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Abstract. In this paper we give an overview of a Ph.D. work that involves
the specification, implementation, and evaluation of an architecture-driven en-
vironment for cloud applications that consists of: (i) a cloud-based architecture
description language (ADL) endowed with constructs to represent cloud ser-
vices, contracts in terms of quality metadata and pricing models, and dynamic
reconfiguration statements, and; (ii) a cloud middleware that enables the use of
underlying cloud platforms and also offers services for monitoring cloud services,
composing, and adapting cloud applications.
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1 Introduction

Cloud Computing is a new computing paradigm that enables the ubiquitous, conve-
nient, on-demand network access to a shared pool of configurable computing resources
(e.g. networks, servers, storage facilities, applications and services) typically referred as
a cloud [1]. These resources can be rapidly provisioned and released with minimal man-
agement effort or interaction with the service provider and are offered in a pay-per-use
model. Although Cloud Computing provides benefits absent in current technologies,
such as the pay-per-use model and the elasticity of the applications, the development
of this paradigm is still in emergence and there are several challenges to be addressed
in the Cloud Computing context.

One of the challenges brought by the Cloud Computing paradigm regarding Soft-
ware Engineering is related to the methods, tools, and techniques to support developers
to design, build, and deploy complex software systems that make use of the cloud tech-
nology. In fact, building cloud-based applications is a challenging task as they are
significantly more complex due to the intrinsic complexity of using third-party cloud
providers, thus encompassing issues such as the decision of which underlying cloud
platforms to use and the need of tracking pricing policies of the provided services.
Moreover, the particular nature of the cloud applications create specific requirements
that also demand changes in terms of the development of such applications, thus en-
compassing methodologies and techniques for requirements elicitation, architecture,
implementation, deployment, testing, and evolution of software [2, 3].
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In terms of software architecture, architectures of service-oriented applications (such
as cloud applications) differ from the architecture of traditional applications mainly re-
garding their basic architectural elements, the services, and their dynamic behavior,
thus dealing with issues related to heterogeneity interoperability, and changing re-
quirements [4, 5]. As most of the works addressing cloud-related challenges focus on
the underlying infrastructure or on discussions about the cloud services provided by
third-party providers, there is an important gap in terms of architectural support in
order to enable the use of the cloud technology in a systematic way. For instance, it is
reasonable to think that software architectures need to be described in a different way
if they are deployed on the cloud, so that it is necessary to provide an architectural
support to their project and means to model them and capture important elements re-
garding the Cloud Computing paradigm, e.g. the logical separation between the cloud
platforms (service providers) and the applications (service consumers), the agreed con-
tract between these players, and the modeling of the pricing model adopted by each
service. Furthermore, due to the dynamics of the Cloud Computing environments, dy-
namic reconfiguration must be autonomously performed according to the changes in the
environment in order to meet the application requirements, such as replacing a cloud
service that is being used by another one in case of degradation of quality parameters
or when new services arise in the environment.

In order to mitigate some of these issues, this Ph.D. work aims to propose, specify,
implement, and evaluate an architecture-driven environment for developing cloud-based
applications. In a higher abstraction level, such environment provides means to describe
architectures of cloud applications by using a customized architecture description lan-
guage (ADL) [6, 7] that addresses important elements related to the Cloud Computing
context. Such environment is also intended to provide compositional mechanisms to de-
sign and dynamically reconfigure applications driven by their respective architectural
descriptions combined with a cloud middleware. In this perspective, the infrastructure
composed by the ADL and the middleware platform enables to manipulate (at both
design time and runtime) the underlying services that are being used by the applica-
tions.

