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Résumé

This article presents an algorithm for automatic inference
of human upper body pose and appearance from a mono-
cular video. The approach consists in looking at pairs of
randomly selected (and distant) images from the sequence.
For each image pair (I, I/), a stochastic search is made
to find pairs of likely upper body limb positions. This like-
lihood takes into account image-based probabilities (given
by background subtraction and edge maps). It also mea-
sures the similarity of limb appearance (texture and color)
between the two images. Because noise and outliers in dis-
tant images are unlikely to be coherent, false positives gi-
ven by limb detection in each image do not usually have
similar appearance to false positives in the other image
in the pair. Thus they are discarded and only real positives
have good likelihood. These give both upper body pose and
limbs appearances models. A strength of the approach is
that it can be applied to complex sequences where people
appearance is unknown and where motion is at times too
fast or unexpected for tracking approaches to perform well.
It can be applied to people with different builds and types
of clothing. Because it does not rely on pre-learning pos-
sible models of appearance (and associated edge maps for
instance), it is less likely to fail when atypical appearances
are seen.
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1 Introduction

Avrticulated pose estimation [1] is a problem of great inter-
est to the computer vision and image processing communi-
ties, with a lot of interesting applications (surveillance, in-
teraction, indexing, etc...). It is a difficult problem, because
the state space is high-dimensional and the observation mo-
del is highly non linear. In addition, people can move fast
and unpredictably, they can appear in a variety of poses and
clothes, and are often surrounded by clutter. The problem
is even more difficult if there is only one camera. To ans-
wer these challenges, a number of approaches to articulated
pose estimation have been proposed in the literature [2] [3]
[4] [5] [6].

For monocular video sequences, many works rely on ma-
nual initialization or learnt a prioris to track and detect ar-
ticulated bodies [1]. However manual initialization (or at
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Figure 1 — Motivation of the approach. Detection gives
limb hypotheses in each image. However there are false po-
sitives due to noise, outliers, clutter, etc... To discard false
positives, our approach looks at limb hypotheses from dis-
tant images. Real positives should have similar appearance
(texture, color) between distant images, while noise, out-
liers and false positives are unlikely to be coherent.

least an approximate initialization on the first image such
as used by [6]) is not always available. Learnt a prioris
(such as transition probabilities [7] and possible appea-
rances and related statistics [5] [4] [8]) are dependable only
if the database used for training is representative and ex-
haustive. Typically, types of motions and appearances not
observed in the training data are difficult to deal with later
on. In addition, motion models often break down for large
unpredictable motions (such as can happen with hand mo-
tions for instance). To avoid this problem, we would like to
make as few hypotheses about body appearance and mo-
tion as possible.

In fact, similarly to [9], we would like to build a model of
appearance online from the images. [9] do this by either
a bottom-up approach (detecting rectangular body parts
and grouping them), or a top-down approach (detecting
pre-determined typical poses). Detecting rectangular body
parts is a hard problem if clothing is highly textured and the
background is cluttered. That is why we adopt a top-down
generative approach where body pose hypotheses are gene-
rated by MCMC-based sampling and then checked against
image data. Likely poses give body appearance. We also
adopt an opportunistic approach by detecting only certain
poses, but these poses are not chosen a priori (like the mid-
stance pose of lateral-walking of [9]). These poses are de-
termined automatically by our algorithm, as they are the
most likely and easiest to detect given image data. Ano-
ther difference is that we do not look at single images. This



is because, when looking for good body hypotheses, and
using no learnt a prioris about possible appearances and
motions, looking at one frame only is not enough to solve
the problem. And looking at successive images (e.g. tra-
cking) does not give a lot of information if the positions
are very similar. In addition, tracking can fail and thus in-
formation from one image to another can be lost. In this
paper, we confront pairs of hypotheses for body poses and
appearance from pairs of distant (and randomly picked)
images in the sequence. A criterion of similarity of limb
appearance (texture, color) between image frames is used
to determine the most probable poses and appearance.
Section 2 describes the outline of the approach. Sections
3 and 4 describe important details of the algorithm. And
section 5 shows results and applications.
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Figure 2 — Principle of the stochastic search of solu-
tion space. The acceptance-rejection mechanism is that of
MCMC. Multiple Markov chains are used in parallel.

