An Algorithm for Inversion in $\mathrm{GF}\left(2^{m}\right)$ Suitable for Implementation Using a Polynomial Multiply Instruction on GF (2)

K. Kobayashi, N. Takagi, and K. Takagi

Graduate School of Information Science, Nagoya University

Outline

e Background and objective
e Preliminaries
e $\mathrm{GF}\left(2^{m}\right)$
e A polynomial multiply instruction on GF(2)
e A conventional algorithm for inversion in $\mathrm{GF}\left(2^{m}\right)$
e A new algorithm for inversion in $\operatorname{GF}\left(2^{m}\right)$
e Evaluation
e Concluding remarks

Background and Objective

e $\mathrm{GF}\left(2^{m}\right)$
e plays important roles in error-correcting codes and cryptography
e A fast algorithm for inversion in $\mathrm{GF}\left(2^{m}\right)$ is required
e Polynomial multiply instruction on GF(2)
a accelerates multiplication in $\mathrm{GF}\left(2^{m}\right)$.
We propose a fast algorithm for inversion in GF(2m) that is suitable for implementation
using a polynomial multiply instruction on GF(2)

$\mathrm{GF}\left(2^{m}\right)(\mathbf{1} / \mathbf{2})$

e $\mathrm{GF}\left(2^{m}\right)$
e extension field of $\mathrm{GF}(2)$
e any element $A(x) \in \operatorname{GF}\left(2^{m}\right)$
e $A(x)=a_{m-1} x^{m-1}+\cdots+a_{1} x+a_{0} \quad\left(a_{i} \in\{0,1\}\right)$
e Addition in $\mathrm{GF}\left(2^{m}\right)$
e polynomial addition on $\mathrm{GF}(2)$
e $A(x)+B(x)$
$=\left(\left(a_{m-1}+b_{m-1}\right) \bmod 2\right) x^{m-1}+\cdots+\left(\left(a_{0}+b_{0}\right) \bmod 2\right)$
a executed by exclusive-OR operation for every coefficient

$\mathrm{GF}\left(2^{m}\right)(\mathbf{2} / \mathbf{2})$

e Multiplication in $\mathrm{GF}\left(2^{m}\right)$
e polynomial multiplication modulo $G(x)$ on $\mathrm{GF}(2)$ e $G(x)$: the irreducible polynomial with degree m
e $A(x) \cdot B(x)=A(x) \times B(x) \bmod G(x)$
e • : multiplication in $\mathrm{GF}\left(2^{m}\right)$
e \times : polynomial multiplication in GF(2)
e Multiplicative inverse of $A(x)$
e The element $A^{-1}(x)$ is such that

$$
A(x) \cdot A^{-1}(x)=1 .
$$

e time-consuming operation

MULGF2

e MULGF2 instruction
e A typical polynomial multiply instruction on GF(2)
e calculates the 2-word polynomial product from two 1-word polynomial operands

e accelerates multiplication in $\mathrm{GF}\left(2^{m}\right)$
e A multiplier for MULGF2 can be realized very easily e "carry-free" version of an integer multiplier

Algorithm for Inversion in $\mathrm{GF}\left(2^{m}\right)^{-1}$

e By extending the Euclid's algorithm for polynomial, we can execute inversion in $\operatorname{GF}\left(2^{m}\right)$.

$$
\begin{aligned}
& R_{-1}(x):=G(x) ; \\
& R_{0}(x):=A(x) ; \\
& j:=0 ;
\end{aligned}
$$

repeat

$$
\begin{aligned}
& j:=j+1 \\
& Q_{j}(x):=R_{j-2}(x) \div R_{j-1}(x) ; \\
& R_{j}(x):=R_{j-2}(x)-Q_{j}(x) \times R_{j-1}(x) ;
\end{aligned}
$$

until $R_{j}(x)=0$;
outputs $R_{j-1}(x)$ as $G C D(A(x), G(x))$

Algorithm for Inversion in $\mathrm{GF}\left(2^{m}\right)$

e By extending the Euclid's algorithm for polynomial, we can execute inversion in $\operatorname{GF}\left(2^{m}\right)$.

