ARITH 18 – June 25–27, 2007

Return of the hardware floating-point elementary functions

Jérémie Detrey, Florent de Dinechin, and Xavier Pujol

Projet Arénaire - LIP UMR CNRS - ENS Lyon - UCB Lyon - INRIA 5668 http://www.ens-lyon.fr/LIP/Arenaire/

Outline of the talk

- Double-precision exponential
- ► Results
- ► Conclusion

Outline of the talk

► Context

- ► Double-precision exponential
- ► Results
- ► Conclusion

► a bit of paleo-bibliography

► a bit of paleo-bibliography

- M. D. Ercegovac (IEEE TC, 1975) Radix-16 evaluation of certain elementary functions.
- G. Paul and M. W. Wilson (ACM TOMS, 1976) Should the elementary functions be incorporated into computer instruction sets?
- C. Wrathall and T. C. Chen. (ARITH 4, 1978) Convergence guarantee and improvements for a hardware exponential and logarithm evaluation scheme.
- P. Farmwald (ARITH 5, 1981) *High-bandwidth evaluation of elementary functions.*
- M. Cosnard, A. Guyot, B. Hochet, J.-M. Muller, H. Ouaouicha, P. Paul, and E. Zysmann (ARITH 8, 1987) *The FELIN arithmetic coprocessor chip.*

FPUs strike back

- ▶ ... then came the floating-point unit
 - dedicated efficient hardware operators
 - only basic operations: +, -, ×, \div and $\sqrt{}$

FPUs strike back

- then came the floating-point unit
 - dedicated efficient hardware operators
 - only basic operations: +, -, ×, \div and $\sqrt{}$
- ▶ what about elementary functions?
 - comparatively rare operations
 - hardware implementation would be a waste of silicon
 - dedicate silicon to more useful units (ALUs, FPUs, caches)

FPUs strike back

- then came the floating-point unit
 - dedicated efficient hardware operators
 - only basic operations: +, -, ×, \div and $\sqrt{}$
- ▶ what about elementary functions?
 - comparatively rare operations
 - hardware implementation would be a waste of silicon
 - dedicate silicon to more useful units (ALUs, FPUs, caches)
- only software or micro-code implementations

FPGAs: a new hope?

- Field-Programmable Gate Arrays
- reconfigurable integrated circuits

FPGAs: a new hope?

- Field-Programmable Gate Arrays
- reconfigurable integrated circuits
- architecture based on programmable logic cells and routing resources
 - lower performances than ASICs
 - high flexibility
 - fine-grain parallelism
 - lower cost per unit

		┍┓┍╼┓┟╧╸┟╧╸┢╧╸┢╧╻┍┙
	╺┫╼╗┛╺┫╼╗┛╺┫╼╗┛╺┫╼╗┛╺┫╼╗┛	<mark>╡<mark>╞╎╴╞╺┯╛╘┯╛╘┯╛╘┯╛╘┯╛╘</mark></mark>
┢┙╄┹┥╇╃┞┹╺╄┹┥╇╃┨╞┨╴╞╴	┶┹┥┯┽╘┯┼╘┯┼╘┯┼╘┯┼	<mark>╡<mark>╞╎╴╞┥┯┙┥┯┥┥┯┥┥┯┥</mark>┥</mark>
		╡ <mark>╎╎ ╎┍┱┍┱┍┱┍┱┍┱</mark>
┟┙╄┹╶╄┹╴╄┹╴╄┹╴┨╞┨╶╞	┶┹┶┹┶┹┶┹	<mark>╏┠┤╴┠┶╦┹╋╦╋╋╦╋╋╦┥</mark>
┝┑┢╧╸┢╧╸┢╧╸┢╧╸┨╶┨╴┞	<mark>· · · · · · · · · · · · · · · · · · · </mark>	╡ <mark>╎╴╷_{┍╼╸┍╼╴┍╼╴┍}</mark> ╼╴

FPGAs: a new hope?

