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Abstract

Most implementations of the modular exponentiation,
ME mod N , computation in cryptographic algorithms em-
ploy Montgomery multiplication, ABR−1 mod N , instead
of modular multiplication, AB mod N , even the former re-
quires some transformational overheads. This is so because
a state-of-the-art Montgomery multiplication implementa-
tion has a performance advantage over direct modular mul-
tiplication based on the Barrett algorithm that more than
compensates for the overhead. In this paper, we present a
direct modular multiplication method that is comparable in
speed to Montgomery multiplication. One consequence is
that when the exponent in small, direct computation (which
does not incur the transformational overhead) using the
modular multiplication algorithm presented here results in
practical performance gain. For the exponent 17, for in-
stance, which requires five modular multiplication, a saving
of up to 40% can be achieved.

1. Introduction

Computing a modular exponentiation, ME mod N , is a
key operation in cryptographic computation. Typically M ,
N , and E are large integers (for example each being 2048
bit long). In some special situations such as digital signature
verification [3], only M and N are large and E is small (e.g.
2, 17, 216 + 1, etc).

Practical algorithms for modular exponentiation are well
known and they all employ the method of repeated squar-
ing [3] or variations. For example,

M5 mod N = (((M2) mod N)2 mod N) ·M mod N.

This can be called a direct method as it works directly with
the input value M .

An alternative is that of a transformed method. Here, M
is first transformed to M̃ = MR mod N for a special R.
Then M5 mod N equals T · R−1 mod N where

T = ((M̃2R−1 mod N)2R−1 mod N) · M̃R−1 mod N.

The computing of M̃ is an initial transformation, and the
last multiplication by R−1 is a transformation to “undo” the
initial transformation.

As described, we see that the main cost of a modular
exponentiation is a sequence of operations of the form

AB mod N, or ABR−1 mod N.

The mod N operation in AB mod N is deemed expen-
sive as a division by N is present. A popular direct method
is proposed by Barrett [1] where roughly speaking the divi-
sion by N is replaced by a multiplication of 1/N .

A popular transformed method is proposed by Mont-
gomery [5] where R is chosen to be a power of two.
The operation ABR−1 mod N only requires large-integer
multiplication followed by division by R. Exploiting this
property appropriately, ABR−1 mod N can be imple-
mented more efficiently than AB mod N using Bar-
rett’s method. Consequently, Montgomery’s method is the
method of choice in many software implementation of mod-
ular multiplication inside a modular exponentiation.

The main thesis of this paper is that direct modular mul-
tiplication AB mod N can be carried out as economically
as ABR−1 mod N . Thus, direct modular exponentiation
is competitive in performance to transformed modular ex-
ponentiation. And in the case where the exponent is small,
direct method will be faster as it does not incur the trans-
formation overhead. Take the exponent 17 for example. A
direct method requires 5 modular multiplications while a
transform method based on Montgomery method requires 5
Montgomery multiplications and 2 modular multiplications.
If the performance of a modular multiplication is the same
as a Montgomery multiplication, the direct method is faster
by (7− 5)/5 = 40%.



Barrett Montgomery
Product Step:
P ← A×B
Cost: mul L× L→ 2L

P ← A×B
Cost: mul L× L→ 2L

Get Quotient:

Q←
⌊

�P/rL−1� W

rL+1

⌋
Cost: mul (L+1)×L→ Lhigh

Q← PN ′ mod R
Cost: mul L× L→ Llow

Reduction:
P ← (P mod rL+1)−

(QN mod rL+1)
Cost: mul L×L→ (L +1)low

P ← (P + QN)/R
Cost: mul L× L→ Lhigh

Fix Up:
If P < 0, P ← P + rL+1

While P ≥ N , P ← P −N
If P ≥ N ,
P ← P −N

Table 1. High-Level Comparison of Barrett
and Montgomery Methods

2. Background

Let us set up the notation here to aid all subsequent dis-
cussions. A, B, N are multi-word integers:

