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Abstract—Approximate computing has been shown to be a 

promising manner to enhance circuit performance via acceptable 

quality degradation. This manner is applicable to many 

multimedia applications such as videos. In order to carry out a 

dynamic approximate computing scheme, on-line quality 

evaluation/monitoring will be needed. However, to the best of our 

knowledge, on-line error-tolerability evaluation of videos is 

seldom studied in the literature. To achieve this, a no-reference 

manner will be helpful, which means that no reference videos are 

needed for comparison with the videos under test. 

Implementation of on-line test procedures can thus be greatly 

simplified. In this paper we investigate how to achieve no-

reference error-tolerability evaluation for videos where the 

background may be fixed or changed. We will show that by well 

exploiting some simple attributes, the acceptability for 81,412 

erroneous videos with fixed background can be accurately 

determined with more than 90% accuracy. As a comparison, the 

related previous work can only achieve about 80% accuracy. In 

addition, our attribute acquirement process requires only 33% of 

the computation time for the previous work. As for videos with 

background changing, we also discuss possible solutions. 

I. INTRODUCTION 

In IoT (Internet-of-Things) applications such as smart cities 

or smart automotive [1], video processing circuits are 

extensively utilized to identify objects of interests such as cars 

or pedestrians. For successful identification, the integrity of the 

video data is crucial. However, errors usually appear during 

capture, storage or processing of videos due to aging effects of 

cameras, memories or video processing circuits. These may 

significantly degrade the quality of the videos and even 

invalidate the systems.  

Fortunately, video errors would not always induce drastic 

failures unless the structure of the object to be identified is 

significantly destroyed. This notion is referred to as error-

tolerance [2], which can relax correctness requirement of video 

data. As a result, the lifetime of the video-based systems can be 

extended. This concept has great applicability to many 

multimedia applications as illustrated in [3]-[5]. In this work, 

we focus on video applications. 

For video-based IoT applications, video processing is 

usually performed in a real-time way. This makes evaluating 

error-tolerability of the video related circuits such as memories 

and video processing circuits a great challenge. Several major 

issues thus arise, listed below. 

1. How to carry out error-tolerability testing of videos in an 

on-line manner? 

2. How accurate can the on-line error-tolerability testing be 

achieved? In other words, how much is the probability 

that an acceptable (unacceptable) video will be 

determined to be acceptable (unacceptable) after testing? 

3. How much cost will be incurred to perform on-line error-

tolerability testing? 

In the literature there have been a number of accurate error-

tolerability test methods developed [6]-[8]. However, these 

methods focus on the off-line manufacturing test scheme [9] 

that needs to stop the normal function of the target system and 

performs test procedures in the test mode. This, however, may 

not be allowed in real-time systems such as automotive.  

Although there are typical on-line test methods such as 

parity check or ECC [9], no on-line test methods so far can 

support error-tolerability testing to the best of our knowledge. 

Also large area and latency cost may be incurred by these 

methods, and their test effectiveness may be limited as well. 

For example, at most two erroneous bits may be detected. 

In this work we investigate these issues. A no-reference 

error-tolerability test scheme is developed. The experimental 

results for the 81,412 erroneous videos show that 

90.44%~91.81% accuracy can thus be achieved. As a 

comparison, related previous work can achieve only 

77.27%~83.56% accuracy. We also compare the required 

computation complexity to acquire the identified attributes 

with the related previous work. The comparison result shows 

that our acquirement process requires only 33% of the 

computation time for the previous work. Some preliminary 

results of this work can be found in [10]. In this paper we 

address much more detailed issues. In addition, we also present 

discussions on test solutions for videos where the background 

content may be changed in some time intervals. 

In the rest of this paper we first review related previous 

work in Section II. Section III then describes how we generate 

erroneous videos. The error analysis and error-tolerability test 

scheme is presented in Section IV. Section V shows the 

experimental results and comparisons. Solutions to deal with 

videos where the background may be changed are given in 

Section VI. Finally, this paper is concluded in Section VII. 

II. PREVIOUS NO-REFERENCE IMAGE QUALITY ASSESSMENT 

METHODS 

A video is usually composed of a series of frames (images). 