$$
\begin{aligned}
& R_{-1}(x):=G(x) ; U_{-1}(x):=0 ; \\
& R_{0}(x):=A(x) ; U_{0}(x):=1 ; \\
& j:=0 ;
\end{aligned}
$$

repeat

$$
\begin{aligned}
& j:=j+1 ; \\
& Q_{j}(x):=R_{j-2}(x) \div R_{j-1}(x) ; \\
& R_{j}(x):=R_{j-2}(x)-Q_{j}(x) \times R_{j-1}(x) ; \\
& U_{j}(x):=U_{j-2}(x)-Q_{j}(x) \times U_{j-1}(x) ;
\end{aligned}
$$

until $R_{j}(x)=0$;
outputs $R_{j-1}(x)$ as $G C D(A(x), G(x))$
outputs $U_{j-1}(x)$ as $A^{-1}(x)$
$\left(A(x) \times A^{-1}(x) \bmod G(x)=1\right)$

Software Implementation of EA

e software implementation of the Euclid's algorithm
$S(x):=G(x) ; R(x):=A(x) ;$
while $R(x) \neq 0$ do

$$
\delta:=\operatorname{deg}(S(x))-\operatorname{deg}(R(x)) ;
$$

if $\operatorname{deg}(S(x))<\operatorname{deg}(R(x))$ then

$$
R(x) \leftrightarrow S(x) ; \delta:=-\delta ;
$$

end if

$$
S(x):=S(x)-x^{\delta} \times R(x) ;
$$

end while
1st iteration

1		
$S:$	$x^{3}+x^{2}$	+1
$R:$	x^{2}	+1

Software Implementation of EA

e software implementation of the Euclid's algorithm

$$
S(x):=G(x) ; R(x):=A(x) ;
$$

while $R(x) \neq 0$ do

$$
\begin{aligned}
& \hline \delta:=\operatorname{deg}(S(x))-\operatorname{deg}(R(x)) ; \\
& \text { if } \operatorname{deg}(S(x))<\operatorname{deg}(R(x)) \text { then }
\end{aligned}
$$

$$
R(x) \leftrightarrow S(x) ; \delta:=-\delta ;
$$

end if
$S(x):=S(x)-x^{\delta} \times R(x) ;$
end while

$$
\begin{array}{|ll|}
\hline \\
\hline
\end{array}
$$

Software Implementation of EA

e software implementation of the Euclid's algorithm
$S(x):=G(x) ; R(x):=A(x) ;$
while $R(x) \neq 0$ do

$$
\delta:=\operatorname{deg}(S(x))-\operatorname{deg}(R(x)) ;
$$

if $\operatorname{deg}(S(x))<\operatorname{deg}(R(x))$ then $R(x) \leftrightarrow S(x) ; \delta:=-\delta ;$
end if

$$
S(x):=S(x)-x^{\delta} \times R(x) ;
$$

end while

2nd iteration

| $S:$ | $x^{2}+x+1$ |
| ---: | :--- | ---: |
| $R:$ | $x^{2}+1$ |

Software Implementation of EA

e software implementation of the Euclid's algorithm

$$
S(x):=G(x) ; R(x):=A(x)
$$

while $R(x) \neq 0$ do

$$
\begin{aligned}
& \delta:=\operatorname{deg}(S(x))-\operatorname{deg}(R(x)) ; \\
& \text { if } \operatorname{deg}(S(x))<\operatorname{deg}(R(x)) \text { then }
\end{aligned}
$$

$$
R(x) \leftrightarrow S(x) ; \delta:=-\delta ;
$$

end if

$$
S(x):=S(x)-x^{\delta} \times R(x)
$$

end while

1st iteration

$$
\begin{array}{lrl}
S: & x^{3}+x^{2} & +1 \\
R: & x^{2} & +1 \\
\hline
\end{array}
$$

