
 

 

 

 

 

Workshop AIL 

Active and Incremental Learning 

 

August 27, 2012, Montpellier, France 

 

ECAI 2012 – 20TH European Conference on Artificial Intelligence 

 

 

 

 

Vincent Lemaire1  ,  Jean-Charles Lamirel2  ,  Pascal Cuxac3 
 
 
 
 
 
 
 
 
 
 

1
 Orange Labs, Lannion, vincent.lemaire@orange.com 

2
 TALARIS-LORIA, Vandoeuvre les Nancy, jean-charles.lamirel@loria.fr 

3
 INIST-CNRS R&D, Vandoeuvre les Nancy, pascal.cuxac@inist.fr 

 

 

mailto:vincent.lemaire@orange.com
mailto:jean-charles.lamirel@loria.fr
mailto:pascal.cuxac@inist.fr
https://sites.google.com/site/ecaiail/


 



Workshop AIL : 

Active and Incremental Learning 

 

Chairs: 
 

Vincent Lemaire
1
 and Jean-Charles Lamirel

2
 and Pascal Cuxac

3
 

 
 

1
 Orange Labs, Lannion, vincent.lemaire@orange.com 

2
 TALARIS-LORIA, Vandoeuvre les Nancy, jean-charles.lamirel@loria.fr 

3
 INIST-CNRS R&D, Vandoeuvre les Nancy, pascal.cuxac@inist.fr 

 

 

 

This workshop aims to offer a meeting opportunity for academics and industry-related researchers, belonging to the various 

communities of Computational Intelligence, Machine Learning, Experimental Design and Data Mining to discuss new areas 

of active and incremental learning, and to bridge the gap between data acquisition or experimentation and model building. 

How active sampling, incremental learning and data acquisition, can contribute towards the design and modelling of highly 
intelligent autonomous learning systems? 

Example 1: Imagine a simple problem which is to supervise a node in a telecommunication network using a binary classifier. 

The first step is to train incrementally (and perhaps using active learning) the classifier using a data stream and then to 

maintain this classifier without any “human” interaction. The classifier has to be completely autonomous. Papers which will 
propose new elements to go to this direction will be in the scope of the workshop. 

Example 2: The diachronic analysis of a large and evolving information source for detecting stable, emerging or vanishing 

topics could be done with the help of clustering methods. However, to provide satisfying detection accuracy, the exploited 

methods must altogether deal with the plasticity stability dilemma and be able to manage an evolving data description space. 

Paper that will propose efficient solutions that respect these constraints will be also in the scope of the workshop. 

 

Topics of interest to the workshop include (but are not limited to): 

 Experimental Design 

 Active Learning 

 Autonomous Learning 

 Incremental Learning 

 Autonomous intelligent systems 

 On-line learning 

 Novelty and Drift Detection 

 Adaptive clustering methods 

 Case Studies of AIL Learning (railway stations, airport, bank branches, etc) 

 Autonomous Robots 

 

 

mailto:vincent.lemaire@orange.com
mailto:jean-charles.lamirel@loria.fr
mailto:pascal.cuxac@inist.fr


Organizing committee 
 

  Mahmoud Abou-Nasr (Ford Motor Company,USA), 

  Shadi Al Shehabi (Allepo University,Aleppo,Syria), 

  Cesare Alippi (Politecnico di Milano,Milano,Italia), 

  Tomas Arredondo (U.T.F.S.M. Valparaíso,Chile), 

  Vassilis Athitsos (University of Texas at Arlington,Texas,USA), 

  Albert Bifet,(University of Waikato,Hamilton,New Zealand), 

  Alexis Bondu (EDF R&D, France), 

  Fazli Can (Bilkent University,Ankara,Turkey), 

  Laurent Candillier (Wikio Group / Nomao, France), 

  Chaomei Chen (Drexel University,Philadelphia,USA), 

  Jung-Chen Chiang (NCKU,Tainan,Taiwan), 

  Fabrice Clérot (Orange Labs, France), 

  Pascal Cuxac (INIST-CNRS,Vandoeuvre les Nancy, France), 

  Abdoulaye B. Diallo (UQAM,Montreal,Canada), 

  Gideon Dror (Academic college of Tel-Aviv Yaffo,Israel), 

  Hugo Jair Escalante, (National Institute of Astrophysics, Optics and Electronics, Mexico), 

  Françoise Fessant (Orange Labs, France), 

  Dominic Forest (EBSI Univ. Montreal,Montreal,Canada), 

  José García-Rodríguez (University of Alicante,Spain), 

  Wolfgang Glanzel (KU Leuven, Leuven, Belgia), 

  Jing-Hao He (University of Rhode Island,Kingston,USA), 

  Pascale Kuntz-Cosperec (Polytech'Nantes, France), 

  Jean-Charles Lamirel (Talaris Loria, France), 

  Vincent Lemaire (Orange Labs, France), 

  Bin Li (University of Technology (UTS),Sydney,Australia), 

  Gaelle Losli (Polytech Clermont-Ferrand, France), 

  Florin Popescu (Fraunhofer Institute,Berlin,Germany), 

  Vikram Pudi (IIIT Hydeabad,Hyderabad,India), 

  Manuel Roveri (Politecnico di Milano,Milano,Italia), 

  Christophe Salperwyck (Orange Labs, France), 

  Danny Silver (University of Acadia,Wolfville,Canada), 

  Tony C. Smith (University of Waikato,Hamilton,New Zealand) 

  Alexander Statnikov (New York University,New-York,USA), 

  Dan Tamir (Texas State University,San Marcos,USA), 

  Fabien Torre (Université Lille 3, France), 

  Ioannis Tsamardinos (University of Crete,Greece), 

  Vincent Tseng (NCKU,Tainan,Taiwan), 

  Zhi-Hua Zhou (Nanjing University,Nanjing,China), 

  Xingquan Zhu (University of Technology (UTS),Sydney,Australia), 

  Djamel Zighed (Louis Lumiere University,Lyon, France). 

 

Sponsor 

 
 www.orange.com 

http://www.orange.com/
https://sites.google.com/site/ecaiail/sponsors/Orange.jpg?attredirects=0


Invited Talk : 

 

Learning models in nonstationary environments: 

the Just-In-Time approach 

 
Manuel Roveri 

roveri@elet.polimi.it 

Dipartimento di Elettronica e Informazione, Politecnico di Milano, Milano, Italy 
 

 

 
Abstract: 

 
Most machine learning techniques assume, either explicitly or implicitly, that the data-generating process is stationary. This 

assumption guarantees that the model learnt during the initial training phase remains valid over time and that its performance 

is in line with our expectations. Unfortunately, this assumption does not truly hold in the real world representing, in many 

cases, a simplistic approximation of the reality. 

The talk will describe the Just-In-Time (JIT) approach that is a flexible tool implementing the detection/adaptation paradigm 

to cope with evolving processes. Solutions following this approach improve the knowledge about the model in stationary 

conditions by exploiting additional information coming from the field during the operational life. Differently, in 

nonstationary conditions, as soon as a change in the data-generating process is detected, the learnt model is discarded and a 

suitable one activated to keep the performance. As a valuable and challenging application of the proposed approach, JIT 

classifiers for concept drift will be detailed and discussed. 
 



Incremental Decision Tree based on order statistics
Christophe Salperwyck1 and Vincent Lemaire2

Abstract. New application domains generate data which are not
persistent anymore but volatile: network management, web profile
modeling... These data arrive quickly, massively and are visible just
once. Thus they necessarily have to be learnt according to their ar-
rival orders. For classification problems online decision trees are
known to perform well and are widely used on streaming data. In this
paper, we propose a new decision tree method based on order statis-
tics. The construction of an online tree usually needs summaries in
the leaves. Our solution uses bounded error quantiles summaries. A
robust and performing discretization or grouping method uses these
summaries to provide, at the same time, a criterion to find the best
split and better density estimations. This estimation is then used to
build a naı̈ve Bayes classifier in the leaves to improve the prediction
in the early learning stage.

1 Introduction

Learning machines have shown their ability to deal with huge vol-
umetry on real problems [15, 9]. Nevertheless most of the works
were realized for data analysis on homogeneous and stationary data.
Learning machines usually use data sets with fixed sizes and produce
static models.

New application fields for data mining emerge in which data are
not anymore persistent data table but rather “temporary” data. These
data are called streaming data. Among these domains one finds: man-
agement of telecommunication networks, user modeling in a social
network, web mining. One of the technical challenges is to design
algorithms able to handle these new application constraints. As data
arrive quickly and are visible only once, it is necessary to learn them
as they arrive. Incremental learning appears as a natural solution to
streaming problems.

Among the methods in incremental learning, models based on
decision trees inspired by the algorithm “Very Fast Decision Tree”
(VFDT) [8] are widely used. The tree construction is incremental
and leaves are transformed into nodes as examples arrive. The new
examples go down into the tree and are inserted variable by variable
in a summary. A criterion (Gini or Entropy) uses this summary to
find the cut points to transform a leaf into a node. The tree prediction
can be improved by the addition of a local model in each leaf as in
VFDTc [12].

The error rate of this kind of algorithm is more important in the
early learning stage than a batch algorithm as C4.5. But having learnt
several hundreds of thousand examples, this error rate becomes lower
than C4.5 since C4.5 is not able to deal with millions of examples and
thus has to use only a part of the available information.

