Modeling of Quality Attributes using an
Aspect-Oriented Software-Product Line Approach

José Miguel Horcas

CAOSD Group, University of Malaga, Spain
horcas@lcc.uma.es,
WWW home page: http://caosd.lcc.uma.es/

Abstract. Modeling Functional Quality Attributes (FQAs) and the re-
lationships between them is a complex task for several reasons. In order
to cope with that complexity, our research focuses on defining an aspect-
oriented software product line approach that: (1) models the commonal-
ities and variabilities of FQAs from the early stages of the development
process using a software product line approach, (2) weaves the FQA
configurations with the core functionality of applications in an aspect-
oriented fashion, (3) specifies the FQAs in a generic way, making it pos-
sible to use our approach with any MOF-compliant modeling language,
and (4) adapts the FQA configurations at runtime according to changes
in the application execution environment.

Keywords: functional quality attributes, variability, SPL, AOSD, MDD,
dynamic reconfiguration

1 Introduction

Quality attributes (QAs) are overall factors that affect the design, run-time be-
havior and user experience of a software system (e.g., usability, performance,. . .)
[1]. These factors must be well understood and articulated early on in the devel-
opment process. The list of documented QAs is very large and some of them have
strong functional implications that can be easily modeled by software compo-
nents (e.g., error handling, security,...). Others, such as cost, efficiency, porta-
bility, etc., could be mapped to architectural or implementation decisions, but
not directly to functional components. We define Functional Quality Attributes
(FQAs) as those QAs that have clear implications for the functionality of a
system. So, for these FQAs there are specific components (e.g., a component
implementing an encryption algorithm) that need to be incorporated into the
software architecture of the system in order to satisfy application requirements.
Examples of FQAs are security, usability, persistence and context awareness.
Modeling FQAs is not a straightforward task for several reasons. On the
one hand, they are usually very complex, being composed by many concerns
and making the task of modeling them from scratch hard and error prone. For
example, security is a FQA composed by authentication, access control, encryp-
tion and non-repudiation concerns, among others. This complexity is further



complicated by the fact that each software system requires a variable number
of concerns. For instance, one application may require the authentication and
encryption security concerns while another application may require the non-
repudiation and the privacy security concerns. Moreover, the concerns that com-
prise a given FQA have dependencies and interactions with each other, and also
with other FQAs’ concerns. For example, the confidentiality concern will de-
pend on the authentication, encryption and access control concerns, while the
security concerns are required to satisfy other FQAs like, for example, usability,
adaptability or context awareness. On the other hand, a FQA may be required
in various points of the same application (e.g., security needs to be usually en-
sured in different points of an application) and thus their functionality is usually
tangled and/or scattered with the core functionality of the application. Finally,
FQAs may need to be adapted at run-time due to changes in the execution en-
vironment of the applications (e.g., user preferences, quality negotiation, limited
battery /memory,/CPU in mobile applications).

In spite of their importance, these issues are not all appropriately taken into
account by existing approaches [2,3]. For instance, both proposals are very de-
pendent on the architecture description language and the variability language
used throughout the approach, which complicates the extension of the approach
to other domain specific languages. [3] does not even consider the existing de-
pendencies between the different FQAs. Another limitation of these proposals
is that they only deal with static configuration of the FQAs without address-
ing the problems of the dynamic adaptation of the FQAs at runtime. Thus, in
order to address all the aforementioned challenges, our research focuses on mod-
eling FQAs by combining the benefits provided by several technologies, such
as Software Product Lines (SPLs) [4], Aspect-Oriented Software Development
(AOSD) [5] and Model-Driven Development (MDD) [6]. On the one hand, the
use of a SPL approach allows us to manage the complexity and the variability
of the FQAs from early stages of the development. Moreover, making the SPL
models available at runtime (‘models@runtime’ in Dynamic SPLs [7]) our ap-
proach provides support for reconfiguring FQAs at runtime. On the other hand,
the use of AOSD allows us to achieve a better separation of the FQAs crosscut-
ting concerns. Finally, we use MDD in order to make our proposal as generic as
possible. Concretely, the specification of FQAs will be completely independent
from the language used to model the base applications, being the only require-
ment the use of a MOF-compliant modeling language. Therefore, the generic
models of the FQAs defined in a language such as UML [8] will be automatically
transformed to concrete models defined in the language used to model the base
application.