2nd iteration

$S:$	$x^{2}+x+1$
$R:$	$x^{2}+$

$S(x):=S(x)-x^{2-2} \times R(x) ;$

Software Implementation of EA

e software implementation of the Euclid's algorithm
$S(x):=G(x) ; R(x):=A(x) ;$
while $R(x) \neq 0$ do

$$
\delta:=\operatorname{deg}(S(x))-\operatorname{deg}(R(x)) ;
$$

$$
\text { if } \operatorname{deg}(S(x))<\operatorname{deg}(R(x)) \text { then }
$$

$$
R(x) \leftrightarrow S(x) ; \delta:=-\delta ;
$$

end if

$$
S(x):=S(x)-x^{\delta} \times R(x) ;
$$

end while

1st iteration
$S: x^{3}+x^{2}+1$
R: $\quad x^{2}+1$
2nd iteration

| $S:$ | $x^{2}+x+1$ |
| ---: | ---: | ---: |
| $R:$ | $x^{2}+1$ |

3rd iteration
$S: \quad x^{l}$
R:
x^{2}
$+1$

Software Implementation of EA

e software implementation of the Euclid's algorithm
$S(x):=G(x) ; R(x):=A(x) ;$
while $R(x) \neq 0$ do
$\delta:=\operatorname{deg}(S(x))-\operatorname{deg}(R(x))$;
if $\operatorname{deg}(S(x))<\operatorname{deg}(R(x))$ then $R(x) \leftrightarrow S(x) ; \delta:=-\delta ;$
end if

$$
S(x):=S(x)-x^{\delta} \times R(x) ;
$$

end while

2nd iteration

| $S:$ | $x^{2}+x+1$ |
| ---: | :--- | ---: |
| $R:$ | $x^{2}+1$ |

3rd iteration
S:
R: $\quad x^{(2)}+1$
$S(x)<->R(x) ;$
$S(x):=S(x)-x^{2-1} \times R(x) ;$

Software Implementation of EA

e software implementation of the Euclid's algorithm

$$
S(x):=G(x) ; R(x):=A(x) ;
$$

while $R(x) \neq 0$ do

$$
\begin{aligned}
& \delta:=\operatorname{deg}(S(x))-\operatorname{deg}(R(x)) ; \\
& \text { if } \operatorname{deg}(S(x))<\operatorname{deg}(R(x)) \text { then }
\end{aligned}
$$

$$
R(x) \leftrightarrow S(x) ; \delta:=-\delta ;
$$

end if

$$
S(x):=S(x)-x^{\delta} \times R(x) ;
$$

end while
1st \& 2nd iterations correspond to one polynomial division

2nd iteration	$S:$	$x^{2}+x+1$
$R:$	$x^{2}+1$	

3rd iteration			
$S:$			
	x^{1}		
$R:$	x^{2}		

4th iteration
S
x^{1}
$x^{2}+1$

Main Idea

e Key point
e The conventional algorithm can not use MULGF2 efficiently
e $S(x):=S(x)-x^{0} \times R(x)$;
e New algorithm
e based on Brunner's hardware algorithm for inversion
e use MULGF2 efficiently
e executed with regularity

HW implementation

e Hardware algorithm for inversion [Brunner et al., '93]

$$
\begin{aligned}
& S(x):=G(x) ; R(x):=A(x) ; \delta:=0 ; \\
& \text { for } i=1 \text { to } 2 m \text { do } \\
& \quad \text { if } r_{m}=0 \text { then } \\
& \quad R(x):=x \times R(x) ; \delta:=\delta+1 ;
\end{aligned}
$$

else
if $s_{m}=1$ then

$$
S(x):=S(x)-R(x) ;
$$

end if

$$
S(x):=x \times S(x) ;
$$

$$
\text { if } \delta=0 \text { then }
$$

$$
R(x) \leftrightarrow S(x) ; \delta:=\delta+1 ;
$$

else

$$
\delta:=\delta-1 ;
$$

end if
end if
end for

HW implementation

e Hardware algorithm for inversion [Brunner et al., '93]
$S(x):=G(x) ; R(x):=A(x) ; \delta:=0 ;$ for $i=1$ to $2 m$ do
if $r_{m}=0$ then

