Efficient polynomial L_{∞}-approximations ARITH 18 - Montpellier

Nicolas Brisebarre
Sylvain Chevillard

Laboratoire de l'informatique du parallélisme Arenaire team

June 26, 2007

Contents

Scope of my researches
Approximation theory
Polynomial approximation with floating-point numbers

Lattices and LLL algorithm

A concrete and toy case

Conclusion

Functions approximation

- Let f be a real valued function : $f:[a, b] \rightarrow \mathbb{R}$.

Graph of $f: x \mapsto \arctan (x)$
(interval $[-1,4]$)

Functions approximation

- Let f be a real valued function : $f:[a, b] \rightarrow \mathbb{R}$.
- Let $p \in \mathbb{R}_{n}[X]$
approximating f .
$\left(\mathbb{R}_{n}[X]\right.$: set of polynomials with real coefficients and degree at most n). Here $n=2$

Functions approximation

- Let f be a real valued function : $f:[a, b] \rightarrow \mathbb{R}$.
- Let $p \in \mathbb{R}_{n}[X]$ approximating f .
- Approximation error at point x :
$\varepsilon(x)=p(x)-f(x)$.
$\left(\mathbb{R}_{n}[X]\right.$: set of polynomials with real coefficients and degree at most n). Here $n=2$

Approximation error

- $\varepsilon(x)=p(x)-f(x)$ over $[a, b]$

Approximation error

- $\varepsilon(x)=p(x)-f(x)$ over $[a, b]$
- $\max \{|\varepsilon(x)|, x \in[a, b]\}$

Approximation error

- $\varepsilon(x)=p(x)-f(x)$ over $[a, b]$
$-\max \{|\varepsilon(x)|, x \in[a, b]\}$
- Infinite norm: $\|\varepsilon\|_{\infty}=\|p-f\|_{\infty}=\max \{|\varepsilon(x)|, x \in[a, b]\}$

Approximation error

- $\varepsilon(x)=p(x)-f(x)$
over $[a, b]$
- $\max \{|\varepsilon(x)|, x \in[a, b]\}$
- Infinite norm: $\|\varepsilon\|_{\infty}=\|p-f\|_{\infty}=\max \{|\varepsilon(x)|, x \in[a, b]\}$
- Best approximation problem: given a degree n, find $p \in \mathbb{R}_{n}[X]$ minimizing $\|p-f\|_{\infty}$.

Theory of polynomial approximation

Facts:

- There exists a unique best approximation polynomial.

Theory of polynomial approximation

Facts:

- There exists a unique best approximation polynomial.
- Characterization: Chebyshev's theorem.

Theory of polynomial approximation

Facts:

- There exists a unique best approximation polynomial.
- Characterization: Chebyshev's theorem.
- To compute it:

Remez' algorithm (minimax in Maple).

The problem

- Computers: finite memory.

The problem

- Computers: finite memory.
- IEEE-754 standard: defines floating-point numbers.

The problem

- Computers: finite memory.
- IEEE-754 standard: defines floating-point numbers.
- A floating-point number with radix 2 and precision t, is a number of the form $x=m \cdot 2^{e}$ where
- $m \in \mathbb{Z}$ (written with exactly t bits) is called its mantissa;
- $e \in \mathbb{Z}$ is its exponent.

The problem

- Computers: finite memory.
- IEEE-754 standard: defines floating-point numbers.
- A floating-point number with radix 2 and precision t, is a number of the form $x=m \cdot 2^{e}$ where
- $m \in \mathbb{Z}$ (written with exactly t bits) is called its mantissa;
- $e \in \mathbb{Z}$ is its exponent.
- In practice: one has to store the coefficients into floating-point numbers.

The problem

- Computers: finite memory.
- IEEE-754 standard: defines floating-point numbers.
- A floating-point number with radix 2 and precision t, is a number of the form $x=m \cdot 2^{e}$ where
- $m \in \mathbb{Z}$ (written with exactly t bits) is called its mantissa;
- $e \in \mathbb{Z}$ is its exponent.
- In practice: one has to store the coefficients into floating-point numbers.
- Naive method: compute the minimax with Remez' algorithm and a high precision. Then round each coefficient to the nearest floating-point number.

Failure of the naive method

- Example with $f(x)=\log _{2}\left(1+2^{-x}\right)$:
- on $[0 ; 1]$
- approximated by a degree 6 polynomial
- with single precision coefficients (24 bits).