Following this introduction, Section 2 presents the problem description, in
more detail. Then, in Section 3 we discuss the main contributions of our proposal.
Section 4 describes the related work, comparing it with our approach, and finally
Section 5 presents the conclusions.



2 Problem Description

As previously stated, modeling FQAs (e.g., security, usability, persistence, etc.)
is not a straightforward task for several reasons. In this section we discuss the
main challenges that need to be taken into account when modeling FQAs.

Challenge 1. Manage the complexity of FQAs. Most FQAs are very
complex, as they are composed by many concerns. The security FQA, for exam-
ple, is composed by confidentiality, integrity, access control, authentication, pri-
vacy, encryption, non-repudiation, recovery, among many other concerns. More-
over, these concerns have dependencies and interactions with each other, such as
the confidentiality concern that depends on the authentication, encryption and
access control concerns. Furthermore, FQAs also have dependency relationships
with other FQAs. For instance, the contextual help concern of the usability FQA
depends on the authentication concern of the security FQA in order to provide
customized help based on the previous experience of the user with a particular
application. These dependency relationships between concerns of different FQAs
often go unnoticed by the software architects, who are not domain experts in
modeling FQAs.

Challenge 2. Model adaptable and reusable FQAs solutions. FQAs
are recurrent and have many points of variability. They are recurrent in the
sense that the same FQAs are required by several applications. However, there
are many variation points because not all of the concerns of a FQA are required
by all the systems. Thus, functionality that is not required by the final appli-
cation, and that will be never used, should not be incorporated into the final
application. This means that the models of the FQA need to be customized to
the requirements of each application. In addition, different configurations of the
same FQA may be required in different parts of an application. So, the variability
models also need to consider multiple configurations of the same FQA.

Challenge 3. Define a generic and language-independent solution.
The applications that require the FQAs may be specified using different mod-
eling languages. Consequently, the definition of the FQAs must be as generic
and language-independent as possible. Otherwise, the benefits of modeling these
FQAs in an adaptable and reusable way would be reduced or even lost. However,
after generating a customized configuration of the FQAs, the resulting models
need to be combined with the models of the application, which are specified
using a particular modeling language. Thus, in order to do that, a set of model
transformations are needed in order to obtain specific models of the FQAs (i.e.
models specified using a particular modeling language) from the generic models
of the FQAs.

Challenge 4. Achieve separation of concerns between FQAs and
the core applications. Most FQAs are crosscutting concerns that need to be
present in several parts of a system. This means that the concerns are normally
scattered (i.e. the same concern is present in more than one software module)
and/or tangled (i.e. the same module includes more than one concern) with
the base functionality of an application. For example, the encryption concern
is required by the components that both send and receive encrypted data, and



thus the encryption behavior is scattered among these components, and tangled
with their base functionality. Another example is the feedback concern of the
usability FQA, which crosscuts all the points of the application in which some
kind of feedback information needs to be provided to the user.

Challenge 5. Provide support for the runtime adaptation of FQAs.
Applications that run in highly dynamic environments continuously change their
requirements at runtime. If the new requirements affect the FQAs, they need to
be dynamically adapted. Examples of these applications can be mobile applica-
tions that need to be adapted to changes in their environment. For instance, a
user moves from a secure to an unsecured environment and an encryption con-
cern need to be incorporated to his/her mobile applications in order to encrypt
the communications and make them more secure. Another example can be mo-
bile or desktop applications that need to negotiate their qualities in order to
correctly interoperate with other parties. For instance, using a trust-negotiation
protocol in which the security policy used by two parties in a distributed com-
munication is negotiated, and the security concerns used by the application will
change depending on the results of the negotiation.

3 Our proposal

In order to achieve solutions for all these challenges, we propose an Aspect-
Oriented Software Product Line (AO SPL) approach to model the FQAs from
the early stages of the software development process in a generic and language-
independent way. Figure 1 shows an overview of our approach that combines the
SPLs, AOSD and MDD software technologies.

