An Algorithm for Inversion in $GF(2^m)$ Suitable for Implementation Using a Polynomial Multiply Instruction on GF(2)

K. Kobayashi, N. Takagi, and K. Takagi Graduate School of Information Science, Nagoya University

Outline

- Background and objective
- Preliminaries
 - $\operatorname{GF}(2^m)$
 - A polynomial multiply instruction on GF(2)
 - A conventional algorithm for inversion in $GF(2^m)$
- A new algorithm for inversion in $GF(2^m)$
- Evaluation
- Concluding remarks

Background and Objective

• $\operatorname{GF}(2^m)$

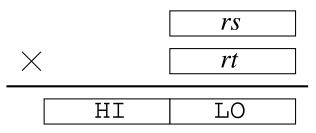
- plays important roles in error-correcting codes and cryptography
- A fast algorithm for inversion in $GF(2^m)$ is required
- Polynomial multiply instruction on GF(2)
 - accelerates multiplication in $GF(2^m)$.

We propose a fast algorithm for inversion in $GF(2^m)$ that is suitable for implementation using a polynomial multiply instruction on GF(2)

$GF(2^m)$ (1/2)

- $\operatorname{GF}(2^m)$
 - extension field of GF(2)
 - any element $A(x) \in GF(2^m)$ • $A(x) = a_{m-1}x^{m-1} + \dots + a_1x + a_0 \quad (a_i \in \{0, 1\})$
- Addition in $GF(2^m)$
 - polynomial addition on $\mathrm{GF}(2)$
 - A(x) + B(x)= $((a_{m-1} + b_{m-1}) \mod 2)x^{m-1} + \dots + ((a_0 + b_0) \mod 2)$
 - executed by exclusive-OR operation for every coefficient

$GF(2^m)$ (2/2)


- Multiplication in $GF(2^m)$
 - polynomial multiplication modulo G(x) on GF(2)
 - G(x): the irreducible polynomial with degree m
 - $A(x) \cdot B(x) = A(x) \times B(x) \mod G(x)$
 - : multiplication in $GF(2^m)$
 - \times : polynomial multiplication in GF(2)
- Multiplicative inverse of A(x)
 - The element $A^{-1}(x)$ is such that

$$A(x) \cdot A^{-1}(x) = 1.$$

time-consuming operation

MULGF2

- MULGF2 instruction
 - A typical polynomial multiply instruction on GF(2)
 - calculates the 2-word polynomial product from two 1-word polynomial operands

- accelerates multiplication in $GF(2^m)$
- A multiplier for MULGF2 can be realized very easily
 - "carry-free" version of an integer multiplier

Algorithm for Inversion in $GF(2^m)$

• By extending the Euclid's algorithm for polynomial, we can execute inversion in $GF(2^m)$.

$$R_{-1}(x) := G(x);$$

 $R_0(x) := A(x);$
 $j := 0;$

repeat

$$j := j + 1; Q_j(x) := R_{j-2}(x) \div R_{j-1}(x); R_j(x) := R_{j-2}(x) - Q_j(x) \times R_{j-1}(x);$$

until $R_j(x) = 0$; outputs $R_{j-1}(x)$ as GCD(A(x), G(x))

Algorithm for Inversion in $GF(2^m)$

• By extending the Euclid's algorithm for polynomial, we can execute inversion in $GF(2^m)$.

$$R_{-1}(x) := G(x); U_{-1}(x) := 0;$$

$$R_{0}(x) := A(x); U_{0}(x) := 1;$$

$$j := 0;$$

repeat

j := j + 1; $Q_{j}(x) := R_{j-2}(x) \div R_{j-1}(x);$ $R_{j}(x) := R_{j-2}(x) - Q_{j}(x) \times R_{j-1}(x);$ $U_{j}(x) := U_{j-2}(x) - Q_{j}(x) \times U_{j-1}(x);$ until $R_{j}(x) = 0;$ outputs $R_{j-1}(x)$ as GCD(A(x), G(x))outputs $U_{j-1}(x)$ as $A^{-1}(x)$ $(A(x) \times A^{-1}(x) \mod G(x) = 1)$

software implementation of the Euclid's algorithm

S(x) := G(x); R(x) := A(x);while $R(x) \neq 0$ do $\delta := \deg(S(x)) - \deg(R(x));$ if $\deg(S(x)) < \deg(R(x))$ then $R(x) \leftrightarrow S(x); \ \delta := -\delta;$ end if $S(x) \mapsto S(x) = \sigma^{\delta} \neq B(x).$

