Efficient Method for Magnitude Comparison in RNS Based on Two Pairs of Conjugate Moduli

Leonel Sousa

INSTITUTO SUPERIOR TÉCNICO

1. Motivation
2. Class of Moduli Sets
3. Method for comparing magnitude in RNS
4. Typical application: RNS motion estimator
5. Conclusions and future work

Instituto de Engenharia de Sistemas e Computadores Investigação e Desenvolvimento em Lisboa

- Carry free arithmetic
- Residue Number Systems (RNS) allows to parallelize +, -, *
- No general efficient method for comparison in RNS
- to convert from residues to positional code: CRT requires modulo M operations and MRC is a sequential method!
- [Miller 86, Dimauro 93, Wang 99]: computationally demanding, not suitable for hardware implementation
- To propose a method for comparing RNS numbers considering a representative class of moduli sets.

Class of Moduli Sets

inesc id
 lisboa

- New class of multi-moduli sets that rely on pairs of conjugate moduli:

$$
S=\left\{m_{1}, m_{1}^{*}, \ldots, m_{k}, m_{k}^{*}\right\}=\left\{2^{n 1}-1,2^{n 1}+1, \ldots, 2^{n k}-1,2^{n k}+1\right\}
$$

- Only Mersenne rings and Fermat rings
- S is not a set of pairwise relatively prime, however modified CRT [Wang98] allows to obtain an integer from residues
- This class of multi-moduli leads to two-level residue number systems
- Important sub-class S': two pairs of balanced conjugate moduli sets

$$
S^{\prime}=\left\{m_{1}, m_{1}^{*}, m_{2}, m_{2}^{*}\right\}=\left\{2^{n}-1,2^{n}+1,2^{n+1}-1,2^{n+1}+1\right\}
$$

Class of Moduli Sets

inesc id

- For each of the two level we can use the modified CRT to compute RNS-to-binary

$$
X=X_{1}+m_{1}\left\langle\left(\frac{m_{1}}{d}\right)^{-1} \frac{X_{2}-X_{1}}{d}\right\rangle_{\frac{m_{2}}{d}}
$$

$-\mathrm{d}=\mathrm{GCD}(\mathrm{m} 1, \mathrm{~m} 2) \Rightarrow$ pairwise relatively prime CRTIII $\equiv \mathrm{MRC}$

$$
\begin{aligned}
& d=1 \rightarrow X_{1}=x_{1}^{*}+\left(2^{n}+1\right)\left\langle 2^{n-1}\left(x_{1}-x_{1}^{*}\right)\right\rangle_{2^{n-1}} \\
& d=3 \rightarrow X=X_{2}+\left\langle\left(\frac{2^{2(n+1)}-1}{3}\right)^{-1} \frac{X_{1}-X_{2}}{3}\right\rangle_{\frac{2^{2 n-1}}{3}}
\end{aligned}
$$

- Very important for us is that the range is odd

$$
M=\frac{\left(2^{2 n}-1\right)\left(2^{2 n+2}-1\right)}{3}
$$

inescid
 lisboa

- Unsigned integer numbers (A, B) can be compared by subtraction:

$$
C=\left\{\begin{array}{cc}
A-B & \text { for } A \geq B \\
M-A-B & \text { for } A<B
\end{array}\right.
$$

- Based on the well known mathematical axiom:
- the subtraction of two numbers with the same parity leads to an even number and the subtraction of two numbers with different parities leads to an odd number
- and taking advantage that M is odd we can answer the question :
$-\quad$ is $A \geq B$ or not?

Comparing magnitude in RNS

inescid
 lisboa

- PREPOSITIONS
- $A \geq B$ iff:
- A and B have the same parity and C is an even number
- A and B have different parities but C is an odd number.
- $A<B$ iff:
- A and B have the same parity and C is an odd number
- A and B have different parities but C is an even number.

So we have to compute the parity of A, B and C !

Comparing magnitude in RNS

inescid

- Problem: how to directly compute the parity of a RNS number?
- without computing the number back to a traditional weighted system!
- The parity of an integer X in the range $[0, M-1]$ represented on the $\left\{2^{n}-1,2^{n}+1,2^{n+1}-1,2^{n+1}+1\right\}$ moduli set can be computed by:

$$
\langle X\rangle_{2}=\left\langle\left\langle X_{2}\right\rangle_{2} \oplus\left\langle\left\langle X_{1}-X_{2}\right\rangle_{2^{2 n-1}}\right\rangle_{2}\right\rangle_{2}
$$