- Field-Programmable Gate Arrays
- reconfigurable integrated circuits
- architecture based on programmable logic cells and routing resources
 - lower performances than ASICs
 - high flexibility
 - fine-grain parallelism
 - lower cost per unit
- 1 billion transistor FPGAs: huge computational capacity
- many application domains:
 - digital signal and image processing
 - cryptography
 - bioinformatics
 - scientific computing
 - ...

┟┼╝┽╘╬┼╔┽╘╬┽╏┝┨╶┟╝┽╘╬┼╝┽┖┹┥╝┽╹┙╴┝╴╔┾╘┹┥╝┽╝	

▶ initially: LUT-based logic cells

- ▶ initially: LUT-based logic cells
- currently: only integer arithmetic
 - dedicated logic and routing for fast adders
 - small embedded multipliers $(18 \times 18 \text{ bits})$
 - multiply-and-accumulate blocks
- not enough for many applications

- ▶ initially: LUT-based logic cells
- currently: only integer arithmetic
 - dedicated logic and routing for fast adders
 - small embedded multipliers $(18 \times 18 \text{ bits})$
 - multiply-and-accumulate blocks
- not enough for many applications
- strong need for more complex operators
 - other operations: division, square root, elementary functions, ...
 - other number systems: modular arithmetic, real arithmetic, ...

- ▶ initially: LUT-based logic cells
- currently: only integer arithmetic
 - dedicated logic and routing for fast adders
 - small embedded multipliers $(18 \times 18 \text{ bits})$
 - multiply-and-accumulate blocks
- not enough for many applications
- strong need for more complex operators
 - other operations: division, square root, elementary functions, ...
 - other number systems: modular arithmetic, real arithmetic, ...

- ► library of portable VHDL operators for floating-point
- ▶ all operators are parameterized in terms of range and precision

- ► library of portable VHDL operators for floating-point
- ▶ all operators are parameterized in terms of range and precision

	single precision	double precision
+/-	\checkmark	\checkmark
×	\checkmark	\checkmark
•	\checkmark	\checkmark
	\checkmark	\checkmark

- ► library of portable VHDL operators for floating-point
- ▶ all operators are parameterized in terms of range and precision

	single precision	double precision
+/-	\checkmark	\checkmark
×	\checkmark	\checkmark
• •	\checkmark	\checkmark
	\checkmark	\checkmark
$\log x$	\checkmark	
e ^x	\checkmark	
$ \sin x / \cos x $	\checkmark	

- ► library of portable VHDL operators for floating-point
- ▶ all operators are parameterized in terms of range and precision

	single precision	double precision
+/-	\checkmark	\checkmark
\times	\checkmark	\checkmark
•	\checkmark	\checkmark
	\checkmark	\checkmark
log x	\checkmark	
e ^x	\checkmark	
$\sin x / \cos x$	\checkmark	

- single-precision logarithm and exponential
 - hardware-specific algorithms
 - *ad-hoc* range reduction
 - table-based fixed-point evaluation
 - small and fast operators

- ► library of portable VHDL operators for floating-point
- ▶ all operators are parameterized in terms of range and precision

	single precision	double precision
+/-	\checkmark	\checkmark
\times	\checkmark	\checkmark
•	\checkmark	\checkmark
	\checkmark	\checkmark
log x	\checkmark	?
e ^x	\checkmark	?
$\sin x / \cos x$	\checkmark	

- single-precision logarithm and exponential
 - hardware-specific algorithms
 - *ad-hoc* range reduction
 - table-based fixed-point evaluation
 - small and fast operators

Double precision: using the same method?

range reduction and reconstruction are scalable

Double precision: using the same method?

range reduction and reconstruction are scalable

table-based method for the actual computation

- exponential growth of the area
- estimations w.r.t. single precision: $15 \times$ larger for the exponential, and
 - $40 \times$ larger for the logarithm!!
- unacceptable overhead for usual FPGAs

need for another algorithm, suited to higher precisions

Double precision: using the same method?