 $S(x) := S(x) - x^{\delta} \times R(x);$ end while

1st	iteration	
<i>S</i> :	$x^{3} + x^{2}$	+ 1
<i>R</i> :	x 2	+ 1

software implementation of the Euclid's algorithm

$$\begin{split} S(x) &:= G(x); R(x) := A(x); \\ \text{while } R(x) \neq 0 \text{ do} \\ \delta &:= \deg(S(x)) - \deg(R(x)); \\ \text{ if } \deg(S(x)) < \deg(R(x)) \text{ then} \end{split}$$

$$R(x) \leftrightarrow S(x); \ \delta := -\delta;$$

end if

$$S(x) := S(x) - x^{\delta} \times R(x);$$

end while

software implementation of the Euclid's algorithm

S(x) := G(x); R(x) := A(x);while $R(x) \neq 0$ do $\delta := \deg(S(x)) - \deg(R(x));$ if $\deg(S(x)) < \deg(R(x))$ then $R(x) \leftrightarrow S(x); \ \delta := -\delta;$ end if

 $S(x) := S(x) - x^{\delta} \times R(x);$ end while

1st ite	eration	
$S: x^3$	$+ x^{2}$	+ 1
<i>R</i> :	x 2	+ 1
2nd it	eration	
<i>S</i> :	•	x + 1
	2	

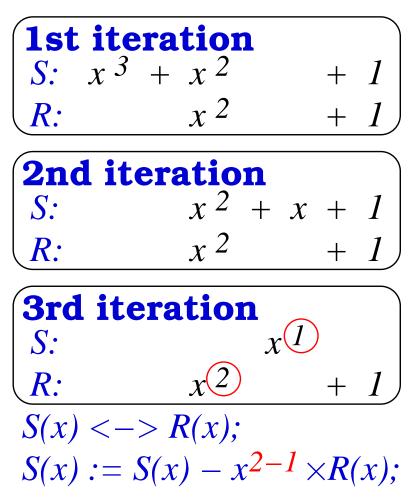
software implementation of the Euclid's algorithm

$$S(x) := G(x); R(x) := A(x);$$
while $R(x) \neq 0$ do
$$\delta := \deg(S(x)) - \deg(R(x));$$
if $\deg(S(x)) < \deg(R(x))$ then
$$R(x) \leftrightarrow S(x); \ \delta := -\delta;$$
end if
$$S(x) := S(x) - x^{\delta} \times R(x)$$
end while

1st ite	eration	
$S: x^3$	$+ x^{2}$	+ 1
<u><i>R</i></u> :	x 2	+ 1)
(2nd it	eration	
<i>S</i> :	$x^2 + x^2$	x + 1
		$\begin{array}{ccc} x &+ & 1 \\ &+ & 1 \end{array}$

software implementation of the Euclid's algorithm

S(x) := G(x); R(x) := A(x);while $R(x) \neq 0$ do $\delta := \deg(S(x)) - \deg(R(x));$ if $\deg(S(x)) < \deg(R(x))$ then $R(x) \leftrightarrow S(x); \ \delta := -\delta;$ end if $S(x) := S(x) - x^{\delta} \times R(x);$


end while $S(x) = S(x) - x^{-1} \times$

	eration		
$S: x^3$	$x^{2} + x^{2}$	+	1
<i>R:</i>	x 2	+	1
2nd it	teration		
<i>S</i> :	$x^2 + x$; +	1
<i>R</i> :	x 2	+	1
3rd it	eration		
<i>S</i> :	x l		
<u><i>R</i></u> :	x 2	+	1

software implementation of the Euclid's algorithm

S(x) := G(x); R(x) := A(x);while $R(x) \neq 0$ do $\delta := \deg(S(x)) - \deg(R(x));$ if $\deg(S(x)) < \deg(R(x))$ then $R(x) \leftrightarrow S(x); \ \delta := -\delta;$ end if $S(x) := S(x) - x^{\delta} \times R(x);$

end while

software implementation of the Euclid's algorithm

$$\begin{split} S(x) &:= G(x); R(x) := A(x);\\ \text{while } R(x) \neq 0 \text{ do}\\ \delta &:= \deg(S(x)) - \deg(R(x));\\ \text{if } \deg(S(x)) < \deg(R(x)) \text{ then}\\ R(x) \leftrightarrow S(x); \ \delta &:= -\delta;\\ \text{end if} \end{split}$$

