce N, then use 
classical Barrett to complete the reduction step.  We 
will describe our proposed technique with a single 
folding step, and then extend the technique to F  
foldings, showing the optimal point.  

As with classical Barrett, the basic principle of 
this reduction method is to efficiently compute an 
estimate of the quotient N

Mq  followed by the 
subtraction R N qM= − . The resulting bit-length of 
R  is sufficiently close to the bit-length of the 
modulus, M, that the expected number of additional 
subtractions, R R M= − , necessary to ensure that 
R M< , is less than one. 

Given an n-bit modulus, M, we require the pre-
computation of two values which are constant with 
respect to the modulus: 32 modsM M′ =  and 

32 s

Mµ  =   .  Notice that both values are by-products of 

the division, 32 s

M .  The sequence of operations in 
Figure 1 illustrates the modular reduction of a 2n-bit 
integer, N, by an n-bit modulus, M, according to our 
proposed modification of Barrett’s technique with a 
single fold.   
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The result of the folding step is N ′ , a ( )3 1s + -bit 
integer, calculated via two s -bit multiplications.  This 
is convenient as it allows the Barrett reduction step to 
be computed via smaller multiplications. 

22 2s s
NR N Mµ′  ′= −     

We see that R is calculated via three s -bit 
multiplications.  So, with one fold, Modified Barrett 
Reduction requires only five s -bit multiplications.  
This is favorable when compared to the two n-bit 
multiplications that would be required using classical 
Barrett or Large-Digit Montgomery.  Assuming the 
use of Karatsuba Multiplication, two n-bit 
multiplications would be equivalent to six s -bit 
multiplications, or 20% more work.  It should be noted 
that Word-Serial Montgomery can not make use of 
Karatsuba Multiplication, putting it at an even greater 
disadvantage. 



 

22 s
N µ′    

N

32 modsM M′ =

3
3

2
mod 2 s

s NN N M  ′ ′= +  

32 s
NM  ′ 

32 s

Mµ  =  

M

modR N M≡

22 2s s
N Mµ′    

 
Figure 1: Modified Barrett with Single Fold 
 
7. Iterative Folding 
 

The ambitious reader may notice that the folding 
process can be repeated up to ( )2log n

w  times.  It might 
be, however, that there is a point of diminishing 
returns on the application of folding.  So, we assume 
that we will apply the folding technique F times, after 
which we will apply the classical Barrett technique to 
complete the reduction.  For each of the F folds, we 

pre-compute each ( ) ( )1 22 mod
i niM M

−+= , for 
1 i F≤ ≤ .  Then, for the final classical Barrett step, we 

pre-compute the quotient estimate, 22 2
Fn n

Mµ
− =   , 

which is a 2 F n− -bit integer.  The steps are similar to 
the single-fold case, except with a loop in the folding 
step: 
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Again, we have omitted the proof of convergence 
for brevity, so the thorough reader may verify that 

( )3R F M< + . The number of cycles required to 
implement an F-fold Modified Barrett Modular 
Multiplication is ( ),BT k F : 

( ) ( )( )
( ) ( ) ( )

1 1
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, 2 2 2 8

                2 1 2 1

F
k i k i

B K
i

F k
K K
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In order to find the optimal value of F, we 
consider the limiting behavior of ( ),BT k F : 

( )
( ) ( )
( )
( )

( )
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, 2 1
3 3,0

2 3

lim 1 3 2 1

lim 2 ln ln 0

log 1 log 2 1.44
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T k F F F
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Of course, F is necessarily an integer, so we 
evaluate the difference between the two nearest 
integers, since ( )

( )
,
,0

B

B

T k F
T k  is uni-modal in F. 

( ) ( ) 7
2, 1 , 2 16B BT k F T k F n= − = = +  

Observe that this result is positive and lacks the 
term m, the implication of which is that there is no 
difference in the number of multiplies.  This is 
convenient, as we can always choose 2F = . 

( ) ( )2 1 2, 2 32 3 8 3 7 5 2n n n
BT k F m− + += = ⋅ + ⋅ − +  

 
8. Results 
 

We demonstrate the expected performance on 
three prominent architectures.  First, we consider the 
Atmel ATmega128, which is a single-issue 8-bit 
microcontroller (AVR architecture), which requires 
two cycles per multiply.  The ATmega128 has 128 KB 
of program memory and 4 KB of data memory, both 
of which are sufficient for modern key sizes.  Second, 
we consider Intel's Microengine, MEv2, from the IXP 
family of network processors.   The MEv2 is a single-
issue 32-bit processor, which requires seven cycles per 
multiply.  Finally, we consider Intel's 64-bit Itanium 2 
processor, which can issue either six adds per cycle or 
four adds and two 64-bit integer multiplies per cycle.  
A constraint of the Itanium 2 is that the multiplier can 
accept new operands only every other clock cycle.  So, 
the relative throughput of integer adds is five times 
that of integer multiplies.   

The ratio of the runtime of Modified Barrett to 
Word-Serial Montgomery can be found in figure 2.  
Generally, Modified Barrett is superior to 
Montgomery in all cases, particularly as key sizes 
grow.  Note that the relative runtimes represented here 
are limited to mathematical operations; loads, stores 
and other architecture-specific operations are not 
considered.  We acknowledge that there may be some 
architectures which are particularly well-suited to 



Word-Serial Montgomery.  However, any architecture 
which has sufficient system resources to be dominated 
by multiplies and adds should render Modified Barrett 
superior.  Indeed, the potential speedup of Modified 
Barrett is so significant that, at minimum, an 
architecture-specific evaluation would be justified.   
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Figure 2: Ratio of Runtime: Modified Barrett / 
Montgomery ( B
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on three architectures. 
 
9. Summary 
 

The performance of Modified Barrett is similar on 
all three architectures, lending credence to the 
supposition that Modified Barrett is likely to be 
compelling for many applications.  Relevant to current 
implementations, we see that the throughput / power 
savings of 1024-bit IKE exchanges would roughly 
double through the use of Modified Barrett.  As key 
sizes grow to address heightened security needs, 
Modified Barrett continues to pay dividends; note that 
the throughput and power savings of 4096-bit 
exponentiations would roughly triple.  Also, hardware 
implementations of Modified Barrett could be 
designed using off-the-shelf multipliers and adders, 
obviating the need for the custom logic one might find 
in a Bit-Serial Montgomery implementation. 

In this paper, we have done two things.  First, we 
have mitigated the overhead that has previously 
rendered Karatsuba Multiplication unattractive to a 
general programming environment with clever carry 
handling.  Second, we have introduced a new pre-
processing step to Barrett Modular Reduction which is 
computationally efficient.  Finally, we have shown 
that Modified Barrett has a sufficiently significant 
algorithmic advantage that it should be evaluated in 
any application that requires modular multiplication. 
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