In general a smooth video requires at least 15 frames outputted 

per second. In the literature there have been several no-

reference image quality assessment methods developed. In 

these methods a certain particular attribute of an image (e.g., a 

frame in a video) is usually identified such as blurring and 

blocking. More importantly, such attributes can be acquired 

based on only the content of the target image without the 

reference image. One representative example of the previous 

no-reference methods is to evaluate the sharpness of an image 

[11]. Image sharpness may be degraded due to the blurring 
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effect that usually occurs during the video acquisition, 

processing or compression. In [11] the authors estimate the 

detection probability of blurring in the image based on a 

probabilistic model. In particular, the sensitivity of human 

beings to blurring at different contrasts is considered in this 

model. In the experimental results, the superior performance of 

the method developed in [11] has also been shown by 

comparing with the related previous work. 

For the previous no-reference methods, they mainly target a 

single specific quality distortion due to transmission or 

compression of the video data. A certain specific attribute can 

thus be identified to model and quantify the distortion. 

Erroneous images due to defective circuits (e.g., caused by 

aging), however, contain quite different types of distortions in 

addition to those considered in the previous methods. As a 

result, the previous methods would not be able to deal with 

videos with such images (frames). Later in this paper we will 

elaborate this issue and illustrate the inefficacy of the previous 

methods by using the work of [11]. 

Another issue for the previous no-reference methods is that 

high computation cost will be required. The main reason is that 

a fine and detailed grading score is usually provided for these 

methods so as to objectively determine which level of quality 

the target video has. Nevertheless, based on error-tolerance, 

binary classification is sufficient, i.e., we only need to know if 

the error is acceptable or not. In this paper we will show that 

this consideration will be very helpful to simplify the video 

quality evaluation process. 

  
                             Akiyo                   Container 

  
Hall                      Silent 

Fig. 1: Employed benchmark videos 

III. GENERATION OF ERRONEOUS VIDEOS 

A. Employed Benchmark Videos 

A total of four benchmark videos are employed in this work, 

which are shown in Fig. 1, each of which contains 300 frames 

(10 seconds) with 176*144 (=25,344) pixels per frame. These 

videos are commonly used in the multimedia field to 

benchmark video processing methods.  

B. Error Injection 

To facilitate generation of erroneous videos, we employ the 

open source NOVA H.264 decoder hardware [12]. 20,353 

single stuck-at faults are injected in each component of the 

decoder hardware. The employed benchmark videos are then 

applied to each faulty decoder, and a total of 81,412 erroneous 

videos are thus generated.  

In this work, we use the attribute of SSIM as a golden 

model for quantifying the acceptability of the generated videos 

and for comparison with the evaluation result by the 

developed test scheme. SSIM [13] is one of the most accurate 

video quality evaluation attributes developed in the literature. 

In the case that an erroneous video is more similar to the error-

free one, the SSIM value will be higher. We find that 0.9 can 

be an acceptable SSIM threshold.  

Fig. 2: Total number of edges for an error-free video 

 
Fig. 3: Total number of edges for an unacceptable video 

IV. CHARACTERISTICS ANALYSIS OF ERRONEOUS VIDEOS AND 

ITS APPLICATION TO ERROR-TOLERABILITY TEST 

A. Variance in Number of Edge Pixels between Video Frames 

By carefully analyzing the generated videos, we find that 

one critical attribute that can reflect the structural variance is 

the difference between the total number of edge pixels of the 

first frame and that of other frames of the video. This 

difference will increase more significantly for an unacceptable 

video than that for an acceptable video. This is mainly because 

that the first decoded video frame is usually employed as 

feedback by the faulty decoder iteratively to decode other 

frames, and thus the errors will be accumulated with the 

decoding of each frame.  

Table 1: Values of Edgediff for error-free videos 
Benchmark Edgediff 

Akiyo 4.2% 

Container 1.82% 

Hall 2.6% 

Silent 2.33% 

In Fig. 2 and Fig. 3 we show the number of edge pixels for 

the error-free video and an unacceptable video (SSIM=0.4861), 

respectively. Four representative frames, namely the 1st, 60th, 
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120th and 180th frame, are considered for the illustration 

purpose.  

As illustrated in Fig. 2 the total numbers of edge pixels in 

the frames are similar for an error-free video. Without loss of 

generality, in Table 1 we show the averaged difference of total 

number of edge pixels between the first frame and the others 

for all the four error-free benchmark videos. Throughout this 

paper we refer to this difference as Edgediff. As can be seen, 

Edgediff ranges from 1.82% to 4.2% in the error-free video.  

