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Abstract—Approximate Computing (AxC) trades off between
the level of accuracy required by the user and the actual
precision provided by the computing system to achieve several
optimizations such as performance improvement, energy,
and area reduction etc.. Several AxC techniques have been
proposed so far in the literature. They work at different
abstraction level and propose both hardware and software
implementations. The common issue of all existing approaches
is the lack of a methodology to estimate the impact of a
given AxC technique on the application-level accuracy. In this
paper, we propose a probabilistic approach to predict the
relation between component-level functional approximation and
application-level accuracy. Experimental results on a set of
benchmark application show that the proposed approach is able
to estimate the approximation error with good accuracy and
very low computation time.
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I. INTRODUCTION

Approximate computing (AxC) refers to the idea that com-
puter systems can let applications to trade off accuracy for
efficiency. Intuitively, instead of performing exact calculations,
AxC aims at selectively relaxing the accuracy of the compu-
tation in order to gain in terms of lower power consumption,
faster execution time, etc.

Several publications demonstrated the effectiveness of this
approach when applied to algorithms showing an inherent
resiliency to errors [1], [2]. Proposed solutions work both at
the hardware or software level.

The resiliency of a computation to approximation errors
tightly depends on the application domain. Algorithms dealing
with noisy real-world input data (e.g., sensor data processing,
speech recognition, etc.), applications whose outputs are in-
terpreted by humans (e.g., digital signal processing of images
or audio), data analytics algorithms, web search algorithms
and wireless communications are all examples of applications
resilient to approximation [3], [4], [5].

Among the different AxC techniques [6], functional ap-
proximation aims at replacing a computational function with
an equivalent different implementation that closely matches
(approximates) the original implementation. Let us denote with
the generic term component the hardware or software module
responsible for the implementation of a computing function.
Given an application, the functional approximation allows

for replacing one or more components C;, with approximate
versions Cl,.

Despite the literature is rich of proposals for the implemen-
tation of approximate arithmetic operations [7], [8], [9], the
selection of the components to approximate, and the selection
of the best approximation techniques for an application re-
mains a challenging problem. Indeed, while it is pretty much
simple to quantify the impact of an AxC technique on the
performance or power budget of an application, measuring the
error introduced on the result of the computation is still an
open challenge.

Most of the approaches proposed in the literature simply run
several times the approximate application (i.e., the application
implemented with C,,), and compare the outcomes with the
precise application (i.e., the application implemented with Cy,)
[10], [11], [12], [13], [14]. The comparison is achieved trough
the adoption of an appropriate error metric (e.g., the structural
similarity index [15] in the case of image processing). If the
accuracy of the approximate application is not satisfactory,
the selected approximate component (C,,) must be replaced
with a different one. Every time a new C,,; is considered, the
application must be executed and analyzed again. The above
process must be iterated until a good enough approximation
is identified. The cost of this process depends on the amount
of runs of the application required to reach the desired level
of accuracy.

A different approach that analytically formalizes the error
induced by C,, and how it propagates in the application has
been proposed in [16], [17]. The benefit of this approach is
that there is no need to execute the application every time its
approximation must be evaluated. However, the formalization
is clearly application dependent. Therefore, building the formal
model of an application is very complex and requires to deeply
analyze the algorithms implemented by the application.

Bearing in mind such considerations, this paper presents a
stochastic approach to predict the impact of an approximate
component C,, on the accuracy of an application. The ap-
proach is based on the divide et impera paradigm. First, each
candidate C,, is characterized as an isolated application, thus
computing its approximation error distribution. Second, the
knowledge of the error distribution of all considered C, is
exploited to build a Bayesian Network (BN) [18] modeling the
approximation error propagation through the application’s data



flow. In the considered model, the network nodes represent the
application data and components. Hence, they embed the error
distribution computed during the component characterization.
Eventually, by analyzing the network using the Bayesian
inference theory, it is possible to estimate the error distribution
of the application.