A = aL−1r
L−1 + aL−2r

L−2 + · · ·+ a1r + a0

B = bL−1r
L−1 + bL−2r

L−2 + · · ·+ b1r + b0

N = nL−1r
L−1 + nL−2r

L−2 + · · ·+ n1r + n0

Each of the words aj , bj , and nj are “native” integers and
r is the “radix.” For example, aj , bj , and nj can be 32-bit
unsigned integers and A, B, N being 2048 bit long. This
corresponds to r = 232 and L = 64. For a transformed
method, R is typically rL. We also assume that 0 < A, B <
N .

We first outline in Table 1 both the Barrett and Mont-
gomery methods. The former computes AB mod N
and the latter ABR−1 mod N . Initialization in Bar-
rett’s method computes W = �r2L/N�, and that in Mont-
gomery’s method, N ′ = −N−1 mod R.

In this form, the cost of the Barrett and Montgomery
methods are quite comparable, roughly dominated by 2.5
full L-by-L word multiplication. The former is at a slight
disadvantage as it requires a (L + 1) word by L word mul-
tiplication instead of a L by L, and that one may have to go
through multiple times of adjustment (up to twice).

However, the Montgomery method admits an optimiza-
tion for the “Get Quotient” step that allows the cost of com-
puting Q at the stated L-by-L word multiplication, which
costs O(L2) native integer multiplications, to that of L na-
tive integer multiplications. In addition to this saving of

Montgomery New Method
Product:
P ← 0 P ← aL−1B

Reduction:
For j = 0, 1, . . . , L− 1
qj ← (ajb0 + p0)n

′ mod r
P ← (P + ajB + qjN)/r

End

For j = L− 1, L− 2, . . . , 1
Get qj using P ,aj ,B
P ← r(P −qjN)+aj−1B

End
Get q0, P ← P − q0N

Fix up:
If P ≥ N , P ← P −N If P ≥ N , P ← P −N

Table 2. Montgomery Method and New Direct
Method

computational cost, the multiplication P ← A × B can be
integrated into the reduction step, saving data movement
cost as well as improving data locality. These optimiza-
tions are outlined in left column of Table 2. Here, n′ is a
native integer n′ = −n0

−1 mod r. The key is that in-
stead of trying to determine the Q completely before the
reduction (P + QN)/R, it is more economical to com-
pute (P + QN)/R together with determining Q. One
obtains the first digit q0 of Q and immediately computes
P ← (P + q0N)/r. The resulting P value will be used
to obtain the next digit q1 and the computation is repeated.
That obtaining each qj this way costs only one native inte-
ger multiplication results in savings stated above. This op-
timization method is well known (cf. [3, 4]). On the other
hand, similar optimizations for the Barrett method is absent
in standard texts or relevant literature ([3, 1]). Moreover,
the overhead of having to compute W = �r2L/N� greatly
diminishes the advantage of a direct method in the case of
small exponent exponentiation.

In this paper, we will present a direct modular multi-
plication that is as economical as Montgomery’s method.
As a preview, our modular multiplication is outlined in Ta-
ble 2 aside the Montgomery method. It is seen here that the
costs of the two methods are comparable except possibly
for that of the computation for qj where we have omitted
the details. That cost, though slightly higher than the cor-
responding Montgomery method, is only a small portion of
the overall cost which is dominated by the updating of P .
In subsequent sections, we present the algorithm in detail,
analyze its correctness, and sketch one implementation.

3. Redundant Digit Division

The general idea we pursue here is that we compute a
rather good approximation Q to the integer quotient AB/N



in a word-by-word manner starting at the most significant
word. That is we compute integer values qL−1, qL−2, down
to q0, where

Q = qL−1r
L−1 + qL−2r

L−2 + · · ·+ q1r + q0.

