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Robotics:  a wide multidisciplinary field

Impressive developments of 
‣Sensory motor functions 
‣Sophisticated platforms
‣Achievements in particular in

• Dynamic control

• Motion planning and control

• Simultaneous localization and mapping

• Learning sensory motor functions 
by Reinforcement and/or Demonstration
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Dynamic Control
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[DLR, Munich]

Dynamic Control‣Principles:
Prediction
Optimization
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Fig. 4. The overall algorithm for stepping over obstacles

of HRP-2, on which no information is currently available.
However, the stepping over mechanism proposed in this paper
generates a large step-length (40 cm in the case of a 15-cm-
high obstacle, whereas the standard length is 20 cm). Using a
fourth order polynomial for the height-foot trajectory (x5 in
the simplified model) has two disadvantages: the swinging foot
has a zero velocity late in phase 1, and because of the lack of
control points, the velocity is quite important. The stabilizer
is not able to compensate properly for the flexibility at the
end of phase 1. Thus, the dashed trajectory depicted in Fig.3.
is slightly rotated, and the foot hits the floor with a non-zero
speed. The impact of the foot measured in this case is twice
the weight of the robot. Because we are bound to keep the
commercial stabilizer, we propose to shape the foot trajectory
such it has a low-velocity phase before landing. Having a high
speed for the foot makes its inertial effect not negligible, and
the assumption given by (21) does not hold. Reducing the
speed avoids the compression of the flexible material. This is
dealt with by the Feet Trajectory Generator.

III. STEPPING OVER TRAJECTORY GENERATOR

The obstacle is regarded to be rectangular with width ow =
||o2 − o3|| and height oh = ||o2 − o1|| (as depicted in Fig.1).
For the stepping over trajectory planning, a safety margin (sw,
sh) around the obstacle is included. This margin cope with the
uncertainty related to tracking and measurement errors. The
computation giving the trajectories of the legs (L(t), R(t)),
waist W (t), CoM CoM(t), and the upper body UB(t) is
described by Algorithm 1 and depicted in Fig.4.

Algorithm 1 (L(t), R(t),W (t), CoM(t), UB(t)) ←
SteppingOverObstacle(ow, oh, sw, sh)

1. (Xads,Xhds, Zhds)← FU(ow, oh, sw, sh)
2. (L1(t), R1(t), ZMPdes(t))←

FTG(ow, oh, sw, sh,Xads,Xhds)
3. (CoM1(t),W1(t))←

CWTG1(ZMPdes, Zhds)
4. Legs(t)← IK(L1(t), R1(t),W1(t))
5. UB(t)← UBMG(CoM1(t),W1(t))
6. (CoM(t),W2(t))←

CWTG2(ZMPdes(t), Legs(t), UB(t), L1(t), R1(t))
7. (L(t), R(t),W (t))← FTA(L1(t), R1(t),W2(t))

The Feasibility Unit (FU) calculates the required step-length
(Xads), hip-forward position (Xhds), and hip-height (Zhds)

based on the kinematic and collision free constraints. Using
the foothold positions, the feet trajectories (L1(t), R1(t)) and
the desired ZMP trajectory (ZMPdes(t)) are calculated by the
Feet Trajectory Generator (FTG); this requires the collision-
free and impact-reduction constraints. Subsequently, the CoM
and the Waist Trajectory Generator (CWTG) calculates the
horizontal and vertical CoM motions (CoM1(t)) and the
waist trajectory (W1(t)). The preview method calculates the
horizontal CoM motion considering the balance constraints.
The vertical CoM motion is calculated from the required hip
height (Zhds) during the double-support phase. Using the feet
trajectories and the waist trajectory, we can then compute the
leg joint trajectories (Legs(t)) by using Inverse Kinematics
(IK). To avoid knee over-stretch, the Upper Body Motion
Generator (UBMG) let the arm swing to create a variation of
CoM; we thus define the upper body joint trajectories (UB(t))
accordingly. These trajectories are then checked against colli-
sions. The CoM height trajectory is modified accordingly, and
finally, using the second stage of preview control proposed
by Kajita et al. [13], a new CoM horizontal trajectory is
generated. Those operations are realized by the second CoM
and Waist Trajectory Generator (CWTG2). Finally, the Feet
Trajectory Adaptor (FTA) adapts the feet trajectory to cope
with intermediate collisions and consequently considers the
collision constraints. The trajectories of the feet L(t), R(t),
CoM CoM(t), waist W (t) and arm trajectories UB(t) de-
scribe the complete motion of the robot. The inverse kinematic
unit calculates the different joint trajectories that are adapted
by the stabilizer before sending them to the local motor
controllers. Each unit is now discussed in more detail.

A. Feasibility Unit (FU)

The feasibility unit is a kinematical study that calculates if
an obstacle can be negotiated or not. If possible, it provides
a collision-free configuration by determining the step-length
(Xads) and the waist-height (Zhds). This configuration is
called the key configuration. The selection of these parameters
begins with a minimal step length and normal-walking waist
height. In the case of a collision, the step length is increased
and the waist height is decreased until a collision-free configu-
ration is found. The geometrical model used is a simplification
of HRP-2’s full model for fast collision checking [21]. It is
based on line segments such as the ones depicted by points
Li i = 1, ..., 7 in Fig.1. Theoretically, for each (Xads), the
associated ZMP and CoM trajectories should be computed in
order to obtain the proper Xhds. However, this would be very
time consuming. Therefore, we use a parameter δDS given as:

Xhds = δDSXads (22)

The value of parameter δDS originates from simulations for
normal walking with an estimation for different step-lengths
using (16). Simulations show that the value of δDS does
not vary significantly when stepping over is considered. We
believe that finding this parameter, or a look-up-table, for other
robots is feasible (here, δDS = 0.5). More information about
this unit can be found in [21].

Dynamic Motion Planning
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Figure 4: This figure shows schematic drawings of the Ball-in-a-Cup motion, the final learned robot
motion as well as a kinesthetic teach-in. The green arrows show the directions of the current move-
ments in that frame. The human cup motion was taught to the robot by imitation learning with
31 parameters per joint for an approximately 3 seconds long trajectory. The robot manages to re-
produce the imitated motion quite accurately, but the ball misses the cup by several centimeters.
After ca. 75 iterations of our Policy learning by Weighting Exploration with the Returns (PoWER)
algorithm the robot has improved its motion so that the ball goes in the cup. Also see Figure 5.