The advantages of the proposed approach, compared to
the state-of-the-art, are: (i) the characterization of the dif-
ferent approximate components is done only one time, (ii)
the Bayesian model of the application can be automatically
constructed by syntactically analyzing the application’s code
without requiring a case by case analysis of the application.

The remainder of the paper is structured as follows. Sec-
tion II overviews the main concepts of the proposed approach.
Section II-A presents the C, characterization, while Section
II-C presents the bayesian proposed Bayesian model. Results
are discussed in Section III. Finally, IV summarizes the main
contributions and concludes the paper.

II. METHODS

As introduced in Section I, the goal of the proposed ap-
proach is to develop a stochastic method able to assess the
accuracy of an application exploiting a set of functional ap-
proximate components. Figure 1 sketches the global modeling
flow that is composed of three main steps:

1) Component characterization,
2) Bayesian network construction, and
3) Approximation analysis.

The first step characterizes a library of approximate compo-
nents quantifying the error introduced by their approximation.
Working with a Bayesian model, the goal of the characteri-
zation of a component is to build a Conditional Probability
Table (CPT) able to model the conditional probability of
having approximation errors at the output of the component,
depending on the level of approximation of the inputs of
the component. Despite its complexity, this activity must be
performed only once for each considered AxC technique. Its
results can then be reused several times.

The second step is application dependent. It aims at analyz-
ing the application source code in order to build the Bayesian
Network modeling the entire data flow of the application. The
nodes represent the data and the operators, while edges model
the relationships between them. Each node is associated to one
of the CPTs computed during the first step.

Finally, in the third step the Bayesian model of the applica-
tion can be used to analyze the approximation introduced at
the application level.

A. Approximate component characterization

This section presents the approach used to characterize a
given set of approximate components C,,. Among the dif-
ferent functional approximation techniques, this paper focuses
on the precision reduction [6] approach. Given a n bits data
type, precision reduction works by reducing the size of the
data type cutting its k less significant bits. Therefore, given a
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Fig. 1: Approximation estimation workflow.

number x expressed on n bits, its approximated value T on
n — k bits can be expressed as:

& = x(n downto k) x 2" (D)

From the definition of approximated value in equation (1),
the introduced approximation error con be computed as:

E=|v— 3 )

This paper exploits the Worst Case Error (WCE) as a quality

metric to assess the approximation of an operator:
WCE = N — T 3
maz [z) — )| 3)

where (i) is the i-th value of x.

Since precision reduction truncates k bit from a data type,
the maximum value of WCE is equal to 2¥ — 1. Once both
the error and the quality metrics are defined, it is possible to
identify the following classes of approximations for z:

P (Precise) if E=0
Class(z) = ¢ A (Acceptable) if E<WCE (4)
U (Unacceptable) fE >WCE

As an example, let us apply precision reduction with k =
2. According to equation (2), the approximation error F can
vary from O to 3, and the WCE = 22 — 1 = 3. For each
possible value of E, the corresponding class of approximation
computed according to equation (4) is reported in Table I.

TABLE I: Error Enumeration
E | Class

> > > o

0
1
2
3

Starting from the information reported in Table I, and rea-
sonably presuming that the possible values of x are uniformly



distributed, the probability to have = in P, A or U can be
computed as:

P(iis P)=P(E=0)=1
P(iis A)=P(E<WCE) =3 )
P(zisU)=P(E>WCE)=0

Equation 5 allows us to quantify the error introduced by
the precision reduction (i.e., the adopted functional approxi-
mation technique) on a single value. The problem now is to
determine how this error propagates through the application
when computations are performed. Indeed, the local error can
be either masked or amplified, leading to P, A or U application
results. This in turn requires to characterize each operator
manipulating the approximated numbers.