2 Principle of the approach

Let (lo, ..., I7) be a monocular image sequence. Our ap-
proach to detecting body pose and modeling appearance is
described by fig. 2 and is as follows.

As explained in the introduction, in the search for body
pose and appearance, this article proposes to confront pairs
of hypotheses for body poses and appearance from ran-
domly picked pairs of images in the sequence. States X
in solution space are pairs of pose hypotheses from two
different images, e.g. X = (X, X) with X a body pose
sample for image I;. Note that for clarity’s sake, we omit

the sample index for X and X.

Given that a search of state space becomes exponentially
more time-consuming as the number of state parameters
increase, it is advisable to parameterize body X, pose as
compactly as possible. Because of this, the search and sam-
pling in this paper are performed in 2D pose space, and the
corresponding 3D poses are estimated as a post-processing
step, as done in [10]. Thus X, is a 2D body pose. In ad-
dition, when looking for upper body pose, both arms are
sampled separately, since the search space for each arm
will be much smaller than their combined search space.
That is why X, parameterises the 2D pose of one arm in
image ¢. The state space X = (X, Xy) then represents
the 2D poses of an arm in a pair of images I; and I;.. The
approach is applied independently to both arms, for better
processing speed.

Our stochastic search in solution space Qx is based on a
variant of Metropolis-Hastings Markov Chain Monte Carlo
(MH-MCMC) called the Metropolized independent sam-
pler (MIS). The general principle of MH-MCMC (and
thus of MIS) is to perform a biased random walk in state
space. The walk is guided by a Markov chain proposing
the next step in state space, combined with an acceptance-
rejection mechanism. The choice of the proposal distribu-
tion Q(X’, X) that proposes the next state X’ in the walk
is of course crucial to the success of the algorithm. In the
general case of MH-MCMC, the proposal distribution pro-
poses a new state X’ dependent on the previous state X
in the Markov Chain. X’ is often a variation of X, chosen
randomly or inspired by a dynamics model. In the special
case of MIS (the variant of MH-MCMC used in this paper),
the proposal distribution is independent of the previous po-
sition, e.g. Q(X’, X) = Q(X). It makes the sampler free
to explore search space far from the previous sample. It
also makes the sampler free of hypotheses about body dy-
namics, motion models and transition probabilities, which
can be ad hoc, restrictive, dependent on a learning set,
and/or not suitable for large motions.

A straightforward implementation of the MIS in our case
would be to choose a set of random image pairs. For
each image pair (I3, I;), the algorithm would iterate to
search the joint state space Q. Each step of the itera-
tion would consist in : 1) proposing the next state sample
X’ = (X{, X/,) using a proposal process Q(X') 2) accep-
ting or rejecting X’ as the next state depending on the value
of a(X’, X)).

However, this implementation has been modified for two
reasons. Firstly, since the state X = (X, Xv) is a
combination of two 2D arm configurations X; and X/,
the proposal kernel Q(X’) is also set as a combina-
tion of (independent) proposal chains with Q(X’) =
(Q(X}),Q(X,)) where Q(X]) is the proposal distribu-
tion for a 2D arm configuration at time ¢’. Secondly, as
shown by [11] with their image-derived "proposal maps”,
using a data-driven proposal mechanism is more efficient
in finding promising modes, and we follow this idea by