Figure 5: This figure shows the expected
return of the learned policy in the Ball-in-
a-Cup evaluation averaged over 20 runs.

Due to the complexity of the task, Ball-in-a-Cup is
even a hard motor learning task for children who usu-
ally only succeed at it by observing another person
playing and a lot of improvement by trial-and-error.
Mimicking how children learn to play Ball-in-a-Cup,
we first initialize the motor primitives by imitation and,
subsequently, improve them by reinforcement learn-
ing. We recorded the motions of a human player by
kinesthetic teach-in in order to obtain an example for
imitation as shown in Figure 4 (middle row). From the
imitation, it can be determined by cross-validation that
31 parameters per motor primitive are needed. As ex-
pected, the robot fails to reproduce the the presented
behavior and reinforcement learning is needed for self-improvement. Figure 5 shows the expected
return over the number of rollouts where convergence to a maximum is clearly recognizable. The
robot regularly succeeds at bringing the ball into the cup after approximately 75 iterations.

4 Conclusion

In this paper, we have presented a new perspective on policy learning methods and an application
to a highly complex motor learning task on a real Barrett WAMTM robot arm. We have generalized
the previous work in [17, 18] from the immediate reward case to the episodic case. In the process,
we could show that policy gradient methods are a special case of this more general framework.
During initial experiments, we realized that the form of exploration highly influences the speed of
the policy learning method. This empirical insight resulted in a novel policy learning algorithm,
Policy learning by Weighting Exploration with the Returns (PoWER), an EM-inspired algorithm
that outperforms several other policy search methods both on standard benchmarks as well as on a
simulated Underactuated Swing-Up.

We successfully applied this novel PoWER algorithm in the context of learning two tasks on a
physical robot, i.e., the Underacted Swing-Up and Ball-in-a-Cup. Due to the curse of dimensionality,
we cannot start with an arbitrary solution. Instead, we mimic the way children learn Ball-in-a-Cup
and first present an example for imitation learning which is recorded using kinesthetic teach-in.
Subsequently, our reinforcement learning algorithm takes over and learns how to move the ball into

7

Reinforcement Learning of sensory motor  functions
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Reinforcement Learning to adjust
Robot Movements to New Situations
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Abstract—Many complex robot motor skills can be represented
using elementary movements, and there exist efficient techniques
for learning parametrized motor plans using demonstrations and
self-improvement. However, in many cases, the robot currently
needs to learn a new elementary movement even if a parametrized
motor plan exists that covers a similar, related situation. Clearly,
a method is needed that modulates the elementary movement
through the meta-parameters of its representation. In this paper,
we show how to learn such mappings from circumstances to
meta-parameters using reinforcement learning. We introduce an
appropriate reinforcement learning algorithm based on a ker-
nelized version of the reward-weighted regression. We compare
this algorithm to several previous methods on a toy example and
show that it performs well in comparison to standard algorithms.
Subsequently, we show two robot applications of the presented
setup; i.e., the generalization of throwing movements in darts, and
of hitting movements in table tennis. We show that both tasks
can be learned successfully using simulated and real robots.

I. INTRODUCTION

In robot learning, motor primitives based on dynamical
systems [1], [2] allow acquiring new behaviors quickly and re-
liably both by imitation and reinforcement learning. Resulting
successes have shown that it is possible to rapidly learn motor
primitives for complex behaviors such as tennis-like swings
[1], T-ball batting [3], drumming [4], biped locomotion [5],
ball-in-a-cup [6], and even in tasks with potential industrial
applications [7]. The dynamical system motor primitives [1]
can be adapted both spatially and temporally without changing
the overall shape of the motion. While the examples are
impressive, they do not address how a motor primitive can be
generalized to a different behavior by trial and error without
re-learning the task. For example, if the string length has been
changed in a ball-in-a-cup [6] movement1, the behavior has to
be re-learned by modifying the movements parameters. Given
that the behavior will not drastically change due to a string
length variation of a few centimeters, it would be better to
generalize that learned behavior to the modified task. Such
generalization of behaviors can be achieved by adapting the
meta-parameters of the movement representation2.

In machine learning, there have been many attempts to
use meta-parameters in order to generalize between tasks [8].

1In this movement, the system has to jerk a ball into a cup where the ball
is connected to the bottom of the cup with a string.

2Note that the tennis-like swings [1] could only hit a static ball at the end
of their trajectory, and T-ball batting [3] was accomplished by changing the
policy’s parameters.

Figure 1: This figure illustrates a 2D dart throwing task. The
situation, described by the state s corresponds to the relative
height. The meta-parameters � are the velocity and the angle
at which the dart leaves the launcher. The policy parameters
represent the backward motion and the movement on the arc.
The meta-parameter function �(s), which maps the state to
the meta-parameters, is learned.

Particularly, in grid-world domains, significant speed-up could
be achieved by adjusting policies by modifying their meta-
parameters (e.g., re-using options with different subgoals) [9].
In robotics, such meta-parameter learning could be particularly
helpful due to the complexity of reinforcement learning for
complex motor skills with high dimensional states and actions.
The cost of experience is high as sample generation is time
consuming and often requires human interaction (e.g., in
cart-pole, for placing the pole back on the robots hand) or
supervision (e.g., for safety during the execution of the trial).
Generalizing a teacher’s demonstration or a previously learned
policy to new situations may reduce both the complexity of
the task and the number of required samples. For example, the
overall shape of table tennis forehands are very similar when
the swing is adapted to varied trajectories of the incoming
ball and a different targets on the opponent’s court. Here, the
human player has learned by trial and error how he has to adapt
the global parameters of a generic strike to various situations
[10]. Hence, a reinforcement learning method for acquiring
and refining meta-parameters of pre-structured primitive move-
ments becomes an essential next step, which we will address
in this paper.

