Efficient polynomial L_{∞} -approximations ARITH 18 - Montpellier

Nicolas Brisebarre Sylvain Chevillard

Laboratoire de l'informatique du parallélisme Arenaire team

June 26, 2007

• □ ▶ • □ ▶ • □ ▶

Contents

Scope of my researches

Approximation theory

Polynomial approximation with floating-point numbers

Lattices and LLL algorithm

A concrete and toy case

Conclusion

< D > < A > < B > < B >

Approximation theory Polynomial approximation with floating-point numbers Lattices and LLL algorithm A concrete and toy case Conclusion

Functions approximation

Let *f* be a real valued function : *f* : [*a*, *b*] → ℝ.

▲ 御 ▶ ▲ 王

Graph of $f : x \mapsto \arctan(x)$

(interval [-1, 4])

Approximation theory Polynomial approximation with floating-point numbers Lattices and LLL algorithm A concrete and toy case Conclusion

Functions approximation

- ▶ Let f be a real valued function : $f : [a, b] \rightarrow \mathbb{R}$.
- Let p ∈ ℝ_n[X] approximating f.

 $(\mathbb{R}_n[X] :$ set of polynomials with real coefficients and degree at most *n*). Here n = 2

Approximation theory Polynomial approximation with floating-point numbers Lattices and LLL algorithm A concrete and toy case Conclusion

Functions approximation

 $(\mathbb{R}_n[X] :$ set of polynomials with real coefficients and degree at most *n*). Here n = 2

- Let *f* be a real valued function : *f* : [*a*, *b*] → ℝ.
- Let p ∈ ℝ_n[X] approximating f.
- Approximation error at point x:

 $\varepsilon(x) = p(x) - f(x).$

< 4 → < Ξ

Approximation theory Polynomial approximation with floating-point numbers Lattices and LLL algorithm A concrete and toy case Conclusion

Approximation error

イロト イヨト イヨト

1

æ

Approximation theory Polynomial approximation with floating-point numbers Lattices and LLL algorithm A concrete and toy case Conclusion

Approximation error

- ε(x) = p(x) − f(x)
 over [a, b]
- max{ $|\varepsilon(x)|, x \in [a, b]$ }

< D > < A > < B > < B >

э

Approximation theory Polynomial approximation with floating-point numbers Lattices and LLL algorithm A concrete and toy case Conclusion

Approximation error

Approximation theory Polynomial approximation with floating-point numbers Lattices and LLL algorithm A concrete and toy case Conclusion

Approximation error

▲ ∰ ▶ ▲ ∃

Theory of polynomial approximation

Facts:

 There exists a unique best approximation polynomial.

Theory of polynomial approximation

Facts:

 There exists a unique best approximation polynomial.

▲ (日) ▶ ▲ (日)

 Characterization: Chebyshev's theorem.

Theory of polynomial approximation

Facts:

- There exists a unique best approximation polynomial.
- Characterization: Chebyshev's theorem.
- To compute it: <u>Remez' algorithm</u> (minimax in Maple).

The problem

► Computers: finite memory.

イロト イヨト イヨト

æ

The problem

- Computers: finite memory.
- ▶ IEEE-754 standard: defines floating-point numbers.

э

The problem

- Computers: finite memory.
- ► IEEE-754 standard: defines floating-point numbers.
- ► A floating-point number with radix 2 and precision *t*, is a number of the form $x = m \cdot 2^e$ where
 - $m \in \mathbb{Z}$ (written with exactly t bits) is called its mantissa;
 - $e \in \mathbb{Z}$ is its exponent.

< D > < A > < B > < B >

The problem

- Computers: finite memory.
- ► IEEE-754 standard: defines floating-point numbers.
- A floating-point number with radix 2 and precision t, is a number of the form $x = m \cdot 2^e$ where
 - $m \in \mathbb{Z}$ (written with exactly t bits) is called its mantissa;
 - $e \in \mathbb{Z}$ is its exponent.
- In practice: one has to store the coefficients into floating-point numbers.

