
A New Architecture For Multiple-Precision Floating-Point
Multiply-Add Fused Unit Design

Libo Huang, Li Shen, Kui Dai, Zhiying Wang
School of Computer

National University of Defense Technology
Changsha, 410073, P.R.China

{libohuang, lishen, kuidai, zywang}@nudt.edu.cn

Abstract

The floating-point multiply-add fused (MAF) unit sets
a new trend in the processor design to speed up floating-
point performance in scientific and multimedia applica-
tions. This paper proposes a new architecture for the MAF
unit that supports multiple IEEE precisions multiply-add
operation (A×B+C) with Single Instruction Multiple Data
(SIMD) feature. The proposed MAF unit can perform ei-
ther one double-precision or two parallel single-precision
operations using about 18% more hardware than a conven-
tional double-precision MAF unit and with 9% increase in
delay. To accommodate the simultaneous computation of
two single-precision MAF operations, several basic mod-
ules of double-precision MAF unit are redesigned. They are
either segmented by precision mode dependent multiplex-
ers or attached by the duplicated hardware. The proposed
MAF unit can be fully pipelined and the experimental re-
sults show that it is suitable for processors with floating-
point unit (FPU).

1. Introduction

Floating-point multiply-add fused (MAF) operation be-
comes one of the key features among current processors [1,
2, 3, 4, 15, 16]. It combines two basic operations into one
with only one rounding error. Besides the increased accu-
racy, this fused implementation can also minimize operation
latency, reduce hardware cost and chip busing [4].

In this paper, we describe a new architecture for MAF
unit capable of supporting one double-precision or two
single-precision operations in parallel. Two observations
have motivated this study.

First, single-precision floating-point operations have
been widely used in multimedia and even scientific appli-
cation. A number of recent commercial processors exhibit

significantly higher performance for single-precision than
for double-precision. Examples include the Intel Pentium,
the AMD Opteron, the IBM PowerPC and CELL [2, 5]. The
ratio is up to two times faster on the Pentium and up to ten
times faster on the CELL. If we use double-precision unit
to support two single-precision operations, the performance
of single-precision will be further improved.

Second, as the development of floating-point SIMD in-
struction sets such as Intel’s SSE, AMD’s 3DNow, and
PowerPC’s Altivec, many FPUs add the feature of SIMD [1,
2, 3]. But most of them are realized by simply duplicating
the functional units, which consume much hardware. If we
replace the double-precision unit with a multiple-precision
one, the hardware cost can be saved to get the same perfor-
mance of single-precision.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews the related work on SIMD arithmetic unit
and introduces a conventional implementation of high speed
MAF unit. This implementation serves as a baseline for
later description. In Section 3, the general architecture of
the proposed multiple-precision floating-point MAF unit is
presented. After that, Section 4 describes some modules of
the floating-point MAF unit in details. Then, the area and
delay estimation for the design is presented in Section 5.
Finally, Section 6 gives the conclusion of the whole work.

2. Background

2.1. Related work

The study of SIMD arithmetic unit starts with fixed-point
unit. Many fixed-point optimized subword-parallel hard-
ware structures reducing the area and cycle delay have been
developed, such as subword-parallel adders [7], multiple-
precision multipliers and multiply-add (MAC) units using
booth encoding [8] as well as not using booth encoding [9].

Researches on floating-point SIMD arithmetic units are

relatively rare [10, 11, 12]. This is partly because the
floating-point arithmetic algorithm is somewhat compli-
cated and the sharing between different precision units is
not so easy. Pioneer work is done in [10] which extends
a double-precision FPU to support single-precision inter-
val addition/subtraction or multiplication. It proposes a
method that how double-precision units can be split to com-
pute two bounds of a single precision interval in parallel.
In [11] a dual mode multiplier is presented, which uses a
half-sized (i.e. 27×53) multiplication array to perform ei-
ther a double-precision or a single-precision multiplication
with that the double-precision operation needs two cycles.
The multiplier in [12] uses two double-precision multipli-
ers plus additional hardware to perform one quadruple pre-
cision multiplication or two parallel double-precision mul-
tiplications.