We present current work on automatic meta-parameter
acquisition for motor primitives by reinforcement learning.
We focus on learning the mapping from situations to meta-
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Fig. 3 This figure shows schematic drawings of the Ball-in-a-Cup motion, the final learned
robot motion as well as a motion-captured human motion. The green arrows show the di-
rections of the momentary movements. The human cup motion was taught to the robot by
imitation learning with 91 parameters for 1.5 seconds. Please also refer to the video on the
first author’s website.

in [Ijspeert et al(2002)Ijspeert, Nakanishi, and Schaal, Ijspeert et al(2003)Ijspeert,
Nakanishi, and Schaal, Schaal et al (2007)Schaal, Mohajerian, and Ijspeert] and
only need minor modifications. We also make use of locally-weighted regression
in order to determine the optimal motor primitives, use the same weighting and
compute the targets based on the dynamical systems. However, unlike in [Ijspeert
et al(2002)Ijspeert, Nakanishi, and Schaal, Ijspeert et al(2003)Ijspeert, Nakanishi,
and Schaal], we need a bootstrapping step as we determine first the parameters for
the system described by Equation (5) and, subsequently, use the learned results in
the learning of the system in Equation (4). These steps can be performed efficiently
in the context of dynamical systems motor primitives as the transformation functions
(8) of Equations (4) and (5) are linear in parameters. As a result, we can choose the
weighted squared error

ε2
m = ∑n

i=1ψm
i

(
f ref
i − zT

i wm
)2

(11)

as cost function and minimize it for all parameter vectors wm with m∈ {1,2, . . . ,M}.
Here, the corresponding weighting function are denoted by ψm

i and the basis func-
tions by zT

i . The reference or target signal f ref
i is the desired transformation function

and i ∈ {1,2, . . . ,n} indicates the number of the sample. The error in Equation (11)
can be rewritten as

ε2
m =

(
fref−Zwm

)T
Ψ
(

fref−Zwm
)

(12)

[MPI Bio-Cybernetics, Tübingen]
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Aerobatics Apprenticeship Learning
Simple linear rigid dynamic models of helicopter
‣ Learn dynamic models, one for each type of maneuver

• Regression from teacher’s demonstrations

• Improvement by reinforcement learning in autonomous flight
‣ Learn reference trajectories, one for each aerobatic figure

• Expectation-Maximization on teacher’s demonstrations

• Temporal alignment and optimization
‣ Learn controllers, one for each aerobatic figure

• Differential dynamic programming continuous MDPs solved by 
iterative approximation of receding horizon LQR problems

11
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Robotics: challenges for deliberation functions
‣ Characterization of a robotics demo

• Type and variability of tasks and environments
• Degree of autonomy

13DaVinciRombaStaübli

‣ Deliberation: not needed if there is
• No variability 
• No autonomy

‣ Complex mission: geology, atmosphere, climate, environment and 
bio-environment sciences
‣ Sophisticated instruments: micro, spectro & telescope, diffraction & 

radiation detection, soil sampling and analysis
‣ Extended motion and long range navigation 14

[Curiosity, Mars Space Lab, NASA/JPL]

Motivations



Motivations‣ Mission
• Navigate, map, explore, sample, analyze
• Communicate, control instruments and resources

15
[MBARI]

‣ Mission specification
• Set of objectives, constraints and choice criteria
• Not a set of executable commands

Motivations

16
[IAS, T.U. Munich]

‣ Mission
• Household services: maintain, sort, clean, cook, etc.
• Support users, help, remind, monitor, etc.

‣ Interaction
• Complex multimodal dialogue, plan and intention recognition
• Cooperation in task achievementIntroduction: Robots, Interaction and Knowledge

Figure 1.3: Interacting with the robot in an everyday situation: the human asks for help
in vague terms, the robot takes into account the human’s a priori knowledge and spatial
perspective to refine its understanding of the question.

1.2 Robots for interaction

This work comes indeed from researches in the specific context of the human-robot
interaction, or, to put it another way, in the context of interaction for joint action with
humans, in a situated environment (figure 1.3).

“Let’s bake a brownie for tonight!”, proposes Tom. The robots smoothly prepare all the
ingredients, and they start to cook together a delicious cake...

Natural interaction and cooperation are actually the current (dare we say, short-
term) targets for the human-robot interaction community. The “Brownie scenario”
we presented above belongs to the broad class of interactive manipulation problems:
several agents agree on a (more or less implicit) joint goal that requires some sort of
cooperation to be successfully achieved. This class of problems involves both dialogue
and manipulation and they are often not completely defined at start-up: they require
iterative, interactive resolution (step-by-step process, questions-answers,...).

What are the cognitive prerequisites for such a sentence –“Let’s make a brownie
for tonight”– to be understood by the robot, correctly interpreted in the spatial and
temporal context of the interaction, and eventually transformed into a set of actions?
We distinguished four main tasks in [74]:

1. building and maintenance of a consistent geometric model of the current situation,
acquired through perception or deduction from previous perceptions,

2. building of an unambiguous and complete symbolic representation of concepts

6

[LAAS, Toulouse]



Deliberate action
‣ Purposeful action

• Planned, intended to achieve some objectives

• Pursued for the accomplishment of the robot’s mission

‣ Computational gap between planning and control models
 => Hierarchy of deliberation functions

‣ Integrate action to sensory-motor platform and environment
 => Diversity of deliberation functions

17

Deliberation functions

18

Sensors, actuators, 
low-level control and 

signal processing

Choice of skill, 
closed-loop execution of 

corresponding commands Active sensing, 
detection and 

interpretation of states 
and situations

Detect discrepancies 
predictions–observations, 
diagnosis, error recovery

Synthesis of plans: choice 
and organization of actions 

achieving objectives

Relevance of 
current objectives for 

achieving mission, 
choice and update

Active learning to 
acquire and improve 

models and behaviors

Monitoring

Goal Reasoning

Acting
Observing

Learning

World 
Databases and Models

Environment

Mission spec.
Reports

Monitoring 
actionsControl

variables
Signals

Sensing 
actions

Feedback
Feedback 

Q/A

Q/AQ/A Q/A

Q/A

Users

Planning

Q/A

Robot’s Platform



Outline
✓Robotics: impressive multidisciplinary achievements
✓Robotics: challenges for deliberation functions
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Planning for deliberate action

‣ Significant developments in automated planning

• Several orders of magnitude in classical planning performances

• Numerous extensions in representations & reasoning capabilities

‣ Research challenges

• Integration of planning to acting and interacting

• Integration of planning to sensing and observing

• Concurrency of actions and exogenous events

20
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Planning with timelines on state variables 

IxTeT, Europa, APSI, etc.