This Q is a good approximation in the sense that

0 ≤ A B −Q N < 2N

and thus at most one more subtraction is needed after the re-
mainder A B−Q N is computed. This idea can be realized
without too much effort if we consider the situation where
P = AB is computed before any reduction step. Given

P = p2L−1r
2L−1 + p2L−2r

2L−2 + · · ·+ p1r + p0

and

N = nL−1r
L−1 + nL−2r

L−2 + · · ·+ n1r + n0

the usual high-radix division method can be applied in gen-
eral. For example, simply consider P and N as 2L digit
floating point numbers and carry out the division to ob-
tain L quotient digits and a L digit remainder. This kind
of algorithm typically obtain one digit at a time based on
approximation of the running (partial) remainder and the
reciprocal of the divisor. A redundant digit system is re-
quired and {−r/2, . . . , r/2} or {−r + 1, . . . , r − 1} are
common choices. These methods are mostly designed with
hardware implementation in mind. Our situation is differ-
ent as it is more natural to stay with unsigned integers of
length log2(r). So we will adapt to use a non-negative re-
dundant digit system. In addition, integrating the product
and the reduction steps are highly desirable [4]. This means
that AB is accumulated one ajB at a time, while always in
conjunction with a subtraction by some qkN . But this inte-
gration requires more challenging analyses as the estimate
of quotient digits are now based on an incomplete remain-
der (some parts are yet to be computed), which needs to be
kept non-negative. Here is a sketch where superscripts are
added to keep track of the iteration number.

P (L−1) ← aL−1B
For j = L− 1, L− 2, . . . , 1 do

Get qj using approximate P (j), aj−1, B
P (j−1) ← r(P (j) − qjN) + aj−1B

End do
Get q0 using approximate P (0)

Compute P ← P (0) − q0N
Compute if necessary P ← P −N

The crux of a practical algorithm lies in the ability to obtain
the qj at low cost while avoiding the qj to be too wide. In
order to obtain such qj’s, we must make use of more than

// FP(·) means rounds to nearest mode
Let u← FP(N�((L− 1)�int − e)), u← u + 2
// since �fp ≥ �int + e + 2, u = �2eN/rL−1�+ 2 exactly
Let u← FP(r/u) // one FP division
P (L−1) ← aL−1B // result in L + 1 words
For j = L− 1, L− 2, . . . , 1 do

T ← [(aj−1��int/2) × (bL−1��int/2)]�(�int − e)
// T = �2−(�int−e)�aj−1/

√
r��bL−1/

√
r�� exactly.

Wj ← FP(P (j)� (L�int − e)) + FP(T )
// will prove Wj = �2eP (j)/rL�+ T exactly.
qj ← �FP(u×Wj)� // can prove 0 ≤ qj < 2r
// compute uWj in FP, then trunc to int
P (j−1) ← r(P (j) − qjN) + aj−1B
// can prove 0 ≤ P (j−1) < 2rN

End do
W0 ← FP(P (0)� (L�int − e))
q0 ← �FP(u×W0)� // can prove 0 ≤ q0 < 2r
Compute P ← P (0) − q0N // can prove 0 ≤ P < 2N
Compute if necessary P ← P −N

Figure 1. Redundant Digit Direct Modular
Multiplication Algorithm

�int = log2(r) leading bits of N and the partial remainder.
We propose the use of a floating point type FP as a con-
venient way to facilitate computations involving more than
�int bits. Here are our parameterizations. �int = log2(r)
is the number of bits of the native integers aj , bj , nj . We
assume �int to be even (which is realistic anyway) to ease
our presentation. Let e denote the number of extra precision
one chooses to use and �fp denote the precision of FP. Our
algorithm functions correctly as long as 6 ≤ e ≤ �int/2
and �int + e + 2 ≤ �fp. The algorithm behaves better (to
be explained later) for a larger e. For instance, in the case
of �int = 32 (32-bit integer) and �fp = 53 (IEEE double
precision), one can use e = 16. For �int = 16, we can use
single precision FP and set e = 6. For �int = 64, one can
use a (lazily) simulated FP type using two double precision
type offering a type comparable to �fp = 74. (We will touch
on this “lazy” type in Section 4). The algorithm maintains
a partial remainder 0 ≤ P < 2rN which is represented by
(L + 1) words and one bit. We use the notation P � k to
logical (unsigned) right shifting by k bits, which is equiva-
lent to the mathematical operation of �P/2k�. The outline
of our algorithm is given in Figure 1. Except for u and
Wj , all other variables are of unsigned integer type (either
scalar or multi-word). Note that the superscripts in P (j) are
merely for bookkeeping. In an actual implementation, they
utilize the same integer array.