The main contribution of this paper is proposing and
evaluating a new architecture for floating-point unit with
SIMD feature. This is achieved by modifying several ba-
sic modules of the traditional double-precision unit. As an
example, a multiple-precision MAF unit is designed and it
is fully pipelined so that both precision MAF operations can
be started every cycle.

2.2. Conventional MAF unit

In this paper, the MAF operation A×B+C is imple-
mented for IEEE floating-point format [13]. In this for-
mat, a floating-point number X represents the value X =
(−1)s × f × βe−p, where s, f, β, e and p are integers with
s, the sign bit; f, the normalized mantissa in the range [1,
2); β, the radix, 2 for binary; e, the biased exponent; and
p, the biased number, 127 for single-precision and 1023 for
double-precision. These fields with different precisions are
shown in Figure 1. Our numbering convention starts with
zero and with the least significant bit (LSB) first; that is the
LSB is numbered as bit zero.

f

05163

Double e

62

f

02231

Single e

30

s

s

Figure 1. IEEE Single/double-precision for-
mat

We first make a brief introduction to the conventional
MAF unit design as it servers as baseline for proposed MAF
unit. Figure 2 illustrates the basic architecture of its imple-
mentation [14], which is fairly typical and used in some re-
cent floating-point units of commercial processors [2, 15,
16]. It consists of three pipelined dataflow stage:

1. Multiply stage produces an intermediate product of

A×B in carry-save representation; aligns the inversed
C as a right shift by placing C to two bits left of the
most significant bit (MSB) of A×B. The two extra bits
is to allow correct rounding when A is not shifted.

2. Add stage carries on the addition of C and A×B prod-
uct using a 3-2 CSA and a carry-propagate adder, de-
termines the normalize shift count by means of LZA.

3. Normalize/Round stage involves normalizing and
rounding the intermediate result to get the final result.

C A B

MSB LSB carry sum

Sign

bit

Rounder

Normalization shifter
Sticky

Carry Propagate Adder

Complementer

Leading-

Zero

Anticipator

3-2 CSA

Inversion

Alignment

shifter

Exp

Diff

Multiplier

Array

R

Figure 2. Basic structure of double-precision
floating-point MAF unit

Table 1 lists the wordlengths of operands inside conven-
tional MAF unit datapath for single/double-precision. Note
that in exponent processing, two extra bits added in both
precision modes are used for indicators of negative result
and overflow.

Table 1. Wordlengths in the Single/double-
precision MAF unit

modules single double
Multiply array 24 53
3-2 CSA 48 106
Alignment&Adder&Normalization 74 161
Exponent Processing 10 13

Several optimization techniques for this basic structure
have been introduced [6, 17]. The modules of these MAF
implementations do not have distinct differences, so in this
paper we only discuss how to modify the basic MAF archi-
tecture to support multiple-precision MAF operations but
the sharing method can be generalized to other MAF archi-
tectures.

3. General architecture of multiple-precision
MAF unit

We now give an overview of the proposed multiple-
precision MAF unit structure, and leave the implementation
details to the next section. Figure 3(a) illustrates the 64-
bit double-precision register which can be used to store two
single-precision numbers and Figure 3(b) shows the gen-
erated results when performing two single-precision MAF
operations.

A1A =

f1

0233130

f2

32546362

e1s1e2s2

A2

B1B = B2

C1C = C2

R1=A1×B1+C1R = R2=A2×B2+C2

0313263

(a) Two single packed in one double register

(b) Two single MAF operation results

Figure 3. Two single-precision numbers
packed in one double-precision register

Using one double-precision unit to support two single-
precision parallel operations, we need a modification for
each module. The MAF architecture can be considered as
an exponent and a mantissa unit. From table 1, we can
see that for exponent processing, the wordlength of 13-
bit double-precision exponent units should be extended to
20 bits to deal with two single-precision computations (10
bits×2). But for speed reason, a duplicated separate single-
precision exponent processing unit is used in our design.
Even thus, it has slightly influence on the MAF unit be-
cause the exponent processing consumes little area and de-
lay. The double-precision mantissa units are always two
times wider than single-precision mantissa units, so it is
possible to share most of the hardware by careful design.