Minimax	Naive method	Optimal
$8.3 \cdot 10^{-10}$	$119 \cdot 10^{-10}$	$10.06 \cdot 10^{-10}$

Failure of the naive method

- Example with $f(x)=\log _{2}\left(1+2^{-x}\right)$:
- on $[0 ; 1]$
- approximated by a degree 6 polynomial
- with single precision coefficients (24 bits).

Minimax	Naive method	Optimal
$8.3 \cdot 10^{-10}$	$119 \cdot 10^{-10}$	$10.06 \cdot 10^{-10}$

- The problem has been studied by
- W. Kahan;
- D. Kodek (precision $t<10$, degree $n<20$);
- N. Brisebarre, J.-M. Muller and A. Tisserand (using linear programming).

Description of our method

Our goal: find p approximating f with the following form:

$$
m_{0} \cdot 2^{e_{0}}+m_{1} \cdot 2^{e_{1}} X+\cdots+m_{n} \cdot 2^{e_{n}} X^{n} \quad\left(m_{i} \in \mathbb{Z}\right)
$$

Description of our method

Our goal: find p approximating f with the following form:

$$
m_{0} \cdot 2^{e_{0}}+m_{1} \cdot 2^{e_{1}} X+\cdots+m_{n} \cdot 2^{e_{n}} X^{n} \quad\left(m_{i} \in \mathbb{Z}\right)
$$

- We use the idea of interpolation:

Description of our method

Our goal: find p approximating f with the following form:

$$
m_{0} \cdot 2^{e_{0}}+m_{1} \cdot 2^{e_{1}} X+\cdots+m_{n} \cdot 2^{e_{n}} X^{n} \quad\left(m_{i} \in \mathbb{Z}\right)
$$

- We use the idea of interpolation:
- we choose $n+1$ points x_{0}, \cdots, x_{n} in $[a, b]$;

Description of our method

Our goal: find p approximating f with the following form:

$$
m_{0} \cdot 2^{e_{0}}+m_{1} \cdot 2^{e_{1}} X+\cdots+m_{n} \cdot 2^{e_{n}} X^{n} \quad\left(m_{i} \in \mathbb{Z}\right)
$$

- We use the idea of interpolation:
- we choose $n+1$ points x_{0}, \cdots, x_{n} in $[a, b]$;
- we search m_{0}, \cdots, m_{n} such that for all i

$$
p\left(x_{i}\right)=m_{0} \cdot 2^{e_{0}}+m_{1} \cdot 2^{e_{1}} x_{i}+\cdots+m_{n} \cdot 2^{e_{n}} x_{i}^{n} \simeq f\left(x_{i}\right) .
$$

Description of our method

Our goal: find p approximating f with the following form:

$$
m_{0} \cdot 2^{e_{0}}+m_{1} \cdot 2^{e_{1}} X+\cdots+m_{n} \cdot 2^{e_{n}} X^{n} \quad\left(m_{i} \in \mathbb{Z}\right)
$$

- We use the idea of interpolation:
- we choose $n+1$ points x_{0}, \cdots, x_{n} in $[a, b]$;
- we search m_{0}, \cdots, m_{n} such that for all i

$$
p\left(x_{i}\right)=m_{0} \cdot 2^{e_{0}}+m_{1} \cdot 2^{e_{1}} x_{i}+\cdots+m_{n} \cdot 2^{e_{n}} x_{i}^{n} \simeq f\left(x_{i}\right)
$$

- Rewritten with vectors:

Notions about lattices

Let $\left(\overrightarrow{b_{1}}, \cdots, \overrightarrow{b_{n}}\right)$ be a basis of a real vector space.

Notions about lattices

Let $\left(\overrightarrow{b_{1}}, \cdots, \overrightarrow{b_{n}}\right)$ be a basis of a real vector space. The set of all integer combinations of the $\overrightarrow{b_{i}}$ is called a lattice:

$$
\Gamma=\mathbb{Z} \overrightarrow{b_{1}}+\mathbb{Z} \overrightarrow{b_{2}}+\cdots+\mathbb{Z} \overrightarrow{b_{n}}
$$

Notions about lattices

Let $\left(\overrightarrow{b_{1}}, \cdots, \overrightarrow{b_{n}}\right)$ be a basis of a real vector space. The set of all integer combinations of the $\overrightarrow{b_{i}}$ is called a lattice:

$$
\Gamma=\mathbb{Z} \overrightarrow{b_{1}}+\mathbb{Z} \overrightarrow{b_{2}}+\cdots+\mathbb{Z} \overrightarrow{b_{n}}
$$

In general, a lattice has infinitely many bases.