1 Orange Labs, Lannion, France and LIFL, Université de Lille 3, Villeneuve
d’Ascq, France, email: christophe.salperwyck@orange.com

2 Orange Labs, Lannion, France, email: vincent.lemaire@orange.com

In this article we focused on the construction of online decision
trees. Section 2 presents existing approaches in terms of: split crite-
rion, summaries in leaves, and local models. Our approach, based on
order statistics, is detailed in the 3rd section. The experimental part
which compares our approach with existing ones is in section 4. The
last section concludes this article.

2 Previous works

Constructing an online decision tree is based on three main choices.
In the first place, it is impossible in the data stream context, poten-
tially of infinite size, to keep all the examples. The use of data sum-
maries of limited size is necessary to be able to control the tree mem-
ory consumption. The fact that decisions are local to the leaf justifies
storing summaries in each leaf. Secondly, cut points are chosen by
the evaluation in every leaf of a criterion (generally the Gini or the
entropy criterion). This choice being a definitive action has to be ro-
bust and made with a certain confidence. Finally before a split occurs,
the available information in leaves is not used. Using a local model
in each leaf allows exploiting this information to improve the global
prediction of the tree. Figure 1 illustrates a decision tree and its three
main components.
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Figure 1. Main components of an online decision tree.

This section presents the different approaches used in the literature
to answer the three main key points mentioned above. The quality of
a decision tree depends on: (i) the summaries in the leaves, (ii) the
split criterion, (iii) the local model.



2.1 Summaries in the leaves

The purpose of data summaries in the leaves is to memorize stream
characteristics. This summary is used to find the “best” cut point to
transform a leaf into a node and also to build a local model in the leaf.
In certain application domains, as for example the management of a
network of telecommunication or energy, the stream is potentially of
infinite size. The generated tree de facto possesses a large number
of decision nodes but the available memory is often of limited size.
Therefore these summaries need to have a low memory footprint with
low errors and address the precision / memory tradeoff.

The paragraphs below present several summaries. Numerical and
categorical attributes are generally handled by means of different
summary techniques.

2.1.1 Numerical attributes

Gama and Pinto propose a summary for numerical attributes called
Partition Incremental Discretization - PiD [11] which is partially in-
cremental. This solution is based on two levels. Level 1 realizes a first
discretization where the counts are stored by interval. This first level
implements an incremental algorithm which combines the methods
“Equal Frequency” and “Equal Width” and has to contain more in-
tervals than the level 2. Second level uses level 1 discretization to
make the final discretization, which can be of several types: “Equal
Frequency”, “Equal Width”, K-means, Recursive entropy discretiza-
tion, Proportional discretization. The memory consumption of this
method depends mainly on the number of intervals in the first level.
The second level is not incremental.

Pfahringer et al. [21] carried out a study on summaries for numer-
ical attributes; their study is dedicated to trees using the Hoeffding
bound. They tested the following summaries methods:

• Very Fast Machine Learning (VFML): this very simple method
takes the k first values of the stream and uses them to build k + 1
intervals. The next values are aggregated in the closest interval
defined by the first values. The memory consumption depends on
the parameter k. This method comes from the source code [18]
provided by the authors of VFDT: Domingos and Hulten.

• Gaussian approximation (GA): the data distribution is supposed to
be a normal law. The purpose is to estimate the three parameters of
the law which define this Gaussian: the average, the standard de-
viation (or the variance) and the number of elements. These three
values can be stored incrementally making this method perfectly
adapted to an online use. This approximation is chosen by Kirkby
[19] in all his experiments. The memory consumption is constant
independently of the nature of the observed stream.

• Exhaustive binary trees (EBT): Gama et al. use this method for
their VFDTc tree [12]. A binary search tree, for each numerical
variable, is built incrementally. This tree also keeps in each node
the counts of values smaller and bigger than the cut point. This
structure allows an immediate access to the counts on both sides of
a cut point. The tree memory consumption depends on the number
of different values arriving in the leaf.

• GK: this method, proposed by Greenwald and Khanna [14], is a
quantiles based summary. It maintains a sorted list of intervals
and controls the error on the quantile position (detailed in section
3.1.1). Its memory consumption depends either on the maximal
error tolerated on quantiles or on the number of intervals that can
be kept.

2.1.2 Categorical attributes

To our knowledge, in most of the publications related to online trees
there is no dedicated summary for categorical attributes but just ex-
haustive counting. It means that for each categorical variable and for
each value the number of occurrences is stored. It can be sufficient
if the number of values is limited and thus the memory consumed is
low. This method linearly depends on the number of different values
in the data stream.

2.2 Split criterion

During the construction of the decision tree a split criterion is used to
transform a leaf into a node. The objective is to produce the most ho-
mogeneous possible groups of individuals regarding the target vari-
able. To transform a leaf into a node it is necessary to determine at the
same time on which attribute to cut and on which value (cut point).

In the literature on offline and online decision trees, two main cut
criteria are used: Gini in the CART algorithm and the “gain ratio”
based on the entropy in C4.5. Those two criteria find the best cut
point for an attribute and each of them provides a score. The node is
split on the attribute having the best score. This process to transform
a leaf into a node is repeated to produce the final decision tree.

The difference in building an online tree and an offline tree comes
from the fact that data arrive continuously for the first one. The
choice of the attribute to cut is made according to the summary and
not on all data. The choice of transforming a leaf into a node, is
a definitive action. To make sure that this choice is realized with a
certain confidence, Domingos and Hulten suggest in VFDT the use
of the Hoeffding bound [16]. This bound brings a guarantee on the
choice of the good attribute. The Hoeffding bound was afterwards
often used to build online decision tree: VFDTc [12], CVFDT [17],
IADEM [22], “ensemble of Hoeffding trees” [19]... The Hoeffding
bound is also used in this article to construct the proposed online
tree. Detailed description of this bound is presented below.

Hoeffding bound provides an upper bound on the observed mean
of a random variable and its true mean. Consider a real-valued ran-
dom variable r whose range is R. Suppose we have made n inde-
pendent observations of this variable, and computed its mean r̄. The
Hoeffding bound states that, with probability 1− δ, the true mean of

the variable is at least r̄ − ε, where ε =
√

R2

2n
ln( 1

δ
). The interest of

this bound is that it depends only on: i) the range R, ii) the number
of observations n, iii) the desired confidence δ.

This bound guarantees the choice (with a probability 1− δ) of the
attribute to cut. The bound is applied on the average of an evaluation
split criterion G. The best attribute a is definitively considered better
than the best second attribute b if Ḡa − Ḡb > ε.

2.3 Local model

Gama et al. [12] observed empirically that 100 to 1000 examples are
needed before transforming a leaf into a node. These examples in
leaves are not used to improve the global model as long as the leaf is
not transformed into a node. They suggest using these examples by
adding in every leaf a local model (called “functional tree leaves” by
Gama et al.). The reader can note that such kind of technique, which
uses local models positioned in leaves, exists for a long time. For
example the algorithm NBTree [20] uses a decision tree with a naı̈ve
Bayes classifier in leaves.
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A good local model for online decision trees has to consume a
small amount of memory, be fast to build and be fast to return a pre-
diction. It has to be in adequacy with the summaries built in leaves.
A good ability to predict with a small number of examples is re-
quired because summaries in leaves can be based on few examples.
A study [24] on the speed (in number of examples) of different clas-
sifiers shows that the forests of tree and the naı̈ve Bayes classifier are
classifiers which require few examples to learn. Among those two
classifiers only the naı̈ve Bayes classifier respects at best the condi-
tions required by the online construction. Indeed, it does not require
additional memory if the summary returns a density estimation by
interval (this is the case for all the summaries presented previously).
Furthermore it is fast to elaborate and has a low algorithmic complex-
ity to predict. This classifier was also used in VFDTc and improved
the prediction on several benchmark datasets [12].

3 Our approach
This paper introduces current works on the construction of online de-
cision trees based on order statistics. For summaries we choose meth-
ods based on order statistics and addressing the precision / mem-
ory tradeoff. For the criterion, the choice turns to the MODL [5]
method which finds Bayes optimal cut points with order statistics.
The MODL approach also provides robust density estimation that
can be used by a local model. In our case the naı̈ve Bayes classifier
is chosen.

3.1 Summaries in the leaves
The summaries used in the proposed approach have at the same time
a fixed memory consumption and strong guarantees on the error over
the counts. These summaries are described below.

3.1.1 Numerical attributes: quantiles summaries (GK)

Quantiles provides order statistics on the data. The φ-quantile, with
φ ∈ [0, 1] is defined as the element in the position dφNe on a sorted
list of N values. ε is the maximum error on the position of the el-
ement: an element is an ε approximation of a φ − quantile if its
rank is between d(φ− ε)Ne and d(φ+ ε)Ne. It corresponds to an
“Equal Frequency” discretization; the number of quantiles being in
that case the number of intervals.