Multi-Robots Planning
‣ Distributed planning, 

   coordination by plan merging over shared resources

22[LAAS-CNRS]



Multi-Robots Planning

23

[LAAS-CNRS]

Manipulation planning
‣ Holding an object changes the configuration space 

=> Composition: motion planning ⊗ task planning
     

24[LAAS-CNRS]



Multi-Robots Manipulation Planning
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[LAAS-CNRS]
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✓Robotics: challenges for deliberation functions

• Motivation for deliberation
• Spectrum of deliberation functions
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‣ Monitoring
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Integration of planning and acting

27

• About 20 plan steps
•Over a hundred sensory-motor 

commands

Acting

From abstract action to commands

28

Mission        〈  ..., action, ...  〉

  〈  ..., skill, ...  〉

〈  ..., command, ...  〉

Robot’s hardware

Planning



Planning and acting

29

Planification 

TeXeC 

Supervision 
Action 

Robot 

Plan 

Commandes 

Messages 

I X T T- E E X E C 

[LAAS-CNRS]

IxTeT-eXeC, IDEA, T-Rex, RMPL

Planning techniques in action refinement

30

Acting

Mission        〈  ..., action, ...  〉

  〈  ..., skill, ...  〉

〈  ..., command, ...  〉

Robot’s hardware

Planning



Synthesis of skills achieving an action

31

Selection and switching between skills  achieving an action

Receding 
Horizon 
Control

32Sensory-motor commands

Resource
Manager

Markov Decision 
Process Planning

S2

Start

action action action action

Skill 1 Skill 2 Skill 3 Skill 4
…

Reports

Reports

Reactive Control System

Query resource

Stop

Navigation goal 

Suspend
Resume

Resource allocation

Extensible set of skills



Navigation

33[LAAS, Toulouse]

Planning and Acting: approaches
‣ Temporal approaches

IxTeT-eXeC, IDEA, T-ReX
• CSP based
• Dispatching, plan extension,revision

‣ Imperative approaches
PRS, RAP,  TDL, XFRM, etc.
• Flexible
• Hand-written

‣ State machine approaches
PLEXIL, Smach, etc.
• More open to V&V
• Hand-written

‣ Stochastic approaches (MDP, DBN/DDN, )
• Learned from experiences or from teaching

34
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(e) Après propagation incrémentale (alg. 12(b))

FIGURE 11 – Phases successives de production et d’exécution d’un plan temporel d’un robot mar-
tien d’exploration

par les difficultés suivantes :
• l’écriture des opérateurs formels de planification et leur « debugging » est difficile, en

particulier lorsque l’on veut prendre en compte les situations d’exécution non nominales
(i.e. les échecs et la reprise d’erreur).

• la recherche de solutions dans l’espace des plan partiels doit être guidée par des heuris-
tiques adaptées,

• la contrôlabilité temporelle du STN doit être prise en compte. En effet, ces STN com-
portent des variables dites contrôlables et d’autres contingentes. Les valeurs des pre-
mières sont choisies par le robot, alors que les valeurs des variables contingentes sont
fixées par l’environnement, dans leurs domaines admissibles 5. Un STN est contrôlable

5. Par exemple, dans le graphe figure 11(c), pour le déplacement entre t0 et t1, l’instant de départ t0 est contrô-
lable, mais pas l’instant d’arrivée t1. La durée du déplacement a été réduite par propagation de 90 à 85 (figure 11(c)),
mais seule l’observation après exécution donnera de la valeur exacte.

[T-Rex / IDEA]

task-level robot control. In this case, these well-defined tasks
could be planned out explicitly, while the less structured
ones could be handled at a higher level with a different sys-
tem. The first step in exploring this strategy was to create an
architecture for developing robust midlevel executives. Not
only should these executives be able to be controlled by
a higher level task-planning system, but they should also
be able to be built very rapidly for doing closed-loop
systems testing.

We began developing a Python application programm-
ing interface (API) based on hierarchical concurrent state
machines. We chose Python because of its shallow learning
curve and native ROS bindings. The library is called SMACH,
a contraction derived from “State MACHine” that is pro-
nounced like “smash.” At its core, SMACH is a ROS-
independent library that can be used not only to build hierarchi-
cal and concurrent state machines but also any other task-state
container that adheres to the provided interfaces. While the
SMACH core is a ROS-independent library, a considerable
amount has been written in the smach_ros package for com-
municating with ROS systems, such as topics, services, and
actionlib actions.

The core SMACH library is lightweight and, along with
logging and utility functions, provides two main interfaces:
State and Container.

SMACH States represent “states of execution,” each
with some set of potential outcomes. SMACH States imple-
ment a blocking execute() function, which runs until it
returns a given outcome.

SMACH containers are collections of one or more states,
which implement some execution policy. The simplest such
execution policy is the StateMachine. A SMACH state
machine can be visualized as a state-flow diagram, where
nodes are states of execution (the robot doing something), and
edges represent transitions from one state to another state via a
given outcome. SMACH state machines are also States,
themselves, so they can be composed hierarchically. This means

Graph View
State Outcomes

Userdata of
Selected State

State Machine
Outcomes

Active State
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‣ Role
• Detect predictions - observations discrepancies
• Explain and recognize
• Repair

‣ Approaches
• Hand-written skills to monitor applicability/maintenance conditions
• Monitor plan invariants
• Synthesize invariants from extended planning problems which 

guarantees the plan execution
• Model checking execution traces with LTL 
• RMPL: Constraint Based Automata + Control programs
• TALPlan: synthesize monitors for its plan
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Occurs are minimized relative to specific partitions in the
narrative theory. Although 2nd-order in nature, the circum-
scription axioms used are reducible to equivalent 1st-order
formulas, and can often be replaced using predicate comple-
tion. Therefore, classical first-order theorem proving tech-
niques can be used for reasoning about TAL narratives.