Firstly, in order to manage the complexity and the variability of the FQAs
from the early stages of the development we use an SPL approach. An SPL
allows us to create and maintain a collection of FQAs and to customize them
for each application. In our approach, we specify the FQAs generically (top of
Figure 1). We use a generic variability model (e.g., a model specified in the
Common Variability Language (CVL) [9]) to express the commonalities and
variabilities of the FQAs and any MOF-compliant modeling language (e.g., AO-
ADL [10]) to define the functional behavior of the QAs in architectural models.
FQAs are modeled only once, creating architectural patterns with reusable FQAs
solutions (e.g., architectural templates [11]).

Secondly, due to the fact that different applications are specified using dif-
ferent specific modeling languages, the generic models of the FQAs previously
specified need to be adapted in order to customize them for each application. To
do this, we propose defining a set of model transformations to obtain concrete
models specified in the particular modeling language used by the application®
from the generic models of the FQAs (centre of Figure 1). Then, the concrete
models of the FQAs can be customized to the requirements of that particular
application. A customized configuration of the FQAs is generated in the specific
modeling language of the base application.

! The modeling language of the application will be based on MOF metamodels.



SPL
Generic FQAs modeling

Generic FQAs
Generic FQAs architectural model
variability model (architectural patterns
with reusable FQAs)

transformations.
model D
el 3
models@runtime Dynamlc SPL
Specific FQAs modeling

Specific FQAs Specific FQAs

variability model architectural model
FQAs

customized model
runtime

reconfiguration of
FQAs

Application modeling

Bas_e application Configured FQAs
(in any DSL

MOF-compliant e b?se
application
metamodels) A D
weaving process

Final application

Fig.1. Our AO SPL approach.

Then, once a configured architectural model of the FQAs has been obtained
we need to incorporate it into the base application. We propose to do this, using
AOSD (bottom of Figure 1). AOSD enables us to weave the architectural model
of the FQAs with the core software architecture of the base application non-
intrusively — i.e., without modifying the existing components in the software
architecture of the base application.

Finally, as explained in the previous section, the requirements of the applica-
tion may change at runtime. So, we use a Dynamic SPL by making the specific
models of the FQAs available at runtime in order to allow the dynamic recon-
figuration of the FQAs in response to changes in the application’s execution
environment,.

4 Related Work

There are quite a number of approaches that model variability, some of them
expressing the variability by feature models such as in [12], and others expressing
the variability in relation to a base model (e.g., with annotations and/or using
a variability language), such as in [13, 14]. However, there has been little work



devoted to model the variability of QAs which are strong functional implications
and need to be modeled as functional software components.

We tried to address some of the problems described in Section 2 in previous
approaches [2, 3] by using AO-ADL [10] as modeling language and VML [15]
as the variability language. However, the solution that we proposed is totally
dependent on both the modeling language and the variability language. This is
because the VML directly depends on the modeling language used to describe
the FQAs and the architecture of the application (AO-ADL in this case). So
FQAs cannot be reused in applications defined in other modeling languages.
Moreover, FQAs are configurable only before deployment in the software systems
and therefore dynamic reconfiguration cannot be achieved.

There are also some approaches that use a variability language such as VML.
[15] defines another way of obtaining a software architecture from a feature
model. VML is used to describe different variation points with actions to be
applied on an existing architecture following a positive approach that builds ar-
chitectures by adding new components and connectors to a core architecture.
[16] is a different approach that automatically generates a VML for different fea-
ture models and architectural languages. This generation has a fairly automated
process by using a plug-in for that language, although the process requires the
inclusion of the feature model and the final ADL metamodels.