For unacceptable videos, as shown in Fig. 3, much more 

false edges appear due to the errors. As a result, significant 

Edgediff appears (larger than 174%). In Fig. 4 we show the 

relationship between the video quality (SSIM) and Edgediff for 

the generated erroneous Akiyo videos. As can be seen, 

basically when the video quality is still good (SSIM ≥ 0.9), 

Edgediff is small. On the other hand, Edgediff becomes relatively 

large in most cases when the video quality is unacceptable. 

Similar results are also found for the other three benchmark 

videos. One issue is that unacceptable videos and acceptable 

ones may have similar Edgediff in some cases as shown in Fig. 4. 

As a result, it is not a trivial task to classify acceptability of 

erroneous videos based on their Edgediff values. Another issue 

is that different benchmark videos may have different SSIM-

Edgediff relationship. The identified classification criterion 

should be generally applicable to different videos for the on-

line test concern. 

Fig. 4: Relationship between SSIM and Edgediff 

To address the issues mentioned above, we perform a 

detailed numerical analysis on possible Edgediff thresholds. All 

the generated erroneous videos for the four benchmark videos 

are also considered together to perform an extensive analysis. 

Interestingly we find that a proper upper bound and a lower 

bound can be identified to accurately classify acceptability of 

videos for all the considered videos. As illustrated in Fig. 4, a 

proper upper bound is 10%, which is indicated by the red 

horizontal line. We find that for the Akiyo benchmark, there is 

an 88.5% probability that the Edgediff for unacceptable 

(acceptable) erroneous videos is larger than (smaller than or 

equal to) 10%. On the other hand, we also find that when the 

quality of the video is quite bad (e.g., SSIM <0.3), Edgediff will 

also become quite small (e.g., <1%). This is because when the 

error is very significant, most or even all the information of the 

video may be lost. As a result, 1% can be a lower bound where 

the video whose Edgediff is smaller than 1% will be classified to 

be unacceptable. By taking this lower bound into consideration 

together, there is an 89.27% probability that the acceptability of 

an erroneous video can be correctly classified for Akiyo. 

Similar accuracy results are also found for the other considered 

benchmark videos.  

B. Number of Extrem-Value Pixels in Video Frames 

In order to further increase the probability of correct 

classification, we carefully analyze the misclassified videos by 

Edgediff. We find that in some cases the unacceptable videos 

may have a similar number of edge pixels to that of acceptable 

ones, but a large number of pixels have extreme values (close 

to 0 or 255). By analyzing such videos, we find that many 

pixels of the frames in the video have the value either larger 

than 240 or smaller than 40. Based on these thresholds we 

determine if a pixel has an extreme value. Accordingly the 

total number of extreme-value pixels in each frame is 

normalized by the total number of pixels in the frame. The 

normalized result is then averaged, and referred to as Nextreme.  

 
Fig. 5: Example of the extreme-value issue 

One example of the extreme-value issue is illustrated in 

Fig. 5 where an erroneous video with the SSIM of 0.4833 is 

considered. As can be seen, there is only minor difference 

between the numbers of edge pixels in these frames, but the 

fraction of extreme-value pixels these frames contain is over 

43%. Note that the brightening problem shown in Fig. 5 is just 

one example for the extreme-value issue. This issue may also 

result in other types of unacceptable erroneous videos. By 

additionally examining the total number of pixels that contain 

extreme values, we can identify unacceptable videos resulted 

from the extreme-value issue.  

 

 
Fig. 8: Relationship between SSIM and Nextreme 
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In Table 2 we show the Nextreme values for all the 

considered error-free benchmark videos. As can be seen, 

significant variances exist for these videos, ranges from 7.44% 

to 23.98%, which depends on the color characteristics of these 

videos. This, however, complicates the determination of 

proper classification thresholds based on Nextreme. In Fig. 8 we 

show the relationship between the video quality (SSIM) and 

Nextreme for the generated erroneous Akiyo videos. As can be 

seen, when Nextreme is large (e.g., >50%), it is quite likely that 

the quality of the erroneous video is unacceptable. However, 

this threshold value would also induce mis-classification of 

many unacceptable videos to be acceptable. Based on 

extensive analysis, we find that a proper upper bound is 28% 

that can globally achieve a good classification probability for 

all the considered benchmark videos. This upper bound is 

shown by the red horizontal line in Fig. 8. It should be noted 

that there also exists a lower bound on Nextreme, where the 

video whose Nextreme is smaller than 1.5% will have 

unacceptable quality. By considering these thresholds together, 

there is an 83.54% probability that the acceptability of an 

erroneous video can be correctly classified by Nextreme for 

Akiyo. Similar accuracy results are also found for the other 

considered benchmark videos. 