Conceptually, u and Wj approximate 1/(rN) and
rP (j) + aj−1B respectively. Thus �uWj� can be used as
a quotient digit. The analysis to follow will establish that as
long as u and Wj satisfy some accuracy requirements, the



algorithm maintains the following bounds:(1) 0 ≤ qj < 2r,
(2) 0 ≤ P (j) < 2rN . These bounds are advantageous be-
cause

1. qj is at most one bit more than one word

2. P (j) is at most one bit more than L + 1 words

3. P (j) is never negative

Something stronger is true. The bound on P (j) is in the
form P (j) < (1 − λ)−1rN for small λ (for �int = 32 and
�fp = 53, we can have 0 ≤ λ < 2−11). Thus, for input
value N that happens to satisfy (1 − λ)−1N < rL, P (j) in
fact always fit in L + 1 words. Additionally, qj < r with
probability no less than 1− λ.

We now begin proving theorems to establish the correct-
ness of the algorithm. We will assume N to be reasonably
normalized: (rL/N) <

√
r, that is, the upper half of nL−1

is non zero. Handling of unnormalized N is not difficult
and we discuss that at the end of the paper.

4. Analysis of Algorithm

We will now perform an analysis on the algorithm in Fig-
ure 1. By design, both approximations u and the Wj are
biased downwards. That is both u and Wj are no bigger
than the actual value they aim at approximating. While the
specific errors in Wj and the floating point related error in
computing uWj are different at each step. The design guar-
antees that the errors are all uniformly below some thresh-
olds. We establish these facts by the first two theorems.

Theorem 1 For j = L−1, L−2, . . . , 1, 0 ≤ P (j) < 2rL+1

implies

Wj =
2e

rL+1
(rP (j) + aj−1B)− δj ,

and 0 ≤ P (0) < 2rL+1 implies

W0 =
2e

rL
P (0) − δ0,

where all the δj are bounded uniformly 0 ≤ δj < δW for
some fixed δW ≤ 4.

Proof 1 For j = L− 1, L− 2, . . . , 1 we define:

âj−1=
⌊

aj−1√
r

⌋
, B̂=

⌊
B

rL−1/2

⌋
, P̂ (j)=

⌊
2e

rL
P (j)

⌋

From the algorithm,

T =
⌊

2e

r
âj−1B̂

⌋
.

Since �fp ≥ �int + e + 2, Wj is guaranteed to be equal to
P̂ (j) + T exactly if 0 ≤ P (j) < 2rL+1. Thus, clearly the
four quantities satisfy

0 ≤
(

aj−1√
r

)
− âj−1,

(
B

rL−1/2

)
− B̂,

(
2e

rL
P (j)

)
− P̂ (j),

(
2e

r
âj−1B̂

)
− T < 1.

Let us estimate
2e

rL+1
aj−1B − T

which is equal to
(

2eaj−1B

rL+1
− 2eâj−1B

rL+1/2

)
+

(
2eâj−1B

rL+1/2
− 2e

r
âj−1B̂

)
+

(
2e

r
âj−1B̂ − T

)

which is

2e

rL+1/2
B

(
aj−1√

r
− âj−1

)
+

2e

r
âj−1

(
B

rL−1/2
− B̂

)
+

(
2e

r
âj−1B̂ − T

)

This quantity clearly lies in the range [0, 3). Thus

0 ≤ 2e

rL+1

(
rP (j) + aj−1B

)
−Wj < 4.

