
This research is supported by the UW-Madision Graduate
School and IBM

1

Department of Electrical and Computer Engineering

MMadison adison EEmbedded mbedded SSystems & ystems & AArchitectures Laboratoryrchitectures Laboratory
(MESA)

Decimal Floating-Point Adder and
Multifunction Unit with Injection-Based

Rounding

Liang-Kai Wang and Michael J. Schulte
University of Wisconsin-Madison

ARITH-18, Montpellier, France

Department of Electrical and Computer Engineering

MMadison adison EEmbedded mbedded SSystems & ystems & AArchitectures Laboratoryrchitectures Laboratory
(MESA)

2

Outline

• Motivation
• Related Research
• Algorithm for Decimal Floating-Point (DFP)

Adder and Multifunction Unit
• Hardware Design
• Experimental Results and Analysis
• Conclusions

3

Motivation

• Important in business applications

=0.210= 0.00110011…2

• The IEEE P754 floating-point standard
– Three DFP formats: 34-digit decimal128 format,

16-digit decimal64 format (this paper), and 7-
digit decimal32 format

• Decimal floating-point software is slow
• Decreasing transistor costs

4

Previous Research and Proposed
Design

• Previous designs
– Focus on fixed-point addition and subtraction

• For example, [Adiletta89], [Schmookler71]
– [Thompson04] presents the first IEEE P754

compliant DFP adder
• We propose an DFP multifunction unit that

– Supports eight DFP operations
• add, sub, quantize, sameQuantum, roundToIntegral,

minNum, maxNum, and compare
– Optimizes significand alignment
– Applies decimal injection-based rounding
– Uses a decimal flag-tracing mechanism

5

DFP Adder and Multifunction Unit

Forward format conversion

Operand alignment

Pre-correction

Carry propagation network
Post-correction

Overflow detection Shift and round

Backward format conversion

A B

S

SA = sign of A
SB = sign of B
EA = exponent of A
EB = exponent of B
CA = significand of A
CB = significand of B

6

X 10EBbk-1 … b00…0

A=CA X 10EA = 0…0 ai-1 … a0 X 10EA

P digits

LA

Result X 10EB+4

LB bk-1 b40………0 b3 b2 X 10EB+4
G R S

ai-1 … a0 0 0 0 0 0 X 10EA-5

Operand Alignment

• Decimal operands are not
normalized

• Operand alignment calculation
• E.g. LA = 5 , EA – EB = 9

B=CB X 10EB =

LB

Exponents (EA and EB) and
Lengths of Leading Zero (LA and

LB)

EA < EB

LAs < |EA-EB|
Left Shift CAS by
(LAS-|EA-EB|)

Left Shift CAS by LAS

Right Shift CBS by
min(|EA-EB|-LAS, 19)

YES

NO

NO

YES

Swap CA and CB

7

Pre-correction

• Effective operation = SA⊕SB⊕OP
• Place operands based on effective

operations simplifies result shifting
• Inject value into the digit positions, R and

S, based on rounding modes replaces
rounding by truncation.

Effective add
roundTiesToAway 0 0000 xxxx xxxx xx xx

0 xxxx xxxx xxxx xx xx
G R SL

15

0result 10

A

B

5 0

8

Pre-correction

• Injection value

• Operands are corrected to generate correct carry-out
(9, 9)AwayZeroX

(0, 0)-∞+

(9, 9)+∞-

(9, 9)-∞+

(0, 0)+∞-

(5, 0)TieToEvenX

(4, 9)TieToZeroX

(5, 0)TieToAwayX

(0, 0)TowardZeroX

Injection Value
(R, S)

Rounding ModeSigninj

()
()
()⎪⎩

⎪
⎨
⎧ +

=
i

i
i CA

CA
CA

2

2
3 '

6' If EOP = add
Otherwise

If EOP = add

Otherwise
()

()
()⎪⎩

⎪
⎨
⎧

=
i

i
i CB

CB
CB

2

2
3 '

'

9

Carry Propagation Network

• Kogge-Stone
parallel prefix
network

• Two sets of flags
– Flag F1 handles

the digit
increment in the
post-correction
stage.

– Flag F2 handles
the carry
propagation from
the injection
correction value.