The GK quantiles summary [14] is an algorithm to compute quan-
tiles using a memory ofO( 1

ε
log(εN)) in the worst case. This method

does not need to know the size of the data in advance and is insensi-
tive to the arrival order of the examples. The algorithm can be con-
figured either with the number of quantiles or with a bound on the
error. Its internal structure is based on a list of tuples < vi, gi,∆i >
where :

• vi is a value of an explanatory variable of the data stream
• gi corresponds to the number of values between vi−1 and vi
• ∆i is the maximal error on gi

Some insights about the choice of this summary are given in [23].
This method is studied in [21] and implemented with a summary per
class and per attribute. It is evaluated as being less successful than
the GA or VFML methods. However we adapted the GK summary
to store directly the class counts in tuples. Therefore just a summary
per attribute is needed and not a summary per class and per attribute.
Experimentally this modification improves the quality of prediction
(due to the lack of place the experiments related to this point are not
presented in this article).

3.1.2 Categorical attributes: Count-min Sketch (CMS)

The purpose of the Count-min Sketch [7] is to find the top-k most fre-
quent values in a data stream with a maximal error ε on their counts.
A counting matrix of size t × b is used for the storage. This method
uses t hash functions hi in {1, . . . , b} which select the cell in the
matrix to increment: ∀i = 1, . . . , t hi(x)← hi(x) + 1.

The values for t and b is computed by means of two parameters δ
and ε. To estimate the frequency f̂ of a value with an error inferior
to εn and a probability of at least 1 − δ then it is necessary to take
t = log 1

δ
and b = O( 1

ε
). The frequency of a value v is estimated by

the minimum of hi(x): f̂ = argmin
i

(hi(x)).

The Count-min Sketch is adapted to store class counts. Figure 2
presents this adaptation.

Figure 2. Count-min Sketch adapted for classification.

Using the Count-min Sketch is relevant when the number of differ-
ent values is large. In the opposite case a simple counting is better as
it neither introduces errors nor consumes a large amount of memory.
Some other methods with guarantee could be used as well [6].

3.2 Criterion

To be coherent with our summaries (GK and CMS), the MODL cri-
terion based on order statistics is chosen to find cuts and groups re-
spectively for a numerical and a categorical variable. The MODL
approach, designed for discretization and value groupings, also re-
turns the quality of a cut or a grouping. This indication l, named
‘level’ (l ∈ [0, 1]), corresponds to a compression ratio. It indicates
the information contained in a numerical or categorical variable when
considering a target variable.

The MODL discretization [5] and grouping [4] are supervised and
do not need any parameters. They are based on class counts and eval-
uate all possible intervals for the numerical variables and groups for
the categorical variables. The quality evaluation of the model is based
on a Bayesian approach. For numerical variables, its purpose is to
find the best discretization parameters: number of intervals, frontiers
of the intervals and class distribution in the intervals in a Bayesian
sense. For categorical variables the method performs grouping in a
similar way.

The tree, proposed in this article, is built online in the same man-
ner as VFDT. It uses the Hoeffding bound but the Entropy Gain is
replaced by the MODL criterion. The MODL criterion has an addi-
tional advantage because it returns a value of criterion l > 0 if and
only if the discretization model / grouping model is better than the
model which returns the majority class. This property allows an au-
tomatic “pre-pruning” of the tree while in VFDT this pruning must
be separately implemented. What is more this criterion estimates not
only binary cut points but can also estimate many cuts for each at-
tribute, which allows to build trees having nodes with more than two
sons.
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3.3 Local model: density estimation with a two
levels approach based on order statistics

We choose the naı̈ve Bayes classifier as the local model in the leaves
for our tree. Naı̈ve Bayes has good performances when it is built
with few data and its prediction has low algorithmic complexity. This
classifier requires an estimation of the class conditional density. This
density is estimated for all intervals or groups of values calculated
by the MODL method applied respectively to GK or CMS sum-
maries contained in the leaves. This discretization, applied on the
summary, corresponds to the two levels discretization method pro-
posed by Gama with its PiD method (see 2.1.1). However our two
levels approach is completely based on order statistics and can treat
indifferently numerical or categorical attributes. For numerical vari-
ables, we choose as the first level the GK quantiles summary and as
the second level the MODL discretization method. For categorical
variables, we choose as the first level the CMS summary (or a simple
counting) and as the second level the MODL grouping method.

The main advantages of the MODL method are its robustness and
the absence of parameters. The MODL approach discretizes a nu-
merical variable in several intervals if and only if this discretization
is better (in a Bayesian sense) than the model with a single interval
(the approach is similar for grouping). If the most probable model is
with an interval it means that the attribute is not informative given the
observed data. In that case the majority class is predicted. Kirkby in
[19] studies exactly this behavior by comparing Hoeffding trees pre-
dicting the majority class in leaves and those having a naı̈ve Bayes
predictor in leaves. He observes that sometimes the majority class
prediction is better than naı̈ve Bayes. Out of this fact he proposes a
method choosing automatically either one model or the other by es-
timating their error rate on the examples which pass in leaves. As the
MODL discretization returns just one interval if a variable is not in-
formative, our two levels approach based on MODL method should
predict the majority class as well in that case.

4 Experimentations

This section aims to compare our approach to the existing methods
described in section 2. We first present the data streams used, then
the compared methods and finally the obtained results.

4.1 Data streams used

In order to have enough data for testing online algorithms, artificial
generators have been developed to generate stream containing mil-
lions of examples. An overview of these generators is presented in
[19] and [10]. For the experiments in this paper the following gener-
ators were used:

• Random RBF data: is generated by first creating a random set of
centers for each class. Each center is randomly assigned a weight,
a central point per attribute, and a standard deviation. To generate
new instances, a center is chosen at random taking the weights of
each center into consideration. Attribute values are randomly gen-
erated and offset from the center, where the overall vector has been
scaled so that its length equals a value sampled randomly from the
Gaussian distribution of the center. The particular center chosen
determines the class of the instance. Random RBF data contains
only numeric attributes as it is non-trivial to include nominal val-
ues. We used 1000 centers and 50 attributes in our experiments.

• Random Tree: data generated by a randomly constructed decision
tree consisting of rt1 nominal attributes with rt2 values each, rt3
numeric attributes, rt4 classes, a tree depth of rt5, with leaves
starting at level rt6 and a rt7 chance of leaves. The final tree has a
certain number of nodes and leaves. Different settings for param-
eters rt1, ..., rt6 generate different data streams. This generator
gives preferential treatment to decision tree classifiers. We used
the following parameters: rt1 = 10, rt2 = 5, rt3 = 10, rt4 =
3, rt5 = 5, rt6 = 0.15.

• Waveform: it produces 21 attributes, all of which include noise. It
differentiates between 3 different classes of waves, each of which
is generated from a combination of two or three base waves. This
generator is based on a normal law and gives a preferential treat-
ment to classifiers which assume that data follow a normal law.

• Function (F6): data generation based on the Function F6 described
in the appendix of [1]. The stream contains 6 numerical attributes
and 3 categorical attributes and a level noise of 5%.

4.2 Algorithms compared

For our experiments we used the MOA toolbox: Massive Online
Analysis [2] developed by the university of Waikato which takes
up the VFML library supplied by Hulten and Domingos [18]. This
toolbox contains stream generators and many online algorithms with
which we wish to compare. We made an extension package3 for the
MOA toolbox with our new summaries, new split criterion and new
local model.

All the tested trees come from the same algorithm based on the
Hoeffding trees. This algorithm contains three parameters: i) the
number of examples to be considered before trying to find a cut point;
ii) the confidence in the split regarding the Hoeffding bound and iii)
the parameter τ which is used to force the choice between two at-
tributes when the criterion difference is too small so that the Hoeffd-
ing bound can not decide between them. The configuration of all the
trees versions tested here is the same, namely: n = 200, δ = 10−6,
τ = 0.05. The same settings were used and described by Kirkby in
[19].

The summaries in leaves for categorical attributes do not use, in
these experiments, the count-min sketch and the MODL grouping
because the datasets used contain few different values. The summary,
for the categorical attributes, is thus based on a simple counting. The
numerical attributes are summarized either by a Gaussian approxi-
mation or by quantiles using the GK method.

The attribute and the cut point selected to transform a leaf into a
node are the ones maximizing the MODL criterion and which are non
zero (l > 0). Only binary splits for numerical attributes are consid-
ered. For categorical attributes the criterion is evaluated on the model
with a leaf per value.

The tested approaches were either without local model or with a
naı̈ve Bayes classifier in every leaf. Table 1 presents a synthetic view
of the algorithms presented below:

• HT: Hoeffding Tree - This algorithm corresponds to the Hoeffd-
ing Tree named VFDT in [8]. The summaries are based on den-
sity estimation using a Gaussian by class (estimated as being the
most successful in [21]). For numerical attributes 10 binary cuts
by class, taken between the minimum and the maximum observed,
are estimated. This tree does not possess a classifier in leaves.

3 Extension available here: http://chercheurs.lille.inria.fr/
salperwy/index.php?id=moa-extension
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• HTNB: Hoeffding Tree using a naı̈ve Bayes - This version is
identical to the previous one but possesses a naı̈ve Bayes classifier
in the leaves. The conditional densities are estimated: i) for numer-
ical variables by means of the Gaussian estimation parametrized
by 3 values stored in the summary (µ, σ, n); and ii) for categorical
variables by means of the counts per class and value.

• HTmGKc: Hoeffding Tree using MODL split criterion - This
version corresponds to the version which we described in the sec-
tion 3. The summary for the numerical variables is based on the
GK quantiles summary with tuples containing directly the counts
per class. Each variable is summarized by 10 tuples. 10 possible
cut points are taken from the summary and are evaluated with the
MODL criterion described in section 3.2. This version does not
possess local model in leaves.