The problem

- Computers: finite memory.
- ► IEEE-754 standard: defines floating-point numbers.
- ► A floating-point number with radix 2 and precision *t*, is a number of the form $x = m \cdot 2^e$ where
 - $m \in \mathbb{Z}$ (written with exactly t bits) is called its mantissa;
 - $e \in \mathbb{Z}$ is its exponent.
- In practice: one has to store the coefficients into floating-point numbers.
- Naive method: compute the minimax with Remez' algorithm and a high precision. Then round each coefficient to the nearest floating-point number.

Failure of the naive method

- Example with $f(x) = \log_2(1 + 2^{-x})$:
 - ▶ on [0; 1]
 - approximated by a degree 6 polynomial
 - with single precision coefficients (24 bits).

Minimax	Naive method	Optimal
$8.3 \cdot 10^{-10}$	$119\cdot 10^{-10}$	$10.06 \cdot 10^{-10}$

Failure of the naive method

- Example with $f(x) = \log_2(1 + 2^{-x})$:
 - ▶ on [0; 1]
 - approximated by a degree 6 polynomial
 - with single precision coefficients (24 bits).

Minimax	Naive method	Optimal
$8.3 \cdot 10^{-10}$	$119\cdot10^{-10}$	$10.06 \cdot 10^{-10}$

- The problem has been studied by
 - ► W. Kahan;
 - D. Kodek (precision t < 10, degree n < 20);
 - N. Brisebarre, J.-M. Muller and A. Tisserand (using linear programming).

Description of our method

Our goal: find p approximating f with the following form:

$$\boldsymbol{m}_{0}\cdot 2^{\boldsymbol{e}_{0}}+\boldsymbol{m}_{1}\cdot 2^{\boldsymbol{e}_{1}}X+\cdots+\boldsymbol{m}_{n}\cdot 2^{\boldsymbol{e}_{n}}X^{n}\qquad(\boldsymbol{m}_{i}\in\mathbb{Z}).$$

э

Description of our method

Our goal: find p approximating f with the following form:

$$m_0 \cdot 2^{e_0} + m_1 \cdot 2^{e_1}X + \cdots + m_n \cdot 2^{e_n}X^n \qquad (m_i \in \mathbb{Z}).$$

▶ We use the idea of interpolation:

Description of our method

Our goal: find p approximating f with the following form:

$$m_0 \cdot 2^{e_0} + m_1 \cdot 2^{e_1}X + \cdots + m_n \cdot 2^{e_n}X^n \qquad (m_i \in \mathbb{Z}).$$

• We use the idea of interpolation:

• we choose n + 1 points x_0, \dots, x_n in [a, b];

Description of our method

Our goal: find p approximating f with the following form:

$$m_0 \cdot 2^{e_0} + m_1 \cdot 2^{e_1}X + \cdots + m_n \cdot 2^{e_n}X^n \qquad (m_i \in \mathbb{Z}).$$

We use the idea of interpolation:

- we choose n + 1 points x_0, \dots, x_n in [a, b];
- we search m_0, \dots, m_n such that for all *i*

$$p(x_i) = \underline{m_0} \cdot 2^{\underline{e_0}} + \underline{m_1} \cdot 2^{\underline{e_1}} x_i + \cdots + \underline{m_n} \cdot 2^{\underline{e_n}} x_i^n \simeq f(x_i)$$

• □ > • □ > • □ > ·

Description of our method

Our goal: find p approximating f with the following form:

$$m_0 \cdot 2^{e_0} + m_1 \cdot 2^{e_1}X + \cdots + m_n \cdot 2^{e_n}X^n \qquad (m_i \in \mathbb{Z}).$$

We use the idea of interpolation:

- we choose n + 1 points x_0, \dots, x_n in [a, b];
- we search m_0, \dots, m_n such that for all *i*

$$p(x_i) = m_0 \cdot 2^{e_0} + m_1 \cdot 2^{e_1} x_i + \cdots + m_n \cdot 2^{e_n} x_i^n \simeq f(x_i)$$

Rewritten with vectors:

Notions about lattices Let $(\overrightarrow{b_1}, \cdots, \overrightarrow{b_n})$ be a basis of a real vector space.