For W0, simply note that P (0) and P̂ (0) defined the same
way gives

0 ≤ 2e

rL
P (0) − P̂ (0) < 1.

0 ≤ P (0) < 2rL+1 implies W0 = P̂ (0) exactly. Thus

W0 ≤ 2e

rL
P (0) − δ0,

0 ≤ δ0 < 1 (so δ0 < 4). The proof is thus complete.

Theorem 2 For j = L−1, L−2, . . . , 0, the quotient digits

qj =
⌊

rL

2e

Wj

N (1 − εj)
⌋

, where 0 ≤ εj < εq for a fixed

εq < (2( rL

N ) + 1)(2er)−1. This holds regardless of the sign
of Wj . If Wj ≥ 0, then qj ≥ 0 also.

Proof 2 Define N̂=
⌊

2e

rL−1 N
⌋

+ 2. Thus

N̂ =
2e

rL−1
N + α, 1 < α ≤ 2.

Consequently,

N̂ =
2e

rL−1
N(1 + β), β =

(
rL

N

)
α

2er
.



Thus

βmin=
(

rL

N

)
1

2er
≤ β ≤

(
rL

N

)
2

2er
=βmax

In particular β is always positive. Next, FP in round to
nearest mode gives

u = FP(r/N̂ ) =
r

N̂
(1 + γ1),

and

qj =
⌊
Wj

r

N̂
(1 + γ1)(1 + γ2)

⌋

where |γ1|, |γ2| ≤ 2−�fp . Hence,

qj =
⌊

rL

2e

Wj

N
(1 + γ1)(1 + γ2)(1 + β)−1

⌋

=
⌊

rL

2e

Wj

N
(1− εj)

⌋

where

εj =
β − (γ1 + γ2 + γ1γ2)

1 + β
.

This is valid as long as 1 + β �= 0 which is our case here
as β is positive. The expression for εj when considered as
a function of β is continuously differentiable for β > −1
and has derivative (1 + γ1 + γ2 + γ1γ2)/(1 + β)2. This is
positive as long as the gamma’s are less than 1/4 which is
definitely the case for any realistic FP. So, for any specific
(fixed) γ1 and γ2, the expression for εj is smallest at βmin

and largest at βmax. Thus, a lower (or upper) bound for
εj is obtained at βmin (or βmax) and when γ1 + γ2 + γ1γ2

is at its maximum (or minimum). Denoting 2−�fp by εfp, it
is easy to see that γ1 + γ2 + γ1γ2 attains its minimum at
γ1 = γ2 = −εfp and its maximum at γ1 = γ2 = εfp. Thus,
we have

βmin − 2εfp − εfp
2

1 + βmin
≤ εj ≤ βmax + 2εfp − εfp

2

1 + βmax
.

Because βmin > (2er)−1, βmin − 2εfp − εfp
2 > 0 as

long as �fp ≥ �int + e + 2. Hence εj > 0 always.
(This is crucial.) As for an upper bound, we have εj <
(2(rL/N) + 1)(2er)−1. Finally, since u ≥ 0 and thus
Wj ≥ 0 guarantees FP(uWj) ≥ 0, implying qj ≥ 0 as
well. This completes the proof.

We point out that the proof shows the purpose of the bias-
ing by adding 2 to the truncated N is to maintain εj ≥ 0 al-
ways. With this bias, as long as the floating point errors can-
not be big enough to offset βmin, εj ≥ 0. Thus it is not even
necessary to have IEEE floating point arithmetic. For exam-
ple, we can easily simulate a FP arithmetic using two double
precision number where the leading part only has 24 sig-
nificant bits. This allows products be computed relatively

easily (as the product of the leading portions are error free).
This kind of arithmetic operation guarantees |γ| ≤ 2−74 as
no more than 3 bottom bits of the 24 + 53 = 77 results
are corrupted. This FP type is useful, for example, when
�int = 64.

