Silent stores optimization in LLVM:
overview and installation guide
(version 1.0)

August 2017

Authors: Rabab Bouziane, Erven Rohou and Abdoulaye Gamatie

Contents

1 About this guide

2 General presentation of the optimization
2.1 Introduction L
2.2 Profiling step
2.3 Transformation step

3 How to install the optimization framework

1
About this guide

This document helps the reader to get an overview about the silent stores optimization,
and to install an LLVM-based implementation. It is developed within the French ANR
CONTINUUM project !. We briefly describe the optimization, then we present the asso-
ciated compilation framework.

! http://www.lirmm. fr/continuum-project

http://www.lirmm.fr/continuum-project

2

General presentation of the optimization

2.1 Introduction

The silent stores optimization, called later SS, is an optimization builtin LLVM 3.8 (https:
//releases.llvm.org/3.8.0/docs/ReleaseNotes.html), see Figure 2.1.

Source code Machine
C or c++ code
LLVM Optimizations 'y

]

Front End: IR Pass Pass n IR Back

3

Clang > *1 > *end
(Silent stores
Optimization

Figure 2.1: LLVM architecture

This transformation aims to eliminate silent stores from a program. A store is said
silent if it writes a value to a memory address where the same value is already stored.
The SS optimization acts on the Intermediate Representation (IR) and consists of two
steps:

e a profiling step that detects the silent stores, and

e their positions in the code and a transformation step that transforms the silent stores
in order to avoid their execution.

The above SS optimization has been studied in the context of the CONTINUUM ANR
project. The objective is to reduce the energy consumption in architectures based on non
volatile memories such as STT-RAM by reducing the number of stores. Indeed, such
memory technologies are currently known to have penalizing write (i.e. store) operations
in terms of latency and power consumption.

The silent stores optimization relies on a compilation process consisting of two main
steps, described in the sequel.

2.2 Profiling step

First of all, the profiling step is executed and through a value locality analysis, a num-
ber of store’s characteristics are defined: the number of instances, the number of silent

4

https://releases.llvm.org/3.8.0/docs/ReleaseNotes.html
https://releases.llvm.org/3.8.0/docs/ReleaseNotes.html

instances and their positions in the code. Concretely, during the compilation of a pro-
gram, new functions are called whenever a store is encountered. These functions check
if the store is silent and are associated to two counters; the first one counts the number
of instances and the second one counts the number of silent instances. We do so to be
able to determine the highly silent stores and the slightly silent stores. The output of this
step is a profiling file, see Figure 2.2, that is used for the second step of the compilation
framework to perform the transformations.

A store :
-@ = the address

-M = the humber of instances
-N = the number of silent A text file as the following:

instances passi

» 1D @ M N X y bool

An instance :
-@ = the address
- bool = true if silent and false if
not
- (x,y) = the position in the

program based on the pass2
function id and the v
stores in that function . o
Function n® x :
... Function (...}
Storen®vy :
strval,@ => this store will be
transformed
}

Figure 2.2: Design of the compilation framework

2.3 Transformation step

The transformation consists in transforming a store known as silent into a set of instruc-
tions: a load instruction at the store address, a comparison instruction, to compare the
written value to the already stored value and a conditional branch instruction to skip the
store if needed (see pseudo code on Figure 2.3). These newly inserted instructions allow
to verify that the detected silent store is indeed silent.Therefore, with the profiling, the
verification process is not performed for all the stores, reducing hence the overhead of
the transformation. Please refer to the user guide to see how the compilation framework
works in details.

load y = @val
cmp val, y

bEQ next

store @x, val
next:

(a) original (b) transformed

1 store @Qx = val

CU W N =

Figure 2.3: Silent store elimination: original code stores val at address of x; transformed
code first loads the value at address of x and compares it with the value to be written, if
equal, the branch instruction skips the store execution.

3

How to install the optimization framework

The silent stores optimization implementation in LLVM can be retrieved from the corre-
sponding source code directory available in the following link:

https://gitlab.inria.fr/rbouzian/Silent_stores_pass

Then, the corresponding LLVM transformation pass is called Silent_stores_pass and
can be installed by the user in his/her local directory as follows:

$ cd Silent_stores_pass
$ mkdir build

$ c¢d build

$ cmake .

$ make

$cd .

To use the optimization framework once installed, the user can refer to the instruc-
tions indicated in the separate User Guide document (on the CONTINUUM project web

page).

https://gitlab.inria.fr/rbouzian/Silent_stores_pass

	About this guide
	General presentation of the optimization
	Introduction
	Profiling step
	Transformation step

	How to install the optimization framework