Algorithm 1 shows the simplified multiple-precision
floating-point MAF algorithm which focuses on the man-
tissa datapath. As the implementation of multiple-precision
MAF unit should select carefully the position of the single-
precision operands inside the double-precision datapath, we
give detailed information about datapath wordlengths. In
the algorithm, sa, ea,fa denote the sign, exponent and man-
tissa of input operand A respectively. This is the same as
input operands B and C. The control signal double is em-
ployed, and for double-precision operation, double is set.
Signal x[m : n] represents the binary numbers of x from
index n to m. s.sub, s.sub1 and s.sub2 in Step 3 indi-
cate the signs of the effective mantissa addition operations
for one double and two single-precision operations respec-
tively. s.sub, for example, is computed by s.sub=sa ⊕ sb ⊕

sc.

Algorithm 1 Multiple-Precision MAF Algorithm
Require: A, B, C must be normalized numbers

¦ Step 1 Exponent Difference : δ[19 : 10]
if double = 1 then

δ[12 : 0] = ea[12 : 0] + eb[12 : 0] − ec[12 : 0] − 967
else {double = 0}

δ[9 : 0] = ea[9 : 0] + eb[9 : 0] − ec[9 : 0] − 100
δ[19 : 10] = ea[19 : 10] + eb[19 : 10] − ec[19 : 10] − 100

end if
¦ Step 2 Mantissa Product : fprod[105 : 0]
if double = 1 then

fprod[105 : 0] = fa[52 : 0] × fb[52 : 0]
else {double = 0}

fprod[47 : 0] = fa[23 : 0] × fb[23 : 0]
fprod[96 : 49] = fa[48 : 25] × fb[47 : 24]

end if
¦ Step 3 Alignment and negation : fca[160 : 0]
if double = 1 then

fca[160 : 0] = (−1)s.sub × fc[52 : 0] × 2−δ[12:0]

else {double = 0}
fca[73 : 0] = (−1)s.sub1 × fc[23 : 0] × 2−δ[9:0]

fca[148 : 75] = (−1)s.sub2 × fc[47 : 24] × 2−δ[19:10]

end if
¦ Step 4 Mantissa Addition : facc[160 : 0]
facc[160 : 0] = fprod[105 : 0] + fca[160 : 0]
¦ Step 5 Complementation : faccabs[160 : 0]
if double = 1 then

faccabs[160 : 0] = |facc[160 : 0]|
else {double = 0}

faccabs[73 : 0] = |facc[73 : 0]|
faccabs[148 : 75] = |facc[148 : 75]|

end if
¦ Step 6 Normalization : faccn[160 : 0]
if double = 1 then

faccn[160 : 0] = norm shift(faccabs[160 : 0])
else {double = 0}

faccn[73 : 0] = norm shift(faccabs[73 : 0])
faccn[148 : 75] = norm shift(faccabs[148 : 75])

end if
¦ Step 7 Rounding : fres[51 : 0]
if double = 1 then

fres[51 : 0] = round(faccn[160 : 0])
else {double = 0}

fres[22 : 0] = round(faccn[73 : 0])
fres[45 : 23] = round(faccn[148 : 75])

end if

With above algorithm, we get the hardware architecture
of the proposed MAF unit, as shown in Figure 4. It is
pipelined for a latency of three cycles, confirming to tra-
ditional three steps. For simplicity, the exponent compu-
tation block, the sign production block, and the exception
handling block are not illustrated in the figure.