The circumscription policy ensures that actions occur
only when stated and that fluents are occluded only when ex-
plicitly affected by an action or dependency constraint. An
additional axiom states that only occluded fluents are per-
mitted to change value. Dependency constraints can be used
to explicitly specify indirect effects of actions, providing
a means of dealing with the ramification problem. A mod-
ular representation of qualifications is achieved through
a combination of fluents with default values and dependency
constraints affecting such fluents whenever an action is qual-
ified. See (Doherty and Kvarnström 2008) for details.
Elementary Actions. A narrative specification in L (ND)
includes action type specifications, which declare a named
elementary action. The basic structure is as follows:

[t1, t2]A(v) (1)
(Gpre(t1,v)! Gpost(t1, t2,v))^Gcons(t1, t2,v),

stating that if A(v) is executed during the interval [t1, t2], then
Gpre(t1,v) is its preconditions, Gpost(t1, t2,v) its postcondi-
tions and Gcons(t1, t2,v) specifies logical constraints associ-
ated with the action during its execution. As an example, the
following defines the elementary action fly-to that will later
be used in an emergency response scenario (the R macro de-
notes assignment at a timepoint or during an interval):
[t, t 0]fly-to(uav,newx,newy) 
[t]fuel(uav)> fuel-usage(uav,x(uav),y(uav),newx,newy)!
R([t +1] hovering(uav) =̂ False)^
R((t, t 0] x(uav) =̂ newx^y(uav) =̂ newy^

fuel(uav) =̂ value(t, fuel(uav)�
fuel-usage(uav,x(uav),y(uav),newx,newy)))^

t 0 � t = value(t,flight-time(uav,x(uav),y(uav),newx,newy))
Its translation into L (FL) is the following, where semantic
attachment is used for greater and minus.
8t, t 0,uav,newx,newy[
Occurs(t, t 0,fly-to(uav,newx,newy))! (

Holds(t,greater(fuel(uav),
fuel-usage(uav,x(uav),y(uav),newx,newy)))!

Holds(t +1,hovering(uav),False)^
Holds(t 0,x(uav),newx)^Holds(t 0,y(uav),newy)^
Holds(t 0, fuel(uav),value(t,minus(fuel(uav),

fuel-usage(uav,x(uav),y(uav),newx,newy)))^
t 0 � t = value(t,flight-time(uav,x(uav),y(uav),newx,newy))^
8u[t < u  t 0 ! Occlude(t,x(uav))^

Occlude(t,y(uav))^Occlude(t, fuel(uav))]^
Occlude(t +1,hovering(uav)))1

Elementary actions will be used as the basic building blocks
when we extend L (ND) to support composite actions, and
their syntax and semantics will remain the same as in TAL.
First, however, we extend the base language L (FL) to sup-
port fixpoints, an elegant and succinct way of expressing un-
bounded loops and recursion in logic.

1Occlude formulas generated by expanding the R macro.

Adding Fixpoints to TAL. The fixpoint extension to TAL
will be denoted as TALF and the fixpoint extension to the
language L (FL) as L (FLFP). Fixpoint logic (Arnold and
Niwiński 2001) strikes a nice balance between 1st-order and
2nd-order logic. The ability to represent loops, recursion and
inductive definitions is essential in the context of reasoning
about action and change, yet the increase in expressivity is
conservative enough to still allow relatively efficient infer-
ence techniques. This is shown later when a proof theory for
TALF is presented with soundness and completeness results.

L (FLFP) is obtained by extending L (FL) to allow fix-
point formulas of the form

LFP X(x̄).
⇥
G(X , x̄, z̄)

⇤
(2)

to appear within formulas in L (FL) provided that all occur-
rences of X in G are positive. The meaning of (2) is provided
by the following Kleene characterization of fixpoints:

LFP X(x̄).
⇥
G(X , x̄, z̄)

⇤
⌘

_

i2w
Gi(False, x̄, z̄), where

Gi(False, x̄, z̄) def

=

⇢
False for i = 0
G(Gi�1(False, x̄, z̄), x̄, z̄) for i > 0.

Composite Actions

We now extend L (ND) to support composite action type
specifications, which declare a named composite action:

[t, t 0]comp(v̄) A(t, t 0, v̄)
where comp(v̄) is a composite action term such as
monitor-pattern(x,y,dist), consisting of an action name and
a list of parameters, and A(t, t 0, v̄) is a composite action ex-
pression where only variables in {t, t 0}[ v̄ may occur free.
A composite action expression (C-ACT) supports common
constructs such as sequences (A;B) and concurrency (A || B),
and is defined as follows:

C-ACT ::= [t,t 0]with x̄ do TASK where f
TASK ::= [t,t 0]ELEM-ACTION-TERM |

[t,t 0]COMP-ACTION-TERM |
(C-ACT; C-ACT) |
(C-ACT || C-ACT) |
if [t]y then C-ACT else C-ACT |
while [t]y do C-ACT |
foreach x̄ where [t]y do conc C-ACT

where x̄ is a potentially empty sequence of variables, f is
a TAL logic formula, ELEM-ACTION-TERM is an elementary
action term such as fly-to(uav,x,y), COMP-ACTION-TERM is
a composite action term, and [t]y is a TAL formula referring
to facts at a single timepoint t .
Timing and Constraints. An essential feature of our ap-
proach is that like elementary actions, every part of a com-
posite action C-ACT is annotated with a temporal interval
during which it is executed. For example, the expression

[t1, t2]with uav, t3, t4, t5, t6 do�
[t3, t4]fly-to(uav,x,y);
[t5, t6]collect-video(uav,x,y)

�

where [t1]has-camera(uav)
denotes a composite action where two elementary actions
take place in sequence within the interval [t1, t2].

The with-do-where construct provides a very flexible means

TALPlan: order-sorted temporal logic for state-space planning 

Monitoring integrated to TALPlan
‣ Predictions synthesized from monitor formula and planning 

knowledge while planning
• At the action level
• At the plan level : causal relations between actions

‣ Surveillance of states and sequences wrt monitoring prediction with 
incremental formula progression algorithm
‣ Diagnosis of discrepancies
‣ Error recovery
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far the winch has been extended and a limit wmin determining when the winch is considered
to be lowered, which leads to the following monitor formula.

! ∀uav.speed(uav) > smin → winch(uav) ≤ wmin $%

Note that this does not in itself cause the UAV to behave in the desired manner. This has
to be achieved in the lower level implementations of the helicopter control software. This
monitor formula instead serves as a method for detecting the failure of the helicopter control
software to function according to specifications.

Example 4 Suppose that a UAV supports a maximum continuous power usage of M , but can
exceed this by a factor of f for up to τ units of time, if this is followed by normal power
usage for a period of length at least τ ′. The following formula can be used to detect violations
of this specification:

! ∀uav.(power(uav) > M →
power < f · M U

[0,τ ] !
[0,τ ′]

power(uav) ≤ M) $%

Further examples will be shown in Sect. 9, after the introduction of operator-specific mon-
itor formulas and a means for formulas to explicitly represent queries about aspects of the
execution state of the autonomous system.