• HTmGKcNBm: Hoeffding Tree using MODL split criterion
and naı̈ve Bayes classifier - This classifier is identical to the pre-
vious version “HTmGKc” but the leaves contain a naı̈ve Bayes
classifier. Conditional estimation densities needed by the classi-
fier come from counts per class per value for categorical variable.
To have more robust estimation on numerical variables density
estimations are computed on the intervals found by the MODL
discretization [5].

Method Summary Criterion Discretization Local
model

HT Gaussian Entropy Gain - -
HTNB Gaussian Entropy Gain - NB
HTmGKc GK 10 tuples MODL Level - -
HTmGKcNBm GK 10 tuples MODL Level MODL on GK NB

Table 1. Specification of the tested algorithm (NB: naı̈ve Bayes)

4.3 Results

Our experimental results are presented in Figure 3 where a curve is
plotted for each data set. The evaluation method is the “hold-out test
set” and has been chosen among methods described in [13]. For each
generator a stream containing 11 million examples has been created.
The 1st million of examples is used as a test set. The remaining 10
millions examples represent the training dataset. Trees accuracies are
evaluated every 300,000 examples. In a general way our method be-
haves well on the tested streams and is competitive compared to the
other methods. The MODL split criterion applied on the GK sum-
maries, for numerical variables, and on the counts per class, for cat-
egorical variables, is globally better than the Entropy Gain criterion
calculated on Gaussian summaries, for numerical variables, and the
counts per class, for the categorical variables.

The contribution of the naı̈ve Bayes classifier in leaves is debat-
able with Gaussian summaries because sometimes the accuracy of
the global classifier (the entire tree) is either significantly improved
(WaveForm) or significantly degraded (F6). With our two levels sum-
maries, the naı̈ve Bayes classifier improves the accuracy of the entire
tree especially in the beginning of training. There is no degradation
thanks to the robustness of the MODL approach. It creates intervals
only if they contain information. If the variable is not informative
no discretization model is proposed. The estimation based on these
intervals is then provided to the naı̈ve Bayes classifier.

The density estimation using a Gaussian approximation gives bet-
ter results on “WaveForm” data streams. This result is not surpris-
ing because it seems normal that the naı̈ve Bayes classifier having
for density estimation a Gaussian approximation works well on data
coming from “WaveForm” generator which uses a Gaussian to gen-
erate data.

The behavior of the algorithms in low memory environments was
not studied in this article. However there are several techniques that
we could apply. One of the simplest methods consists in deleting
summaries for the less interesting variables. The MODL level is cal-
culated for all variables and gives a precise indication of the infor-
mation contained in a variable. Therefore it could be used to rank
variables and choose which ones to remove from summaries. A sec-
ond technique consists in deactivating the less promising leaves and
thus limits the development of a part of the tree.

The concept drift (see http://www.cs.waikato.ac.nz/

˜abifet/PAKDD2011/) was not studied in this paper but sev-
eral techniques for concept drift detection will be developed in future
works using the summaries and the MODL approach. One of them
will use two summaries: one for the past distribution and one for the
current. These two summaries will be used to detect drift using the
MODL approach (in a similar way to [3]).

5 Conclusion

This paper constitutes a current work on an incremental method used
to build an online decision tree with order statistics. Our approach
was presented and compared to the previous works on various points
needed to elaborate an online decision tree. The GK quantiles sum-
maries and the CMS summary are used in leaves. The MODL method
uses these summaries to provide at the same time a cut criterion /
value grouping and a robust density estimation per interval / group.
This estimation allows afterwards to build a naı̈ve Bayes classifier
in the leaves. The experiments showed that our tree performs well
compared to existing methods thanks to the robust density estima-
tion provided by the MODL discretization/grouping. Particularly the
local classifier always improves the prediction in the early learning
stage. The next steps to confirm the interest of our approach are: (i)
experiment more data streams and real dataset, (ii) control memory
consumption and (iii) extend the algorithm to handle drifts.
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[4] M. Boullé, ‘A grouping method for categorical attributes having very
large number of values’, Machine Learning and Data Mining in Pattern
Recognition, 228–242, (2005).
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Online Active Constraint Selection For Semi-Supervised
Clustering

Caiming Xiong and David Johnson and Jason J. Corso 1

Abstract.
Due to strong demand for the ability to enforce top-down struc-

ture on clustering results, semi-supervised clustering methods using
pairwise constraints as side information have received increasing at-
tention in recent years. However, most current methods are passive
in the sense that the side information is provided beforehand and
selected randomly. This may lead to the use of constraints that are
redundant, unnecessary, or even harmful to the clustering results. To
overcome this, we present an active clustering framework which se-
lects pairwise constraints online as clustering proceeds, and propose
an online constraint selection method that actively selects pairwise
constraints by identifying uncertain nodes in the data. We also pro-
pose two novel methods for computing node uncertainty: one global
and parametric and the other one local and nonparametric. We evalu-
ate our active constraint selection method with two different semi-
supervised clustering algorithms on UCI, digits, gene and image
datasets, and achieve results superior to current state of the art ac-
tive techniques.

1 Introduction
Many semi-supervised clustering methods have been proposed to en-
force top-down structure while clustering [3, 5, 11, 15, 16, 23]. These
methods allow the user to incorporate pairwise constraints, which
may be either must-link (the two points/nodes belong in the same
cluster) or cannot-link (the two points/nodes belong in different clus-
ters), on the data as side information. These papers have shown that
the use of pairwise constraints can significantly improve the corre-
spondence between clusters and semantic labels when the constraints
are selected well. [7] demonstrates that poorly chosen constraints can
lead to worse performance than no constraints at all. Moreover, in
real world problems each added constraint represents an additional
real world cost, so maximizing the effectiveness of each constraint
in order to minimize the total number of constraints needed is an
important goal.

Currently, most work in semi-supervised clustering ignores this
problem and simply selects a random constraint set (see above cited),
but some work has now been done on active constraint selection
methods [2, 10, 17, 21, 24], which allow semi-supervised clustering
algorithms to intelligently select constraints based on the structure of
the data and/or intermediate clustering results.

Active selection methods can be stratified according to whether
nodes or node-pairs are the primary element on which the process
is based. Node-based methods first select nodes of interest, and then
query constraints based on those nodes [2,9,17], while those methods
that directly seek pair constraints [10, 21, 24], define an uncertainty

1 Department of Computer Science and Engineering, SUNY at Buffalo

measure on pairs and iteratively seek the most uncertain pairs during
constraint selection.

Both of these current approaches have drawbacks, however. Cur-
rent node-based methods function by selecting all of their constraints
in one long selection phase before clustering. Because of this, they
cannot incorporate information from actual clustering results into
their decisions, and may thus choose many unnecessary constraints
(for instance, constraints regarding points that the algorithm is able
to cluster correctly even without side information). In contrast, the
pair-based methods choose constraints online based on intermediate
clustering results, but due to the nature of the pair selection problem
(n2 possible constraints to rank and select from) have thus far been
limited to either binary or small-scale clustering problems.

In this paper, we overcome these limitations and present a node-
based constraint selection framework (illustrated in Figure 1) that
combines a preprocessing stage with an online, iterative process that
selects uncertain nodes based on intermediate clustering results. Our
framework is general to any pair-based semi-supervised clustering
algorithm.

In the preprocessing stage, we adopt the farthest-first strategy to
identify representative nodes in each cluster (similar to [2] and [17]).
Subsequently, we repeat an online cluster-select-query loop to allow
data and clustering-dependent constraints to be actively added to the
constraint set. In each iteration, our algorithm seeks the most un-
certain node in the dataset. The algorithm then queries constraints
between this node and previously identified nodes representing each
cluster. An online oracle then provides the must-link or cannot-link
value for each constraint.

We define two notions of node uncertainty, from a local nonpara-
metric and one from a global parametric view. The local measure is
based on cluster contradiction between a point and its nearest neigh-
bors, while the global measure is computed from cluster confusion
in a global mixture model of the data.

Why uncertainty? If enough information has been extracted to
unambiguously identify the correct relationship between each true
cluster and each node, then the clustering algorithm should achieve
perfect accuracy [2, 17]. Intuitively, then, uncertainty in the cluster
identity of nodes leads to clustering errors. Furthermore, in this pa-
per we show that, given some relaxation, the most uncertain node is
the same as the node that will maximally reduce the uncertainty of
the whole dataset if queried. Thus, by issuing queries that will un-
ambiguously identify the cluster of the most uncertain node at each
iteration we are able to make optimal progress toward a completely
certain, and thus trivially solvable, clustering problem.

Why node uncertainty? We adopt an approach based on node
rather than pair uncertainty for two reasons. First, an uncertain pair
may be uncertain either because it contains one uncertain node or



because it contains two uncertain nodes. In the latter case, a con-
straint between these nodes yields limited information because the
constraint will not extrapolate well beyond these two nodes. Second,
pair selection has an inherently higher complexity due to the pres-
ence of n2 constraints for every n nodes, limiting the scalability of a
pair-based approach.

Main contributions. Our paper makes four contributions:

• We present a new active selection framework, Online Constraint
Selection via Node Uncertainty (OCSNU), with general applica-
bility to pair-based semi-supervised clustering methods.