making the single-image proposal distribution Q(X;) de-
pendent on the image information I, and on associated
measurements. Given these two considerations, and the
fact that we do not want to sample body hypotheses on
the same image twice (if that image belongs to two image
pairs), we have made the single-image proposal process
Q(X]) a pre-processing step. This gives a modified im-
plementation of the stochastic search algorithm (see fig.
2). First a two-stage pre-processing step is performed. It
starts by choosing a random subset of images from the
original image sequence. Then, for each image in this
subset, it generates a set of M single-frame body hypo-
theses (X, ;)m=1..1 Using the proposal process Q(X;).
After this pre-processing, the stochastic search of two-
frame state space starts. Random image pairs are drawn
from the already selected image subset. For each image
pair (I, I}), the algorithm iterates its search step in state
space. Each step consists in : 1) randomly picking a pair
(X0 X, ) OF arm samples from the pre-calculated
sample sets for I, and I, 2) accepting or rejecting
(X}, X, ) as the next state depending on the value of
the acceptance ratio o((X), 1, X} ) (Xt Xonorr 1))
where (X, ¢, X 1) IS the previously accepted sample.
The detailed image-based proposal process is described in
the following section. Then section 4 shows how the accep-
tance ratio is estimated and how it enforces the constraint
that likely pairs of body pose hypotheses from two image
frames show have similar appearance.

3 Single-frame stratified proposal
process
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Figure 3 — Graphical model used for sampling / detec-
ting arm hypotheses on an image I;. Both arms are
detected independently to reduce the size of the state
space.

The single-frame proposal process generates 2D arm
samples X/ , from an image I; by following the graphi-
cal model shown in figure 3. This graphical model does
not follow the kinematic chain of the arm, as done by
most authors. It is based on the idea that some arm com-
ponents are easiest to recover and have the least degrees
of freedom and so should be detected first. The face is

detected first, because it is the easiest and most reliable
part of the body to detect. Based on the face detection,
likely torso positions are extracted using a combination
of image clues (background subtraction and edge infor-
mation). From these torso positions, possible locations of
the shoulder joint in the image (with the associated uncer-
tainties) are inferred. These are used to generate shoulder
samples (zs,ys) in likely areas. In parallel to this, hand
candidates are detected as fast-moving skin-toned blobs.
These hands blobs should also be of a size compatible with
that of the face in the image, given anthropomorphic rela-
tive limb sizes. From these hand hypotheses, approximate
wrist positions (x.,,y.,) can be estimated. Once samples
of possible shoulder and wrist positions have been gathe-
red, elbow samples (z.,y.) are drawn from a search re-
gion based on anatomic constraints. These constraints cor-
respond in 2D to the fact that in 3D, given elbow and
hand positions, the elbow lies on a circle. At the end of
the proposal process, multiple 2D arm hypotheses X; =
(Ts Te Tw Ys Ye yw)T are available. The upper and lower
arm are modeled as 2D rectangles between the joints. This
shape model is as good (or as bad) as any, given the shape
variation of 2D limb contours with viewpoint, muscle acti-
vity and clothing movement. As can be seen from the sam-
pling process, the rectangles’ apparent lengths in the image
is variable. The approximate range of variation of their ap-
parent width is predicted given face size in the image and
the effects of foreshortening.

Figure 4 — Stratified sampling in 2D arm space.

The proposal process we just described has one drawback.
If classical sampling methods (such as Poisson, jittered,
etc...) are used at each step, clumps of samples might oc-
cur and the search space might be badly covered, unless
a huge number of samples is used. To avoid clumps, and
to optimise the coverage of search space given a maxi-



mum number of samples, two strategies are used. Firstly,
the search space is stratified. This means that the search
space is split into several subspaces and that samples are
drawn from each subspace separately. This ensures that
none of the subspaces will be ignored by the sampling pro-
cess. Here we have defined subspaces corresponding to re-
lative hand positions of the hand and the rest of the body
(see fig. 4). Hence positions where the hand touches the
face or is in front of the torso are systematically investi-
gated. The second strategy used to improve the proposal
process is to sample joint positions using "blue” sampling,
also known as Poisson disc sampling. Poisson disk sam-
pling ensures minimum distance spacing between samples.
This gives good search space coverage and avoids clumps.
At the end of the improved proposal process, a number of
arm hypotheses are available for a subset of the original
images.