An interesting approach to model quality attributes and their dependency
relationships is presented in [17] and [18]. Rasha Tawhid and Dorina Petriu
propose a technique to model the commonality and variability in structural
and behavioral SPL views using MDD. The proposal adds generic annotations
related to a QA (e.g., performance) to a UML model that represents the set
of core reusable SPL assets. Then, through model transformations, the UML
model of a specific product with concrete annotations of the QA is derived,
and a model for the given product is generated. However, this approach models
variability expressed in relation to a base model, they extend the used base
modeling language (e.g., UML profiles with stereotypes) to annotate the base
model with elements that are subject to variability. Annotating the base model
makes this extremely related with variability specifications and avoids the reuse
of both the base model of the application and the model of the QAs. Other
important differences with our proposal are: (1) they model non-functional QAs
such as performance instead of FQAs; (2) they introduce the variability at the
design level (e.g. within sequences diagrams) while we model the variability of
the QAs earlier on in the development process, at the architectural level; (3)
their approach uses MDD, focusing on the analysis of the non-functional QAs
in the final product, and we use MDD to generalize and make the specification
of the FQAs completely independent from the language used to model the base
application.

As variability modeling is often closely associated with product lines, most
of the approaches use an SPL in their proposals such as [19], [20], and [21].
Although none of these papers focus on modeling the FQAs and the existing
relationships between them, they do address variability at the architectural level



using SPL. In [19], the authors propose a mechanism based on the principles of
Invasive Software Composition techniques in order to explicitly specify the com-
monalities and variabilities of SPLs at the architectural level without tangling
the core and product architectures of the SPL. In [20], McVeigh et al. propose
an approach based on component resemblance in which base components can
be modified in order to reuse them without affecting the rest of the users of the
component. The changes are not included in the base components but in new
components created from them, resulting in an inheritance-like approach. This
proposal addresses the reuse problem successfully but it is not efficient in the
sense that all the common functionality is also replicated, which can introduce
a considerable overhead. Finally, a hierarchical variability modeling mechanism
is proposed in [21]. Variation points are defined inside the components, and the
different variants specify how they are configured. This approach is supported
by a variability metamodel and a tool based on the MontiArc ADL.

Finally, much related work has been done to explore possible solutions to
address runtime variability, as in [22-26]. But, none of it includes reconfigured
quality attributes at runtime.

5 Conclusions

Our research focuses on defining an aspect-oriented software product line ap-
proach that combines SPLs, AOSD and MDD software technologies in order
to model FQAs. We use SPLs to model the commonalities and variabilities of
FQAs from the early stages of the development process. We make our proposal
as generic as possible using MDD in order to achieve a better reuse of the FQAs.
We specify the FQAs in a generic way and customize them for applications that
are defined in any MOF-compliant modeling language. The FQA configurations
are weaved with the core functionality of applications in an aspect-oriented way.
AOSD allows us to achieve a better separation of the FQAs crosscutting con-
cerns. Our approach also supports the dynamic reconfiguration of the FQAs by
using a Dynamic SPL and models@runtime.

Acknowledgment

This research has been conducted in collaboration with Moénica Pinto and Lidia
Fuentes from the Languages and Computer Science Department at the Univer-
sity of Malaga, which are the PhD Supervisors of the thesis discussed in this
paper. Work supported by the European Project INTER-TRUST 317731 and
the Spanish Projects TIN2012-34840 and FamiWare P09-TIC-5231.

References
1. Barbacci, M., Klein, M., Longstaff, T., Weinstock, C.: Quality Attributes. Tech-

nical Report CMU/SEI-95-TR-021 ESC-TR-95-021, Carnegie Mellon University,
Software Engineering Institute, Pittsburgh, Pennsylvania (1995)



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Horcas, J.M., Pinto, M., Fuentes, L.: Variability and dependency modeling of
quality attributes. In: Software Engineering and Advanced Applications (under
revision). (2013)

Lence, R., Fuentes, L., Pinto, M.: Quality attributes and variability in AO-ADL
software architectures. In: Proceedings of the 5th European Conference on Software
Architecture: Companion Volume. ECSA 11, New York, NY, USA, ACM (2011)
7:1-7:10

Pohl, K., Béckle, G., Linden, F.J.v.d.: Software Product Line Engineering: foun-
dations, principles and techniques. Springer-Verlag New York, Inc., Secaucus, NJ,
USA (2005)

aosd.net: Aspect-Oriented Software Development. http://www.aosd.net/
Schmidt, D.C.: Model-Driven Engineering. IEEE Computer 39(2) (February 2006)
Hallsteinsen, S., Hinchey, M., Park, S., Schmid, K.: Dynamic Software Product
Lines. Computer 41(4) (April 2008) 93-95