8.3 Checking monitor conditions using formula progression

We now have a syntax and a semantics for conditions to be monitored during execution. Given
the complete state sequence corresponding to the events taking place during the execution
of a plan, a straight-forward implementation of the semantics can be used to test whether a
monitor formula is violated. This is sufficient for post-execution analysis, but true execution
monitoring requires prompt detection of potential or actual failures during execution.

A formula progression algorithm can be used for this purpose [4,5]. By definition, a for-
mula φ holds in the state sequence [s0, s1, . . . , sn] iff Progress(φ, s0) holds in [s1, . . . , sn].
Thus, a monitor formula can be incrementally progressed through each new state that arrives
from DyKnow, evaluating only those parts of the formula that refer to the newly received
state.

As soon as sufficient information has been received to determine that the monitor formula
must be violated regardless of the future development of the world, the formula ⊥ (false) is
returned. For example, this will happen as soon as the formula ! speed <50 is progressed
through a state where speed ≥50. Using progression thus ensures that failures are detected
quickly and without evaluating formulas in the same state more than once.

The result of progression might also be ) (true), in which case the formula must hold
regardless of what happens “in the future”. This will occur if the formula is of the form ♦ φ
(eventually, φ will hold), and one has reached a state where φ indeed does hold. In other
cases, the state sequence will comply with the constraint “so far”, and progression will return
a new and potentially modified formula that should be progressed again as soon as another
state is available.

Since states are not first-class objects in TAL, the state-based definition of progression
must be altered slightly. Instead of taking a state as an argument, the procedure below is pro-
vided with an interpretation together with the timepoint corresponding to the state through
which the formula should be progressed.
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Observing
‣ Role

• Process signals needed in closed loop servoing

• Detect and structure environment features, recognize, 
categorize, link signals to symbols (anchoring)

• Predict from sequences of events ongoing situations, plans and 
temporal chronicles

‣ Bottom-up to from signal to symbols
‣ Top-down to focus attention and trigger observation actions

40



Observing
‣ Anchoring problem

• Relate perceptual data and symbolic attribute corresponding to 
the same physical object

• Track anchors overtime and refine/revise hypothesis
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current context. The importance of this distinction ap-
pears mainly when more than one object satisfies the
description: this can be a problem in the case of defi-
nite description, but not in the case of indefinite ones.
One may consider several more types of descriptions,
for instance, descriptions that use functional proper-
ties like ‘something to hold water’. The many ways
of giving a reference brings about the problem of how
the anchoring process should treat different kinds of
descriptions.
In Fig. 1 just one object and one observer are

present. This is clearly a simplified case. In general,
it may be necessary to anchor several objects at the
same time and identify objects on the basis of the
relations among them. Moreover an agent could ob-
serve an object with different sensors and/or from
different points of view, and then need to integrate
this information to be able to establish an anchor. We
have an example in this issue in the paper by Fritsch
et al. [11]. A similar problem arises if robots with
different sensors need to exchange information about
the objects in the environment. A robot could anchor
an object on the basis of properties that cannot be
discriminated by another one.
Difficult issues of communication and negotiation

may arise if several robots need to not only anchor
symbols internally but also exchange information
among them and agree on a shared language. Com-
mon agreement about the meaning of the symbols
used to refer to objects in the environment is also
needed for efficient human–robot cooperation. Some
of the papers in this special issue deal with systems
that involve communication among multiple robots
[13,21,22] or between robots and humans [2].

Fig. 2. The ingredients of anchoring in our framework. α is the anchor.

Finally, a fundamental challenge of the anchoring
problem is to investigate the formal properties of the
anchoring process. Intuitively one may feel that some
correspondences between the symbols and the sen-
sor data are correct while some are not. How to ex-
press this formally, and prove the correctness of a
specific system are open problems. Engaging in this
study would probably require the ability to model both
the anchoring system and physical environment in the
same formal system, in which we can define and prove
formal properties.

4. Anchoring in practice

In order to get a better understanding of how the
general concept of anchoring can be instantiated in
different tasks and domains, we present below a few
implemented systems that perform anchoring. First,
however, we need to outline the main ingredients of
the framework for anchoring which is used in all ex-
amples. A detailed description of this framework and
examples can be found in [4,6,7].

4.1. Ingredients and functionalities of anchoring

According to our framework the anchoring process
is performed in an intelligent embedded system that
comprises a symbol system Σ and a perceptual sys-
tem Π (see Fig. 2). The symbol system manipulates
individual symbols, like ‘x’ and ‘cup22’, which
are meant to denote physical objects. It also asso-
ciates each individual symbol with a set of symbolic
predicates, like ‘red’, that assert properties of the
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Figure 6: Image of road section

as follows:

• Orientation 2φ

• Curvature φ

• Rotation 0

It should be observed that a characteristic object of rotation such as a circle, is
scale dependent, while a corner is essentially scale independent. The corner itself is
fully scale independent, but it is generally part of some object of limited size, which
indirectly imposes a restriction with respect to scale.

A successful use of rotation requires more attention to proper scale, as well as a use
of multiple scales. Given proper selective mechanisms for this, the rotation feature
should be useful.

In Figure 8 is illustrated the computed curvature using divcons from the orientation
transform in Figure 8. The operation divcons computes the normalized divergence
from an orientation transform image[7, 8].
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autonomous surveillance tasks in a simulated environ-
ment developed within the WITAS project [8]. The
UAV system integrates a planner, a reactive plan ex-
ecutor, a vision system and a control system.
In terms of our framework, the symbol system con-

sists of the planner; individual symbols denote cars
and elements of the road network. The perceptual
system is a reconfigurable active vision system able
to extract information about car-like objects in aerial
images; percepts are regions in the image, and they
have attributes like position, width, and color. The
predicate grounding relation is given as a hand-coded
table that associates each predicate symbol with a
fuzzy set of admissible values for the corresponding
attribute. An anchor is a Lisp structure that stores
an individual symbol, the index of a region, and
an association list recording the current estimates
of the values of the object’s attributes (signature).
The signature in the anchor is used to configure
the vision system, control the camera, and control
the UAV.
In the example shown in Fig. 5, the task of the UAV

is to follow a specific car that was previously anchored
using the Find functionality. At time t0 two identical
cars are present in the image, one traveling along a
road which makes a bend under a bridge, and the other
one traveling on the bridge. The UAV is keeping un-
der observation the car traveling along the road using
the Track functionality. At t1 this car disappears under
the bridge and the second car is almost in the position
in the image where the first one was expected to be.
The Track functionality has access to the symbolic
information about road topology and can therefore
recognize that this car cannot be the car previously
tracked. The Reacquire functionality is then invoked
in order to find again the tracked car. Reacquire uses
high-level knowledge to infer the presence of the oc-
cluding bridge, and predict the next visible position of

Fig. 5. Anchoring a moving object. The followed car disappears under a bridge and a similar car appears at its place over the bridge.