Notions about lattices

Let $(\overrightarrow{b_1}, \dots, \overrightarrow{b_n})$ be a basis of a real vector space. The set of all integer combinations of the $\overrightarrow{b_i}$ is called a lattice:

$$\Gamma = \mathbb{Z}\overrightarrow{b_1} + \mathbb{Z}\overrightarrow{b_2} + \dots + \mathbb{Z}\overrightarrow{b_n}$$

Notions about lattices

Let $(\overrightarrow{b_1}, \dots, \overrightarrow{b_n})$ be a basis of a real vector space. The set of all integer combinations of the $\overrightarrow{b_i}$ is called a lattice:

$$\Gamma = \mathbb{Z}\overrightarrow{b_1} + \mathbb{Z}\overrightarrow{b_2} + \dots + \mathbb{Z}\overrightarrow{b_n}$$

In general, a lattice has infinitely many bases.

Notions about lattices

Let $(\overrightarrow{b_1}, \cdots, \overrightarrow{b_n})$ be a basis of a real vector space. The set of all integer combinations of the $\overrightarrow{b_i}$ is called a lattice:

$$\Gamma = \mathbb{Z}\overrightarrow{b_1} + \mathbb{Z}\overrightarrow{b_2} + \dots + \mathbb{Z}\overrightarrow{b_n}$$

In general, a lattice has infinitely many bases.

Notions about lattices

Let $(\overrightarrow{b_1}, \dots, \overrightarrow{b_n})$ be a basis of a real vector space. The set of all integer combinations of the $\overrightarrow{b_i}$ is called a lattice:

$$\Gamma = \mathbb{Z}\overrightarrow{b_1} + \mathbb{Z}\overrightarrow{b_2} + \dots + \mathbb{Z}\overrightarrow{b_n}$$

In general, a lattice has infinitely many bases.

Notions about lattices

Algorithmic problems:

Notions about lattices

Algorithmic problems:

Shortest vector problem (SVP)

Notions about lattices

Algorithmic problems:

- Shortest vector problem (SVP)
- Closest vector problem (CVP)

Notions about lattices

Algorithmic problems:

- Shortest vector problem (SVP)
- Closest vector problem (CVP)

Notions about lattices

Algorithmic problems:

- Shortest vector problem (SVP)
- Closest vector problem (CVP)

LLL algorithm: Lenstra, Lenstra Jr. and Lovász.

Notions about lattices

Algorithmic problems:

- Shortest vector problem (SVP)
- Closest vector problem (CVP)

LLL algorithm: finds pretty short vectors in polynomial time.

Notions about lattices

Algorithmic problems:

- Shortest vector problem (SVP)
- Closest vector problem (CVP)

LLL algorithm: used by Babai to solve an approximation of CVP.

A concrete and toy case

• We want to approximate
$$f : x \mapsto \log_2(1 + 2^{(-x)})$$

A concrete and toy case

- We want to approximate $f : x \mapsto \log_2(1 + 2^{(-x)})$
 - ▶ on [0, 1]
 - by a polynomial of degree 6.
 - Each coefficient is stored in a single-precision number (24 bits).

< ロ > < 同 > < 三 > < 三 >

Datas

Best real	Naive method	Enhanced method
8.34e-10	119e-10	49.9e-10

Datas

Best real	Naive method	Enhanced method
8.34e-10	119e-10	49.9e-10

< ロ > < 回 > < 回 > < 回 > < 回 >

Datas

Best real	Naive method	Enhanced method
8.34e-10	$119\mathrm{e}{-10}$	49.9e-10

< ロ > < 回 > < 回 > < 回 > < 回 >

Datas

Best real	Naive method	Enhanced method
8.34e-10	119e-10	49.9e-10

How to choose the points?

イロト イヨト イヨト

э

Datas

Best real	Naive method	Enhanced method
8.34e-10	119e-10	49.9e-10

How to choose the points?

Datas

Best real	Naive method	Enhanced method
8.34e-10	$119\mathrm{e}{-10}$	49.9e-10

How to choose the points?

- We need n + 1 points.
- They should correspond to the interpolation intuition.

Datas

Best real	Naive method	Enhanced method
8.34e-10	$119\mathrm{e}{-10}$	49.9e-10

How to choose the points?

- We need n + 1 points.
- They should correspond to the interpolation intuition.
- Chebyshev's theorem gives n+1 such points.

