
An Algorithm for Inversion in GF(2m)
Suitable for Implementation

Using a Polynomial Multiply Instruction on GF(2)

K. Kobayashi, N. Takagi, and K. Takagi
Graduate School of Information Science, Nagoya University

Outline
Background and objective

Preliminaries
GF(2m)

A polynomial multiply instruction on GF(2)

A conventional algorithm for inversion in GF(2m)

A new algorithm for inversion in GF(2m)

Evaluation

Concluding remarks

– p.1

Background and Objective
GF(2m)

plays important roles in error-correcting codes and
cryptography
A fast algorithm for inversion in GF(2m) is required

Polynomial multiply instruction on GF(2)

accelerates multiplication in GF(2m).

We propose a fast algorithm for inversion in GF(2m)
that is suitable for implementation

using a polynomial multiply instruction on GF(2)

– p.2

GF(2m) (1/2)
GF(2m)

extension field of GF(2)

any element A(x) ∈ GF(2m)

A(x) = am−1x
m−1 + · · · + a1x + a0 (ai ∈ {0, 1})

Addition in GF(2m)

polynomial addition on GF(2)

A(x) + B(x)

= ((am−1 + bm−1) mod 2)xm−1 + · · · + ((a0 + b0) mod 2)

executed by exclusive-OR operation for every
coefficient

– p.3

GF(2m) (2/2)
Multiplication in GF(2m)

polynomial multiplication modulo G(x) on GF(2)
G(x): the irreducible polynomial with degree m

A(x) · B(x) = A(x) × B(x) mod G(x)
· : multiplication in GF(2m)
×: polynomial multiplication in GF(2)

Multiplicative inverse of A(x)

The element A−1(x) is such that

A(x) · A−1(x) = 1.

time-consuming operation

– p.4

MULGF2
MULGF2 instruction

A typical polynomial multiply instruction on GF(2)

calculates the 2-word polynomial product from two
1-word polynomial operands

rs

rt

HI LO

accelerates multiplication in GF(2m)

A multiplier for MULGF2 can be realized very easily
“carry-free” version of an integer multiplier

– p.5

Algorithm for Inversion in GF(2m)
By extending the Euclid’s algorithm for polynomial, we can
execute inversion in GF(2m).

R
−1(x) := G(x);

R0(x) := A(x);
j := 0;
repeat

j := j + 1;
Qj(x) := Rj−2(x) ÷ Rj−1(x);
Rj(x) := Rj−2(x) − Qj(x) × Rj−1(x);

until Rj(x) = 0;
outputs Rj−1(x) as GCD(A(x), G(x))

▽ – p.6

Algorithm for Inversion in GF(2m)
By extending the Euclid’s algorithm for polynomial, we can
execute inversion in GF(2m).

R
−1(x) := G(x); U

−1(x) := 0;
R0(x) := A(x); U0(x) := 1;
j := 0;
repeat

j := j + 1;
Qj(x) := Rj−2(x) ÷ Rj−1(x);
Rj(x) := Rj−2(x) − Qj(x) × Rj−1(x);
Uj(x) := Uj−2(x) − Qj(x) × Uj−1(x);

until Rj(x) = 0;
outputs Rj−1(x) as GCD(A(x), G(x))

outputs Uj−1(x) as A−1(x)

(A(x)×A−1(x)mod G(x)=1)
– p.6

Software Implementation of EA
software implementation of the Euclid’s algorithm

S(x) := G(x);R(x) := A(x);

while R(x) 6= 0 do
δ := deg(S(x)) − deg(R(x));

if deg(S(x)) < deg(R(x)) then
R(x) ↔ S(x); δ := −δ;

end if
S(x) := S(x) − xδ × R(x);

end while

x 2
x 3 x 2

1st iteration

R: + 1
S: + + 1

▽ – p.7

Software Implementation of EA
software implementation of the Euclid’s algorithm

S(x) := G(x);R(x) := A(x);

while R(x) 6= 0 do
δ := deg(S(x)) − deg(R(x));

if deg(S(x)) < deg(R(x)) then
R(x) ↔ S(x); δ := −δ;

end if
S(x) := S(x) − xδ × R(x);

end while

x 2
x 3 x 2

1st iteration

R: + 1
3−2S(x) := S(x) − x R(x);

S: + + 1

▽ – p.7

Software Implementation of EA
software implementation of the Euclid’s algorithm

S(x) := G(x);R(x) := A(x);

while R(x) 6= 0 do
δ := deg(S(x)) − deg(R(x));

if deg(S(x)) < deg(R(x)) then
R(x) ↔ S(x); δ := −δ;

end if
S(x) := S(x) − xδ × R(x);

end while

x 2

x 2
x 3 x 2

x 2
2nd iteration

R: + 1

1st iteration

R: + 1
S: + + 1

1+x+S:

▽ – p.7

Software Implementation of EA
software implementation of the Euclid’s algorithm

S(x) := G(x);R(x) := A(x);

while R(x) 6= 0 do
δ := deg(S(x)) − deg(R(x));

if deg(S(x)) < deg(R(x)) then
R(x) ↔ S(x); δ := −δ;

end if
S(x) := S(x) − xδ × R(x);

end while

x 3 x 2

x 2

1st iteration

R:
S: + 1+

+ 1

x 2
x 2

S(x) := S(x) − x R(x);2−2

1+S:
2nd iteration

x+
R: + 1

▽ – p.7

Software Implementation of EA
software implementation of the Euclid’s algorithm

S(x) := G(x);R(x) := A(x);

while R(x) 6= 0 do
δ := deg(S(x)) − deg(R(x));

if deg(S(x)) < deg(R(x)) then
R(x) ↔ S(x); δ := −δ;

end if
S(x) := S(x) − xδ × R(x);

end while

x 3 x 2

x 2

x 2

x 2

x 2

1st iteration

S: + + 1
R: + 1

2nd iteration

S: + x + 1
1+R:

3rd iteration

S: x 1

+ 1R:

▽ – p.7

Software Implementation of EA
software implementation of the Euclid’s algorithm

S(x) := G(x);R(x) := A(x);

while R(x) 6= 0 do
δ := deg(S(x)) − deg(R(x));

if deg(S(x)) < deg(R(x)) then
R(x) ↔ S(x); δ := −δ;

end if
S(x) := S(x) − xδ × R(x);

end while

x 3 x 2

x 2

x 2

x 2

x 2

1st iteration

S: + + 1
R: + 1

2nd iteration

S: + x + 1
1+R:

3rd iteration

S: x 1

+ 1R:
S(x) <−> R(x);

2−1S(x) := S(x) − x R(x);

▽ – p.7

Software Implementation of EA
software implementation of the Euclid’s algorithm

S(x) := G(x);R(x) := A(x);

while R(x) 6= 0 do
δ := deg(S(x)) − deg(R(x));

if deg(S(x)) < deg(R(x)) then
R(x) ↔ S(x); δ := −δ;

end if
S(x) := S(x) − xδ × R(x);

end while

1st & 2nd iterations correspond
to one polynomial division

x 2

x 3 x 2

x 2

x 2

x 2

x 2

1st iteration

S: + + 1
R: + 1

2nd iteration

S: + x + 1
1+R:

3rd iteration

S: x 1

+ 1R:

S: x 1

+ 1R:

4th iteration

– p.7

Main Idea
Key point

The conventional algorithm can not use MULGF2
efficiently

S(x) := S(x) − xδ × R(x);

New algorithm
based on Brunner’s hardware algorithm for inversion
use MULGF2 efficiently
executed with regularity

– p.8

HW implementation
Hardware algorithm for inversion [Brunner et al., ’93]

S(x) := G(x); R(x) := A(x); δ := 0;
for i = 1 to 2m do

if rm = 0 then
R(x) := x × R(x); δ := δ + 1;

else
if sm = 1 then

S(x) := S(x) − R(x);
end if
S(x) := x × S(x);
if δ = 0 then

R(x) ↔ S(x); δ := δ + 1;
else

δ := δ − 1;
end if

end if
end for

x 3 x 2

x 2
1+S: +

R:

1st iteration

+ 1

δ = 0

▽ – p.9

HW implementation
Hardware algorithm for inversion [Brunner et al., ’93]

S(x) := G(x); R(x) := A(x); δ := 0;
for i = 1 to 2m do

if rm = 0 then
R(x) := x × R(x); δ := δ + 1;

else
if sm = 1 then

S(x) := S(x) − R(x);
end if
S(x) := x × S(x);
if δ = 0 then

R(x) ↔ S(x); δ := δ + 1;
else

δ := δ − 1;
end if

end if
end for

x 2

x 2
x 3 1+S: +

R:

1st iteration

+ 1

R(x) := x R(x);
δ := δ + 1;

δ = 0

▽ – p.9

HW implementation
Hardware algorithm for inversion [Brunner et al., ’93]

S(x) := G(x); R(x) := A(x); δ := 0;
for i = 1 to 2m do

if rm = 0 then
R(x) := x × R(x); δ := δ + 1;

else
if sm = 1 then

S(x) := S(x) − R(x);
end if
S(x) := x × S(x);
if δ = 0 then

R(x) ↔ S(x); δ := δ + 1;
else

δ := δ − 1;
end if

end if
end for

x 3 x 2

x 3

x 3 x 2

x 2

1+S: +
R:

2nd iteration

+ x

1+S: +
R:

1st iteration

+ 1

δ = 0

δ = 1

▽ – p.9

HW implementation
Hardware algorithm for inversion [Brunner et al., ’93]

S(x) := G(x); R(x) := A(x); δ := 0;
for i = 1 to 2m do

if rm = 0 then
R(x) := x × R(x); δ := δ + 1;

else
if sm = 1 then

S(x) := S(x) − R(x);
end if
S(x) := x × S(x);
if δ = 0 then

R(x) ↔ S(x); δ := δ + 1;
else

δ := δ − 1;
end if

end if
end for

x 3 x 2

x 3

x 3 x 2

x 2

+S: +
R:

2nd iteration

+ x
1

S(x) := x (S(x) − R(x));

1+S: +
R:

1st iteration

+ 1

δ = 0

δ = 1

δ := δ − 1;

▽ – p.9

HW implementation
Hardware algorithm for inversion [Brunner et al., ’93]

S(x) := G(x); R(x) := A(x); δ := 0;
for i = 1 to 2m do

if rm = 0 then
R(x) := x × R(x); δ := δ + 1;

else
if sm = 1 then

S(x) := S(x) − R(x);
end if
S(x) := x × S(x);
if δ = 0 then

R(x) ↔ S(x); δ := δ + 1;
else

δ := δ − 1;
end if

end if
end for

x 2

x 3
x 3

x 2

x 3
x 3

x 3 x 2

x 2

S: +
R:

3rd iteration

+ x

+S: +
R:

2nd iteration

+ x
1

+ x

1+S: +
R:

1st iteration

+ 1

δ = 0

δ = 1

δ = 0

▽ – p.9

HW implementation
Hardware algorithm for inversion [Brunner et al., ’93]

S(x) := G(x); R(x) := A(x); δ := 0;
for i = 1 to 2m do

if rm = 0 then
R(x) := x × R(x); δ := δ + 1;

else
if sm = 1 then

S(x) := S(x) − R(x);
end if
S(x) := x × S(x);
if δ = 0 then

R(x) ↔ S(x); δ := δ + 1;
else

δ := δ − 1;
end if

end if
end for

x 2

x 3
x 3

x 3 x 2

x 2

x 2

x 3
x 3

+S: +
R:

2nd iteration

+ x
1

1+S: +
R:

1st iteration

+ 1

S: +
R:

3rd iteration

+ x
+ x

S(x) := x (S(x)−R(x));
S(x) <−> R(x);
δ := δ + 1;

δ = 0

δ = 1

δ = 0

▽ – p.9

HW implementation
Hardware algorithm for inversion [Brunner et al., ’93]

S(x) := G(x); R(x) := A(x); δ := 0;
for i = 1 to 2m do

if rm = 0 then
R(x) := x × R(x); δ := δ + 1;

else
if sm = 1 then

S(x) := S(x) − R(x);
end if
S(x) := x × S(x);
if δ = 0 then

R(x) ↔ S(x); δ := δ + 1;
else

δ := δ − 1;
end if

end if
end for

x 2

x 3
x 3

x 3 x 2

x 2

x 2

x 3
x 3

x 3
x 3

+S: +
R:

2nd iteration

+ x
1

1+S: +
R:

1st iteration

+ 1

S: +
R:

3rd iteration

+ x
+ x

S:
R:

4th iteration

+ x

δ = 0

δ = 1

δ = 0

δ = 1

– p.9

Main Idea 2
Operations corresponding to contiguous k iterations of
Brunner’s algorithm can be represented as

(

R(x) U(x)

S(x) V (x)

)

:= H(x) ×

(

R(x) U(x)

S(x) V (x)

)

;

Each element of the matrix H(x) is a polynomial with
degree less than or equal to k on GF(2)

– p.10

The Matrix H(x) (1/2)

x 2

x 2
x 3 1+S: +

R:

1st iteration

+ 1

R(x) := x R(x);
δ := δ + 1;

δ = 0
The operation is
represented in matrices as
(

R(x)

S(x)

)

:=

(

x 0

0 1

)

×

(

R(x)

S(x)

)

;

▽ – p.11

The Matrix H(x) (1/2)

x 3 x 2

x 3

x 3 x 2

x 2

+S: +
R:

2nd iteration

+ x
1

S(x) := x (S(x) − R(x));

1+S: +
R:

1st iteration

+ 1

δ = 0

δ = 1

δ := δ − 1;

The operations are
represented in matrices as
(

R(x)

S(x)

)

:=

(

x 0

0 1

)

×

(

R(x)

S(x)

)

;

(

R(x)