Notions about lattices

Let $\left(\overrightarrow{b_{1}}, \cdots, \overrightarrow{b_{n}}\right)$ be a basis of a real vector space. The set of all integer combinations of the $\overrightarrow{b_{i}}$ is called a lattice:

$$
\Gamma=\mathbb{Z} \overrightarrow{b_{1}}+\mathbb{Z} \overrightarrow{b_{2}}+\cdots+\mathbb{Z} \overrightarrow{b_{n}}
$$

In general, a lattice has infinitely many bases.

- +	+		+				+			
+ +		+		$+$		+				+
$\overrightarrow{c_{2}}$	+		+		+		+		+	
$\xrightarrow[\overrightarrow{c_{1}}]{ }+$		+		+		+		+		+

Notions about lattices

Let $\left(\overrightarrow{b_{1}}, \cdots, \overrightarrow{b_{n}}\right)$ be a basis of a real vector space. The set of all integer combinations of the $\overrightarrow{b_{i}}$ is called a lattice:

$$
\Gamma=\mathbb{Z} \overrightarrow{b_{1}}+\mathbb{Z} \overrightarrow{b_{2}}+\cdots+\mathbb{Z} \overrightarrow{b_{n}}
$$

In general, a lattice has infinitely many bases.

Notions about lattices

Algorithmic problems:

+	+		+		+		+			
+ +		+		+		+				+
$\overrightarrow{c_{2}}$	+		+		+		+		+	
$\xrightarrow[{\overrightarrow{c_{1}}}^{+}]{ }$		+		+		+		$+$		$+$

Notions about lattices

Algorithmic problems:

- Shortest vector problem (SVP)

- +	+		+		$+$		+			+
+ +		+		+		+				+
	+		+		+		+		+	
$\xrightarrow[\overrightarrow{c_{1}}]{ }+$		+		+		+		+		$+$

Notions about lattices

Algorithmic problems:

- Shortest vector problem (SVP)
- Closest vector problem (CVP)

Notions about lattices

Algorithmic problems:

- Shortest vector problem (SVP)
- Closest vector problem (CVP)

Notions about lattices

Algorithmic problems:

- Shortest vector problem (SVP)
- Closest vector problem (CVP)

LLL algorithm: Lenstra, Lenstra Jr. and Lovász.

Notions about lattices

Algorithmic problems:

- Shortest vector problem (SVP)
- Closest vector problem (CVP)

LLL algorithm: finds pretty short vectors in polynomial time.

Notions about lattices

Algorithmic problems:

- Shortest vector problem (SVP)
- Closest vector problem (CVP)

LLL algorithm: used by Babai to solve an approximation of CVP.

A concrete and toy case

- We want to approximate $f: x \mapsto \log _{2}\left(1+2^{(-x)}\right)$

A concrete and toy case

- We want to approximate $f: x \mapsto \log _{2}\left(1+2^{(-x)}\right)$
- on $[0,1]$
- by a polynomial of degree 6 .
- Each coefficient is stored in a single-precision number (24 bits).

Datas

Best real	Naive method	Enhanced method
$8.34 \mathrm{e}-10$	$119 \mathrm{e}-10$	$49.9 \mathrm{e}-10$

Datas

Best real	Naive method	Enhanced method
$8.34 \mathrm{e}-10$	$119 \mathrm{e}-10$	$49.9 \mathrm{e}-10$

Datas

Best real	Naive method	Enhanced method
$8.34 \mathrm{e}-10$	$119 \mathrm{e}-10$	$49.9 \mathrm{e}-10$

Datas

Best real	Naive method	Enhanced method
$8.34 \mathrm{e}-10$	$119 \mathrm{e}-10$	$49.9 \mathrm{e}-10$

- How to choose the points?

Datas

Best real	Naive method	Enhanced method
$8.34 \mathrm{e}-10$	$119 \mathrm{e}-10$	$49.9 \mathrm{e}-10$

- How to choose the points?

- We need $n+1$ points.

Datas

Best real	Naive method	Enhanced method
$8.34 \mathrm{e}-10$	$119 \mathrm{e}-10$	$49.9 \mathrm{e}-10$

- How to choose the points?

- We need $n+1$ points.
- They should correspond to the interpolation intuition.