• We propose and justify two novel definitions of node uncertainty.
• We show theoretically that selecting the most uncertain node at

each iteration yields the maximum reduction in total uncertainty
for the dataset.

• We test our framework and constraint selection methods on two
different semi-supervised clustering algorithms and conclusively
obtain strong results.

We compare OCSNU with baseline and state of the art active cluster-
ing and active learning techniques on UCI machine learning datasets,
two digits datasets [1], one gene dataset [6] and part of the Caltech
101 image dataset [8]. The results show that given the same number
of pairs queried, OCSNU using our node uncertainty measures can
obtain better accuracy than existing methods.

Relation to active learning. Active query selection has previously
seen extensive use in the field of active learning. [20] and [4], for
example, both offer methods similar to ours in that they select and
query uncertain nodes. However, in active learning algorithms, the
oracle needs to know the class label of the queried data point. This
approach is not applicable to many clustering problems, where the
oracle can only give feedback about the relation between pairs of
nodes. Though we implicitly label queried nodes by comparing them
to a set of exemplar nodes representing each cluster, we do so strictly
via pairwise queries.

Additionally, though for the sake of comparison we begin our ex-
periments with the cluster structure fully explored (i.e. at least one
example of each class identified), in real data this may not be the
case—the total number of clusters may not be known during the ini-
tial exploration phase. Our method can dynamically add new clusters
as needed to adapt to such situations, while these (and most other)
active learning methods cannot.

2 Active constraint selection for semi-supervised
clustering

In this section, we first present the framework for our active semi-
supervised clustering, then describe details of each framework-
component and two novel node uncertainty models/definitions for
use in active constraint selection. Throughout the rest of the paper, let
X be a data set with n nodes, X = {x1, x2, · · · , xn} and xi ∈ Rd
with k total clusters.

2.1 Active semi-supervised clustering framework
We now present our framework for active clustering—recall the ba-
sic flow of the algorithm depicted earlier in Figure 1. We divide
the whole framework into two parts: the exploration preprocess and
the online active selection/clustering process. We begin by running
the exploration preprocess once, before computing any clustering re-
sults. The goal is to obtain a set of exemplar nodes Q0, with (hope-
fully but not necessarily) at least one representing each true cluster.

Explore Semi-Supervised 
Clustering

Online Active
Constraint 
Selection

Input 
Data

Output

Oracle

New 
Pairwise 

Constraints

Pairwise 
Constraints

Exploration 
Preprocess

Online Active Constraint Selection 
and Clustering Process

Figure 1. Flowchart of OCSNU for active clustering. First run the
exploration preprocess to obtain a set of exemplar nodes and associated pair

constraints, then input constraints to the online active constraint selection
and clustering process. Second, enter into the online cluster-select-query
loop, in which we repeatedly do semi-supervised clustering based on the
current constraints, then use the results of the clustering to actively select

new constraints and query the oracle. This process continues until either the
oracle is satisfied or a fixed number of queries have been made.

After this, the data and the initial Q0 serve as inputs to the on-
line active clustering process. In each iteration of this process, our
approach will automatically select and query new pair constraints
based on the current clustering results and add the newly obtained
constraints into the current constraint set, then recluster using the
new constraint set. We iterate the online active clustering process un-
til the oracle is satisfied or a fixed number of queries have been made.

2.2 Exploration preprocess

In the exploration preprocess phase, we adopt the exploration process
from [2], which uses a farthest-first traversal strategy to query and
identify at least one node from each of the k clusters in a reasonably
small number of attempts. The identified nodes from the same cluster
are collected into a single node set, so there are at most k non-empty
node sets. [2] prove that this strategy yields a significant ln k factor
improvement in the number of queries required to identify the needed
exemplars, as compared to random selection.

We denote the preprocessing as the 0th iteration in the online pro-
cess, and when it is finished we will have obtained k0 node sets for
use, such that the set of node sets NS0 = {X1, X2, · · · , Xk0},
where each Xi ∈ NS0 is a node set , and k0 ≤ k since preprocess-
ing could be stopped before k non-empty node sets are found. The
initial identified nodes set Q0 =

S
Xi∈NS0 Xi. 2

Using these node sets, we then begin the active clustering process,
using the set of constraints represented in NS0 (i.e. must-link con-
straints among all nodes in the same set, and cannot-link constraints
among nodes in different sets) as input to an initial semi-supervised
clustering operation.

2.3 Online active constraint selection

After obtaining a set of output clusters from a semi-supervised clus-
tering algorithm, our method will then perform an active online

2 Note the set of node sets NS0 will be updated after each iteration in the
online active clustering process. After the tth iteration, the set of node sets
NSt−1 will be updated to NSt and Qt =

S
Xi∈NSt Xi.



search for new constraints to further improve the clustering. As we
described earlier, at each iteration we identify the most uncertain
node in the dataset and query the relationship between this node and
some of the previously identified exemplars. We show here that the
most uncertain node is (given some relaxation), also the node that
will yield the maximum reduction in total node uncertainty for the
dataset when queried.

In the tth iteration, Qt−1 is the set of queried nodes, which
we consider to be “certain” (i.e. if we were clustering only these
nodes we could do so trivially and unambiguously) and X =
Qt−1 S

¬Qt−1, where ¬Qt−1 is the set of unqueried nodes. We de-
fine the uncertainty U of the dataset in the tth iteration to be condi-
tioned on the original data distribution and previous semi-supervised
clustering results, which are in turn based on the queried node set
Qt−1. Thus the uncertainty can be expressed as U(·|M(X,Ct−1)),
where Ct−1 is clustering result at iteration t − 1 and M(·, ·) is a
model for calculating uncertainty (we provide two such models here).

For a set of nodes X ′, denote U({X ′};M(X,Ct−1)) =P
xi∈X′ U({xi};M(X,Ct−1)) if all nodes in X ′ are condition-

ally independent under M(X,Ct−1). Since queried nodes are
considered to be “certain” , we assume U(X;M(X,Ct−1)) =
U(¬Qt−1;M(X,Ct−1)), therefore our objective function for node
selection is as follows:

x∗j = argmax
xj∈¬Qt−1

U(¬Qt−1;M(X,Ct−1))

−U(¬(Q′)t−1;M(X, (C′)t−1)) , (1)

where (Q′)t−1 = Qt−1 S
{xj} and (C′)t−1 is the clustering result

based on (Q′)t−1.
In order to solve Equation 1 and obtain node xj , we make two

assumptions: first, (C′)t−1 and Ct−1 are sufficiently similar that,

U(¬(Q′)t−1;M(X(C′)t−1)) ≈ U(¬(Q′)t−1;M(X,Ct−1)) (2)

This assumption is reasonable because each iteration yields only a
small number of localized constraints, so we expect that generally
only a small subset of the clustering results is altered. The objective
function thus becomes:

U(¬Qt−1;M(X,Ct−1))−U(¬(Q′)t−1;M(X, (C′)t−1))

≈ U(¬Qt−1;M(X,Ct−1))−U(¬(Q′)t−1;M(X,Ct−1)) (3)

Second, similar to the strong naive Bayes assumption (which is over-
simplified but works quite well in many complex real-world situa-
tions) we assume node xi is conditionally independent of every other
node xk for i 6= k. Thus we can infer that:

U(¬Qt−1;M(X,Ct−1))−U(¬(Q′)t−1;M(X,Ct−1))

=
X

xi∈¬Qt−1

U({xi};M(X,Ct−1))−
X

xk∈¬Q′t−1

U({xk};M(X,Ct−1))

= U({xj};M(X,Ct−1)) (4)

Therefore, the objective function can be approximated as:

x∗j = argmax
xj∈¬Qt−1

U({xj};M(X,Ct−1)) (5)

So the problem is transferred into finding the most uncertain node
in the unqueried node set based on the current uncertainty model
M(X,Ct−1). Next, we propose two definitions/models for node un-
certainty, which we can then use to actively select new nodes and as-
sociated pair constraints. These two models represent, respectively, a
local nonparametric and a global parametric view of uncertainty.

Local nonparametric structure model for node uncertainty.
Sparse graphs are a widely used and effective way to describe the
structure of data in many machine learning algorithms. Here we
adopt a KNN graph to represent the entire dataset, with the local
structure of each node described by K edges.

Now define a ”good” edge in the KNN graph as an edge between
two points in the same cluster. If the KNN graph consists of all
“good” edges then the output of a clustering algorithm run on the
graph should match the KNN graph connectivity. Alternately, in a
graph with many ”bad” edges (such as most graphs generated from
real data), the clustering result usually does not obey theKNN graph
connectivity, and the graph will thus contain nodes whose neighbors
are assigned to different clusters. Thus, uncertain nodes should be
identifiable by the presence of “bad” edges linked to them.

Based on this observation, we define a local uncertainty model
based on the degree of cluster assignment disagreement between a
node and its neighbors. Thus, ML(X,Ct−1) is based on the local
structure of the data in the feature space and the clustering result in
t− 1th iteration. We calculate the uncertainty of a node xj using:

U({xj};ML(X,Ct−1)) = 1− #{cz = cj , z ∈ Nj}
#{Nj}

, (6)

where #{cz=cj ,z∈Nj}
#{Nj}

is the ratio of neighbors of node j in the
graph that are assigned to same cluster as node xj during clus-
tering (notation cz denotes the cluster index of neighbor z). If
U({xj};ML(X,Ct−1)) is high, the cluster relationship between
this node and its neighbors disagrees strongly with the local struc-
ture, so this node is highly uncertain.