The resulting implementation have some similar charac-
teristics with the conventional MAF unit except for the fol-
lowing aspects:

1. Precision mode-dependent multiplexers. These multi-
plexers in our design are controlled by the signal dou-
ble to select the corresponding precision operands.

C 063 3132 A 063 3132 B 063 3132

Negation

Alignment

shifter

55-bit Aligned C 106-bit Carry 106-bit Sum

3-2 CSA

106-bit Adder
55-bit INC

Complementer

Leading-Zero

Anticipator

12-bit Shift Amount 161-bit Significand

Constant shifter (step 1)

Rounder

53 bit Significand

Round bit

Guard bit

Sticky bit

supporting one 53×53

or two 24×24
sub

2

2

6

carry bit

53-bit subword multiplier

2

roundup flag

sign bit
2

M1
double

1 0

53

1

53

52

1000001

M2
double

1 0

53

1

53

52

0100001

M3
double

1 0

53

1

53

52

1000001

1 6 1 25 6 1

M5
double

1 0

106106

00
48

48

9 1

M4
double

1 0

5555

26

0

3
260

1

sticky
st1

2

(part of sticky)shift

amount

14

23
23

23

23

23
23

2

108-bit variable shifter (step 2)

st1
exponent

difference

2

161

Figure 4. General structure of multiple-
precision MAF unit

2. Vectorized modules. All the modules in the MAF unit
are able to handle two parallel single-precision datap-
ath, so the double-precision modules should be vector-
ized.

3. Two’s complement. In our design, operands in the dat-
apath are represented by two’s complement. This al-
lows us to simplify the vectorization of many modules
such as adder. Moreover, the end around carry adjust-
ment needed for effective subtraction in one’s comple-
ment adder can be avoided.

4. Special LZA with concurrent position correction [19]
is used for handling both positive and negative adder
results.

5. Two-step normalization. Since operand C is a nor-
malized number, the normalization shifter can be im-
plemented as a first constant shift (53 for double-
precision, 24 for single-precision) followed by a vari-
able shifter (108-bit for double-precision, 50-bit for

single-precision) in such a way that the first shift is
controlled by exponent difference and the second shift
is controlled by LZA [6].

The main building blocks of proposed architecture are:
exponent processing, multiplier, alignment shifter, adder,
LZA, normalization shifter, rounder. Section 4 will give the
detail description of these individual modules.

4. Modules implementation

4.1. Sign and exponent processing

We use two bits to deal with the sign processing. They
have either 1-bit zero followed by 1-bit double-precision
sign or 2-bit single-precision signs in the datapath according
to the double signal. For example, the sign of the product
A×B is determined by sa ⊕ sb, as shown in Figure 5.

3163

sa2 sa1

3163

sb2 sb1

+ +
1'b0

double
1 0

sab

A B

bit 1bit 0

2-bit Product Sign

double
1 0

Figure 5. Method of sign determination

The exponent difference d can be denoted as d = ec −
(ea + eb − p), where p=1023 for double-precision, p=127
for single-precision. Then, the shift amount is δ = L − d,
where L is the number of C left of A×B, 56 for double-
precision, 27 for single-precision. So shift amount equals to
ea+eb−ec−967 for double-precision, and ea+eb−ec−100
for single-precision.

We expand the exponent processing unit by one single-
precision datapath. Figure 6 shows the modification of
original exponent processing unit. The additional single-
precision datapath which is similar to the double-precision
is not shown. In the figure, additional 1 is added to the
Adder 2 to complete the two’s complement of ec. This is
achieved by adding two 1s in the right position of the adder.
The shift adjust module selects the right shift amount which
must be in the range [0, MAXSHIFT], where MAXSHIFT
is 161 for double-precision and 74 for single-precision.