In summary, the novelty of this Ph.D. work consists of: (i) the proposal of a new
ADL for describing cloud-based applications (and then specificities related to the Cloud
Computing context) and specifying dynamic reconfiguration actions; (ii) the mapping
of the constructors provided by such ADL to elements managed by a cloud-based
middleware platform, which is able to monitor the execution of the application as
well as the different cloud services that it uses, and; (iii) the support for dynamic
reconfiguration of cloud applications driven by architecture and related constraints, so
that the cloud-based middleware manages the dynamic reconfiguration actions specified
in the architectural description. Therefore, the proposed environment is intended to
provide a complete support not only for specifying architectures of applications, but
also for their execution and autonomous adaptation under dynamic conditions. This
is an essential issue for cloud applications that may use services from one or more
providers according to QoS (Quality of Service) constraints and resources provisioning,
and then the application can have a greater control over the quality of the services and
their dynamic variability by exploring this capability.
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This position paper is structured as follows. Section 2 presents details of the pro-
posed environment. Section 3 discusses some related works. Finally, Section 4 contains
final remarks and directions to ongoing and future works.

2 Architecting cloud-based applications

The environment proposed in this work is composed of three main elements that en-
able software architects to design cloud-based applications in terms of their description
and adaptation in dynamic scenarios, as detailed in the following subsections. At the
architectural level, architectures of cloud applications are described by using an ADL,
which also provides constructors to specify dynamic reconfiguration actions that will
take place at the runtime level. These levels are integrated through a cloud-based mid-
dleware platform, which is able to monitor the execution of the application and manage
the dynamic reconfiguration actions specified at the architectural level. Fig. 1 gives an
overview of the proposed environment for architecting Cloud Computing applications.

Fig. 1. Overview of the proposed architecture-driven cloud environment.

2.1 Architectural formalism

ADLs [6, 7] are a well-accepted approach to formally represent and analyze architec-
tural designs and usually provide both a conceptual framework as a concrete syntactic
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notation to characterize software architectures in terms of: (i) components, which are
functional elements of the system; (ii) connectors, which are responsible for describ-
ing the communication mechanisms between the components, and; (iii) configurations,
which describe the topology of the system through the relationship between components
and connectors. Although there is a myriad of ADLs in the literature, the architectural
features of cloud applications goes beyond what is currently supported by the existing
ADLs, so that an ADL could provide a systematic and disciplined way of developing
and managing cloud-based applications. Moreover, it is missing models that capture
specific and important aspects always present in the Cloud Computing context, such
as: (i) the logical separation between the cloud platforms and the applications that
use the provided services; (ii) the agreed contract between these players, and; (iii) the
QoS model for the services. As briefly discussed in Section 3, to the best of our knowl-
edge, there are no proposals in the literature for modeling cloud-based applications,
and despite of they are service-oriented, there are very few proposals for describing
service-oriented software architectures [4, 5].

In this perspective, our recent work [8] introduced Cloud-ADL, a seamless extension
of the ACME [9] general-purpose ADL for modeling Cloud Computing applications.
The philosophy of Cloud-ADL is to take advantage of ACME elements to describe
architectures of a cloud application, thus relying on existing abstractions and avoiding
the addition of many new abstractions. Cloud-ADL enables to describe the architecture
of the applications and: (i) the services provided by cloud platforms and that are used
by the applications, thus making a clear and modular separation between the definition
of the cloud services and the specification of the applications that use them; (ii) the
agreed contracts between service providers and clients, in terms of quality metadata,
pricing models, and constraints regarding the services; (iii) application-level constraints,
and; (iv) dynamic reconfiguration actions according to QoS and resource provisioning
constraints.

The complete specification of a cloud application in Cloud-ADL encompasses:

1) Definition of cloud services provided by Cloud Computing platforms and
essential characteristics related to this context. In this step, the ACME Family
element is customized to the cloud scenario for representing the set of services pro-
vided by a cloud platform, so that a new Family abstraction must be created for each
cloud platform. In the Family element, each service provided by a cloud platform is
represented by a Component Type element, as in the specification of component types
in ACME. Similarly to ADLs for service-oriented architectures [4, 5], in the architec-
tural description of the application, the component types that represent provided cloud
services can be instantiated in order to indicate which services are being used by the
application. As in ACME, the components (services) can be annotated with Property
elements for expressing additional information about these components.