We note that the distance measure and K value used to compute
the KNN graph do effect this uncertainty formulation, and serve as
inputs to the algorithm. In our experiments, we select the commonly
used Mahalanobis distance whose metric matrix is equal to the in-
verse covariance matrix of the data points, and K = 10.

Global parametric model for node uncertainty. Most semi-
supervised clustering methods learn a modified similarity kernel ma-
trix as part of the clustering algorithm. Here, we define a new repre-
sentation for the data by computing the k largest eigenvectors of the
modified kernel matrix and using them as the features in a new data
space. This functions similarly to the spectral eigenmap from input
dimensionality d to dimensionality k ≤ d:

φ : xi ∈ Rd → R
∞ → R

k . (7)

xi ∈ Rd → R∞ is accomplished using the kernel trick (with the
kernel learned via semi-supervised clustering) to project the data
from the original feature space to an infinitely high dimensional
space. In the high dimensional space, we assume data nodes lie on a
low dimensional manifold and each cluster is represented by a Gaus-
sian.

Eigendecomposition then gives usR∞ → Rk, projecting the data
from the high dimensional feature space back to a low dimensional
representation. We can consider this projection process a marginal-
ization over most of the infinite number of dimensions. In the ideal
case, this projection should retain the distribution of data nodes, each
cluster can thus be accurately represented in the low dimensional
space by a Gaussian, and the whole dataset can be represented by a
global Gaussian mixture model (GMM):

p(xi|{αz}, {µz}, {Σz}) =

kX
z=1

αzN (xi;µz,Σz) , (8)



where {αz} are the mixing weights and ({µz}, {Σz}) are the com-
ponent Gaussian parameters. Using EM, it is easy to estimate the pa-
rameters for the GMM and obtain the probability of each data point
given each cluster z: p(z|xi) = αzN (xi;µz ,Σz)Pk

j αjN (xi;µj ,Σj)
. We can then de-

fine an uncertainty modelMG(X,Ct−1) based on the entropy of the
p(z|xi) distribution for a point, yielding an uncertainty measure:

U({xj};MG(X,Ct−1)) =

kX
z=1

p(z|xj) log p(z|xj) , (9)

whereCt−1 implicitly determines this node uncertainty function via
the learned kernel matrix.

Querying pairs based on the selected node. After finding the
most uncertain node, we obtain pairs to query using the node sets
NSt−1 as follows.

First, for each node set Xi, choose the single node within
the set which is closest to the selected node xj : xl =
argminxl∈Xi

Dist(xj ,xl) and record this node and distance value.
Second, since there are kt−1 node sets, we will have recorded kt−1

nodes and distance values, so sort the nodes based on their corre-
sponding distances. Now, in order of ascending distance, query the
oracle on the relation between the selected node xj and xl until we
find a must-link connection, then add xj into the node set. If all of
the relations are cannot-link, we create a new node set Xkt−1+1 and
add xj to it. This new node set Xkt−1+1 is then added to NSt−1 to
obtain NSt, and Qt−1 is correspondingly updated to Qt. Since the
relation between the new node and all node sets in NSt is known,
we can generate new pairwise constraints between the selected node
xj and all nodes in Qt.

2.4 Semi-supervised clustering
When new pairwise constraints are obtained, we add them to the orig-
inal constraint set. We then run the semi-supervised spectral cluster-
ing method on the new constraint set. There are a number of possible
candidate methods for semi-supervised clustering, here we choose
the two spectral clustering-based algorithms described below, due to
the power and generality of spectral methods.

Spectral Learning This method [14] is a simple, easily imple-
mented spectral learning algorithm, which applies the constraints di-
rectly. Given the set of pairwise constraints, the algorithm directly
modifies the affinity(similarity) matrix W , then performs spectral
clustering on the modified affinity matrix. Specifically, the new affin-
ity matrix is now defined as:

• For each pair of must-linked points (i, j) assign the valuesWij =
Wji = 1.

• For each pair of cannot-linked points (i, j) assign the valueWij =
Wji = 0.

• Normalize N = 1
dmax

(W + dmaxI − D), where dmax is the
maximum of summed rows of W , and I is the identity matrix.

The spectral clustering algorithm then proceeds normally.
Flexible Semi-supervised spectral clustering This method was

proposed by [22]. Rather than applying the constraints directly, this
method optimizes the following objective function:

argmin
u∈RN

uTLu s.t. uTDu =
X
i

Dii, u
TQu ≥ α , (10)

where L is the normalized graph Laplacian of the affinity matrix
and D is the diagonal degree matrix. It is easy to see that the dif-
ference from spectral clustering is the new term uTQu ≥ α. Q is

the constraint matrix such that Qij = 1 for must-link, Qij = −1 for
cannot-link and Qij = 0 for unknown pairs. u is the cluster assign-
ment vector. uTQu can thus be considered as a measure of how well
the pairwise constraints conform to the cluster assignment u. Since
u ∈ RN is a vector, the method is limited into two-cluster cases.

In our experiments, we apply OCSNU in conjunction with our
local nonparametric and global parametric uncertainty measures to
the above two semi-supervised clustering algorithms, and the results
show the superiority and generality of our methods.

3 Experiments
3.1 Dataset
We evaluate our proposed framework and uncertainty measures on
UCI machine learning, digits [1], gene (Cho’s [6] and image datasets.
The image data is a subset of the Caltech-101 [8], with images repre-
sented by image gist features (reduced to 100 dimensions via PCA).
More details in Table 1. All results are averaged over 30 runs.

Table 1. UCI Datasets, DIGITS, GENE and IMAGE Datasets

Name #Classes #Instances #Features
Balance 3 625 4

Bupa 2 345 6
Diab 2 768 8
Sonar 2 208 60
Wine 3 178 13

Semeion digits 10 1593 256
Multiple features digits 10 2000 649

Cho 5 386 16
Caltech 5-Class 5 307 100

3.2 Evaluation protocols
We evaluate all cluster solutions via two commonly used cluster eval-
uation metrics: Rand Index [18] and V-Measure [19].

Rand Index. To measure the performance, we first adopt the well-
known Rand Index, defined by:

Accuracy =
X
i>j

1{1{ci = cj} = 1{ĉi = ĉj}}
n(n− 1)/2

where 1{·} is the indicator function that outputs 1 when the input is
true and 0 otherwise. ci and ĉi are the true cluster membership and
the predicted cluster membership of the ith data point, respectively.
n is the number of data points in the dataset.

V-Measure. We also employ the well-known V-Measure metric,
which defines entropy-based measures for the completeness and ho-
mogeneity of the clustering results, and computes the harmonic mean
of the two (in our case, we weight both measures equally). It is de-
fined as follow:

Vβ =
(1 + β) ∗ h ∗ c

(β ∗ h) + c
(11)

where h is homogeneity and c is completeness.

3.3 Baseline and state of the art methods
To evaluate our active clustering framework and the two different
selection strategies, we compare our method with the following set
of methods, including a baseline and multiple the state of the art3:
3 All selection algorithm code was downloaded from authors’ websites except

FFQS, which we reimplemented.



Figure 2. Rand Index and V-measure accuracy (vertical axes) with increasing pair relation queries on UCI datasets using spectral learning. Best viewed in
color.

• Random: a baseline in which constraints are randomly sampled
from the available pool.

• FFQS [2]: this method uses the farthest-first strategy to explore
the data, then queries points randomly against the discovered node
sets.

• ASC [21]: a pair-based method that queries pairs that will yield
the maximum reduction in expected pair value error. In the origi-
nal paper it is used in conjunction with flexible spectral clustering,
and thus only applicable to two-class problems, but the active se-
lection method itself can be applied to multiclass cases as well.

• QUIRE [12]: this is binary-only active learning method that com-
putes node uncertainty based on the informativeness and represen-
tativeness of each node. We use our OCSNU framework to gener-
ate the requested node labels from pairwise queries.

• pKNN+AL [13]: this is is a minmax-based multi-class active
learning method. Again, we use our OCSNU framework to trans-
late node label requests into pairwise constraint queries.

• Global Parametric OCSNU: this is our proposed framework,
using our global parametric node uncertainty measure to select
nodes.

• Local Nonparametric OCSNU: this is our proposed framework,
using our local nonparametric node uncertainty measure to select
nodes.

All the above methods select constraints and feed the queried pair
constraints to the two semi-supervised clustering methods we intro-
duced in Section 2.4.

3.4 Results
Results on UCI dataset. We compared on 5 different UCI datasets,
3 binary and 2 multiclass.

Figure 2 shows the accuracy of different active selection methods
with varying numbers of constraints when using spectral learning as
the semi-supervised clustering algorithm. The first row of the figure
shows V-measure values and the second Rand Index. Both metrics
yield the same conclusion: our two methods are competitive in the
two-cluster case and clearly superior for multicluster (wine and bal-
ance) problems. In particular, our local nonparametric uncertainty
method is the best or tied for best on all but the Diabetes dataset,
where it is beaten out by our global parametric method.