$$
R(x):=x \times R(x) ; \delta:=\delta+1
$$

else
if $s_{m}=1$ then $S(x):=S(x)-R(x) ;$
end if

$$
S(x):=x \times S(x)
$$

if $\delta=0$ then

$$
R(x) \leftrightarrow S(x) ; \delta:=\delta+1
$$

else

$$
\delta:=\delta-1
$$

end if
end if
end for

$$
\begin{aligned}
& \begin{array}{l}
\text { 1st iteration } \\
S: x^{3}+x^{2} \\
R: \square x^{2}
\end{array}+1+1 \\
& R(x):=x \times R(x) ; \\
& \delta:=\delta+1 ;
\end{aligned}
$$

HW implementation

e Hardware algorithm for inversion [Brunner et al., '93]

$$
\begin{aligned}
& S(x):=G(x) ; R(x):=A(x) ; \delta:=0 ; \\
& \text { for } i=1 \text { to } 2 m \text { do } \\
& \text { if } r_{m}=0 \text { then } \\
& \quad R(x):=x \times R(x) ; \delta:=\delta+1 ; \\
& \text { else } \\
& \text { if } s_{m}=1 \text { then } \\
& \quad S(x):=S(x)-R(x) ; \\
& \text { end if } \\
& S(x):=x \times S(x) ; \\
& \text { if } \delta=0 \text { then } \\
& R(x) \leftrightarrow S(x) ; \delta:=\delta+1 ; \\
& \text { else } \\
& \delta:=\delta-1 ; \\
& \text { end if } \\
& \text { end if } \\
& \text { end for }
\end{aligned}
$$

$\left(\begin{array}{ccc}\text { lst iteration } & \delta=0 \\ S: & x^{3}+x^{2} & +1 \\ R: & x^{2} & +1 \\ \hline\end{array}\right.$
2nd iteration $\delta=1$
$S: x^{3}+x^{2}+1$

HW implementation

e Hardware algorithm for inversion [Brunner et al., '93]

$$
S(x):=G(x) ; R(x):=A(x) ; \delta:=0
$$

$$
\text { for } i=1 \text { to } 2 m \text { do }
$$

if $r_{m}=0$ then

$$
R(x):=x \times R(x) ; \delta:=\delta+1
$$

else

$$
\begin{aligned}
& \text { if } s_{m}=1 \text { then } \\
& \quad S(x):=S(x)-R(x) ; \\
& \text { end if } \\
& S(x):=x \times S(x) ; \\
& \text { If } \delta=0 \text { then } \\
& \quad R(x) \leftrightarrow S(x) ; \delta:=\delta+1 ;
\end{aligned}
$$

else

$$
\delta:=\delta-1
$$

end It
end if
end for

HW implementation

e Hardware algorithm for inversion [Brunner et al., '93]

$$
\begin{aligned}
& S(x):=G(x) ; R(x):=A(x) ; \delta:=0 ; \\
& \text { for } i=1 \text { to } 2 m \text { do } \\
& \text { if } r_{m}=0 \text { then } \\
& \quad R(x):=x \times R(x) ; \delta:=\delta+1 ; \\
& \text { else } \\
& \text { if } s_{m}=1 \text { then } \\
& \quad S(x):=S(x)-R(x) ; \\
& \text { end if } \\
& S(x):=x \times S(x) ; \\
& \text { if } \delta=0 \text { then } \\
& R(x) \leftrightarrow S(x) ; \delta:=\delta+1 ; \\
& \text { else } \\
& \delta:=\delta-1 ; \\
& \text { end if } \\
& \text { end if } \\
& \text { end for }
\end{aligned}
$$