 $S(x) := S(x) - x^{\delta} \times R(x);$

end while

1st & 2nd iterations correspond to one polynomial division

1st ite	ration	
	$+ x^{2}$	+ 1
<i>R</i> :	x 2	+ 1
2nd it	eration	
<i>S</i> :	$x^{2} +$	<i>x</i> + 1
<i>R:</i>	x 2	+ 1
3rd ite	eration	
<i>S</i> :	X	1
<i>R:</i>	x 2	+ 1
4th ite	eration	
<i>S</i> :	X	1
R:	$_{\chi}$ 2	$+1^{+}$

Main Idea

- Key point
 - The conventional algorithm can not use MULGF2 efficiently

•
$$S(x) := S(x) - x^{\delta} \times R(x);$$

- New algorithm
 - based on Brunner's hardware algorithm for inversion
 - use MULGF2 efficiently
 - executed with regularity

Hardware algorithm for inversion [Brunner et al., '93]

```
S(x) := G(x); R(x) := A(x); \delta := 0;
for i = 1 to 2m do
   if r_m = 0 then
      R(x) := x \times R(x); \ \delta := \delta + 1;
   else
     if s_m = 1 then
        S(x) := S(x) - R(x);
      end if
      S(x) := x \times S(x);
      if \delta = 0 then
        R(x) \leftrightarrow S(x); \ \delta := \delta + 1;
      else
        \delta := \delta - 1;
      end if
   end if
   d for
```

1st	t iteration	$\delta = 0$
<i>S</i> :	$x^{3} + x^{2}$	+ 1
<i>R</i> :	x 2	+ 1)

• Hardware algorithm for inversion [Brunner et al., '93]

$S(x) := G(x); R(x) := A(x); \delta := 0;$
for $i = 1$ to $2m$ do
if $r_m = 0$ then
$R(x) := x \times R(x); \ \delta := \delta + 1;$
eise
if $s_m = 1$ then
S(x) := S(x) - R(x);
end if
$S(x) := x \times S(x);$
if $\delta = 0$ then
$R(x) \leftrightarrow S(x); \ \delta := \delta + 1;$
else
$\delta := \delta - 1;$
end if
end if
end for

1st	t iteration	$\delta = 0$
<i>S</i> :	$x^{3} + x^{2}$	+ 1
R :	x^2	+ l

```
R(x) := x \times R(x);
\delta := \delta + 1;
```

Hardware algorithm for inversion [Brunner et al., '93]

 $S(x) := G(x); R(x) := A(x); \delta := 0;$ for i = 1 to 2m do if $r_m = 0$ then $R(x) := x \times R(x); \ \delta := \delta + 1;$ else if $s_m = 1$ then S(x) := S(x) - R(x);end if $S(x) := x \times S(x);$ if $\delta = 0$ then $R(x) \leftrightarrow S(x); \ \delta := \delta + 1;$ else $\delta := \delta - 1;$ end if end if d for

1s <i>S</i> :	t ite x^{3}	$+ x^2$	$\delta = 0 + 1$
<u><i>R</i></u> :		x 2	<u> </u>
2n	d it	eration	$\delta = 1$
	uiu		O = I
<i>S</i> :	<i>x</i> ³	$+ x^{2}$	$0 \equiv 1$ + 1

Hardware algorithm for inversion [Brunner et al., '93]

 $S(x) := G(x); R(x) := A(x); \delta := 0;$ for i = 1 to 2m do if $r_m = 0$ then $R(x) := x \times R(x); \ \delta := \delta + 1;$ else if $s_m = 1$ then S(x) := S(x) - R(x);end if $S(x) := x \times S(x);$ If $\delta = 0$ then $R(x) \leftrightarrow S(x); \ \delta := \delta + 1;$ else $\delta := \delta - 1;$ end if end if nd for