Figure 3 presents the results for various active selection methods
in conjunction with the flexible semi-supervised spectral clustering

method. As this is a binary clustering method, only 2-class datasets
are used. Local nonparametric OCSNU still achieves competitive re-
sults on the BUPA and diabetes sets, and is clearly the best on sonar,
though the global parametric uncertainty measure performs notice-
ably worse here. Interestingly, the different active selection methods
are all much closer to each other in performance with this clustering
method. For BUPA in particular, the choice of active method seems
to have little effect on the results.

Results on Gene, Digits, images datasets. Figure 4 shows Rand
Index and V-measure results for active clustering on the gene, image,
digits datasets. Local nonparametric OCSNU performs particularly
well here, most notably on the Caltech and Semeion datasets. We
note that the robustness of the local method among all data tested
may be partially attributable to the natural synergy between it and
KNN graph-based clustering methods, of which spectral clustering is
a prime example. By comparison, the global parametric uncertainty
measurement appears to be less robust, performing well on Caltech
and Cho, but very poorly on the digits data. This is likely due to that
fact that the parametric model underlying our global method may
itself be a poor fit for some datasets.

Also notable is that the multiple feature digits dataset is the only
case where the V-measure and Rand index metrics differ significantly
in their relative assessment of the different selection algorithms, with
V-measure scoring local OCSNU highest, and Rand index granting
the best result to FFQS.

4 Conclusion
In this paper, we have considered the problem of active constraint se-
lection for semi-supervised spectral clustering. Our paper makes two
primary contributions: first, we describe a powerful general frame-
work for online active semi-supervised clustering based on node un-
certainty; second, we propose two methods for actively sampling
constraints by transforming the pair-uncertainty problem into a node-
uncertainty problem. We test our online active framework and se-
lection criteria with two different semi-supervised clustering algo-
rithms, against a number of existing active selection methods (in-
cluding active clustering and active learning techniques), and find
our method to be the most effective and robust of those surveyed.

In the future we hope to explore new node selection criteria. In par-
ticular, we wish to examine the possibility of a nonparametric global
uncertainty measure, and of a compound uncertainty measure that
considers both local and global structure.



Figure 3. Rand Index and V-measure accuracy (vertical axes) with increasing pair relation queries on UCI datasets using flexible semi-supervised clustering.
Since the method is limited to the two-class case, only two-class datsets were tested. Best viewed in color.

Figure 4. Rand Index and V-measure accuracy (vertical axes) with increasing pair relation queries on the gene, image and digits datasets using spectral
learning. Best viewed in color.
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An Incremental On-line Classifier for Imbalanced,
Incomplete, and Noisy Data

Marko Tscherepanow and Sören Riechers1

Abstract. Incremental on-line learning is a research topic gaining
increasing interest in the machine learning community. Such learning
methods are highly adaptive, not restricted to distinct training and ap-
plication phases, and applicable to large volumes of data. In this pa-
per, we present a novel classifier based on the unsupervised topology-
learning TopoART neural network. We demonstrate that this classi-
fier is capable of fast incremental on-line learning and achieves excel-
lent results on standard datasets. We further show that it can success-
fully process imbalanced, incomplete, and noisy data. Due to these
properties, we consider it a promising component for constructing
artificial agents operating in real-world environments.

1 Introduction
The development of artificial agents with cognitive capabilities as
they are found in humans and animals is still an unsolved problem.
While biological agents can manage uncertain ever-changing envi-
ronments with complex interdependencies, artificial agents are often
limited to very specific, extremely simplified, and unchanging prob-
lems.

One possibility to improve the performance of current artifi-
cial systems is the usage of incremental learning mechanisms (e.g,
[1], [18], and [19]). In contrast to traditional machine learning ap-
proaches based on distinct training and application phases, incremen-
tal approaches have to cope with additional difficulties – the most im-
portant being the stability-plasticity dilemma [15]: while plasticity is
required in order to learn anything new, stability ensures that already
acquired knowledge does not get lost in an uncontrolled way.

Sensor data obtained in natural environments often exhibit charac-
teristics which further impede learning. In particular, their distribu-
tions can be non-stationary, noisy, and imbalanced. In addition, indi-
vidual input vectors may be incomplete, for instance, due to different
sensor latencies.

In this paper, we present an incremental classifier (see Section 4)
based on the unsupervised TopoART neural network [26] (see Sec-
tion 3). It is capable of stable and plastic incremental on-line learning
and can cope with noisy, imbalanced, and incomplete data. These
properties are shown using synthetic datasets (see Section 3) and
real-world datasets from the UCI machine learning repository [12]
(see Section 5).

2 Related Work
Adaptive Resonance Theory (ART) neural networks constitute an
early approach to unsupervised incremental on-line learning. They

1 Applied Informatics, Bielefeld University, Germany, email:
marko@techfak.uni-bielefeld.de, marko@tscherepanow.de

incrementally learn a set of templates called categories. Some well-
known ART variants are Fuzzy ART [5] and Gaussian ART [29].
While Fuzzy ART is capable of stable incremental learning using
hyperrectangular categories but is prone to noise, the categories of
Gaussian ART are Gaussians, which diminishes its sensitivity to
noise but impairs the stability of learnt representations.

Regarding the formed representations, Gaussian ART is strongly
related to on-line kernel density estimation (oKDE) [20]: oKDE in-
crementally estimates a Gaussian mixture model representing a given
data distribution. Depending on an adjustable parameter, the esti-
mated distribution is stable to a certain degree.

Incremental topology-learning neural networks, such as Growing
Neural Gas [13], constitute an alternative approach to unsupervised
on-line learning. Some of these networks, e.g., the Self-Organising
Incremental Neural Network (SOINN)[14] and Incremental Grow-
ing Neural Gas (IGNG) [21], alleviate the problems resulting from
the stability-plasticity dilemma. However, they rely on neurons rep-
resenting prototype vectors. During learning, any shift of these pro-
totype vectors in the input space inevitably causes some loss of in-
formation.

TopoART [26] has been proposed as a neural network combining
properties from ART and topology-learning neural networks. As its
architecture and representations are based on Fuzzy ART [5], each
neuron (also called node) represents a hyperrectangular region of the
input space, which can only grow during learning. As a result, once
an input vector has been enclosed by a category, it will stay inside. In
addition, TopoART inherited the insensitivity to noise from SOINN
[14], which is a major improvement in comparison to Fuzzy ART.

The approaches mentioned above are not applicable to supervised
learning tasks such as classification. However several extensions ex-
ist that enable their application to such problems, e.g., ARTMAP [4]
for ART networks, Bayes’ decision rule [28] for mixture models,
and Life-long Learning Cell Structures [16] for prototype-based in-
cremental topology-learning neural networks. The resulting super-
vised learning methods usually inherit the characteristics of their
unsupervised components and ancestors, respectively. In particular,
they learn locally; i.e., adaptations are restricted to a limited set of
parameters.

The Perceptron [22], a very early approach to supervised on-
line learning, possesses a distributed memory. As a consequence, all
trainable parameters are altered during learning rendering Percep-
trons prone to catastrophic forgetting. Furthermore, they have a fixed
structure limiting the complexity of the knowledge that can be stored.
These problems were inherited by multi-layer Perceptrons (MLPs)
[23]. Cascade-Correlation neural networks [11] partially solve them
by means of an incremental structure. But they are restricted to off-
line (batch) learning.
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Figure 1. TopoART neural networks consist of two modules sharing the
input layer F0. Both modules function in an identical way. However, input

to module b is controlled by module a.

Support vector machines (SVMs) [8], an alternative extension
of Perceptrons, learn by solving a quadratic programming problem
based on a fixed training set; i.e., off-line. A subset of the training
samples, called support vectors, is chosen to construct separating hy-
perplanes. Although there are approaches to on-line SVMs (e.g., [2]
and [6]), the underlying model imposes several problems: an ade-
quate kernel has to be selected in advance, the number of occurring
classes needs to be known or is limited to two, and a possibly large
set of input samples has to be collected in addition to the support
vectors to stabilise the learning process.

Recently, several incremental classification frameworks based on
ensemble learning, e.g, ADAIN [17] and Learn++.NSE [10], have
been proposed. These approaches assume that data be provided in
data chunks containing multiple samples. As for each of these chunks
an individual base classifier is trained, a voting mechanism is re-
quired so as to obtain a common prediction. Furthermore, additional
learning methods may be necessary; ADAIN, for instance, uses an
MLP to construct a mapping function connecting past experience
with present data.

TopoART-C, the classifier presented in this paper, is based on
the unsupervised TopoART network. TopoART was chosen as a ba-
sis in order to take advantage of its beneficial properties, namely
its capability of stable incremental on-line learning of noisy data.
TopoART-C constitutes an extension of TopoART for classification
tasks like the Simplified Fuzzy ARTMAP approach [27] used for
Fuzzy ART. The usage of an additional mask layer further allows
predictions to be made based on incomplete data.

3 TopoART
TopoART is strongly related to Fuzzy ART [5]: it shares its basic rep-
resentations, its choice and match functions, and its principal search
and learning mechanisms. However, TopoART extends Fuzzy ART
in such a way that it becomes insensitive to noise and capable of top-
ology learning. One important part of the noise filtering mechanism
is the combination of multiple Fuzzy ART-like modules, where pre-
ceding modules filter the input for successive ones. Therefore, the
standard TopoART architecture as proposed in [26] (see Fig. 1) con-
sists of two modules (a & b). Besides noise filtering, these modules
cluster input data at two different levels of detail.