4.2. Alignment shifter

The C alignment shifter can be implemented as a vari-
able right-shifter by positioning the B operand mantissa left
of the binary point of the A×B product before the shift
count is calculated. For double-precision, the shifter is 161

ea eb ec

3-2 CSA

Adder 1

M2

Inversion
13

1313

13

13
13

13

-967d

13

13maf exp

Adder 2

Shift adjust

8shift amout

13

1

13M1
0

1

double

-100d

Figure 6. The implementation of exponent
processing for double-precision part

bits, and for single-precision, the shifter is 74 bits. As the
alignment shifter is not on the critical datapath, we can use
one 161-bit shifter to support two parallel 74-bit shifts [10].
Figure 7(a) illustrates the wordlengths in the input/output of
shifter and Figure 7(b) shows how it works for one stage of
the modified shifter. It is split by some multiplexers. As
can be seen from the figure, all wires are divided into three
slices: a most significant slice (bits [160 : 75]), a center
slice (bits [74 : 74 − 2i + 1]), and a least significant slice
(bits [74−2i : 0]), where i is the index of shifter stages (0 ∼
log2161). The shifting of most significant slice is controlled
by shift amount[i] or shift amout[7 + i] according to
precision mode, so it needs one more multiplexer; The shift-
ing of center slice is controlled by shift amount[i], but the
shift in bits should be selected according to precision mode,
so additional 2i multiplexers are required; the least signifi-
cant slice requires no more multiplexers. Since the last shift
stage is not needed in the single-precision mode, we there-
fore need

∑6
i=0 2i+1 = 134 additional multiplexers. Com-

pared with usual 161-bit shifter consists of 8× 161 = 1288
multiplexers, the overhead is about 10%.

4.3. Multiplier

The multiplier in the proposed MAF unit is able to per-
form either one 53-bit or two parallel 24-bit multiplications.
Two methods can be used to design the multiplier, one is
booth encoding [8], and the other is array multiplier [9].
Although booth encoding can reduce the number of par-
tial products to half and make the compression tree smaller,
it adds the complexity of control logic when handling two
precision multiplications, which increases the latency. Fur-
thermore, it requires detection and suppression of carries

07375148

74 74

0

7

0613

Shift amount

(a) Wordlengths in the shifter input/output

Input C before shift

or Output after shift
0

7 single single

double8

160

single single

double161

160 75 74 074-2i+1 74-2i

most-significant

slice

center

slice

least-significant

slice

1 0 1 0 1 0 1 0 1 0

double

shift_amout[7+i]
shift_amout[i]

1 0

1

0

1

0

160 75 74 074-2i+1 74-2i

1

0

0

0

0

(b) Modification of i-th stage of 161-bit shifter

Figure 7. 161-bit modified shifter supporting
two 74-bit shifts

across subword boundaries in reduction tree and final carry-
propagate adder (CPA). This is not suitable for the multi-
precision MAF unit design because the product of booth
encoding in carry-save representation contains the subword
carry bits which should be prevented at single-precision
mode. One way to eliminate the contradiction is to calcu-
late the final multiplication result first, and then add with
aligned C. But this requires more delay and hardware. So
array multiplier is used for the proposed multiple-precision
MAF unit. Although it produces a larger compression tree,
it does not require booth decoding and detection and sup-
pression in reduction tree and CPA, which avoids the con-
tradiction encountered in the booth encoding scheme.

The block diagram of the multiplier A×B is shown in
Figure 8. In this figure, input operands A and B are se-
lected according to the method shown in Figure 4. One bit
zero is inserted between the two 24-bit operands A2 and
A1, which is used to preserve carry bit in later addition.
The white region of the partial product can be written as
double · aibj , and the gray region can be written as aibj ,
where ai, bj denote the i-th bits of A and j-th of B re-
spectively. When double-precision is performed, the par-
tial product is generated similar to that of a traditional 53-
bit multiplier; when the single-precision is performed, the
white region is set to zero and the gray region are two partial
products of 24-bit multiplication respectively. This enables
two single-precision multiplications working in parallel.