- by converting X1 and X2 in the 1st-level we also just need shift and one's complement addition

$$
\begin{aligned}
& X_{1}=x_{1}^{*}+\left(2^{n}+1\right) \times\left\langle 2^{n-1}\left(x_{1}-x_{1}^{*}\right)\right\rangle_{2^{n}-1} \\
& X_{2}=x_{2}^{*}+\left(2^{n+1}+1\right) \times\left\langle\left(2^{n}\left(x_{2}-x_{2}^{*}\right)\right\rangle_{2^{n+1}-1}\right.
\end{aligned}
$$

```
Algorithm 1 Comparison of the numbers \(\mathrm{A}, \mathrm{B}\) represented
in RNS \(\left(a_{1}, a_{1}^{*}, a_{2}, a_{2}^{*}, b_{1}, b_{1}^{*}, b_{2}, b_{2}^{*}\right)\).
    1: \(c_{1}=\left\langle a_{1}-b_{1}\right\rangle_{2^{n}-1} ; c_{1}^{*}=\left\langle a_{1}^{*}-b_{1}^{*}\right\rangle_{2^{n+1}} ;\)
    \(c 2=\left\langle a_{2}-b_{2}\right\rangle_{2^{n+1}-1} ; c_{2}^{*}=\left\langle a_{2}^{*}-b_{2}^{*} ;\right\rangle_{2^{n+1}+1} ;\)
    2: \(\left(A_{1}, A_{2}\right)=1\) st-level-converter \(\left(a_{1}, a_{1}^{*}, a_{2}, a_{2}^{*}\right) ; \quad\{(15)\) and (16) \}
    \(\left(B_{1}, B_{2}\right)=1\) st-level-converter \(\left(b_{1}, b_{1}^{2}, b_{2}, b_{2}^{*}\right) ; \quad[(15)\) and (16) \(]\)
    \(\left(C_{1}, C_{2}\right)=1\) st-level-converter \(\left(c_{1}, c_{1}^{*}, c_{2}, c_{2}^{*}\right) ; \quad\{(15)\) and (16) \}
    \(\overline{P_{A}}=L S B\left(\left\langle A_{1}-A_{2}\right)_{2^{2 n}-1}\right) \oplus L S B(A 2) ; \quad\left\{^{\prime} 1^{\prime}\right.\) if \(X\) even \(\}\)
    \(\overline{P_{B}}=L S B\left(\left\langle B_{1}-B_{2}\right\rangle_{2^{2 n}-1}\right) \oplus L S B(B 2) ;\)
    \(\overline{P_{C}}=L S B\left(\left\langle C_{1}-C_{2}\right\rangle_{2^{2 n-1}}\right) \oplus L S B(C 2) ;\)
    if \(P_{A} \oplus P_{B} \oplus P_{C}={ }^{\prime} 1^{\prime}\) then
        \(A \geq B\) is TRUE;
    else
        \(A<B\) is TRUE;
    end if
```

Parity detection method: suitable for VLSI

a)

b)

Maximum Operation Size (MOS)		
Algorithm	MOS (n, M)	MOS $(n=4)$
Miller	$\cong 4 \mathrm{M}$	$\cong 86955$
Dimauro	modulo $\left(\cong 2^{3 n}+2\right)$	modulo $(\cong 4098)$
Wang	modulo(2 $2 n-1)$	modulo(255)
Proposed	modulo(2 $\left.2^{n+1}+1\right)$	modulo(33)

Typical application: RNS motion estimator

- Tradicional architecture

Subtractors and Adders

Comparators: proposed hardware

lisboscid

Instituto de Engenharia de Sistemas e Computadores Investigação e Desenvolvimento em Lisboa

Experimental Results: RNS motion estimator

inesc id

- SAD unit implemented in a FPGA with arithmetic units directly mapped on Look-Up-Tables (LUT)
- FPGA Xilinx VirtexII Pro (xc2vp50-7)
- Synthesis with ISE (8.2) tools

Slices (\% total)	BRAMs (\% total)	Freq. MHz	Latency Cycles	Throughput Blocks/s
$246(1 \%)$	$211(90 \%)$	254	12	1.5×10^{7}

inescid
 lisboa

- New efficient method is proposed for magnitude comparison in RNS based on two pairs of conjugate moduli
- This is the first method leading to VLSI architectures with practical interest for comparing the magnitude of numbers in RNS
- Efficient RNS minimum SAD unit was already implemented in FPGA
- We are implementing a SAD unit on an ASIC ($0.18 \mu \mathrm{~m}$ CMOS)
- We are now extending the idea to other moduli sets, all with a common characteristic: M odd