L G R S

F2

Post-
correction

Original
KS

Network

row 5

row 4

row 3

row 2

row 1

row 0

row 9

row 8

row 7

row 6

Shift and
Round Unit

19 digits

row 10

Trailing Nine Detection Network

Injection
Correction

Block

Post-
correction

(LSD)

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Digit

Position

carry-out (C1)
flags (F1)

sum digits (UCR)

CR1

16 digits

16 digits

carry

CR2

10

Post-correction

• Compensate the result from the K-S network
• Rule 1: effective operation is ADD

– Subtract 6 from digit i for which (C1)i+1 is 0
• Rule 2: effective operation is SUB

– If the result is positive
• Increment the result using F1

• Subtract 6 from digit i for which (C1)i+1 ⊕ (F1)i ≡ 0
– If the result is negative

• Invert all bits of the result
• Subtract 6 from digit i for which (C1)i+1 ≡ 1

11

0 4 5 05 0 0Significand

Shift and Round

• Most significant digit is zero
– No action is needed

• Most significant digit is non-zero
– Requires an injection correction step

Effective add
TieToEven

XReal result

0

0 5 0
G R SL

Predicted result

A

B

Right shift 1 digit
Exponent increment

+

P = 16 digits

12

Shift and Round

• Injection correction value for different rounding modes

• Injection correction value may trigger carry propagation
• Flag F2 eliminates carry propagation

(9, 0, 0)AwayZeroX
(0, 0, 0)-∞+
(9, 0, 0)+∞-
(9, 0, 0)-∞+
(0, 0, 0)+∞-
(4, 5, 0)TieToEvenX
(4, 5, 0)TieToZeroX
(4, 5, 0)TieToAwayX
(0, 0, 0)TowardZeroX

Injection Correction Value
(G, R, S)

Rounding ModeSigninj

13

Comparison

Injection-based rounding with
correction.

Random logic and decimal
incrementer.

Rounding

8: add, subtract, minNum,
maxNum, compare, quantize,
sameQuantum, roundToIntegral

2: add, subtractSupported DFP
Operations

Before the result is roundedAfter result is roundedOverflow
Detection

Two extra flags for roundingKogge-Stone with flag
tracing for post-correction

Carry-propagate
network

Exponent computation and LZD in
parallel

Exponent computation and
LZD in series

Operand
Alignment

Excess-3 encoding

Thompson’s Design

BCD encodingInternal format

This Design

14

Extension to Support More DFP
Operations

• ToIntegralValue(A)
– Round A to an integer value

• ToIntegralValue(13545 x 10-3) = 14 with round-ties-to-even
– Design strategy

• Set CB1 and EB1 to zero
• Enable right shift even if CB1=0
• Set effective operation to ADD

• Quantize (A, B)
– Change EA to EB

• Quantize(12345 x 10-4, 1 x 10-2) = 123 x 10-2 with round-down
– Design strategy

• Set CB1 to zero
• Enable right shift even if CB1=0
• Set effective operation to ADD

15

Extension to Support More DFP
Operations

• SameQuantum(A, B)
– Check if EA ≡ EB
– Generate an extra flag in the operand alignment

stage
• minNum, maxNum, and compare use the

original datapath
• Many changes are made to exception flag logic
• A post-processing unit is added to handle

special operands such as infinity and Not-a-
Number

16

Block Diagram of the DFP Adder and
Multifunction Unit

Overflow

Op A

Op B

Forward
Format

Conversion

Operand
Alignment
Calculation

and Swapping

Pre-correction and
Operand Placement

K-S
Network

Post-
correction

Shift and
Round

Backward
Format

Conversion
Post-

processing

IEEE P754
Result (Z)

CA1

EB1

CB1

EA1

CAS
CBS

CA3

CB3

UCR
CR1 CR2

Barrel
Shifters

CA2

CB2

C1

F1

F2

R1

Rounding
Mode

Operation

SA1

SB1

Sign

ER1

SR1

overflow

ER2

RSA
LSA

17

Hardware Implementation

• Modeled using RTL Verilog and simulated
using Modelsim

• Synthesized using LSI Logic’s 0.11um
Standard Cell Library and Synopsys
Design Compiler

• Tested using a comprehensive testbench
generator and the decNumber library 3.32

18

Delay and Area Comparison

1.6%

21.0%

Improvement

22086 NAND eq. gates22443 NAND eq. gatesArea

2.76 ns, 50.2 FO43.50 ns, 63.6 FO4Delay (comb.)

Injection-based adderThompson’s adderMetric

9.7%
2.8%

Overhead

24233 NAND eq. gates22086 NAND eq. gatesArea
2.84ns, 51.6 FO42.76 ns, 50.2 FO4Delay

Multifunction UnitInjection-based adderMetric

Table 1. Improvement over Thompson’s Design

Table 2. Overhead of the Multifunction Unit Compared to the Injection-based Adder

• Combinational circuit designs

19

0.00

10.00

20.00

30.00

40.00

50.00

60.00

1 2 3 4 5 6

of Stages

F
O
4

Cycle Times vs. Pipeline Depth

• Synthesized using the pipeline_design
command from the Synopsys Design Compiler

0

20000

40000

60000

80000

100000

120000

1 2 3 4 5 6

of Stages
A

re
a

(N
A

N
D

2
G

at
e

eq
.)