Fig. 6. Anchoring “a red ball” to perform a ball collection task.

the car. This position is stored in the signature of the
anchor, and used to direct the UAV and the camera
towards the end of the bridge. When the car reappears
from under the bridge at t2, a percept is generated by
the vision system that is compatible with the signature
in the anchor. Normal tracking is then resumed.

4.4. Anchoring an indefinite description

Our last example is intended to illustrate some
of the subtleties of the anchoring problem in the
case of an indefinite reference and multiple identical
objects [7]. The task is one of the three “technical
challenges” of the RoboCup 2002 competition in the
Sony four-legged robot league. A Sony AIBO robot
is in a soccer field and 10 identical balls are placed in
the field. The task is to score all the balls. When a ball
is scored, it is removed from the field (see Fig. 6).
With respect to anchoring, the problem can be de-

scribed as follows. The robot is given an indefinite de-
scription of a ball, for instance, ‘x : Ball(x)∧Red(x)’.
Any of the 10 balls is suitable for the task. The Find
functionality selects the first ball to act upon, for in-
stance the nearest one, and anchors the symbol x to it.
The created anchor includes in its signature the rela-
tive position of this ball, which is used by the motion

[Linköping Univ.]

[Örebro Univ.]

In this article, we propose using the term knowledge processing
middleware for a principled and systematic software framework
for bridging the gap between sensing and reasoning in a physical
agent. We claim that knowledge processing middleware should
provide both a conceptual framework and an implementation
infrastructure for integrating a wide variety of functionalities and
managing the information that needs to flow between them. It
should allow a system to incrementally process low-level sensor
data and generate a coherent view of the environment at increas-
ing levels of abstraction, eventually providing information and
knowledge at a level which is natural to use in symbolic delibera-
tive functionalities.

In addition to defining the concept of knowledge processing
middleware, we describe one particular instance called DyKnow.
DyKnow is a fully implemented stream-based knowledge process-
ing middleware framework providing both conceptual and practi-
cal support for structuring a knowledge processing system as a set
of streams and computations on streams. Streams represent as-
pects of the past, current, and future state of a system and its envi-
ronment. Input can be provided by a wide range of distributed
information sources on many levels of abstraction, while output
consists of streams representing objects, attributes, relations, and
events.

In the next section, a motivating example scenario is presented.
Then, desirable properties of knowledge processing middleware
are investigated and stream-based middleware is proposed as suit-
able for a wide range of systems. As a concrete example, the formal
conceptual framework of our knowledge processing middleware
DyKnow is described. The article is concluded with some related
work and a summary.

2. A traffic monitoring scenario

Traffic monitoring is an important application domain for
autonomous unmanned aerial vehicles (UAVs), providing a pleth-
ora of cases demonstrating the need for knowledge processing
middleware. It includes surveillance tasks such as detecting acci-
dents and traffic violations, finding accessible routes for emergency
vehicles, and collecting traffic pattern statistics.

One possible approach to detecting traffic violations relies on
describing each type of violation in a declarative formalism such
as the chronicle formalism [1]. A chronicle defines a class of com-
plex events as a simple temporal network [5] where nodes corre-
spond to occurrences of events and edges correspond to metric
temporal constraints between event occurrences. For example,
events representing changes in high-level qualitative spatial rela-
tions such as besideðcar1; car2Þ, closeðcar1; car2Þ, and onðcar; roadÞ
might be used to detect a reckless overtake. Creating these high-le-
vel representations from low-level sensor data, such as video
streams from color and thermal cameras, involves a great deal of
processing at different levels of abstraction, which would benefit
from being separated into distinct and systematically organized
tasks.

Fig. 1 provides an overview of how the incremental processing
required for the traffic surveillance task could be organized. At the
lowest level, a helicopter state estimation component uses data from
an inertial measurement unit (IMU) and a global positioning system
(GPS) to determine the current position and attitude of the helicop-
ter. The resulting information is fed into a camera state estimation
component, together with the current state of the pan-tilt unit on
which the cameras are mounted, to generate information about
the current camera state. The image processing component uses
the camera state to determine where the camera is currently point-
ing. Video streams from the color and thermal cameras can then be
analyzed in order to extract vision objects representing hypotheses

regarding moving and stationary physical entities, including their
approximate positions and velocities.

To use symbolic chronicle recognition, it is necessary to deter-
mine which vision objects are likely to represent cars. Such objects
must be associated with car symbols in such a way that the symbol
and the vision object consistently refer to the same physical object,
a process known as anchoring [6]. This process can take advantage of
knowledge about normative characteristics and behaviors of cars,
such as size, speed, and the fact that cars normally travel on roads.
Such characteristics can be described using formulas in a metric
temporal logic, which are progressed (incrementally evaluated) in
states that include current estimated car positions, velocities, and
higher level predicates such as on# roadðcarÞ and in# crossingðcarÞ
obtained from road network information provided by a geographic
information system. An entity satisfying the conditions can be
hypothesized to be a car, a hypothesis which is subject to being
withdrawn if the entity ceases to display the normative character-
istics, thereby causing formula progression to signal a violation.

The next stage of processing involves deriving qualitative spatial
relations between cars, such as besideðcar1; car2Þ and closeðcar1; car2Þ.
These predicates, and the concrete events that correspond to
changes in the predicates, finally provide sufficient information
for the chronicle recognition system to determine when higher-level
events such as reckless overtakes occur.