range reduction and reconstruction are scalable

table-based method for the actual computation

- exponential growth of the area
- estimations w.r.t. single precision: $15 \times$ larger for the exponential, and
 - $40 \times$ larger for the logarithm!!
- unacceptable overhead for usual FPGAs
- need for another algorithm, suited to higher precisions

iterative method

- smaller architecture
- higher scalability
- longer critical path

Outline of the talk

- ► Context
- Double-precision exponential
- ► Results
- ► Conclusion

Number format

▶ 2 parameters: w_E (range) and w_F (precision)

▶ inspired from the IEEE-754 standard:

$$X = (-1)^{S_X} \cdot 1. F_X \cdot 2^{E_X - E_0}$$

Number format

▶ 2 parameters: w_E (range) and w_F (precision)

▶ inspired from the IEEE-754 standard:

$$X = (-1)^{S_X} \cdot 1. F_X \cdot 2^{E_X - E_0}$$

▶ 2 extra bits for exceptional cases: zero, infinity or *Not-a-Number* (NaN)

Evaluation method

range reduction:

 $X = k \cdot \log 2 + Y$ with $k \in \mathbb{Z}$ and $0 \leq Y < 1$

▶ we obtain:

 $R = e^X = 2^k \cdot e^Y$

Evaluation method

range reduction:

 $X = k \cdot \log 2 + Y$ with $k \in \mathbb{Z}$ and $0 \leq Y < 1$

▶ we obtain:

$$R = e^X = 2^k \cdot e^Y$$

• fixed-point e^{γ} ?

Evaluation method

range reduction:

 $X = k \cdot \log 2 + Y$ with $k \in \mathbb{Z}$ and $0 \leq Y < 1$

$$R = e^X = 2^k \cdot e^Y$$

▶ fixed-point e^Y? generalization of an idea by Wong and Goto (IEEE TC 1994)

- successive range reductions of the fixed-point argument Y
- once the argument sufficiently reduced, direct evaluation of the exponential
- reconstructions using rectangular multipliers
- computes $e^{\gamma} 1$

▶ for step each *i*, we consider the argument Y_i (starting with $Y_0 = Y$)

► for step each *i*, we consider the argument Y_i (starting with $Y_0 = Y$) $\frac{\alpha_i - 1}{A_i} \frac{\beta_i}{B_i}$

▶ splitting Y_i as $A_i + B_i$, we address two look-up tables with A_i :

e^{A_i} - 1, rounded to its α_i most significant bits, noted e^{A_i} - 1
L_i = log (e^{A_i}), rounded to its α_i + β_i most significant bits

▶ splitting Y_i as $A_i + B_i$, we address two look-up tables with A_i :

- e^{A_i} 1, rounded to its α_i most significant bits, noted e^{A_i} 1
 L_i = log (e^{A_i}), rounded to its α_i + β_i most significant bits
- by construction, $L_i \approx Y_i$

▶ splitting Y_i as $A_i + B_i$, we address two look-up tables with A_i :

- e^{A_i} 1, rounded to its α_i most significant bits, noted e^{A_i} 1
 L_i = log (e^{A_i}), rounded to its α_i + β_i most significant bits
- by construction, $L_i \approx Y_i$
- ▶ we then define Y_{i+1} as $Y_i L_i$:
 - the $\alpha_i 1$ most significant bits of Y_i are cancelled
 - Y_{i+1} is a $1 + \beta_i$ -bit number

Iterative method: computing the exponential

 \blacktriangleright the reduction process is iterated until the step k such that

 $Y_k < 2^{-\lceil w_F/2 \rceil}$

Iterative method: computing the exponential

 \blacktriangleright the reduction process is iterated until the step k such that

 $Y_k < 2^{-\lceil w_F/2 \rceil}$

▶ we can then approximate the exponential as

 $e^{Y_k} - 1 \approx Y_k$

- $\widetilde{e^{A_i}} 1$, from the corresponding range reduction step
- $e^{Y_{i+1}} 1$, from the previous reconstruction, with $Y_{i+1} = Y_i \log\left(\widetilde{e^{A_i}}\right)$