Theorem 3 For 0 ≤ j ≤ L− 1, as long as Wj ≥ 0,

0 ≤ rL+1

2e
Wj − rqjN < rN + εq

rL+1

2e
Wj .

Proof 3 Theorem 2 says:

qj =
⌊

rL

2e

Wj

N
(1 − εj)

⌋
,

where

0 ≤ εj < εq < (2(
rL

N
) + 1)(2er)−1.

Moreover,

0 ≤ rL

2e

Wj

N
(1− εj)− qj < 1,

Thus, together with Wj ≥ 0,

0 ≤ rL+1

2e
Wj − qjrN < rN + εq

rL+1

2e
Wj .

Theorem 4 For 1 ≤ j ≤ L−1, 0 ≤ P (j) < 2rL+1 implies

P (j−1) =
rL+1

2e
Wj − rqjN +

rL+1

2e
δj .

And 0 ≤ P (0) < 2rL+1 implies

P =
rL

2e
W0 − q0N +

rL

2e
δ0

where the δj are those in Theorem 1, that is, 0 ≤ δj < δW .

Proof 4 From Theorem 1,

Wj =
2e

rL+1
(rP (j) + aj−1B)− δj, j = L− 1, . . . , 1

for some δj where 0 ≤ δj < δW . Thus,

P (j−1) = r(P (j) − qjN) + aj−1B (from Algorithm)

=
rL+1

2e
Wj +

rL+1

2e
δj − rqjN.

For P , applying Theorem 1 gives

P = P (0) − q0N

=
rL

2e
W0 − q0N +

rL

2e
δ0.



Theorem 5 If for a certain j in the range 0 ≤ j ≤ L − 1
we have 0 ≤ P (j) < αrN for some α, 1/2 ≤ α ≤ 2, then
the followings hold for some λ which satisfies the bound
0 ≤ λ < 2−e(10( rL

N ) + 2):

1. 0 ≤ qj < 1 + αr and 0 ≤ P (j−1) < (1 + λα)rN for
j ≥ 1.

2. 0 ≤ q0 < αr, and 0 ≤ P < (1 + λα)N for j = 0.

Proof 5 First note that 0 ≤ P (j) < αrN < 2rL+1 implies
Wj ≥ 0 and qj ≥ 0 (from Theorems1 and 2). Consider the
case j ≥ 1. By Theorem 1,

rL+1

2e
Wj = rP (j) + aj−1B − rL+1

2e
δj ≤ rP (j) + aj−1B

as δj ≥ 0. Now P (j) < αrN by assumption and it is also
obvious that 0 ≤ aj−1 < r, 0 ≤ B < N . So

0 ≤ rL+1

2e
Wj ≤ rP (j) + aj−1B < (1 + αr)rN.

Since

qj = �r
L

2e

Wj

N
(1− εj)�

we have qj < 1 + αr. To establish the second part of (1),
note that Wj ≥ 0 and

qj = �r
L

2e

Wj

N
(1− εj)�

shows qj ≤ rL

2e

Wj

N . In addition,

Wj ≤ 2e

rL+1
(rP (j) + aj−1B) (Thm 1).

So,
P (j−1) = rP (j) + aj−1B − rqjN ≥ 0.

On the upper bound:

P (j−1) =
rL+1

2e
Wj +

rL+1

2e
δj − rqjN (Thm 4)

< rN + εq
rL+1

2e
Wj +

rL+1

2e
δW (Thm 3)

< rN + εq(1 + αr)rN +
rL+1

2e
δW

= rN(1 + εq(1 + αr) +
rL

N

δW

2e
)

= rN(1 + λα)

where

λ =
εq

α
+ εqr + (

rL

N
)
δW

2eα

≤ εq(2 + r) + (
rL

N
)

8
2e

<

(
2(

rL

N
) + 1

)
2 + r

2er
+ (

rL

N
)

8
2e

< 2−e

(
10(

rL

N
) + 1 +

2
r

+
4
r
(
rL

N
)
)

< 2−e

(
10(

rL

N
) + 2

)
.

by estimating 2
r + 4

r ( rL

N ) ≤ 1. This holds if r ≥ 64 and

( rL

N ) ≤ √r. So (1) is established.

