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Background and Objective
GF(2m)

plays important roles in error-correcting codes and
cryptography
A fast algorithm for inversion in GF(2m) is required

Polynomial multiply instruction on GF(2)

accelerates multiplication in GF(2m).

We propose a fast algorithm for inversion in GF(2m)
that is suitable for implementation

using a polynomial multiply instruction on GF(2)
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GF(2m) (1/2)
GF(2m)

extension field of GF(2)

any element A(x) ∈ GF(2m)

A(x) = am−1x
m−1 + · · · + a1x + a0 (ai ∈ {0, 1})

Addition in GF(2m)

polynomial addition on GF(2)

A(x) + B(x)

= ((am−1 + bm−1) mod 2)xm−1 + · · · + ((a0 + b0) mod 2)

executed by exclusive-OR operation for every
coefficient
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GF(2m) (2/2)
Multiplication in GF(2m)

polynomial multiplication modulo G(x) on GF(2)
G(x): the irreducible polynomial with degree m

A(x) · B(x) = A(x) × B(x) mod G(x)
· : multiplication in GF(2m)
×: polynomial multiplication in GF(2)

Multiplicative inverse of A(x)

The element A−1(x) is such that

A(x) · A−1(x) = 1.

time-consuming operation
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MULGF2
MULGF2 instruction

A typical polynomial multiply instruction on GF(2)

calculates the 2-word polynomial product from two
1-word polynomial operands

rs

rt

HI LO

accelerates multiplication in GF(2m)

A multiplier for MULGF2 can be realized very easily
“carry-free” version of an integer multiplier
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Algorithm for Inversion in GF(2m)
By extending the Euclid’s algorithm for polynomial, we can
execute inversion in GF(2m).

R
−1(x) := G(x);

R0(x) := A(x);
j := 0;
repeat

j := j + 1;
Qj(x) := Rj−2(x) ÷ Rj−1(x);
Rj(x) := Rj−2(x) − Qj(x) × Rj−1(x);

until Rj(x) = 0;
outputs Rj−1(x) as GCD(A(x), G(x))
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Algorithm for Inversion in GF(2m)
By extending the Euclid’s algorithm for polynomial, we can
execute inversion in GF(2m).

R
−1(x) := G(x); U

−1(x) := 0;
R0(x) := A(x); U0(x) := 1;
j := 0;
repeat

j := j + 1;
Qj(x) := Rj−2(x) ÷ Rj−1(x);
Rj(x) := Rj−2(x) − Qj(x) × Rj−1(x);
Uj(x) := Uj−2(x) − Qj(x) × Uj−1(x);

until Rj(x) = 0;
outputs Rj−1(x) as GCD(A(x), G(x))

outputs Uj−1(x) as A−1(x)

(A(x)×A−1(x)mod G(x)=1)
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Software Implementation of EA
software implementation of the Euclid’s algorithm

S(x) := G(x);R(x) := A(x);

while R(x) 6= 0 do
δ := deg(S(x)) − deg(R(x));

if deg(S(x)) < deg(R(x)) then
R(x) ↔ S(x); δ := −δ;

end if
S(x) := S(x) − xδ × R(x);

end while

x 2
x 3 x 2

1st iteration

R: + 1
S: + + 1
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software implementation of the Euclid’s algorithm

S(x) := G(x);R(x) := A(x);
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Software Implementation of EA
software implementation of the Euclid’s algorithm

S(x) := G(x);R(x) := A(x);

while R(x) 6= 0 do
δ := deg(S(x)) − deg(R(x));

if deg(S(x)) < deg(R(x)) then
R(x) ↔ S(x); δ := −δ;
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Software Implementation of EA
software implementation of the Euclid’s algorithm

S(x) := G(x);R(x) := A(x);

while R(x) 6= 0 do
δ := deg(S(x)) − deg(R(x));

if deg(S(x)) < deg(R(x)) then
R(x) ↔ S(x); δ := −δ;

end if
S(x) := S(x) − xδ × R(x);

end while

1st & 2nd iterations correspond
to one polynomial division

x 2

x 3 x 2

x 2

x 2
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S: + + 1
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2nd iteration