HW implementation

e Hardware algorithm for inversion [Brunner et al., '93]

$$
\begin{aligned}
& S(x):=G(x) ; R(x):=A(x) ; \delta:=0 \\
& \text { for } i=1 \text { to } 2 m \text { do } \\
& \quad \text { if } r_{m}=0 \text { then } \\
& \quad R(x):=x \times R(x) ; \delta:=\delta+1
\end{aligned}
$$

else
if $s_{m}=1$ then $S(x):=S(x)-R(x) ;$
end if
$S(x):=x \times S(x) ;$
if $\delta=0$ then

$$
R(x) \leftrightarrow S(x) ; \delta:=\delta+1 ;
$$

else

$$
\delta:=\delta-1
$$

end if
end if
end for

2nd iteration $\delta=1$ $S: x^{3}+x^{2}+1$ $R: x^{3}+x$
3rd iteration $\delta=0$
$\begin{aligned} S: & x^{3}+x^{2}+x \\ R: & +x^{3}+x\end{aligned}$
$S(x):=x \times(S(x)-R(x)) ;$
$S(x)<->R(x)$;
$\delta:=\delta+1 ;$

HW implementation

e Hardware algorithm for inversion [Brunner et al., '93]

$$
\begin{aligned}
& S(x):=G(x) ; R(x):=A(x) ; \delta:=0 ; \\
& \text { for } i=1 \text { to } 2 m \text { do } \\
& \text { if } r_{m}=0 \text { then } \\
& \quad R(x):=x \times R(x) ; \delta:=\delta+1 ; \\
& \text { else } \\
& \text { if } s_{m}=1 \text { then } \\
& \quad S(x):=S(x)-R(x) ; \\
& \text { end if } \\
& S(x):=x \times S(x) ; \\
& \text { if } \delta=0 \text { then } \\
& R(x) \leftrightarrow S(x) ; \delta:=\delta+1 ; \\
& \text { else } \\
& \delta:=\delta-1 ; \\
& \text { end if } \\
& \text { end if } \\
& \text { end for }
\end{aligned}
$$

Main Idea 2

e Operations corresponding to contiguous k iterations of Brunner's algorithm can be represented as

$$
\left(\begin{array}{cc}
R(x) & U(x) \\
S(x) & V(x)
\end{array}\right):=H(x) \times\left(\begin{array}{cc}
R(x) & U(x) \\
S(x) & V(x)
\end{array}\right) ;
$$

e Each element of the matrix $H(x)$ is a polynomial with degree less than or equal to k on GF(2)

The Matrix $H(x)(\mathbf{1} / \mathbf{2})$

$\left(\begin{array}{lll}\text { 1st iteration } & \delta=0 \\ S: x^{3}+x^{2} & +1 \\ R: \square x^{2} & +1\end{array}\right)$
a The operation is represented in matrices as

$$
\begin{aligned}
& R(x):=x \times R(x) ; \\
& \delta:=\delta+1
\end{aligned}
$$

$$
\binom{R(x)}{S(x)}:=\left(\begin{array}{ll}
x & 0 \\
0 & 1
\end{array}\right) \times\binom{ R(x)}{S(x)}
$$

The Matrix $H(x)(\mathbf{1} / \mathbf{2})$

$\left(\begin{array}{ccc}\text { 1st iteration } & \delta=0 \\ S: & x^{3}+x^{2} & +1 \\ R: & x^{2} & +1\end{array}\right)$
e The operations are represented in matrices as

$$
\begin{aligned}
& \text { 2nd iteration } \delta=1 \\
& \begin{array}{l}
S:\left(x^{3}+x^{2}+x^{3}+1\right. \\
R:(x)
\end{array} \\
& S(x):=x \times(S(x)-R(x)) \text {; } \\
& \delta:=\delta-1 \text {; }
\end{aligned}
$$

$$
\begin{aligned}
& \binom{R(x)}{S(x)}:=\left(\begin{array}{ll}
x & 0 \\
0 & 1
\end{array}\right) \times\binom{ R(x)}{S(x)} ; \\
& \binom{R(x)}{S(x)}:=\left(\begin{array}{ll}
1 & 0 \\
x & x
\end{array}\right) \times\binom{ R(x)}{S(x)} ;
\end{aligned}
$$