4 Joint state space acceptance ratio

As explained in section 2, arm hypotheses obtained inde-
pendently from different images by the proposal process
(described in section 3) need to be confronted to find arm
hypotheses whose appearance (texture, color) is consistent
with time. This is done by randomly drawing image pairs
(I+, I/). For each image pair, the posterior distribution
of arm pose pairs is built by a random walk. Each step
of the walk draws an arm hypothesis for each image and
pairs them. The pair of hypotheses (X, ,, X/, ,,) is selec-
ted to be part of the posterior distribution depending on a
Metropolis-style acceptance ratio «. o depends on the pre-
viously accepted sample (X, ¢, Xm +) and is a func-
tion of the relative posterior probabilities of the current
sample and the previously accepted sample. These probabi-
lities combine the image-based likelihoods p(1;| X, ,) and
p(Iv| X, ) of the two arm hypotheses in the two images,
and a criterion (X7, ,, X 45 1t, 1) estimating the simi-
larity (color, texture) of arm appearance between the two
hypotheses and images. This gives :
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Each image-based arm likelihood (for instance p(I;| X/, ;))
combines the likelihoods of the upper and lower
arm. The limb likelihood (for either the lower or
upper arm) is the product of evidence from back-

ground subtraction and edges. This gives p(;|X,, ;) =

upper arm _upper am __|ower arm . lower arm i i
Pockg T Pecy bekg - Pedg - The local limb evi-

dence (as an example pege” ) is given by the sum S of an
edge measure over all the pixels of the contour of the limb,
raised to the power . v measures the capacity of edge in-
formation to discriminate between the contour of the limb
and the rest of the pixels in the neighborhood. It is given
by v = gi; with S the sum of the edge measure over all
the pixels of the neighborhood not on the contour of the

limb. Similar calculations are made for all limbs and in-

- p(It|Xm”,t) * p(It/|X771///,t/) * ¢(Xm”.,ta Xm”’,t’; Ita It/)

formation from background subtraction (in this case, S is
summed over the interior region, and S over the exterior).
The criterion (X, ;, X,/ s, It, Iy/) estimating the simi-
larity of arm appearance between the two hypotheses com-
bines similarity information from color and gradient for
both limbs. In each case, the similarity is estimated by the
(Battacharyah) distance between histograms (of color and
gradient orientation respectively). As above, the distances
are raised to powers corresponding to the capacity of histo-
gram information (respectively from color or gradient) to
discriminate between the interior and exterior region of a
limb. For reasons of space, the formulae for « are not gi-
ven here, but should be straightforward to extrapolate from
above.

5 Results

Results (see fig. 5) show that the approach performs well
on sequences of images showing different people, with dif-
ferent clothing (textured or not, baggy or not), different
(unknown a priori) body sizes, different backgrounds and
lighting conditions, different types of motion, and complex
poses. For instance, the last 2 rows of fig. 5 show correct
detection for baggy clothing, in very noisy images (due to
low light conditions, the images being taken at night).

6 Conclusion

Our approach performs probabilistic inference of body
pose and appearance by looking at body hypotheses in ran-
domly sampled image pairs in a video sequence, and fin-
ding those with similar body appearances (texture, color)
in both images. No model or constraint on limb motion is
used. Hypothesis sampling is done using a MCMC mecha-
nism with a (quasi-)independent proposal mechanism desi-
gned to maximise state space coverage.

The approach can be used on sequences where tracking
fails at times (when motion models not do apply for ins-
tance, or are fooled by unexpected motions). It does not
rely on a database of possible appearances (or edge maps)
which are by necessity not completely exhaustive and can
fail on unusual appearances. Our method takes advantage
of the fact that body pose detection is easier in some images
than others (due to body configuration, self-occlusion, clut-
ter, illumination, etc...). It can deal with a variety of body
sizes, appearances and clothing (cf bagginess, texture).