1st it S: x · R:	eration $x^3 + x^2$ x^2	$\delta = 0 + 1 + 1$
$\begin{array}{c} S: x \\ R: x \end{array}$	$\frac{x \times (S(x) - 1)}{x}$	$\delta = 1 + 1 \\ x - R(x));$

Hardware algorithm for inversion [Brunner et al., '93]

 $S(x) := G(x); R(x) := A(x); \delta := 0;$ for i = 1 to 2m do if $r_m = 0$ then $R(x) := x \times R(x); \ \delta := \delta + 1;$ else if $s_m = 1$ then S(x) := S(x) - R(x);end if $S(x) := x \times S(x);$ if $\delta = 0$ then $R(x) \leftrightarrow S(x); \ \delta := \delta + 1;$ else $\delta := \delta - 1;$ end if end if d for

	iteration	$\delta = 0$
<i>S</i> :	$x^{3} + x^{2}$	+ 1
<u><i>R</i></u> :	<u>x 2</u>	<u> </u>
	d iteration	$\delta = 1$
<i>S</i> :	$x^{3} + x^{2}$	+ 1
<i>R</i> :	<u>x 3</u> +	· x
	iteration	
<i>S</i> :	$x^{3} + x^{2} +$	- x
R :	<i>x</i> ³ +	· x

Hardware algorithm for inversion [Brunner et al., '93]

 $S(x) := G(x); R(x) := A(x); \delta := 0;$ for i = 1 to 2m do if $r_m = 0$ then $R(x) := x \times R(x); \ \delta := \delta + 1;$ else if $s_m = 1$ then S(x) := S(x) - R(x);end if $S(x) := x \times S(x);$ if $\delta=0$ then $R(x) \leftrightarrow S(x); \ \delta := \delta + 1;$ else $\delta := \delta - 1;$ end if end if d for

1st	t ite	ration	$\delta = 0$
<i>S</i> :	<i>x</i> ³	$+ x^{2}$	+ 1
<u><i>R</i></u> :		x 2	+ 1)
	d it	eration	$\delta = 1$
<i>S</i> :	x^{3}	$+ x^{2}$	+ 1
<u><i>R</i></u> :	<i>x</i> ³	+	x
		eration	$\delta = 0$
		~	
		$+ x^{2} +$	X
S: <i>R</i> :	$\begin{array}{c} x \\ x \\ x \end{array}$	$+ x^{2} + +$	x x
<u><i>R</i></u> :	x 3	$+ x^{2} + + x^{2} + $	x
$\frac{R}{S(x)}$	(x^3)	+	x

Hardware algorithm for inversion [Brunner et al., '93]

 $S(x) := G(x); R(x) := A(x); \delta := 0;$ for i = 1 to 2m do if $r_m = 0$ then $R(x) := x \times R(x); \ \delta := \delta + 1;$ else if $s_m = 1$ then S(x) := S(x) - R(x);end if $S(x) := x \times S(x);$ if $\delta = 0$ then $R(x) \leftrightarrow S(x); \ \delta := \delta + 1;$ else $\delta := \delta - 1;$ end if end if d for

1st		ration	$\delta = 0$
<i>S</i> :	<i>x</i> ³	$+ x^{2}$	+ 1
<u><i>R</i></u> :		x 2	<u>+ 1</u>
(2n)	d it	eration	$\delta = 1$
<i>S</i> :	x^3	$+ x^{2}$	+ 1
<i>R</i> :	<i>x</i> ³	+	<u>x</u>
		eration	$\delta = 0$
<i>S</i> :	<i>x</i> ³	eration $+ x^2 +$	$ \begin{array}{c} \delta = 0 \\ x \end{array} $
			•••
S: <i>R</i> : (4t]	$\frac{x^{3}}{x^{3}}$		x
S: R:	$\begin{array}{c} x \ 3 \\ x \ 3 \end{array}$	$+ x^{2} + +$	x x