- $\widetilde{e^{A_i}} 1$, from the corresponding range reduction step
- $e^{Y_{i+1}} 1$, from the previous reconstruction, with $Y_{i+1} = Y_i \log(e^{A_i})$
- ▶ we then compute $e^{Y_i} 1$ as

$$\left(\widetilde{e^{A_i}}-1\right) \times \left(e^{Y_{i+1}}-1\right) + \left(\widetilde{e^{A_i}}-1\right) + \left(e^{Y_{i+1}}-1\right)$$

- $\widetilde{e^{A_i}} 1$, from the corresponding range reduction step
- $e^{Y_{i+1}} 1$, from the previous reconstruction, with $Y_{i+1} = Y_i \log(e^{A_i})$
- ▶ we then compute $e^{Y_i} 1$ as

$$egin{aligned} & \left(\widetilde{e^{\mathcal{A}_{i}}}-1
ight) imes\left(e^{\mathcal{Y}_{i+1}}-1
ight)+\left(\widetilde{e^{\mathcal{A}_{i}}}-1
ight)+\left(e^{\mathcal{Y}_{i+1}}-1
ight) \ &=\widetilde{e^{\mathcal{A}_{i}}}\cdot e^{\mathcal{Y}_{i+1}}-1 \end{aligned}$$

- $\widetilde{e^{A_i}} 1$, from the corresponding range reduction step
- $e^{Y_{i+1}} 1$, from the previous reconstruction, with $Y_{i+1} = Y_i \log(e^{A_i})$
- ▶ we then compute $e^{Y_i} 1$ as

$$\begin{split} &\left(\widetilde{e^{A_{i}}}-1\right)\times\left(e^{Y_{i+1}}-1\right)+\left(\widetilde{e^{A_{i}}}-1\right)+\left(e^{Y_{i+1}}-1\right)\\ &=\widetilde{e^{A_{i}}}\cdot e^{Y_{i+1}}-1\\ &=\widetilde{e^{A_{i}}}\cdot e^{Y_{i}}\cdot e^{-\log\left(\widetilde{e^{A_{i}}}\right)}-1 \end{split}$$

Outline of the talk

- ► Context
- Double-precision exponential
- ► Results
- ► Conclusion

Operator area (exponential)

single precision (w_E, w_F) = (8, 23) (table-based method):
 938 slices (18% of a Virtex-II 1000 FPGA)

Operator area (exponential)

single precision (w_E, w_F) = (8, 23) (table-based method):
 938 slices (18% of a Virtex-II 1000 FPGA)

Operator area (exponential)

- single precision (w_E, w_F) = (8, 23) (table-based method):
 938 slices (18% of a Virtex-II 1000 FPGA)
- double precision (w_E, w_F) = (11, 52) (iterative method):
 2045 slices (40%)

Operator latency (exponential)

▶ single precision $(w_E, w_F) = (8, 23)$ (table-based method): 97 ns

▶ double precision $(w_E, w_F) = (11, 52)$ (iterative method): 229 ns

Outline of the talk

- ► Context
- Double-precision exponential
- ► Results
- ► Conclusion

Our contribution

- exponential and logarithm operators
- ▶ up to double precision
- guaranteed faithful rounding
- scalable method
- hardware-specific algorithms: fast and cheap operators

Future work

▶ pipeline

implement double precision for other functions for FPLibrary

study compound functions

Future work

► pipeline

implement double precision for other functions for FPLibrary

study compound functions

- careful error analysis:
 - certified algorithms and operators
 - generic proofs (Gappa)
- most of this work is not FPGA-specific: extend it to ASICs

Thank you for your attention

more information & download page: http://www.ens-lyon.fr/LIP/Arenaire/

Thank you for your attention

more information & download page: http://www.ens-lyon.fr/LIP/Arenaire/

Questions?