Architectural contracts [10] are used in some works in the literature [12, 13] to ex-
press static and/or dynamic non-functional features and describe, at design time, the
resources that will be used by the application and acceptable variations regarding the
availability of these resources, at runtime. Grounding on this idea, Cloud-ADL comes
with a novel mandatory first-class primitive called Contract for specifying the agreed
contract of service providers in terms of cloud both static and/or quality attributes and
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constraints over them, and also the pricing model of the services. Within such element
associated to a given service, there are four main elements: (i) the QualityParame-
ters element, in which the properties regarding the quality parameters are specified;
(ii) the PricingModel element, which defines details about the pricing model of the
service; (iii) a constraints section specified in Armani [14], which determinate the min-
imal warranties offered by the service provider related to the quality parameters, and;
(iv) a section in which the software architect can annotate any additional information
using the conventional Property element defined in ACME. In addition, Cloud-ADL
introduces the Dynamic clause associated to elements of the Contract that enables to
specify monitorable parameters at runtime.

Fig. 2 shows an example of definition of the set of the services provided by the Ama-
zon Web Services (AWS) platform [15], which represented by the AmazonWebServices
Family element (line 1). Due to space restrictions, in Fig. 2 we present only one of the
services provided by the AWS platform, the Amazon S3 storage service, which is rep-
resented by the AmazonS3 Component Type (line 2). Similarly to ACME, the services
can be annotated using Property elements, for instance, the description property (line
3), which describes the service. Moreover, within the Contract element at line 4, two
QoS parameters, namely response time (the response time to execute the service) and
availability (the percentage in which the service is available in a given time interval),
are defined in the QualityParameters element. Next, an Armani invariant specifies that
the service provider warranties a minimal availability of 99% for this service according
(line 10). Finally, the pricing model is detailed in the PricingModel element (lines 13
to 17).

Fig. 2. Partial definition of the cloud services provided by the AWS platform.
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2) Specification of a cloud application itself in Cloud-ADL. The specification
of an application in Cloud-ADL is very similar to the ACME architectural description
of systems by using the same basic architectural elements defined in such ADL. As the
services are the basic functional entities (components) of the application, in a Cloud-
ADL architectural description, cloud services (represented by Component elements)
are instances of the services (represented by Component Type elements) defined in the
Family elements that abstract the cloud platforms, thus following the ACME principle
in which architectural elements defined within a Family element can be inherited by
all systems that adhere to it. In this perspective, a System element that describes a
cloud application must extend (adhere) the Family element that represent the cloud
platforms that are providers of the services used by the application. For instance, in
the statement System A : B, C, the application A uses services provided by the cloud
platforms represented by the B and C Family elements. In Cloud-ADL, describing a
component x in a System element as an instance of a component type y defined within a
Family element means that the application component x uses the cloud service defined
by the component type y.

As the Dynamic clause present in Cloud-ADL supports the specification of moni-
torable parameters at runtime and these dynamic attributes may change over time, a
reconfiguration action is required in order to better satisfy the application needs. In
this perspective, Cloud-ADL currently addresses dynamic reconfiguration in terms of
architectural programmed changes, which can be foreseen at design time, thus follow-
ing ideas proposed in the Plastik framework [16], which extends the ACME/Armani
ADL to enable this dynamic reconfiguration support. In this context, Cloud-ADL also
includes a predicate–action construct to specify the situations that trigger reconfigu-
rations (when) and which reconfigurations (what should be changed) must take place.
Such predicate is specified by using the standard Armani predicate syntax and refers to
dynamic properties attached to the application components, e.g. regarding to quality
parameters. In turn, the actions to be taken contains ACME-based statements that
are instantiated when the predicate clause becomes true. Finally, another extension
consists of the detach and remove elements, which specify the destruction of existing
ACME elements. The detach element is used to remove an attachment between a port
and a role, and the remove element is used to destroy an existing component, connec-
tor or representation. As the removal of a component is only possible when it is no
longer involved in an attachment, it is firstly necessary to detach the component to be
removed from other components and afterwards remove it from the architecture.