Table 2: Values of Nextreme for error-free videos 
Benchmark Nextreme 

Akiyo 23.98% 

Container 7.44% 

Hall 10.09% 

Silent 11.34% 

C. Application to Error-Toleraiblity Test 

As shown in the previous two sub-sections, both Edgediff 

and Nextreme can contribute high accuracy. We thus classify the 

acceptability of a video based on Edgediff and Nextreme as follows. 

By checking Edgediff and Nextreme of a target video, if both the 

two tests are passed (i.e., 1%≤ Edgediff <10% and 1.5%≤ 

Nextreme <28%), then the video is determined to be acceptable. 

Otherwise, it is an unacceptable video. 

V. EXPERIMENTAL RESULTS 

In order to evaluate the classification accuracy of this test 

scheme, we apply this scheme to the generated 81,412 

erroneous videos. If the acceptability classification result by 

this scheme matches that by SSIM, we say the test result is 

accurate. Accordingly we calculate the fraction of accurate test 

results for the generated erroneous videos as the test accuracy 

of the developed test scheme.  

The test accuracy evaluation results are shown in Fig. 10 

where we compare the test accuracy by (1) only Edgediff, (2) 

Edgediff and Nextreme, and the previous no-reference video quality 

evaluation method [11]. As can be seen, by considering only 

Edgediff, the test accuracy ranges from 88.2% to 89.81%. 

Considering both Edgediff and Nextreme enhances the test 

accuracy to 90.44%~91.81%. Also only a small variance 

appears for these test accuracies, showing the general 

applicability of the developed test scheme. As for [11], only 

77.27%~83.56% test accuracy is achieved.  

 
Fig. 10: Test accuracy comparison 

 
Fig. 11: Analysis of mis-classification 

Furthermore, we also analyze mis-classifications by the 

developed test scheme and the evaluation method in [11]. The 

occurrence rates of overkill (i.e., the video is acceptable but 

fails our test) and underkill (i.e., the video is unacceptable but 

passes our test) are investigated, and the result is shown in Fig. 

11. As indicated, the occurrence rate of under-kill for our 

developed test scheme ranges from 5.1% to 8.87%, which is 

actually much smaller than that for the method in [11]. We find 

that this problem is mainly caused by the fact that in some 

cases the first video frame has been already damaged 

significantly (but Nextreme is still acceptable). In such cases, 

although the later frames become worse, Edgediff is not 

large/small enough to be unacceptable. As a result, the SSIM is 

unacceptably low, but the video would pass our test. In order to 

address this issue, one possible solution is to develop an 

accurate no-reference method to examine the quality of the first 

video frame. We believe this will be a quite valuable extension 

of this work, and is our on-going research. As for overkill, the 

occurrence rate for both our test scheme and [11] is small.  

 
Fig. 12: Computation time comparison 
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In Fig. 12 we compare the required computation time for 

our test scheme and the method in [11] to acquire attribute 

values. Both the two methods are carried out using the Matlab 

software and run at a machine with a 2.4GHz processor and 

80GB memory. As indicated, our test scheme requires only 

33% of the computation time for [11]. This is mainly because 

that we employ much simpler attributes in our test scheme, 

which greatly simplifies the computation process. 

VI. DISCUSSIONS 

As shown in the experimental results above, the proposed 

test scheme works well for videos where the background 

content is fixed. This case usually appears for surveillance-

based video applications. In this section we discuss a different 

case that video background may be changed in different time 

intervals. This case usually appears for ADAS (Advanced 

Driver Assistance Systems) for automotive such as pedestrian 

detection, lane departure, etc.  

One possible solution to deal with this case is that the video 

can be first divided into a number of scenes. Then Edgediff 

examination can be applied to each identified scene. In the 

literature there also have been a number of video scene 

detection works that can perform this task [14]. In this way, the 

proposed scheme is still applicable. One major concern for this 

solution is that additional computation time is required for 

scene detection before applying the proposed test scheme. As a 

result, whether the whole acceptability examination process 

can be done in real-time still needs further investigation.  