Consider j = 0. rL

2e W0 ≤ P (0) < αrN and

q0 =
⌊

rL

2e

W0

N
(1 − ε0)

⌋
⇒ q0 < αr

Applying to P the previous analysis on P (0) shows

P < N

(
1 + εq(1 + αr) +

rL

N

δW

2e

)

giving the same expression for P (0) but less a factor of r.
The proof is complete.

The following is the main theorem that shows the cor-
rectness property of the complete algorithm.

Theorem 6 Let λ be the value in Theorem 5. As long as
λ < 1/2, the following hold:

1. 0 ≤ P (j) < (1 − λ)−1rN for j ≥ 0, and 0 ≤ P <
(1− λ)−1N .

2. 0 ≤ qj < 1 + (1 − λ)−1r for j ≥ 1, and 0 ≤ q0 <
(1− λ)−1r.

The algorithm maintains 0 ≤ qj < 1 + 2r, 0 ≤ P (j) <
2rN , 0 ≤ P < 2N . If in addition λ < 1/2 − (4r − 2)−1,
0 ≤ qj < 2r is maintained.

Proof 6 First, P (L−1) = aL−1B. Since aL−1 ≤ r − 1 and
B < N , we have P (L−1) < (r−1)N < rN . We now apply
Theorem 5 repeatedly.

0 ≤ P (L−1) < rN

0 ≤ P (L−2) < (1 + λ)rN
· · · · · · · · ·
0 ≤ P (0) <

(∑L−1
i=0 λi

)
rN

0 ≤ P <
(∑L

i=0 λi
)

rN

Similarly, using the bounds on P (j) just established and
Theorem 5,

0 ≤ qL−1 < 1 + r
0 ≤ qL−2 < 1 + (1 + λ)r
· · · · · · · · ·
0 ≤ q1 < 1 +

(∑L−1
i=0 λi

)
r

0 ≤ q0 <
(∑L

i=0 λi
)

r



Summing to infinity gives the bounds as stated in the theo-
rem. In addition, λ < (1/2)− (4r − 2)−1 implies qj < 2r
and P (j) < 2rN .

We comment that when N is normalized, (rL/N) < 2,
then e ≥ 6 guarantees λ < 22/64. And for a normal-
ized N , �int = 32, �fp = 52, e = 16, the resulting λ
is less than 2−11. If N is too unnormalized, a convenient
way to handle the modular exponentiation is to compute
(2kME mod 2kN)/2k where 2kN is N normalized. This
computation will first compute R = ME mod 2kN , fol-
lowed by 2kR mod 2kN . The result is than right shifted k
bits.

5. Implementation

The key inner loop is the computation of

P (j−1) ← r(P (j) − qjN) + aj−1B.

There are a number of considerations relevant to implemen-
tation.

In practice, the variables P (j+1) and P (j) share the same
storage. The theorems show that P (j) < 2rL+1. Hence
it suffices to compute P (j) mod 2rL+1 for all j and
P mod 2rL. That is, the key computation is

r(P (j) − qjN) + aj−1B mod 2rL+1.