In this scenario, which is implemented and tested on board an
autonomous UAV system developed at the Unmanned Aircraft Sys-
tems Technologies (UASTech) Lab at Linköping University [7], a
considerable number of distinct processes are involved in bridging
the sense-reasoning gap. However, in order to fully appreciate the
complexity of the system, we have to widen our perspective. To-
wards the smaller end of the scale, what is represented as a single
process in Fig. 1 is sometimes merely an abstraction of what is in
fact a set of distinct processes. Anchoring is a prime example,
encapsulating a variety of tasks that could also be viewed as sepa-
rate processes. At the other end of the scale, a complete UAV sys-
tem also involves numerous other sensors and information
sources as well as services with distinct knowledge requirements,
including task planning, path planning, execution monitoring, and
reactive goal achieving procedures. Consequently, what is seen in
Fig. 1 is merely an abstraction of the full complexity of a small part
of the system.

It is clear that a systematic means for integrating all forms of
knowledge processing, and handling the necessary communication

Fig. 1. Incremental processing for the traffic surveillance task.
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‣ Comprehensive and coherent approach for observing
‣ Data flow architecture
‣ Stream based formalism on perception processes:

• primitive, refinement, configuration, mediation processes
• policies over processes,

temporal constraints
‣ Natural integration to

planning and monitoring,
‣ Opens V&V perspectives

Perception Engine
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Goal Reasoning

‣ Goal Driven Autonomy (GDA), overall mission perspectives 
‣ Higher level monitoring wrt objectives, criteria and constraints
‣ Discrepancy detector
‣ Explanation generator  
‣ Goal generator to address new conditions
‣ Goal manager 

• Decision theory: tradeoff between conflicting goalls
• Explicit choice

‣ Found in large systems (CPEF, DS1)
Function often embedded in acting/monitoring/planning

45

Monitoring

Assessing

Acting
Observing

Learning

World 
Databases and Models

Environment

Mission
Reports

Monitoring 
actionsControl

variables
Signals

Sensing 
actions

Feedback
Feedback 

Q/A

Q/AQ/A Q/A

Q/A

Users

Planning

Q/A

Robot’s Platform

Outer loop

Environment

Inner loop

Robot’s Platform

Deliberation functions



Architectures

47

A
g
e
n
ts

 ID
E

A

Niveau

But

Niveau

Tâche

Niveau

Commande

encapsulation 

IDEA

Flight 
Software

LANE

lane_sv

CAMERA

camera_sv shot shotidle idle

SCORREL

scorrel_sv
scorrel scorrelidleidle

P3D

p3d_sv
trackidle

read fuseidle idle

idle

contained-bymeets

idle

read fuse

shot

scorrel

Science

science_sv monitor science

idle

track

RFLEX

speed_sv tsidle

idle idle

read

tstststststststststststststststststs

idle shot

picture monitor

tstststststs

LANE

lane_sv

CAMERA

camera_sv shot shotidle idle

SCORREL

scorrel_sv
scorrel scorrelidleidle

P3D

p3d_sv
trackidle

read fuseidle idle

idle

contained-bymeets

idle

read fuse

shot

scorrel

Science

science_sv monitor science

idle

track

RFLEX

speed_sv tsidle

idle idle

read

tstststststststststststststststststs

idle shot

picture monitor

tstststststs

LANE

lane_sv

CAMERA

camera_sv shot shotidle idle

SCORREL

scorrel_sv
scorrel scorrelidleidle

P3D

p3d_sv
trackidle

read fuseidle idle

idle

contained-bymeets

idle

read fuse

shot

scorrel

Science

science_sv monitor science

idle

track

RFLEX

speed_sv tsidle

idle idle

read

tstststststststststststststststststs

idle shot

picture monitor

tstststststs

LANE

lane_sv

CAMERA

camera_sv shot shotidle idle

SCORREL

scorrel_sv
scorrel scorrelidleidle

P3D

p3d_sv
trackidle

read fuseidle idle

idle

contained-bymeets

idle

read fuse

shot

scorrel

Science

science_sv monitor science

idle

track

RFLEX

speed_sv tsidle

idle idle

read

tstststststststststststststststststs

idle shot

picture monitor

tstststststs

Timelines partagées

...

...

...

...

...
...

...

...

...

...

...

MATERIEL

ENVIRONNEMENT

robot

motor sensor cameraswitch

A2D digital IO framegrabber

joint

locomotor

linkage stereo

arm mast
wheel

team

manip.

l

Figure 1.6: Proposed relationship of Functional and Decision Layers.

future projections of resource availability on the time-line which forces replanning to occur. This cycle is

indicated by the large arrows in Figure 1.7.

The process described is typical of systems where the procedural components of the executive are sep-

arated from the declarative components of planning and scheduling. As will be shown later in Chapter 6,

it is not necessary that the boundary between planning and execution exist at a specific point in time —

planning and scheduling can occur very near to the present, while executive-style procedural decomposition

may be incorporated into distant planning. Therefore, the plan freeze boundary in Figure 1.7 is not required

for CLARAty, and the potential cross-coupling of Planner and Executive is one of the primary reasons for

merging both into a single Decision Layer. As discussed later, the format of these merged activities, and the

interface between them, is currently under development.

Finally, it is important to note that there is also a migration of some executive-style procedural expansion

into the Functional Layer as well. Each object has built in functionality which will have a procedural

decomposition of its actions, and may have it own mini-executive, or even planner. CLARAty does not

preclude this, and allows for this functionality to be leveraged or bypassed, depending on the desire of

system designers, and the capabilities of the Decision Layer.

1.4 Implementation

While the prototyping and implementation of the CLARAty architecture is still in its early stages, some

specifications and results are important to mention, illustrating the direction of this work. Below are de-

scribed some of the tool and standard choices, heritage software that will be included into the framework,

and prototyping status at this time.
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Outline
✓Robotics: impressive multidisciplinary achievements
✓Robotics: challenges for deliberation functions

• Motivation for deliberation
• Spectrum of deliberation functions

✓Planning
✓Acting
✓Monitoring
✓Observing
✓Goal Reasoning
✓Architecture
‣ Conclusion
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Deliberation in robotics: 
key integrative challenge for AI

‣ Planning & Acting
‣ Observing the environment semantics
‣ Monitoring
‣ Goal reasoning
‣ Interacting
‣ Learning

• Models of the robot and the environment
• Categories
• Functions, skills and behaviors

‣ Architecture
• Specification
• Robust adaptation
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