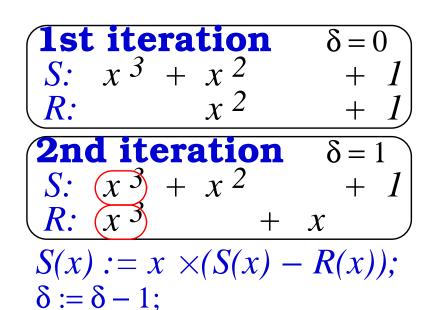
Main Idea 2

 Operations corresponding to contiguous k iterations of Brunner's algorithm can be represented as

$$\begin{pmatrix} R(x) & U(x) \\ S(x) & V(x) \end{pmatrix} := H(x) \times \begin{pmatrix} R(x) & U(x) \\ S(x) & V(x) \end{pmatrix};$$

• Each element of the matrix H(x) is a polynomial with degree less than or equal to k on GF(2)

The Matrix H(x) (1/2)

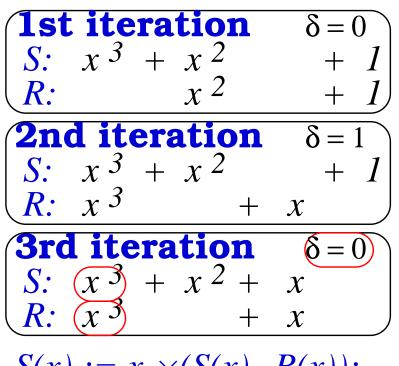

 $\begin{array}{ccc} \textbf{1st iteration} & \delta = 0 \\ S: & x^3 + x^2 & + 1 \\ R: & x^2 & + 1 \end{array}$

 The operation is represented in matrices as

 $R(x) := x \times R(x);$ $\delta := \delta + 1;$

 $\begin{pmatrix} R(x) \\ S(x) \end{pmatrix} := \begin{pmatrix} x & 0 \\ 0 & 1 \end{pmatrix} \times \begin{pmatrix} R(x) \\ S(x) \end{pmatrix};$

The Matrix H(x) (1/2)



 The operations are represented in matrices as

$$\begin{pmatrix} R(x) \\ S(x) \end{pmatrix} := \begin{pmatrix} x & 0 \\ 0 & 1 \end{pmatrix} \times \begin{pmatrix} R(x) \\ S(x) \end{pmatrix};$$

$$\begin{pmatrix} R(x) \\ S(x) \end{pmatrix} := \begin{pmatrix} 1 & 0 \\ x & x \end{pmatrix} \times \begin{pmatrix} R(x) \\ S(x) \end{pmatrix};$$

The Matrix H(x) (1/2)

 $S(x) := x \times (S(x) - R(x));$ S(x) < -> R(x); $\delta := \delta + 1;$ The operations are represented in matrices as

$$\begin{pmatrix} R(x) \\ S(x) \end{pmatrix} := \begin{pmatrix} x & 0 \\ 0 & 1 \end{pmatrix} \times \begin{pmatrix} R(x) \\ S(x) \end{pmatrix};$$
$$\begin{pmatrix} R(x) \\ S(x) \end{pmatrix} := \begin{pmatrix} 1 & 0 \\ x & x \end{pmatrix} \times \begin{pmatrix} R(x) \\ S(x) \end{pmatrix};$$
$$\begin{pmatrix} R(x) \\ S(x) \end{pmatrix} := \begin{pmatrix} x & x \\ 1 & 0 \end{pmatrix} \times \begin{pmatrix} R(x) \\ S(x) \end{pmatrix};$$

The Matrix H(x) (2/2)

 The operations in these three iterations can be represented as

$$\begin{pmatrix} R(x) \\ S(x) \end{pmatrix} := \begin{pmatrix} x & x \\ 1 & 0 \end{pmatrix} \times \begin{pmatrix} 1 & 0 \\ x & x \end{pmatrix} \times \begin{pmatrix} x & 0 \\ 0 & 1 \end{pmatrix} \times \begin{pmatrix} R(x) \\ S(x) \end{pmatrix};$$
$$= \begin{pmatrix} x^3 + x^2 & x^2 \\ x & 0 \end{pmatrix} = H(x)$$