Let us consider as a case study the sum operator (+). Given
two precise numbers x; and x5 and two approximate numbers
z1 and 25, the application of the sum operators generates two
different results denoted as yp, and Ygz.:

Ypr = 21 + xo (6)
Yazce = 1 + T2 (7)

The error introduced by the + operator can therefore be
defined as:

E+ = |ypr - yaasc| ®)

Table II lists all possible combinations of events that the
operator can observe at its inputs. The goal of the charac-
terization of the operator is to classify y,.. as P, A or U
depending on the input combinations shown in Table II. This
can be formally expressed as:

P(Yape is P| (LA2A3AN4AN5A6AT))
P(Yaze is A| (LA2A3ANAASABAT)) )
P(Yaze is U| (LA2A3AAANBA6AT))

The probabilities reported in equation (9) can be further
simplified by considering that, if one of the two inputs is A,
Yaze Will be A as well. Similarly, if one of the two inputs is U,
Yaze Will be U. Moreover, conditions 2 and 3 are equivalent,
as well as conditions 5 and 6. This reduces the problem to the
classification of y,,. when both inputs are A (condition 4).

TABLE II: Input Events

Event X1 Zo
1 P P
2 P A
3 A P
4 A A
5 A U
6 U A
7 U 18

To do this, let us enumerate all possible cases as shown in
Table III. The first two columns report all possible errors for
x1 and 22. The third column computes the error of Yy, as the
sum of input errors of 7 and 5. The last column classifies

the Yy, error accordingly to equation (5). Table III allows us
to easily compute the following probabilities:

Plyase is P| (4) =0
P(Yaze is A (4)) =1/3
P(yazc is U | (4)) = 2/3

Eventually, Table IV summarizes the approximation prob-
abilities for the 4 operation with respect to the two inputs
in the form of a CPT. The first two rows list all possible
combinations of classes for 7 and 2. The remaining rows
provide the probability for the output classification based on
the combination of inputs.

A similar analysis can be used to characterize other oper-
ators such as difference (—), multiplication (%) and quotient

-

(10)

TABLE III: y,;. Classification

Exy FExs Fyaxc Class
1 1 2 A
1 2 3 A
1 3 4 U
2 1 3 A
2 2 4 U
2 3 5 U
3 1 4 U
3 2 5 U
3 3 6 U

TABLE 1V: C'PT.: Conditional Probability Table for the +
Operator

x1 P A U

x2 P/A|U|P| A |U|P|A|U
P|1[0|0]|O 0 00|00

yaxc | A | O 1 0 1 7310 ]0]0 0
U|0] 0|1 02311 1 1 1

B. Bayesian network construction

Once the impact of a single approximate component on its
output data has been probabilistically characterized, this infor-
mation can be used to evaluate the impact of the approximation
at the full software scale.

As explained in Section II, the final accuracy of an ap-
plication depends on the propagation of the introduced ap-
proximations across the data of the application. Therefore,
the application must be modeled in such a way to formally
represent:

« all data and operators involved in the computation;

« all relations between data and operators;

o the mechanisms that propagate approximation errors

through the data of the application.

To achieve this goal we model the application in the form
of a Bayesian Network in which:

« nodes represent both data and operators;

o edges depict the dependency between data and operators;

e cach node is associated with a CPT able to express

how the approximation of the parents nodes impacts the
outcome of a computation.



Once built, this model enables to analyze how errors are
propagated from the root nodes down to the leaves represent-
ing the outcome of the application.

To show how the application is modeled, let us consider the
example depicted in Figure 2-A, consisting of a short sequence
of instructions performing mathematical operations.

In order to build the BN structure, thus identifying all
required nodes and edges, we start by analyzing the application
following its Data Dependence Graph (DDG) [19]. Conversely,
the DDG of an application associates every data object of the
application (e.g., variables, registers, etc.) to a node of the
graph and depicts the dependencies among data (i.e., data are
computed resorting to other data) by creating edges between
nodes. Figure 2-B shows the DDG of the considered example.
Whenever multiple operations are performed into a single
instruction, intermediate nodes are created to properly model
the intermediate results (e.g., tmp1 in Figure 2-B). Each node
with a parent is associated with the information of the operator
used to compute its value.