< D > < A > < B > < B >

Results with our method

Best real	Naive method	Enhanced method	Our method
8.34e-10	119e-10	49.9e-10	$10.24 e{-10}$

æ

Best real	Naive method	Enhanced method	Our method
$8.34\mathrm{e}{-10}$	119e-10	49.9e-10	$10.24\mathrm{e}{-10}$

	Best real	Naive method	Enhanced	method	Our method
	8.34e-10	119e-10	49.9e		10.24e-10
1e- 5e- -5e-				in le (Per Deg prec obta secc	ynomial obtained ess than 1 second ntium III 1.2GHz) gree 30 and cision \approx 100 ained in a few onds
	0 0.2	0.4 0.6	0.8 1	< □ ► <	白マネ 山マ キャット ほうろ
		N. Brisebarre, S. Chevi	llard Efficient p	olynomial L_{∞} -a	pproximations

	Best real	Naive method	Enhanced	d method	Our method	
	8.34e-10	119e-10	49.96	e-10	$10.24 e{-10}$	
1e- 5e- -5e-				in le (Per Deg prec obta secc Use	ynomial obtained ess than 1 secon ntium III 1.2GHz gree 30 and cision \approx 100 ained in a few onds d in CR1ibm	d z)
	0 0.2	0.4 0.6	0.8 1			
		N. Brisebarre, S. Chevi	Illard Efficient	polynomial L_{∞} -a	pproximations	

Conclusion

We have developed an algorithm to find very good polynomial approximants with floating-point coefficients.

(日)

Conclusion

- We have developed an algorithm to find very good polynomial approximants with floating-point coefficients.
- ► The algorithm is a heuristic, but works well in practice.

< ロ > < 同 > < 三 > < 三 >

Conclusion

- We have developed an algorithm to find very good polynomial approximants with floating-point coefficients.
- ▶ The algorithm is a heuristic, but works well in practice.
- The algorithm is flexible:
 - each coefficient may use a different floating-point format;
 - one may search polynomial with additional constraints: fix the value of some coefficients, search for an even polynomial;
 - one may optimize the relative error

$$\varepsilon(x) = \frac{p(x) - f(x)}{f(x)}$$

instead of the absolute error.

(日)

Conclusion

- We have developed an algorithm to find very good polynomial approximants with floating-point coefficients.
- ▶ The algorithm is a heuristic, but works well in practice.
- The algorithm is flexible:
 - each coefficient may use a different floating-point format;
 - one may search polynomial with additional constraints: fix the value of some coefficients, search for an even polynomial;
 - one may optimize the relative error

$$\varepsilon(x) = \frac{p(x) - f(x)}{f(x)}$$

instead of the absolute error.

(日)

Focus on polynomial approximation

The definition often gives a natural way to find a polynomial approximation of *f*.

 \hookrightarrow for instance: a truncated power series with a formally computed bound on the error.

< ロ > < 同 > < 三 > < 三 >

Focus on polynomial approximation

The definition often gives a natural way to find a polynomial approximation of *f*.

 \hookrightarrow for instance: a truncated power series with a formally computed bound on the error.

Truncated power series are useful but...

4日 > 4 回 > 4 回 > 4

Focus on polynomial approximation

The definition often gives a natural way to find a polynomial approximation of *f*.

 \hookrightarrow for instance: a truncated power series with a formally computed bound on the error.

- Truncated power series are useful but... ...usually inefficient in term of number of operations.
- Example: $\exp(x)$ on [-1; 2] with an absolute error ≤ 0.01 :
 - the series must be truncated to a degree 7 polynomial;
 - ► a degree 4 polynomial is sufficient.

< ロ > < 同 > < 三 > < 三 >

Chebyshev's theorem

Theorem (Chebyshev)

Let f be a continuous function on [a, b]. Let $\mu = \inf\{\|f - p\|_{\infty}\}_{p \in \mathbb{R}_n[X]}$. Then, p satisfies $\|f - p\|_{\infty} = \mu$ if and only if there exist n + 2 points

$$x_0 < x_1 < \cdots < x_{n+1}$$

in [a, b] such that

1. $\forall i \in [[0, n+1]], |f(x_i) - p(x_i)| = ||f - p||_{\infty}$

2. For all $i \in [[0, n]]$, the signs of $f(x_{i+1}) - p(x_{i+1})$ and $f(x_i) - p(x_i)$ are different.

イロト イポト イラト イラ