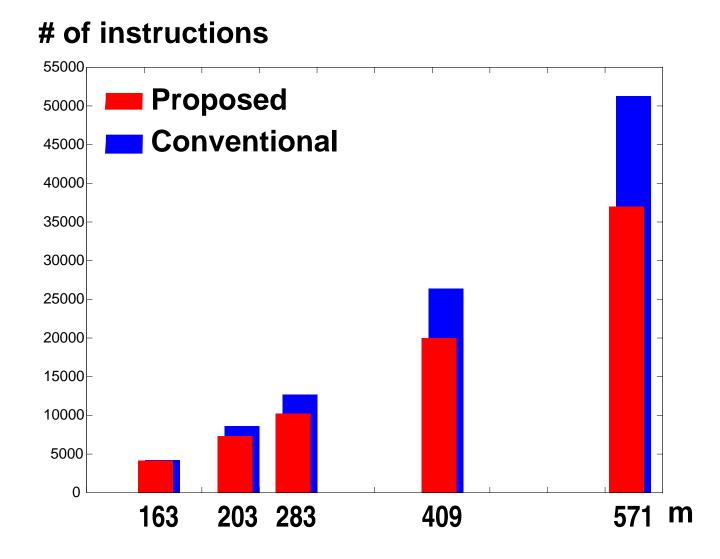
• By using H(x)

- We can calculate the operations in these three iterations at once
- We can use MULGF2 instruction efficiently

New Algorithm

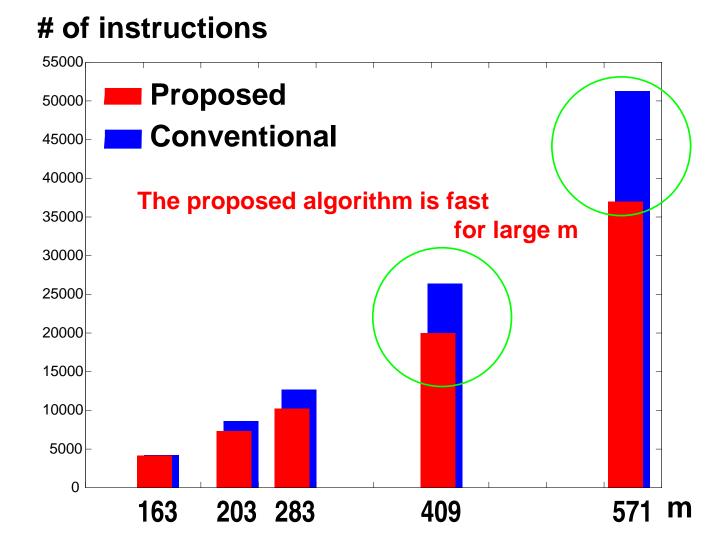
- 1. calculates H(x) from the most significant word of R(x) and S(x)
 - with only single-word operations
- 2. calculates

$$\begin{pmatrix} R(x) & U(x) \\ S(x) & V(x) \end{pmatrix} := H(x) \times \begin{pmatrix} R(x) & U(x) \\ S(x) & V(x) \end{pmatrix};$$