Yellow nodes in Figure 2-B are input nodes. They must
be associated to a CPT indicating the marginal probability
of the related data to be in one of the approximation classes
defined in equation (4). If we apply precision reduction with
k equal to 2 to the three data, according to equation (5) the
nodes can be associated to the CPT reported in Figure 2-C. All
intermediate nodes, represent computations involving different
operators implemented by components analyzed during the
characterization phase (see Section II-A). They can therefore
be associated with the CPTs computed for each operator
during the component characterization phase (see Section
II-A). As an example, the Var2 node involves a sum of the
two input nodes. Its CPT reported in Figure 2-D is therefore
the one computed for the + operator and reported in Table IV.

Finally, orange nodes identify the leaves of the network
representing the output of the computation. They are the

observation points in which the effect of the approximation

can be probabilistically analyzed.

(A)..
Varl = Il + If2 (1)
Var2 = IT2 + Varl (2)
Var3 = varl - In3 * Var2 (3)

(D)

Fig. 2: Bayesian Network example

B

The full BN creation process has been automated using a
publicly available BN library and engine [20].

C. Approximation analysis

Once the BN is built, Bayesian inference can be used to
analyze the network in order to predict the level of approxi-
mation at the output of the application [21].

The prediction can be made computing the posterior proba-
bility of the leaves of the network (orange nodes in Figure 2)
to be in one of the three approximation classes defined in
equation (5). This can be done by applying different update
beliefs algorithms proposed in the literature. In particular, the
library used to implement the proposed framework [20] pro-
vides two solvers: (1) the exact solver proposed by Lauritzen
in [22] that can be used with medium size models (i.e., tens of
nodes), and (2) the Estimated Posterior Importance Sampling
(EPIS) approximate stochastic solver proposed in [23] that can
be used with very large models (i.e., thousands of nodes).

The flexibility of the proposed model can be very useful
to have a quick insight on the accuracy reduction of the
application, thus enabling to quickly explore different design
solutions.

III. EXPERIMENTAL RESULTS

The capability of the proposed evaluation approach has been
tested on a set of four simple benchmarks. All benchmarks are
software applications written in C language. The main purpose
of the experiments is to prove the accuracy of our predictions
when compared to the real execution of the application with
different workloads.

Let us first describe the experimental set-up by using a
simple case study corresponding to a function computing the
sum of the N elements of a vector, whose source code is
reported in Listing 1.

AxC_short_t AxC_VectorSum (AxC_short_t xvector, int

N) {
AxC_short_T sum;
sum = vector [0];

for (i = 1; i <N; i++) {
sum += vector[i];
}

Listing 1: VectorSum Source Code

The “AxC_short_T” data type implements the precision
reduction technique described in Section II-A. For this case
study, the bit reduction parameter & is set to 2, and therefore
according to equation (3) WC'E is equal to 3. For the sake of
simplicity, the number N of elements in the vector for which
we show the model is 4.

According to the concepts introduced in Section II-C, the
application can be modeled by the BayesNian net\zork depicted

in Figure 3. The first 4 nodes (from MO to M3) represent
the approximated input values. From this point forward, the
data are approximate. The network depicts the DDG of the
application in which four sums are performed. The orange
node corresponds to the sum variable representing the output
of the application.
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Fig. 3: Linear Vector Sum Bayesian Network

In order to show the accuracy of the prediction obtained
through the proposed model, a precise and the approximate
version of the VectorSum have been executed 10,000,000
times. At every execution, a random workload has been
generated and provided to both versions of the application. For
every execution, the result provided by the precise version and
the one provided by the approximate version of the application
have been compared in order to compute the approximation
error as described in equation (8).