Second, it is more convenient to compute addition rather
than subtraction of unsigned multi-word integers. We there-
fore use the complement of N

Ñ ← rL −N

thus

r(P (j) − qjN) + aj−1B mod 2rL+1 =

r(P (j) + qjÑ) + aj−1B − qjr
L+1 mod 2rL+1

The fact that qj can be as large as 1 bit more than a word
means that in general qj = σjr + q̂j where q̂j = qj mod r
and σj is either 0 or 1. Thus the inner loop in general com-
putes

r(P (j) + q̂jÑ + σjrÑ) + aj−1B − qjr
L+1 mod 2rL+1

Note there are two one-word-by-multi word product. The
term σjrÑ does not involve multiplication as σj is just one
bit. Moreover, because of the high probability that σj = 0,
our code has a branch without this term altogether. The
computation of −qjr

L+1 mod 2rL+1 involves a simple
“XOR”ing of the lsb of qj .

Another important observation is that not only the fix up
step is seldom needed, but that one can often recognize this

without comparing P to N . Here is why. The fix up is not
needed if in fact q0 = �P (0)/N�, which is equivalent to
|(P (0)/N)− q0| < 1. Now

∣∣∣∣P
(0)

N
− q0

∣∣∣∣ ≤
∣∣∣∣P

(0)

N
− FP(uW0)

∣∣∣∣ + |FP(uW0)− q0|

Hence as long as

|FP(uW0)− q0| < 1− |(P (0)/N)− FP(uW0)|,
no fix up is necessary. Using Theorems 1 and 2, we can
derive a constant ∆ ≥ |(P (0)/N) − FP(uW0)|. In fact
λ works (but we can have a tighter number still). Thus if
|FP(uW0)− q0| < 1−∆, we by pass the fix up. Only when
this test fails that we compare P against N to determine if
the subtraction P −N is needed. This saving is worthwhile
as comparing P against N involves a multiword addition.

Indeed, in our tests of roughly 1200 cases, only 4 out of
the 1200 × 64 qj needs one more bit. Moreover, not only
none of the cases require a fix up step, but that none require
a comparison with N as the fast test allowed us to bypass
them all.

We implemented in a similar manner Montgomery mul-
tiplication as outline in Table 2. Both implementations are
in generic C and does not make use of vectorization such as
SSE2. The inner loops for both are similar in structure and
their fragments are shown here.

//inner loops
//---------------------------------------//
//Modular Multiplication
for ( k = L; k > 1; k-- )
{

a_x_B = (dword)AA[j-1] * (dword)BB[k-1];
q_x_Ncomp =(dword)q * (dword)Ncomp[k-2];
PP64[k] = Xtmp_64 + PP64[k-1] +

HIGH_WORD( a_x_B ) +
HIGH_WORD( q_x_Ncomp );

Xtmp_64 = LOW_WORD( a_x_B ) +
LOW_WORD( q_x_Ncomp );

}
//---------------------------------------//
//Montgomery Multiplication
for ( k = 1; k < L; k++ )
{

a_x_b = (dword)AA[j] * (dword)BB[k];
q_x_n = q * (dword)NN[k];
PP64[k-1] = PP64[k] + TMP +

LOW_WORD(a_x_b) +
LOW_WORD(q_x_n);

TMP = HIGH_WORD(a_x_b) +
HIGH_WORD(q_x_n);

}

We ran 1200 test cases on a 1.86 GHz Intel Pentium
M machine under Windows XP using a gcc 3.4.4 com-
piler. The modular multiplication took on the average 158



thousand cycles and the Montgomery multiplication took
161 thousand cycles. The quotient digit generations con-
stitute 7% and 3% of the time, respectively. While fur-
ther optimization can be done for specific situations that
may favor one or the other algorithms, it is fair to con-
clude that the two are comparable. Hence the direct method
has an advantage for small exponent exponentiation. In the
case of the exponent 17, the ratio of the latency of Mont-
gomery method to that of the direct method is (5TMont +
2TModmul)/(5TModmul) which is roughly 1.4 using the tim-
ing just obtained.

We also point out that out of the 1200 tests in the Mont-
gomery multiplication, about 200 cases require fix ups. This
is consistent with common knowledge and that there are
side-channel attacks that are based on the need for fix up
steps (see [2, 6, 7] for example). The direct method pre-
sented here might offer some advantages in this aspect.
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