In our on-going research, we are working on developing 

solutions that can carefully examine the acceptability of each 

single video frame and accordingly determine the acceptability 

of the whole video. Different from the Edgediff based test 

scheme that relies on comparison with the first referenced 

frame, now we can monitor the acceptability of each decoded 

frame without any reference frames. The basic idea of this 

solution is explained in the following. 

We find that the total number of “false edges” can be used 

as an attribute to effectively quantify significance of an 

erroneous image. When the error is more significant, large 

deviation would appear in the pixel values, which would lead 

to more edges shown in the image. However, some of these 

edges actually do not exist in the error-free images. We thus 

refer to such edges as false edges. Based on this observation, an 

attractive no-reference error-tolerability test methodology is 

developed. This methodology first identifies edge pixels in the 

target image, and accordingly examine total number of false-

edge pixels. If this number is larger than the acceptable 

threshold, the target image is determined to be unacceptable. 

Otherwise, the number of pixels that have extreme-values will 

be further examined. When the target image passes both the 

false-edge pixel and extreme-value pixel tests, the image is 

determined to be acceptable. We have employed 126,894 

images to generally evaluate the effectiveness of the proposed 

test methodology. The experimental results show that up to 

93.39% test accuracy is achieved on average by the proposed 

methodology. 

We find that for unacceptable erroneous images, the 

structure of the image content tends to be significantly 

modified. Interestingly, we also find that the total number of 

false-edge pixels (i.e., those edge pixels that do not appear in 

the error-free image) will increase more significantly than that 

of an acceptable image. This is illustrated in Fig. 13 where an 

acceptable image and an unacceptable image are considered, 

respectively. In Fig. 13 the edges in an image are emphasized 

by using a binarized manner. That is, if a pixel in an image 

belongs to an edge, its corresponding value in the binarized 

image equals 255 (i.e., a white pixel). Otherwise it equals 0 (i.e., 

a black pixel). Note that 255 (0) is the maximum (minimum) 

possible value of a pixel. As can be seen, the identified edges 

of the acceptable image is almost the same as those of the 

error-free image. The fraction of false-edge pixels is 2.12%. As 

for the unacceptable image, the more significant errors result in 

significant modification on the structure of the image, and 

thereby many false-edge pixels appear, as illustrated by the red 

rectangles. The fraction of false-edge pixels is increased to 

17.61%. According to our preliminary study in [15], for an 

acceptable image, the fraction of false edges is below 5.4%. On 

the other hand, the fraction of false edges for most of the 

unacceptable images is larger than 5.4%. As a result, 5.4% can 

be a threshold for acceptability testing on Lena images. It 

should be noted that we also find that there exist different best 

thresholds for different images for achieving the best test 

accuracy. For example, for high-frequency images such as 

Baboon where there are more real-edge pixels, a higher 

threshold (e.g., 9.34%) should be employed. We thus develop a 

dynamic threshold determination method that can adaptively 

select a proper threshold according to the frequency of the 

target image. More details about implementations of this 

methodology can be found in [15]. 

  
Fig. 13: Fraction of false edges for erroneous images 

Fig. 14 shows the experimental results when applying 

both the Edgediff based test scheme and the false-edge based test 

methodology to an erroneous yet acceptable video. Here we 

employ the commonly used benchmark video “foreman” where 

there exist changes in the background content. In Fig. 15 we 

show some representative frames with background changing. 

As can be seen in Fig. 14, for the Edgediff based test scheme, 

some significant deviation on Edgediff may appear due to 
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background changing as indicated by the red rectangle. Since 

the video frame content after background changing is quite 

different with the first reference frame, large Edgediff is resulted 

and thus the video is determined to be unacceptable 

(acceptability misclassification). On the other hand, for the 

false-edge based test methodology, the acceptability of each 

frame is evaluated independent of any reference frame. As a 

result, the detection result for frames is much more consistent. 

Therefore the acceptability of the video is accurately 

determined. This illustrates the great potential of the false-edge 

based test methodology in implementing accurate on-line error-

tolerability testing for videos. 

 
Fig. 14: Experimental results for Foreman video 

 
Fig. 15: Background changing in Foreman video 

Much more work can still be done to optimize the 

performance and cost of the test process discussed above. 