023477296

Z24

Z24

A1A2

B1

B2

have no

carry in

53105

P1=A1 B1P2=A2 B20

P1

P2

48

0

Single Mode

Double Mode

P=A B

1

2

A

B

0

carry propagated

normally

Figure 8. 53-bit multiple-precision mantissa
multiplier

4.4. Two’s complement of aligned C

The two’s complement of aligned C must be performed
in case of effective subtraction. As shown in Figure 4,
we place the inversion after alignment which is different
from the conventional MAF unit completing inversion be-
fore alignment. This change allows the shifter only to shift
in 0 during alignment while in conventional design, 0 or 1
may need to be shifted in. After inversion, an additional 1
has to be added to the LSB. Since after the CSA tree of mul-
tiplier there will be one empty slot of carry word, we could
add 1 in that position. Figure 9 shows the wordlengths. We
can see that the only case needs to add 1 is when sub = 1
(effective subtraction) and st1 = 0 (partial sticky).

Aligned C LSB
0474996

48

0

or sum

105

single

single

double

106

0252752

26

48 single

0

Aligned C

MSB

0

54

single

double

55

26

0

0474996

48

carry

105

single

106

48 single

00

double

sub&(~st1)

(sub&(~st1)&(~double)) | (carry[49]&double)

Figure 9. Wordlength before 3-2 CSA

4.5. Mantissa adder and LZA

The 161-bit mantissa adders can be implemented as one
upper 55-bit incrementer and one low order 106-bit CPA.

The carry-in of upper incrementer is fed by the carry-out of
CPA. Note that this CPA does not need change because one
extra bit is inserted between two single-precision addends.
Figure 10 illustrates this mantissa adder.

0474996105

00

00

Adder

0474996

1

0

carry

sum

res

0
025275254

0

INC INC

1 0 1 0

1

0

MSB

double
2728 106

106

Aligned C

MSB

Figure 10. Structure of mantissa adder

The LZA predicts the leading digit position in parallel
with the addition step so as to enable the normalization shift
to be started as the addition completes. But the prediction
result might have an error of one bit. To correct this error,
some concurrent position correction methods have been in-
troduced [18, 19].

114 114
A B

For Concurrent

Correction

For Leading-One

Encoding

Pre-encoding Logic

Positive

Detection

Tree

Negtive

Detection

Tree

Encoding

Tree

(LOD)

OR

Correct

Shift

amount

12

114 114

114 114

22

2

55-bit Aligned C 106-bit Carry 106-bit Sum

(a) Structure of LZA

0

04963113

50 50

0

108

05113

Single

Double

(b) Wordlengths in the operands A and B

d > 0

2
M1

d > 0 d ≤ 0

Operands selector
double

114 114

55 106 106

Figure 11. Structure of LZA

The proposed LZA supports either 108-bit prediction or
two 50-bit predictions. Figure 11(a) shows the structure of
the LZA. Its operands are input from carry, sum and aligned
C registers and then selected by operands selector and mul-
tiplexer M1 to get the 114-bit addend A and B. Every ad-
dend is divided into two sections, from which we can ob-
tain two 50-bit addition leading-zero positions, and when
the two sections are gathered together we can obtain 108-
bit addition leading-zero position, as shown in Figure 11(b).
This is because tail zeros of the operands does not influence
the leading zero prediction results.

When the addition result is negative, the number of lead-
ing ones is predicted. But the number of leading zeros of its
absolute value is actually needed. In order to make the lead-
ing one predicted result match the number of leading zeros
of its absolute value, the increment by 1 for two’s comple-
ment of the addends is left behind the normalization shift-
ing.

We use the string F = fn−1 · · · f0 to identify the
leading-one position. The pre-encoding of the LZA has the
unified form of positive and negative number as shown in
following equations [18].