2.2 Cloud supporting mechanisms

There has been a good amount of research over past few years addressing the potential
of coupling ADLs with underlying runtime environments to support systematic and
integrated specification-to-deployment architectures [17] when architecting dependable
systems. As a consequence, it is necessary to provide means to causally connect high-
level architecture specifications and the underlying runtime level, which defines the
deployment, execution, and reconfiguration environment of the applications. In this
perspective, as we have mentioned in Section 2.1, Cloud-ADL provides constructors
that enable to specify programmed dynamic reconfiguration actions to be taken at the
runtime level. The integration between such levels is supported by a causal connection
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between the architectural and runtime levels, more precisely in an ADL-to-runtime
direction [18] through proper mappings from the architecture-level concepts to the
runtime-level elements, similarly to the Plastik framework [16]. However, in Plastik,
such mappings are directly performed from the architectural level to the runtime level;
in our environment, the mappings are intermediated by the cloud-based middleware
platform.

As also illustrated in Fig. 1, a cloud-based middleware platform is placed between
the architectural and runtime levels in order to enable the manipulation (both at design
time and runtime) of the underlying services provided by cloud platforms and to be
used by the applications. Furthermore, such middleware platform provides transparent
and automatic integration, thus enabling the use of services provided by different cloud
platforms and abstracting away the specificities of each one in a heterogeneous cloud
scenario. Considering the purposes of our environment, we have identified three minimal
services that should be provided by such middleware platform:

1. a composition service, which represents a composition mechanism that enables ap-
plications to use services provided by different cloud platforms;

2. a monitoring service, which is responsible for the runtime assessing and periodic
monitoring of the dynamic QoS parameters specified at the architectural level, as
well as for detecting considerable variations in such parameters, and;

3. an adaptation service which manages the dynamic reconfiguration process at run-
time in order to ensure the availability and quality of the applications under con-
ditions that may affect their execution, e.g. in cases of service failures or quality
degradation.

In our environment, we have chosen to use the Cloud Integrator service-oriented
middleware platform [19], which is part of our previous work related to management of
cloud services. Besides being in accordance with W3C open standards and languages for
Web services, Cloud Integrator works as a mediator between the service providers and
the applications (clients) and already provides the mentioned requirements, in terms
of service composition [20], autonomous adaptation of cloud applications [21], and;
(iii) integration with a monitoring strategy for cloud services [22]. It is very important
to emphasize that the mentioned cloud supporting runtime mechanisms are already
implemented, so that this Ph.D. work is focused on the architectural level and on the
causal connection between such levels.

3 Related work

The work related of the subject of this Ph.D. thesis regards to three fundamental el-
ements: (i) ADLs for describing service-oriented and/or cloud-based applications; (ii)
dynamic reconfiguration of software architectures, and; (iii) architectural runtime sup-
port for cloud environments. As we have mentioned, to the best of our knowledge, there
are no proposals in the literature for modeling Cloud Computing applications and that
satisfactorily capture important and specific features in such context. Consequently,
in this section we present some related works in terms of architectural support for
service-oriented applications in two concerns: (i) the notion of services in architectural
descriptions, and; (ii) the use of architectural contracts for expressing non-funcional
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aspects and describing resources to be used by an application. As ongoing work, we
are performing systematic reviews of the literature regarding the other two subjects.

Rennie and Mîsić [11] identify a set of requirements present in service-based appli-
cations. By analyzing some existing ADLs such as Darwin and C2, the authors state
that these ADLs would not be suitable to describe service-based architectures despite
covering aspects such as dynamicity, which is an essential characteristic in this con-
text. Moreover, components, which represent the services in such kind of architecture,
should contain information about the resources that they use, functional (e.g. inputs
and outputs) and non-functional (e.g. quality parameters) constraints, pricing models
(e.g. pay-per-use model or subscription-based payment), etc. Although the discussion
presented by the authors gives directions towards an ADL for describing service-based
architectures, they do not propose any specific solution.