OMG: Unified Modeling Language (UML), Infrastructure, V2.1.2. Technical re-
port, OMG (November 2007)

. Haugen, O., Wasowski, A., Czarnecki, K.: CVL: Common Variability Language. In:

Proceedings of the 16th International Software Product Line Conference - Volume
2. SPLC ’12, New York, NY, USA, ACM (2012) 266—267

Pinto, M., Fuentes, L., Troya, J.M.: Specifying aspect-oriented architectures in
AO-ADL. Information and Software Technology 53(11) (2011) 1165-1182

Pinto, M., Fuentes, L.: Modeling quality attributes with aspect-oriented architec-
tural templates. J. UCS 17(5) (March 2011) 639-669

Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.: Feature-Oriented Domain
Analysis (FODA) feasibility study. Technical Report CMU/SEI-90-TR-021, Soft-
ware Engineering Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania
(1990)

Fontoura, M., Pree, W., Rumpe, B.: The UML profile for framework architectures.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (2000)
Gomaa, H.: Designing Software Product Lines with UML 2.0: From use cases to
pattern-based software architectures. In: Software Product Line Conference, 2006
10th International. (2006) 218-218

Loughran, N., Sanchez, P., Garcia, A., Fuentes, L.: Language support for managing
variability in architectural models. In: Proceedings of the 7th international confer-
ence on Software composition. SC’08, Berlin, Heidelberg, Springer-Verlag (2008)
36-51

Zschaler, S.: VML*: A generative infrastructure for variability management lan-
guages (2009)

Tawhid, R., Petriu, D.: Integrating performance analysis in the Model Driven De-
velopment of Software Product Lines. In Czarnecki, K., Ober, 1., Bruel, J.M., Uhl,
A, Volter, M., eds.: Model Driven Engineering Languages and Systems. Volume
5301 of Lecture Notes in Computer Science. Springer Berlin Heidelberg (2008)
490-504

Tawhid, R., Petriu, D.: Automatic derivation of a product performance model from
a software product line model. In: Software Product Line Conference (SPLC), 2011
15th International. (2011) 80-89

Perez, J., Diaz, J., Costa-Soria, C., Garbajosa, J.: Plastic partial components: A
solution to support variability in architectural components. In: Software Architec-
ture, 2009 European Conference on Software Architecture. WICSA/ECSA 2009.
Joint Working IEEE /IFIP Conference on. (September 2009) 221-230



20.

21.

22.

23.

24.

25.

26.

McVeigh, A., Kramer, J., Magee, J.: Using resemblance to support component
reuse and evolution. In: Proceedings of the 2006 conference on Specification and
verification of component-based systems. SAVCBS ’06, New York, NY, USA, ACM
(2006) 49-56

Haber, A., Rendel, H., Rumpe, B., Schaefer, I., van der Linden, F.: Hierarchical
variability modeling for software architectures. In: Software Product Line Confer-
ence (SPLC), 2011 15th International. (August 2011) 150-159

Zdun, U.: Dynamically generating web application fragments from page templates.
In: Proceedings of the 2002 ACM symposium on Applied computing. SAC 02, New
York, NY, USA, ACM (2002) 1113-1120

van der Hoek, A.: Design-time product line architectures for any-time variabil-
ity. Science of Computer Programming 53(3) (2004) 285-304 Software Variability
Management.

Braganca, R., Machado, R.J.: Run-time variability issues in software product
lines. In: In: ICSR8 Workshop on Implementation of Software Product Lines and
Reusable Components. (2004)

Goedicke, M., Pohl, K., Zdun, U.: Domain-specific runtime variability in product
line architectures. In Bellahséne, Z., Patel, D., Rolland, C., eds.: Object-Oriented
Information Systems. Volume 2425 of Lecture Notes in Computer Science. Springer
Berlin Heidelberg (2002) 384-396

Cetina, C., Fons, J., Pelechano, V.: Applying software product lines to build
autonomic pervasive systems. In: Software Product Line Conference, 2008. SPLC
’08. 12th International. (2008) 117-126