T = A ⊕ B, G = AB, Z = A B

fi =

TiTi−1, if i = n − 1

Ti+1(GiZi−1 + ZiGi−1)

+Ti+1(ZiZi−1 + GiGi−1), if 0 ≤ i < n − 1

Once the string F has been obtained, the position of the
leading one has to be encoded by means of a LOD tree [19].
Figure 12 shows the structure of LOD tree. For double-
precision, it can encode the 108 most significant bits of F ;
and for single-precision, it can encode the 50 most signifi-
cant bits of F and 50 least significant bits of F respectively.
Using the method described in LOD tree, we can also de-
sign the error detection module [19] which determines one
108-bit or two 50-bit detection results as not shown in this
paper.

4.6. Normalization and rounding

We can use the same sharing method for alignment
shifter to implement 108-bit normalization shifter. Figure
13 illustrates the block diagram of normalization and round-
ing unit. To reduce the rounding delay, another duplicated
rounding unit is used for single-precision.

5. Performance evaluation

With respect to the hardware cost, we consider the ad-
ditional resource needed for the main building blocks of

64-bit LOD 50-bit LOD

LOD 128

V1

f50 f49 f0

M1

0

double

P0P1 V0

f113

6 6

75 6 6

12Normalization

shift amount

Figure 12. Structure of LOD tree

108-bit Normalization shifter (step 2)

161

5324
10850

St1[1] St1[0]

rounding mode

double

5223

64

Result formatter &

Exception generation

final adjusted exp

Result

Rounder 2 Rounder 1

Sticky 2 Sticky 1

Constant shift (step 1)

double

161

d > 0

2
double

from LZA

16

sign

2

Figure 13. Diagram of rounding unit

MAF. Table 2 shows additional resources which helps to
understand the complexity of the resulting MAF unit.

For comparison, single/double-precision MAF units
are also designed. They use the same performance-
enhancement techniques as the multi-precision MAF. All
the MAF units are pipelined for a latency of three cycles
and a maximum throughput of one result per cycle. They
are implemented in Verilog HDL at a structural level and
then synthesized using the Synopsys Design Compiler and
the TSMC 0.18 micron CMOS standard cell library. The
designs were optimized for speed with an operating voltage
of 1.8V, and a temperature of 25◦C.

The area and delay comparison results of the MAF units
are given in table 3 and table 4 separately. In the two tables,
area and worst delay estimates are given for each pipeline
stage, along with the total area and overall worst case de-
lay. The area of single-precision MAF unit is about 32% of
double-precision MAF unit. Compared to the conventional
general purpose double-precision floating-point MAF unit,
the multi-precision floating-point MAF unit has roughly

18% more area cost and its worst case delay is roughly 9%
longer.

Table 2. Additional resources to the main
blocks of MAF

Main blocks Additional resources
Multiply Several multiplexers
Alignment shifter Several multiplexers
Adder Several multiplexers
LZA Width expands to 114-bit
Normalize Several multiplexers
Rounder One single-precision rounder
Exponent Processing One single-precision datapath

Table 3. Area Estimation (µm2)
Stages Multiple Double Single
Multiply & Align 531947 469514 137233
Add & LOP 107669 82081 35369
Normalize & Round 68974 49098 20815
Total Area 708590 600693 193417

Table 4. Delay Estimation (ns)
Stages Multiple Double Single
Multiply & Align 3.40 3.11 2.56
Add & LOP 3.34 3.10 2.53
Normalize & Round 3.38 3.04 2.54
Worst Case Delay 3.40 3.11 2.56

6. Conclusion

This paper presents a new architecture for multiple-
precision floating-point MAF unit design capable of per-
forming either one double-precision floating-point MAF
operation or two single-precision floating-point MAF op-
erations in parallel. Each module of the traditional double-
precision MAF unit is vectorized by sharing between multi-
ple precision operations or duplicating hardware resources
when the module is on the critical datapath. This method
can also be extended to other floating-point operations, such
as multiple precision floating-point addition or multiplica-
tion for implementing SIMD instruction sets like 3D NOW!
or SSE.