S: + x + 1
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S: x 1

+ 1R:

S: x 1

+ 1R:
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Main Idea
Key point

The conventional algorithm can not use MULGF2
efficiently

S(x) := S(x) − xδ × R(x);

New algorithm
based on Brunner’s hardware algorithm for inversion
use MULGF2 efficiently
executed with regularity
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HW implementation
Hardware algorithm for inversion [Brunner et al., ’93]

S(x) := G(x); R(x) := A(x); δ := 0;
for i = 1 to 2m do

if rm = 0 then
R(x) := x × R(x); δ := δ + 1;

else
if sm = 1 then

S(x) := S(x) − R(x);
end if
S(x) := x × S(x);
if δ = 0 then

R(x) ↔ S(x); δ := δ + 1;
else

δ := δ − 1;
end if

end if
end for

x 3 x 2

x 2
1+S: +

R:

1st iteration

+ 1

δ = 0
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Main Idea 2
Operations corresponding to contiguous k iterations of
Brunner’s algorithm can be represented as

(

R(x) U(x)

S(x) V (x)

)

:= H(x) ×

(

R(x) U(x)

S(x) V (x)

)

;

Each element of the matrix H(x) is a polynomial with
degree less than or equal to k on GF(2)
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The Matrix H(x) (1/2)

x 2

x 2
x 3 1+S: +

R:

1st iteration

+ 1

R(x) := x   R(x);
δ := δ + 1;

δ = 0
The operation is
represented in matrices as
(

R(x)

S(x)

)

:=

(

x 0

0 1

)

×

(

R(x)

S(x)

)

;
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The Matrix H(x) (1/2)

x 3 x 2

x 3

x 3 x 2

x 2

+S: +
R:

2nd iteration

+ x
1

S(x) := x    (S(x) − R(x));
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R:
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+ 1

δ = 0

δ = 1

δ := δ − 1;
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S(x)
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(
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)

×

(

R(x)

S(x)

)

;

(

R(x)

S(x)

)
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(

1 0

x x

)

×

(

R(x)

S(x)

)

;
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The Matrix H(x) (1/2)
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x 3

x 3 x 2

x 2

x 2

x 3
x 3
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2nd iteration
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1
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1st iteration

+ 1
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represented in matrices as
(

R(x)

S(x)

)

:=

(

x 0

0 1

)

×

(

R(x)

S(x)

)

;

(

R(x)

S(x)

)

:=

(

1 0

x x

)

×

(

R(x)

S(x)

)

;

(

R(x)

S(x)

)

:=

(

x x

1 0

)

×

(

R(x)

S(x)

)

;
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The Matrix H(x) (2/2)
The operations in these three iterations can be
represented as

(

R(x)

S(x)

)

:=

(

x x

1 0

)

×

(

1 0

x x

)

×

(

x 0

0 1

)

×

(

R(x)

S(x)

)

;

=

(

x3 + x2 x2

x 0

)

= H(x)

By using H(x)

We can calculate the operations in these three
iterations at once
We can use MULGF2 instruction efficiently
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New Algorithm
1. calculates H(x) from the most significant word of R(x) and

S(x)

with only single-word operations

2. calculates
(

R(x) U(x)

S(x) V (x)

)

:= H(x) ×

(

R(x) U(x)

S(x) V (x)

)

;

efficiently by using MULGF2

3. continues the process until R(x) becomes 0
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Evaluation
We compared # of MULGF2 and XOR instructions of the
proposed algorithm with that of the conventional one

Assumption
We compared average # of instructions for executing
inversion of 1, 000 random elements
We counted instructions for multi-word operations in
two algorithms
MULGF2 has single cycle latency

– p.14



Comparison of # of instruction (1/2)
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Comparison of # of instruction (2/2)
the word size of a processor = 32
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Concluding Remarks
We have proposed a new algorithm for inversion in GF(2m)

the matrix H(x)
represents operations corresponding to several
contiguous iterations of Brunner’s algorithm
obtained with only single-word operation

suitable for implementation using MULGF2
executed with regularity

When both m and the word size of a processor are large
the proposed algorithm can execute inversion very fast
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Thank you for listening!
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