Some examples are described as follows, which are also our 

on-going research directions.  

 Test accuracy evaluation for a larger set of videos, 

including those specifically for automotive applications.  

 Test accuracy enhancement of the Edgediff based test 

scheme and the false-edge based test methodology. 

 Integration of the Edgediff based test scheme and the false-

edge based test methodology to carry out a more efficient 

test process. 

 Hardware design and optimization of the test architecture. 

 Consideration of transient errors. 

VII. CONCLUSIONS 

In this work we have investigated the development of an 

efficient no-reference on-line error-tolerability test scheme for 

videos. Our result shows that by well analyzing the target video 

itself, much higher (over 90%) test accuracy can be achieved 

when compared with the previous work, and the required 

computation time can be reduced significantly as well.  

Acknowledgement: This work was supported in part by the 

Ministry of Science and Technology of Taiwan under Contract 

Number MOST 103-2221-E-110-077-MY3, MOST 106-2218-

E-110-007, and MOST 106-2221-E-110-075. 

REFERENCES 

[1] J. Gubbi, R. Buyya, S. Marusic and M. Palaniswami, “Internet of Things 

(IoT): A vision, architectural elements, and future directions,” Future 
Generation Computer Systems, 29(7): pp. 1645-1660, 2013. 

[2] M. A. Breuer, S. K. Gupta and T. M. Mak, “Defect and error-tolerance 

in the presence of massive numbers of defects,” IEEE Design & Test of 
Computers, 21(3): pp. 216-227, 2004. 

[3] H.-M. Chang, J.-L. Huang, D.-M. Kwai, K.-T. Cheng and C.-W. Wu, 

"Low-cost error tolerance scheme for 3-D CMOS imagers," IEEE Trans. 
on Very Large Scale Integration, 21(3): pp. 465-474, 2013. 

[4] M. A. Breuer and, H. Zhu “An illustrated method for analysis of error 

tolerance,” IEEE Design & Test of Computers, 25(2): pp. 168-177, 2008. 

[5] D. Nowroth, I. Polian and B. Becker, “A study of cognitive resilience in 

a JPEG compressor,” Proc. IEEE Int’l. Conf. on Dependable Systems 

and Networks, pp. 32-41, 2008. 
[6] Z. Pan and M. A. Breuer, “Estimating error-rate in defective logic using 

signature analysis,” IEEE Trans. on Computers, 56(5): pp. 650-661, 

2007. 
[7] S. Shahidi and S. K. Gupta, “Estimating error rate during self-test via 

one’s counting,” Proc. Int’l. Test Conf., pp. 1-9, 2006. 

[8] T.-Y. Hsieh, K.-J. Lee and M. A. Breuer, "An error rate based test 
method to support error-tolerance," IEEE Trans. on Reliability, 57(1): pp. 

204-214, 2008. 

[9] L.-T. Wang, C. E. Stroud, and N. A. Touba, System on Chip Test 
Architectures, Morgan Kaufmann, 2008. 

[10] T.-Y. Hsieh, S.-E. Chan and C.-H. Ho, "On no-reference on-line error-

tolerability testing for videos," To be presented at IEEE European Test 
Symp., pp. 1-2, May 2018. 

[11] N. D. Narvekar and L. J. Karam, "A no-reference image blur metric 

based on the cumulative probability of blur detection (CPBD)," IEEE 
Trans. on Image Processing, 20(9): pp. 2678-2683, 2011. 

[12] NOVA decoder website, http://opencores.org/project,nova,overview. 
[13] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli,” Image 

quality assessment: from error visibility to structural similarity,” IEEE 

Trans. on Image Processing, 13(4): pp. 600-612, 2004. 
[14] M. Del FabroEmail and L. Böszörmenyi, "State-of-the-art and future 

challenges in video scene detection: a survey," Multimedia Systems, 

19(5): pp. 427-454, 2013. 
[15] T.-Y. Hsieh and C.-R. Chen, "No-reference error-tolerability test 

methodology for image processing applications," To be presented at 
IEEE Int’l. Test Conf. in Asia, pp. 1-6, Aug. 2018. 

 

http://www.informatik.uni-trier.de/~ley/db/journals/dt/dt21.html#BreuerGM04
http://www.informatik.uni-trier.de/~ley/db/journals/dt/dt21.html#BreuerGM04
http://opencores.org/project,nova,overview