20

Conclusion

• A 16-digit DFP adder and multifunction unit
compliant with the IEEE P754 standard

• Novel features:
– Delay optimization in the operand alignment,

rounding, and overflow detection units
– A modified injection-based rounding method
– Extensions to support multiple DFP operations

• Design analysis
– 21% delay improvement over Thompson’s

design
– 2.8% delay overhead for DFP multifunction unit

21

Questions?

22

Backup Slide

• More on Forward Conversion
• More on Operand Alignment
• More on Post-correction
• More on Carry Propagation Network

• More on Overflow Detection

• More on Sign and Backward Conversion
• More on Extension to Support More DFP Operations

• More on Area Comparison

23

Forward Format Conversion

• Extract sign bits, biased exponents, and
significands from operands in the IEEE format
– Combination field G contains the classification of a number,

the encoding information, the most significant digit of
significand and a biased exponent.

– Trailing significand field T encodes a significand using
Densely Packed Decimal (DPD) encoding. DPD encoding
represents three digits using ten bits.

• Convert significands in DPD encoding to the BCD
encoding

• Generate flag signals for special operands
(signaling NaN, quiet NaN, zero, and infinity)

Sign
S

Combination
G

Trailing Significand
T

Width (w+5) bits = 13 bits

Field

1 bitdecimal64
operand

t =10J bits = 50
 =3J digits=15

24

Operand Alignment and Pre-correction

• Operands are shifted
using one 16-digit left-
shift and one 18-digit
right-shift decimal barrel
shifters.

• Guard and round digits,
and sticky bit are
generated. CB becomes
a 18-digit operand with a
sticky bit.

• Operands are placed
based on the effective
operation flag to simplify
the rounding.

CA'2

CB'2

0

0

Addition

R S

CB2[71:4], 18 digits
OR{CBS[3:0], sticky}

CA2[63:0] G

0CA'2

CB'2

Subtraction

R S

CB2[71:0], 18 digits
sticky

CA2[63:0]

16 digits

G

3 digits

L

L

16 digits 3 digits

19 digits

25

Operand Alignment and Pre-correction

LZDLZD
Significand
Swapping

CA1CB1

SUB-ABS

EA1EB1

SUB

CASCBS

SUB

Right Shift
Corrector

LSA ER1
RSA

EA
S

|EA
1 -EB

1 |

MUX

LA
S

LA
1

LB
1

|EA
1 -EB

1 |-LA
S

MUX

MUX

sw
ap

select

26

Validity of Post-correction
• Add:

– At Pre-correction: Ai + Bi + 6
– If digit carry is 0, Ai + Bi + Ci-1< 10, subtract 6 from

Sumi

• Sub:
– Expect: A + (10…0 - B)
– At Pre-correction: A + (9…9- B) + 6…6
– If carry out of MSD is 1,

• Result is positive. Add the late carry-in from the LSD.
• If the digit sum after incrementing the late carry-in is less

than 10 (A + (9-B) + 6 + C < 10), subtract 6 from Sum

27

Validity of Post-correction
– Else

• Result is negative. Invert Sum. Sumi = 15 – (Ai +15 – Bi + Ci-
1)= Bi – Ai – Ci-1

• If Bi – (Ai +Ci-1) <0
– Need to borrow from the next digit
– 25>=15-[Bi – (Ai + Ci-1)]>=16 9>=Sum>=0. This generates a

carry to the next digit.
– After inverting, F>=Sumi’>=6. Need to subtract 6

• Else,
– No borrow from the next digit
– 15>=15-[Bi – (Ai + Ci-1)]>6, No carry is generated
– After inverting, 9>=Sumi’>=0. No subtraction is needed.

– E.g 135 – 424 = 135 + bdb = d10 with 011 as borrow
signals. After inversion, d10 2ef. Subtract by six on
two LSDs, 2ef 289

28

Carry Propagation Network

• Use Kogge-Stone parallel prefix network
• Three sets of flags in addition to the carry bits are generated.
• Flag F1 handles the digit increment in the post-correction stage to

increment results and is generated from the propagate bits.

• Flags F2 traces the trailing nine of the result before the post-
correction stage.