Table V reports the obtained results in terms of probabilities
to obtain a precise (P), acceptable (A) or un-acceptable (U) re-
sult. The first row reports the probabilities computed resorting
to the proposed BN based model, while the second row reports
the values computed by running the application several times
(i.e., both the precise version and the approximate version).
The last row quantifies the absolute error (|[BN — App.Run|),
expressed in percent points (pp), observed between the two
evaluation methods. As shown in the table, the worst case
error is about 4 pp for the A and U classes. Overall, this can
be considered a good result given the significant difference in
computational complexity for the two types of analysis.

TABLE V: Linear Vector Sum Validation

P A U
BN 0.391% 17.578% | 82.031%
App. Run | 0.398% 13.473% | 86.129%
Abs. Error | 0.007pp 4.105pp 4.098pp

To show how the accuracy of the proposed approach is in-
fluenced by the target application, the same set of experiments
(using the same parameters for the approximation) has been
performed on different types of applications including:

e Consecutive sums (CSs): a program performing a cascade

of consecutive sums whose model is reported in Figure 4;

e Matrix multiplication (MM): a function that is widely
used in several computations including linear equations
solvers. A two 4x4 matrices (MM4) multiplication of 8-
bits elements has been performed.

o Discrete cosine transform (DCT): a function important for
several engineering applications (e.g., audio and images
compression).

Table VIa summarizes the result of the analysis of the

selected applications.

Fig. 4: Subsequent sums Bayesian Network

Looking at CSs and MM4, it can be immediately appre-
ciated the capability of the proposed model that is able to
estimate the accuracy of the approximate application with a
negligible absolute error.

For more complex applications, such as the DCT function,
the error slightly increases. Indeed, modeling functions of
greater complexity in a precise manner is not trivial. In
particular, we employed the DCT function used in the JPEG
encoder benchmark proposed within the AxBench suite [24]
which receives 64 8-bits input values and produces 64 8-bits
outputs. Nevertheless, also in this case, the estimation remains
accurate with a worst case deviation of 3.5 pp. The reported
numbers for DCT refer to the average number of P A and U
predicted by the BN and produced by the running application
over the 64 outputs.

The benefit of the proposed approach becomes evident
when looking at the time required to analyze an application.
Table VIb reports, for each application and for each evaluation
technique, the required analysis time expressed in seconds.
In both cases, the analysis has been executed on a personal
computer with an Intel Core 17 7500U / 2.7 GHz and 8 GB of
RAM at 1866 MHz and Ubuntu 17.10. The BN execution time
includes the sum of the time needed to automatically create
the BN starting from the application code and the time for its
evaluation. The gain is calculated as:

A ti — BN ti
pp run time ime « 100

Gain =

11
App run time (i

Moreover, Table VIc highlights the important gain in terms
of number of executions of the application. Indeed, while to
build the BN it is enough to analyze the application only once,
the comparison of the approximate and precise application
requires several runs to account for the high number of
possible combinations of inputs and to produce significant
statistical estimations.

As shown in Table VI, the proposed approach provides a
significant gain in the analysis time (over 99%) with a very
limited inaccuracy (up to 3.5pp).

IV. CONCLUSION

In this paper, we proposed a probabilistic approach able to
analyze the impact of the application of functional approxima-
tion techniques to selected components of a complex software



TABLE VI:

Experimental Results

(@) (®) (©
P A U Time(s) # Executions | # input bits
BN 0.0015 01.167% 98.831% BN 0.002 1
CSs [ App.Run | 0.0016% | 0257% | 99.741% AppRun | 2.077 10,000,000 56
Abs. Error | 0.0001pp 0.91pp 0.91pp Gain 99.99 %
BN 0.4673% 0.002% 99.53% BN 0.005 1
MM4 App. Run 0.0005 0 99.999% App.Run | 153.824 16.000.000 756
Abs. Error 0.002pp 0.00002pp | 0.002pp Gain 99.99 % bl
BN 28.736% 69.490% 1.773% BN 0.297 1
DCT App. Run 32.173% 66.07% 1.776% App.Run | 198.222 10,000,000 312
Abs. Error | 3.437pp 3.42pp 0.003pp Gain 99.85 %
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