S(x)

)

:=

(

1 0

x x

)

×

(

R(x)

S(x)

)

;

▽ – p.11

The Matrix H(x) (1/2)

x 2

x 3
x 3

x 3 x 2

x 2

x 2

x 3
x 3

+S: +
R:

2nd iteration

+ x
1

1+S: +
R:

1st iteration

+ 1

S: +
R:

3rd iteration

+ x
+ x

S(x) := x (S(x)−R(x));
S(x) <−> R(x);
δ := δ + 1;

δ = 0

δ = 1

δ = 0

The operations are
represented in matrices as
(

R(x)

S(x)

)

:=

(

x 0

0 1

)

×

(

R(x)

S(x)

)

;

(

R(x)

S(x)

)

:=

(

1 0

x x

)

×

(

R(x)

S(x)

)

;

(

R(x)

S(x)

)

:=

(

x x

1 0

)

×

(

R(x)

S(x)

)

;

– p.11

The Matrix H(x) (2/2)
The operations in these three iterations can be
represented as

(

R(x)

S(x)

)

:=

(

x x

1 0

)

×

(

1 0

x x

)

×

(

x 0

0 1

)

×

(

R(x)

S(x)

)

;

=

(

x3 + x2 x2

x 0

)

= H(x)

By using H(x)

We can calculate the operations in these three
iterations at once
We can use MULGF2 instruction efficiently

– p.12

New Algorithm
1. calculates H(x) from the most significant word of R(x) and

S(x)

with only single-word operations

2. calculates
(

R(x) U(x)

S(x) V (x)

)

:= H(x) ×

(

R(x) U(x)

S(x) V (x)

)

;

efficiently by using MULGF2

3. continues the process until R(x) becomes 0

– p.13

Evaluation
We compared # of MULGF2 and XOR instructions of the
proposed algorithm with that of the conventional one

Assumption
We compared average # of instructions for executing
inversion of 1, 000 random elements
We counted instructions for multi-word operations in
two algorithms
MULGF2 has single cycle latency

– p.14

Comparison of # of instruction (1/2)
the word size of a processor = 16

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 55000

163 203 283 409 571

of instructions

Proposed
Conventional

m
▽ – p.15

Comparison of # of instruction (1/2)
the word size of a processor = 16

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 55000

163 203 283 409 571

of instructions

Proposed
Conventional

m

for large m
The proposed algorithm is fast

– p.15

Comparison of # of instruction (2/2)
the word size of a processor = 32

 0

 5000

 10000

 15000

 20000

 25000

 30000

203 283 409 571163

Conventional

m

Proposed

of instructions

▽ – p.16

Comparison of # of instruction (2/2)
the word size of a processor = 32

 0

 5000

 10000

 15000

 20000

 25000

 30000

203 283 409 571163

Conventional

m

Proposed

of instructions

The proposed algorithm is fast

for large m

about the half #

▽ – p.16

Comparison of # of instruction (2/2)
the word size of a processor = 32

 0

 5000

 10000

 15000

 20000

 25000

 30000

203 283 409 571163

Conventional

m

Proposed

of instructions

The proposed algorithm is very fast
when both m and the word size are large

– p.16

Concluding Remarks
We have proposed a new algorithm for inversion in GF(2m)

the matrix H(x)
represents operations corresponding to several
contiguous iterations of Brunner’s algorithm
obtained with only single-word operation

suitable for implementation using MULGF2
executed with regularity

When both m and the word size of a processor are large
the proposed algorithm can execute inversion very fast

– p.17

Thank you for listening!

– p.18

	Outline
	Background and Objective
	$mathrm {GF}(2^m)$
(1/2)
	$mathrm {GF}(2^m)$
(2/2)
	MULGF2
	Algorithm for Inversion in $mathrm {GF}(2^m)$
	Algorithm for Inversion in $mathrm {GF}(2^m)$

	Software Implementation of EA
	Software Implementation of EA
	Software Implementation of EA
	Software Implementation of EA
	Software Implementation of EA
	Software Implementation of EA
	Software Implementation of EA

	Main Idea
	HW implementation
	HW implementation
	HW implementation
	HW implementation
	HW implementation
	HW implementation
	HW implementation

	Main Idea 2
	The Matrix $H(x)$ (1/2)
	The Matrix $H(x)$
(1/2)
	The Matrix $H(x)$
(1/2)

	The Matrix $H(x)$
(2/2)
	New Algorithm
	Evaluation
	Comparison of # of instruction (1/2)
	Comparison of # of instruction (1/2)

	Comparison of # of instruction (2/2)
	Comparison of # of instruction (2/2)
	Comparison of # of instruction (2/2)

	Concluding Remarks

