Cogui Tutorial : Rules

The vocabulary can be seen as a lightweight ontology. More expressivity is obtained by adding rules of form "if hypothesis then conclusion". Rules can be used to enrich facts. The mechanism that processes rules in this way is called forward-chaining.

These rules represent the following knowledge about the family domain:

- R1 and R2: parentOf and childOf are inverse relations
- R3: ancestorOf is transitive
- R4: siblingOf is symmetrical
- R5: definition of motherOf (with one direction being already encoded in the vocabulary)
- R6 et R7: definition of siblingOf
- R8: definition of brotherOf (with one direction being already encoded in the vocabulary)

2. Exercise: Add the uncleOf relation in the relation hierarchy with the appropriate signature. Then add two new rules that define uncleOf as follows:
 "x is an uncle of y if and only if there is z such that x is the brother of z and z is one of the parents of y"

Hints:

- Each rule corresponds to one direction of the "if and only if" statement, similarly to what we have done for the siblingOf relation.
- Draw one rule, and then copy/paste it to draw the second rule.

3. Open the forward chaining assistant (by the menu Reasoning/Apply rules) and use it to compute the ancestorOf relation between the individuals of the genealogical graph encoded in the fact genealogy-fact. Run the assistant step by step to see each rule application. Store the fact obtained after saturation and name it ancestors-fact.

Details:

- Select the fact genealogy-fact and the single rule R3. Click on the next button: the initial fact is drawn.
• Apply the rule step by step (with the green triangle button): the image of the rule hypothesis in the fact is colored in gray and the modified part of the graph is colored in pink. More precisely, the pink part shows the new nodes as well as already existing nodes affected by the rule application, i.e. nodes whose label or neighborhood has changed. Remember that Cogui forward chaining operates in a breadth-first manner: at each level, it collects all possible rule applications on the current fact, then perform them before looking for new rule applications. For each rule application, the assistant indicates the name of the rule applied and the current forward chaining level. In this example, forward chaining stops at level 2.

• Note that Cogui does not perform redundant rule applications: a rule application is not performed if the added information is already present (as such or in a specialized form). For instance, the relation ancestorOf is not added when parentOf is already present, because parentOf ⊆ ancestorOf. When no new rule application can be found, forward chaining stops.

• You can also compute the saturated fact directly with the "saturate graph" button. To test it, click the back button to come back to fact and rules selection, then click next and run the saturation process.

• To store the saturated fact, click on the "store resulting graph" button: in the Results window, a line beginning with "modified graph" appears. Drag-and-drop this line into the fact set. Rename the graph (right click on its name) with the name ancestors-fact. Arrange the saturated fact to make it as readable as possible.

4. Query ancestors-fact with the queries QancestorOff ("find all x such that x is ancestor of F") and Qancestors ("find all x and y such that x is ancestor of y")

5. Exercise:
(1) Saturate the genealogical graph genealogy-fact with all rules in the set Rules/family-relationships (step by step or directly) and store it with the name all-deduced-fact. To arrange this fact, try the automatic arrangement.
(2) Query this graph with a query asking for all nephews of B (that is all persons whose B is an uncle).

Remark: even if Cogui does not perform redundant rule applications, all-deduced-fact is redundant (you can check it with the "analyze facts" assistant). Understand why.

6. When rules produce new unknown individuals, forward chaining may not stop. It was not the case with previous rules, even if some of them introduce new unknown individuals (e.g. R7). The rule Rp (stating that "everyone has a mother") yields an example. Run it on the fact A-fact (with a single concept node A).

Note: when you use the "saturate graph" functionality, you are able to stop it whenever you want. You can even store the currently computed fact. However, be careful: this graph can be very large!