References

[1] Cornea M., et. al., “Intel ItaniumTM Floating-Point Archi-
tecture”, WCAE, San Diego, 2003.

[2] S. M. Mueller, et. al., “The Vector Floating-Point Unit in
a Synergistic Processor Element of a CELL Processor”,
ARITH-17, 2005

[3] S. Chatterjee, L. R. Bachega, “Design and exploitation
of a high-performance SIMD floating-point unit for Blue
Gene/L”, IBM J. of Research and Development, vol. 49, pp.
377-392, 2005

[4] R. K. Montoye, et. al., “Design of the IBM RISC System
/ 6000 Floating-Point Execution Unit”, IBM J. of Research
and Development, Vol. 34, pp. 61-62, 1990

[5] J., Langou, et. al., “Exploiting the Performance of 32 bit
Floating Point Arithmetic in Obtaining 64 bit Accuracy”,
University of Tennessee Computer Science Tech Report, UT-
CS-06-574, 2006

[6] Chen, L. and Cheng, J. “Architectural Design of a
Fast Floating-Point Multiplication-Add Fused Unit Using
Signed-Digit Addition”. Proceedings of the Euromicro Sym-
posium on Digital Systems Design. pp.346, 2001.

[7] M. Senthilvelan and M. J. Schulte, “A Flexible Arithmetic
and Logic Unit for Multimedia Processing”, Proceedings of
SPIE : Advanced Signal Processing Algorithms, Architec-
tures, and Implementations XIII, pp. 520-528, August, 2003.

[8] D. Tan, A. Danysh, and M. Liebelt, “Multiple-Precision
Fixed-Point Vector Multiply-Accumulator using Shared
Segmentation”, ARITH-16, pp. 12-19, 2003.

[9] S. Krithivasan and MJ Schulte, “Multiplier Architectures for
Media Processing”, Proc. 37th Asilomar Conf. Signals, Sys-
tems, and Computers, pp. 2193-2197, 2003.

[10] R. Kolla, et. al., “The IAX Architecture : Interval Arithmetic
Extension”, Technical Report 225, Universitat Wurzburg,
1999

[11] G. Even, S. Mueller, and P.-M. Seidel, “A Dual Mode IEEE
multiplier”. Proc of the 2nd IEEE Int. Conf. on Innovative
Systems in Silicon, pp. 282-289, 1997.

[12] A. Akkas and M. J. Schulte, “A Quadruple Precision and
Dual Double Precision Floating-Point Multiplier”, Proceed-
ings of the 2003 Euromicro Symposium on Digital System
Design, pp. 76-81, 2003.

[13] ANSI/IEEE standard 754-1985, IEEE Standard for Binary
Floating-Point Arithmetic, 1985.

[14] Romesh M. Jessani, Michael Putrino, “Comparison of
Single- and Dual-Pass Multiply-Add Fused Floating-Point
Units”, IEEE Transactions on Computers, v.47 n.9, p.927-
937, September 1998.

[15] Hokenek E, Montoye R, Cook P W. “Second-Generation
RISC Floating Point with Multiply-Add Fused”. IEEE
J.Solid-State Circuits, 25(5): 1207-1213, 1990.

[16] O’Connell F P, White S W. “POWER3: The Next Genera-
tion of PowerPC Processors”, IBM J.Research and Develop-
ment, 44(6): 873-884, 2000.

[17] T. Lang and J. Bruguera, “Floating-point fused multiply-add
wth reduced latency”, ICCD, 2002.

[18] Martin S. Schmookler , Kevin J. Nowka, “Leading Zero
Anticipation and Detection A Comparison of Methods”,
ARITH-15, p.7, June 11-13, 2001

[19] J. Bruguera, and T. Lang, “Leading-One Prediction with
Concurrent Position Correction”, IEEE Trans. on Comput-
ers, vol. 48, pp. 298-305, Oct. 1999.