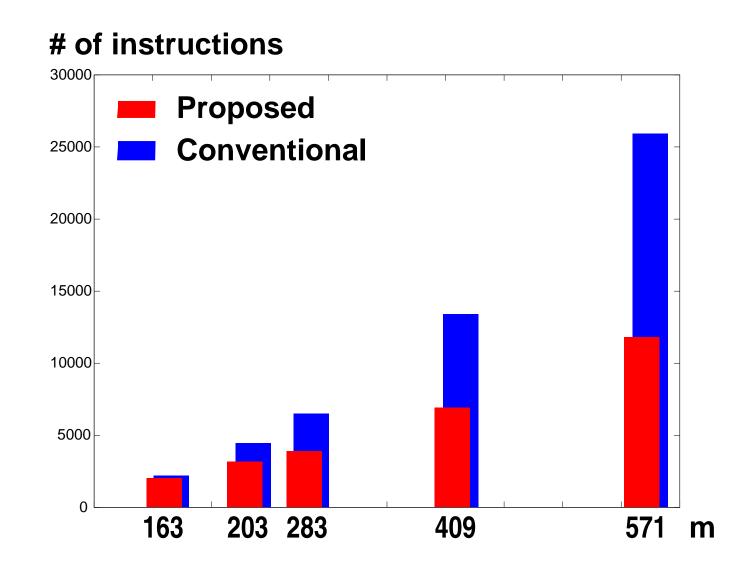

efficiently by using MULGF2

3. continues the process until R(x) becomes 0

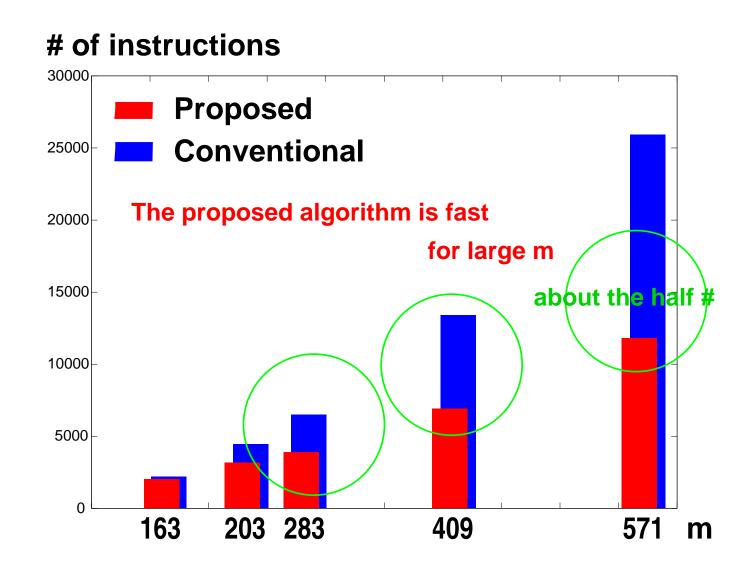
Evaluation


- We compared # of MULGF2 and XOR instructions of the proposed algorithm with that of the conventional one
- Assumption
 - We compared average # of instructions for executing inversion of 1,000 random elements
 - We counted instructions for multi-word operations in two algorithms
 - MULGF2 has single cycle latency

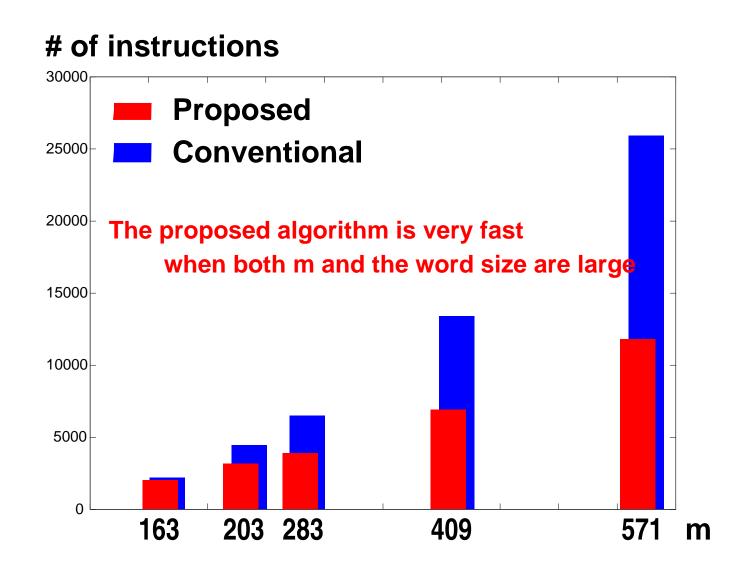
Comparison of # of instruction (1/2)


Comparison of # of instruction (1/2)

• the word size of a processor = 16



-p.15


Comparison of # of instruction (2/2)

Comparison of # of instruction (2/2)

Comparison of # of instruction (2/2)

Concluding Remarks

- We have proposed a new algorithm for inversion in $GF(2^m)$
 - the matrix H(x)
 - represents operations corresponding to several contiguous iterations of Brunner's algorithm
 - obtained with only single-word operation
 - suitable for implementation using MULGF2
 - executed with regularity
- When both m and the word size of a processor are large
 - the proposed algorithm can execute inversion very fast

Thank you for listening!