Xie et al. [4] propose a new ADL for describing service-oriented architectures called
SOADL, which is based upon the XML language. SOADL has three main elements: (i)
services, represented by components; (ii) connectors, which define how components are
interconnected and also the used protocol(s), and; (iii) configuration, a graph of inter-
acting components. In a later work [5], the authors present a refinement of the previous
version of SOADL, which now supports not only the basic definition of the elements
that compose the architecture, but also new elements for specifying behavior (sequence
of actions) and quality parameters of the services, which are defined as properties and
may have applied constraints as invariants or heuristics, similar to ACME/Armani.
This latest version of SOADL supports the dynamic reconfiguration of applications, in
which software architects specify alternative configurations for the applications based
on events (programmed reconfiguration). However, as the SOADL approach is based
on proposing a new specific ADL rather than extending an existing ADL (as we do
in this work), software architects may be burdened with many new abstractions, thus
increasing the learning curve of the language.

In terms of using contracts in architectural descriptions through ADLs, Loques et
al. [12] and Ansaloni et al. [13] use the notion of architectural contracts [10] to express
non-functional requirements (static and/or dynamic) in the architectural description
and to describe, at design time, the resources to be used by the application. In this
perspective, these works propose a framework called CR-RIO (Contractual Reflective-
Reconfigurable Interconnectable Objects) conceived for specifying and supporting QoS
contracts associated with the architectural components of an application. CR-RIO
has its own ADL called CBabel, which is used to describe not only the functional
components of the application and their relationships, but also QoS non-functional
aspects, such as processing capacity, transport, etc. In CR-RIO, QoS contract is basi-
cally composed by four elements: (i) QoS categories, which are described apart from
components and used to aggregate properties related to non-functional requirements;
(ii) QoS profile, which specifies quantified constraints over these parameters; (iii) the
services, which define a set of non-functional requirements to be applied over the com-
ponents of the application, and; (iv) a negotiation clause, which specifies alternative
configurations for the application when a non-functional requirement is not fulfilled.
Although this idea of using architectural contracts to express non-functional require-
ments has inspired the creation of the Contract element in Cloud-ADL to specify
features related to the Cloud Computing context, the proposed Contract element is
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more comprehensive, thus enabling to express not only QoS parameters and associated
constraints, but also information related to the pricing models adopted by the services
and the established agreements between service providers and consumers. In addition,
the negotiation clause used by CR-RIO can be viewed as a mean of supporting recon-
figuration of applications, but this reconfiguration is not performed based on dynamic
monitorable parameters, which is a very relevant issue because cloud environments are
intrinsically dynamic.

4 Final remarks

In this paper we presented our ongoing work on the specification and implementation
of an architecture-driven environment for the development of cloud-based applications.
The environment is built on two causally-connected levels, namely an architecture
level and a runtime level, and also supports the dynamic adaptation of such appli-
cations according to their architectural requirements. At the architectural level we
defined Cloud-ADL, a seamless extension of the ACME ADL to represent cloud ser-
vices, contracts (including quality metadata and pricing), and dynamic reconfiguration
constructs, whilst at the runtime level we use Cloud Integrator, a service-oriented mid-
dleware platform that supports service composition, monitoring of cloud services and
autonomous adaptation of cloud applications.

The next activities of this Ph.D. work encompasses:

1. possible refinements in the Cloud-ADL metamodel, including the specification of
the quality parameters to be monitored and the evolution of architectural descrip-
tions (probably following existing proposals in terms of evolutive architectures,
such as [23] and [24]);

2. mapping between the architectural level and the runtime level, encompassing the
Cloud Integrator middleware elements;

3. the development of a software toolkit for describing and constructing cloud-based
applications based on the adaptive composition of services in cloud environments;

4. development of complex applications (case studies) that will use services provided
by different cloud platforms, and;

5. tests and quantitative/qualitative evaluations of the proposed environment.
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