Datas

Best real	Naive method	Enhanced method
$8.34 \mathrm{e}-10$	$119 \mathrm{e}-10$	$49.9 \mathrm{e}-10$

- How to choose the points?

- We need $n+1$ points.
- They should correspond to the interpolation intuition.
- Chebyshev's theorem gives $n+1$ such points.

Results with our method

Best real	Naive method	Enhanced method	Our method
$8.34 \mathrm{e}-10$	$119 \mathrm{e}-10$	$49.9 \mathrm{e}-10$	$10.24 \mathrm{e}-10$

Results with our method

Best real	Naive method	Enhanced method	Our method
$8.34 \mathrm{e}-10$	$119 \mathrm{e}-10$	$49.9 \mathrm{e}-10$	$10.24 \mathrm{e}-10$

Results with our method

Best real	Naive method	Enhanced method	Our method
$8.34 \mathrm{e}-10$	$119 \mathrm{e}-10$	$49.9 \mathrm{e}-10$	$10.24 \mathrm{e}-10$

- Polynomial obtained in less than 1 second (Pentium III 1.2GHz)

Results with our method

Best real	Naive method	Enhanced method	Our method
$8.34 \mathrm{e}-10$	$119 \mathrm{e}-10$	$49.9 \mathrm{e}-10$	$10.24 \mathrm{e}-10$

- Polynomial obtained in less than 1 second (Pentium III 1.2GHz)
- Degree 30 and precision ≈ 100 obtained in a few seconds

Results with our method

Best real	Naive method	Enhanced method	Our method
$8.34 \mathrm{e}-10$	$119 \mathrm{e}-10$	$49.9 \mathrm{e}-10$	$10.24 \mathrm{e}-10$

- Polynomial obtained in less than 1 second (Pentium III 1.2GHz)
- Degree 30 and precision ≈ 100 obtained in a few seconds
- Used in CRlibm

Conclusion

- We have developed an algorithm to find very good polynomial approximants with floating-point coefficients.

Conclusion

- We have developed an algorithm to find very good polynomial approximants with floating-point coefficients.
- The algorithm is a heuristic, but works well in practice.

Conclusion

- We have developed an algorithm to find very good polynomial approximants with floating-point coefficients.
- The algorithm is a heuristic, but works well in practice.
- The algorithm is flexible:
- each coefficient may use a different floating-point format;
- one may search polynomial with additional constraints: fix the value of some coefficients, search for an even polynomial;
- one may optimize the relative error

$$
\varepsilon(x)=\frac{p(x)-f(x)}{f(x)}
$$

instead of the absolute error.

Conclusion

- We have developed an algorithm to find very good polynomial approximants with floating-point coefficients.
- The algorithm is a heuristic, but works well in practice.
- The algorithm is flexible:
- each coefficient may use a different floating-point format;
- one may search polynomial with additional constraints: fix the value of some coefficients, search for an even polynomial;
- one may optimize the relative error

$$
\varepsilon(x)=\frac{p(x)-f(x)}{f(x)}
$$

instead of the absolute error.

Focus on polynomial approximation

- The definition often gives a natural way to find a polynomial approximation of f.
\hookrightarrow for instance: a truncated power series with a formally computed bound on the error.

Focus on polynomial approximation

- The definition often gives a natural way to find a polynomial approximation of f.
\hookrightarrow for instance: a truncated power series with a formally computed bound on the error.
- Truncated power series are useful but...

Focus on polynomial approximation

- The definition often gives a natural way to find a polynomial approximation of f.
\hookrightarrow for instance: a truncated power series with a formally computed bound on the error.
- Truncated power series are useful but...
... usually inefficient in term of number of operations.
- Example: $\exp (x)$ on $[-1 ; 2]$ with an absolute error ≤ 0.01 :
- the series must be truncated to a degree 7 polynomial;
- a degree 4 polynomial is sufficient.

Chebyshev's theorem

Theorem (Chebyshev)

Let f be a continuous function on $[a, b]$. Let
 only if there exist $n+2$ points

$$
x_{0}<x_{1}<\cdots<x_{n+1}
$$

in $[a, b]$ such that

1. $\forall i \in \llbracket 0, n+1 \rrbracket,\left|f\left(x_{i}\right)-p\left(x_{i}\right)\right|=\|f-p\|_{\infty}$
2. For all $i \in \llbracket 0, n \rrbracket$, the signs of $f\left(x_{i+1}\right)-p\left(x_{i+1}\right)$ and $f\left(x_{i}\right)-p\left(x_{i}\right)$ are different.