() ()() ()() ()()

() ()() () ()() ()
()()

() () ()
() () ()

⎩
⎨
⎧

=

∧=

∧=
⎩
⎨
⎧

=≡

≡∧≡∨≡∧≡
=

∧≡∨≡=
=

−

−

−−−

−−−

+

4

4
2

211

211

3434
0

110

1

1

19...5i ,15
114015

915
4...19

flagSUB
flagADD

F

flagSUBflagSUBflagSUB

flagADDflagADDflagADD

UCR
PUCRPUCR

flagSUB

CUCRUCRflagADD
i

x

x

ixixix

ixixix

i
i

iiii

EOP = ADD
EOP = SUB

, where X = 1~4

() () ()
()i

ixixix

PF
xPPP x

41

211 0...4 where
=

=∧= −−−

29

Overflow Detection

• Injection-based rounding simplifies the
overflow detection
– The result is overflow before rounding (carry-

out is generated from the most significant digit
of the result)

• Not influenced by the injection correction value
– The result is overflow after rounding

• Handle by the injected value
– Overflow detection can examine the result

before the rounding unit

30

Sign and Backward Conversion

• Sign bit is determined by the signs of
operands, the rounding mode, and if either
of the operands is normal numbers.
– Sign = (!EOP ∩ SignA) ∪ (EOP ∩ ((EA≥EB) ⊕

SignA ⊕ carryout)
• Backward conversion combines the sign

bit, the exponent, and the significand to
form the P754 compliant result.

31

Extension to Support More DFP
Operations

• Quantize (A, B)
– Change the unit of A to EB
– Set CB to zero
– Enable right shift even if CB=0
– Set effective operation to ADD to avoid wrong rounding operations

• SameQuantum(A, B)
– Check if EA ≡ EB
– Generate an extra flag in the operand alignment stage.

• MinNum, MaxNum, and Compare
– Set the operator to SUB and observe the sign

• ToIntegralValue(A)
– Round A to an integer value
– Set CB and EB to zero
– Enable right shift even if CB=0
– Set effective operation to ADD to avoid wrong rounding operations

• Many changes to the conditions of exception flags are added. The post-
processing unit is added to handle special operands such as infinity and
Not-a-Number.

32

Area Comparison

0.0

2000.0

4000.0

6000.0

8000.0

10000.0

12000.0

14000.0

16000.0

Bar
rel

 S
hif

ter
 (L

eft
)

Bar
rel

 S
hif

ter
 (R

igh
t)

Fo
rw

ard
 F

orm
at

Con
ve

rsi
on

Effe
cti

ve
 O

pe
rat

io
n

Bac
kw

ard
 F

or
mat

Con
ve

rsi
on

Kog
ge

 S
ton

e N
etw

or
k

OACSU

Ope
ra

nd
 Pr

e-c
orr

ec
tio

n
Po

st-
co

rre
cti

on
Po

st-
Pr

oc
es

sin
g

Sh
ift

 an
d R

ou
nd

Si
gn

Zero
 D

ete
cti

on

Sp
ec

ial
 O

pe
rat

io
n H

an
dle

r
Othe

r L
og

ic

A
re

a
(N

A
N

D
 E

qu
iv

al
en

t U
ni

ts
) Thompson's Adder [14]

Adder w ith Inj-based Rounding

Multifunction w ith Inj-based Rounding

33

Comparison with Software
(IBM’s decNumber library)

11

64

47.1

107.2

67.6

60.8

89.4

44.2

82.7

83.2

SlowFastSlowFast

64

Hardware

70.7282.8Compare

160.8643.1MinNum

101.4405.4MaxNum

91.2364.6ToIntegralValue

89.489.4SameQuantum

66.4265.4Quantize

124.1496.2SUB

124.9499.4ADD

Improvement
Software

DFP
Operations

• decNumber library using the SimpleScalar simulator with PISA
architecture

34

Comparison with Software
(Intel’s BID library)

108

113

45

45

133

133

SlowFast

64

11.5

12.5

4.5

4.5

11.8

11.8

MinMaxSlowFast

64

Hardware

2769MinNum*

28.375MaxNum*

11.327ToIntegralValue

11.327Quantize

33.371SUB

33.371ADD

ImprovementSoftwareDFP
Operations

• Intel’s BID library and EM64t Xeon 5100 3.0GHz
• Results taken from their paper

35

Other DFP Operations

• Other DFP operations that can reuse our
DFP adders include:
– nextUp
– nextDown

• Other DFP operations that can use our
DFP with little extra gate
– ABS
– Negate
– copySign

36

Delay Comparison

0
0.2

0.4
0.6
0.8

1

1.2
1.4

IEEE to
 BCD Fo

rm
at

Con
ve

rsi
on

 U
nit

OACSU

Barr
el

Shif
ter

 R
igh

t

Ope
ran

d P
re-

co
rre

cti
on

 U
nit

Kog
ge

 Ston
e N

etw
ork

 U
nit

Pos
t-c

orr
ec

tio
n U

nit

Shif
t a

nd
 R

ou
nd

 U
nit

BCD to
 IE

EE Fo
rm

at
Con

ve
rsi

on
 U

nit

Pos
t-P

roc
es

sin
g U

nit

D
el

ay
 (n

s)

Thompson's Adder [14]

Adder with Inj-based Rounding