The Matrix $H(x)(\mathbf{1} / \mathbf{2})$

1st iteration $\quad \delta=0$

S:	$x^{3}+x^{2}$	+1
$R:$	x^{2}	+1

2nd iteration $\delta=1$

$S:$	$x^{3}+x^{2}+x^{2}$
$R:$	$x^{3}+1$

3rd iteration $\delta=0$
$\begin{aligned} & S: x^{3}+x^{2}+x \\ & R:+x^{3}+x \\ &+\end{aligned}$
$S(x):=x \times(S(x)-R(x))$;
$S(x)$ <-> $R(x)$;
$\delta:=\delta+1$;
e The operations are represented in matrices as

$$
\begin{aligned}
& \binom{R(x)}{S(x)}:=\left(\begin{array}{ll}
x & 0 \\
0 & 1
\end{array}\right) \times\binom{ R(x)}{S(x)} ; \\
& \binom{R(x)}{S(x)}:=\left(\begin{array}{ll}
1 & 0 \\
x & x
\end{array}\right) \times\binom{ R(x)}{S(x)} ; \\
& \binom{R(x)}{S(x)}:=\left(\begin{array}{ll}
x & x \\
1 & 0
\end{array}\right) \times\binom{ R(x)}{S(x)} ;
\end{aligned}
$$

The Matrix $H(x)(\mathbf{2} / \mathbf{2})$

e The operations in these three iterations can be represented as

$$
\begin{gathered}
\left.\binom{R(x)}{S(x)}:=\begin{array}{ll}
x & x \\
1 & 0
\end{array}\right) \times\left(\begin{array}{ll}
1 & 0 \\
x & x
\end{array}\right) \times\left(\begin{array}{ll}
x & 0 \\
0 & 1
\end{array}\right) \times\binom{ R(x)}{S(x)} ; \\
=\left(\begin{array}{cc}
x^{3}+x^{2} & x^{2} \\
x & 0
\end{array}\right)=H(x)
\end{gathered}
$$

e By using $H(x)$
e We can calculate the operations in these three iterations at once
e We can use MULGF2 instruction efficiently

New Algorithm

1. calculates $H(x)$ from the most significant word of $R(x)$ and $S(x)$
e with only single-word operations
2. calculates

$$
\left(\begin{array}{cc}
R(x) & U(x) \\
S(x) & V(x)
\end{array}\right):=H(x) \times\left(\begin{array}{cc}
R(x) & U(x) \\
S(x) & V(x)
\end{array}\right) ;
$$

efficiently by using MULGF2
3. continues the process until $R(x)$ becomes 0

Evaluation

e We compared \# of MULGF2 and XOR instructions of the proposed algorithm with that of the conventional one
e Assumption
e We compared average \# of instructions for executing inversion of 1,000 random elements
e We counted instructions for multi-word operations in two algorithms
e MULGF2 has single cycle latency

Comparison of \# of instruction (1/2)

e the word size of a processor $=16$
\# of instructions

Comparison of \# of instruction (1/2)

e the word size of a processor $=16$
\# of instructions

Comparison of \# of instruction (2/2)

e the word size of a processor $=32$
\# of instructions

Comparison of \# of instruction (2/2)

e the word size of a processor $=32$
\# of instructions

Comparison of \# of instruction (2/2)

e the word size of a processor $=32$
\# of instructions

Concluding Remarks

e We have proposed a new algorithm for inversion in $\mathrm{GF}\left(2^{m}\right)$
e the matrix $H(x)$
e represents operations corresponding to several contiguous iterations of Brunner's algorithm
e obtained with only single-word operation
a suitable for implementation using MULGF2
e executed with regularity
e When both m and the word size of a processor are large
a the proposed algorithm can execute inversion very fast

Thank you for listening!