Références

[1] Moedlund, T.B., Hilton, A., Kruger, V. : A survey of ad-
vances in vision-based human mation capture and analysis.
Comput. Vis. Image Underst. 104(2) (2006) 90-126

[2] Deutscher, J., Davison, A., Reid, I. : Automatic partitioning
of high dimensiona search spaces associated with articula-
ted body motion capture. |EEE Int. Conference on Compu-
ter Vision and Pattern Recognition (CVPR’01) (2001)

[3] MacCormick, J., Isard, M. : Partitioned sampling, articula
ted objects, and interface-quality hand tracking. In: ECCV.
(2000)



Figure 5 — Most likely poses and appearances from the
posterior distribution estimated by Metropolised inde-
pendence sampling on pairs of images, and refined lo-
cally by a deformable model. For each example, the top
row shows a pair of images of the same subject. The
bottom row shows the most likely corresponding arm
poses and appearances.

(4]

(5]

6]

(10]

(11]

(12]

(13]

(14]

(19]

(16]

(17]

(18]

(19]

Taycher, L., Demirdjian, D., Darrell, T., Shakhnarovich, G. :
Conditional random people : Tracking humans with crfsand
gridfi Iters. In: CVPR. (2006)

Agarwal, A., Triggs, B. : Recovering 3d human pose from
monocular images. |EEE Transactions on Pattern Analysis
& Machine Intelligence 28(1) (jan 2006)

Bray, M., Kohli, P, Torr, PH.S. : Posecut : Simultaneous
segmentation and 3d pose estimation of humans using dy-
namic graph-cuts. In: ECCV (2). (2006) 642—655

Sigd, L., Sidharth, B., Roth, S, Black, M., Isard, M. : Tra
cking loose-limbed people. In: CVPR. (2004)

Agarwal, A., Triggs, B. : A local basis representation for
estimating human pose from cluttered images. In : Asian
Conference on Computer Vision. (2006)

Ramanan, D., Forsyth, D.A., Zisserman, A. : Strikeapose:
Tracking people by fi nding stylized poses. Technical Re-
port UCB/CSD-04-1362, EECS Department, University of
California, Berkeley (2004)

Taylor, C.J. : Reconstruction of articulated objects from
point correspondences in asingle uncalibrated image. Com-
puter Vision and Image Understanding : CV1U 80(3) (2000)
349-363

Lee, M.W.,, Cohen, |. : Proposal maps driven memc for esti-
mating human body pose in static images. In : IEEE Com-
puter Society Conference on Computer Vision and Pattern
Recognition (CV PR’ 04). (2004)

Liu, J. : Metropolized independent sampling with compa-
risons to rejection sampling and importance sampling. In:
Statist. Comput. 6, 113—-119. (1996)

Gao, J, Shi, J. : Multiple frame motion inference using
belief propagation. In: 6th IEEE Conference on Automatic
Face and Gesture Recognition. (2004)

Urtasun, R., Fleet, D., Fua, P.: 3d people tracking with
gaussian process dynamical models. (2006) | : 238-245

Ju, S.X., Black, M.J.,, Yacoob, Y. : Cardboard people : A
parameterized model of articulated motion. In : Internatio-
nal Conference on Automatic Face and Gesture Recogni-
tion. (1996) 38-44

Khan, Z., Balch, T., Dellaert, F. : Mcmc-based particle
fi Itering for tracking a variable number of interacting tar-
gets. |[EEE Trans. Pattern Anal. Mach. Intell. 27(11) (2005)
1805-1918

Fox, D., Thrun, S,, Burgard, W., Dellaert, F. : Particlefi |-
ters for mobile robot localization. In Doucet, A., de Freitas,
N., Gordon, N., eds. : Sequential Monte Carlo Methods in
Practice, Springer (2001)

Sidenbladh, H., Black, M.J., Fleet, D.J. : Stochastic tracking
of 3d human fi guresusing 2d image motion. In: ECCV (2).
(2000) 702-718

Balan, A.O., Black, M.J. : An adaptive appearance model
approach for model-based articulated object tracking. In:
CVPR ’06 : Proceedings of the 2006 |EEE Computer So-
ciety Conference on Computer Vision and Pattern Recogni-
tion. (2006) 758-765