The clusters are composed of hyperrectangular categories, which

are encoded in the weights of neurons in the respective F2 layer.
By learning edges between different categories, clusters of arbitrary
shapes are formed.

If an input vector

x(t) =
[
x1(t), . . . , xd(t)

]T (1)

is fed into such a network, complement coding is performed resulting
in the vector

xF1(t) =
[
x1(t), . . . , xd(t), 1− x1(t), . . . , 1− xd(t)

]T
. (2)

As a consequence of this encoding that was inherited from Fuzzy
ART, all elements xi(t) of the input vector x(t) must be normalised
to the interval [0, 1].2

xF1(t) is first propagated to the F1 layer of module a. From here,
it is used to activate the F2 nodes of module a based on their weights
given by the matrix WF2a(t).

As TopoART networks learn incrementally and on-line, training
and prediction steps can be mixed arbitrarily. During training, the
activation (choice function)

zF2
j (t) =

∥∥xF1(t) ∧ wF2
j (t)

∥∥
1

α+
∥∥wF2

j (t)
∥∥

1

(3)

of each F2 node j is computed first. ‖·‖1 and ∧ denote the city block
norm and a component-wise minimum operation, respectively (cf.
[5]). The node with the highest activation becomes the best-matching
node bm. Its weights are adapted if the match function∥∥xF1(t) ∧ wF2

j (t)
∥∥

1∥∥xF1(t)
∥∥

1

≥ ρ (4)

is fulfilled for j=bm. Otherwise, the current node bm is reset and
a new best-matching node is determined. If a suitable best-matching
node bm has been found, a second-best-matching node sbm fulfilling
Eq. 4 is sought.

The categories of the best-matching node and the second-best-
matching node are allowed to grow in order to enclose xF1(t) or
partially learn xF1(t), respectively:

wF2
bm(t+ 1) = xF1(t) ∧ wF2

bm(t) (5)

wF2
sbm(t+ 1) = βsbm

(
xF1(t) ∧ wF2

sbm(t)
)

+(1− βsbm)wF2
sbm(t) (6)

In order to learn the topology of the data, bm and sbm are con-
nected by an edge. Already existing edges are not modified. If the
F2 layer is empty or no node is allowed to learn, a new node with
wF2a
new(t+ 1)=xF1(t) is incorporated.
According to Eq. 4, the maximum size of the categories is limited

by the vigilance parameter ρ. Here, the vigilance parameter ρb of
module b is determined depending on the vigilance parameter ρa of
module a:

ρb =
1

2
(ρa + 1) (7)

A value of ρa=0 means that a single category of module a can cover
the entire input space, while a value of ρa=1 results in categories
containing single samples.

2 This normalisation usually requires an estimation of the minimum and max-
imum values for each xi.
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Figure 3. Results for non-stationary data. The training was performed in
three successive phases (top row). In the bottom row, the corresponding

clusters formed by a TopoART network after finishing the respective phase
are shown. The network parameters were adopted from Fig. 2.

The F2 neurons of both modules possess a counter denoted by
nj . Each time a node is adapted, the corresponding counter is incre-
mented. Furthermore, all F2 nodes j with nj<φ are removed every
τ learning cycles of the respective module. Therefore, such neurons
are called node candidates. In contrast, nodes with nj≥φ are perma-
nent; i.e., their categories are completely stable. The node candidates
and the permanent nodes can be considered as the short-term mem-
ory and the long-term memory of the network, respectively.
xF1(t) is only propagated to module b for training if the best-

matching node of module a is permanent. In module b, the processes
of category search and weight adaptation are repeated for the corres-
ponding F2 nodes using ρb instead of ρa. In conjunction with the
input filtering and the node-removal process, this constitutes a pow-
erful noise reduction mechanism. Figure 2 illustrates this mechanism
in comparison to two other popular unsupervised learning methods.
The applied dataset consists of six clusters with 15,000 samples each
as well as ten percent of uniformly distributed random noise (100,000
samples in total). In order to create a stationary data distribution, the
samples were presented once in random order.

TopoART and SOINN were able to determine a detailed clustering
reflecting the six clusters of the input distribution in a high level of
detail. Here, the representation was refined from module a to mod-
ule b and from SOINN layer 1 (SOINN 1) to SOINN layer 2 (SOINN
2). The representation of oKDE also reflects the underlying compo-
nents, but does not include the topological structures. Furthermore,
several Gaussians exclusively represent noise regions.

The capability of TopoART to incrementally learn stable repre-
sentations from noisy non-stationary data is demonstrated in Fig. 3.
Here, the input data used before were reordered and presented in
three consecutive phases. After each training phase, TopoART has
learnt the respective new clusters and the clusters formed during ear-
lier training phases remained stable.

For prediction, xF1(t) is directly propagated to both modules
where the respective best-matching nodes are determined. Here, usu-
ally the alternative activation function

zF2
j (t) = 1−

∥∥(xF1(t) ∧ wF2
j (t)

)
− wF2

j (t)
∥∥

1

d
(8)

that is independent from the category size is applied and the match

function is not computed. The output of a module consists of a vector
yF2(t) with

yF2
j (t) =

{
0 if j 6= bm
1 if j = bm

(9)

and a vector cF2(t) reflecting the clustering structure. For reasons of
stability, node candidates are ignored during prediction.

Details on the adjustment and the effects of the parameters ρa,
βsbm, φ, and τ can be found in [26].

4 TopoART-C

In contrast to TopoART, which clusters presented data, a classifier
requires additional information. In particular, a class label λi is asso-
ciated with each input vector x(t) comprising one or more features
xi(t). This label is either presented for training or predicted based
on x(t). Λ(t) denotes the set of all known class labels at time step t.
In incremental learning scenarios Λ(t) may grow if new data become
available. The current number of known classes is given by |Λ(t)|. In
order to construct a classifier inheriting the advantageous properties
of TopoART, the principal structure of TopoART was preserved and
extended by three additional layers (see Fig. 4).

Both modules obtained a classification layer F3, the nodes of
which represent possible classes λi. These layers receive the out-
put yF2(t) of the respective F2 layer as input. Furthermore, a mask
layer F0m was incorporated so as to enable predictions based on
incomplete input data.

4.1 Training

TopoART-C is trained in a similar way to TopoART. But in order
to account for the class labels, the match function (cf. Eq. 4) was
modified:∥∥xF1(t) ∧ wF2

j (t)
∥∥

1∥∥xF1(t)
∥∥

1

≥ ρ and class(j) = λ(t) (10)
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Figure 2. Clustering results for stationary data. A two-dimensional synthetic data distribution was learnt by TopoART (TA), SOINN, and oKDE. The relevant
parameters were manually chosen in such a way as to fit the data. Different clusters of TopoART (b & c) and SOINN (d & e) are coloured differently. For

SOINN, the edges connecting individual prototype vectors are shown, as well. In contrast to TopoART and SOINN, the distribution estimated by oKDE (f)
consists of a mixture of Gaussians drawn as ellipses marking the standard deviations. It does not reflect the topological structure of the data.

Here, λ(t) denotes the class label of x(t) and class(j) the class en-
coded by the F3 node that is connected with node j.3

Assuming the match function cannot be fulfilled for any existing
F2 node, a new one with wF2

new(t+ 1)=xF1(t) is incorporated like
in the original TopoART network. Additionally, it is linked to the F3
node representing λ(t). If the network does not know λ(t), a new F3
node representing this label is inserted.

4.2 Prediction

During prediction, the class label λi which best fits the input vector
x(t) is computed by module b using the decision rule:

e(t) = arg max
λi∈Λ(t)

dλi(t) (11)

The discrimination function dλi(t) measures the similarity of x(t)
with the internal representation of class λi:

dλi(t) =
∑

j∈Υb(t)
class(j)=λi

y
F2b
j (t) (12)

dλi(t) depends on the output yF2b of the F2 layer of module b.
The set of all nodes of this layer is denoted by Υb(t). Module a is
completely neglected, as it is only required for training in order to
filter irrelevant data.

If the original output function (Eq. 9) is applied, e(t) yields the
class label of the permanent node whose category has the closest
distance to x(t). But depending on the class boundaries, the resulting
prediction may be suboptimal. Therefore, we propose a more general
output function, which can consider more than one node and allows
for problem specific adaptations. Here, two principal cases have to
be distinguished: either x(t) lies inside one or more categories or it
is enclosed by no category. In the first case, the class label can be
derived from the enclosing categories summarised in the set

E(t) =
{
j ∈ Υb(t) : z

F2b
j (t) = 1

}
. (13)

These nodes are characterised by a maximum activation zF2b
j (t) ac-

cording to Eq. 8. Using the modified output function

y
F2b
j (t) =

{
1 , if j = arg min

k∈E(t)
Sk(t)

0 , otherwise,
(14)

3 Each F2 node can only be connected with a single F3 node.

the prediction corresponds to the class label associated with the
smallest category containing x(t). The category size Sk(t) is defined
as

Sk(t) =

d∑
i=1

∣∣∣(1− wF2
k,d+i(t)

)
− wF2

k,i(t)
∣∣∣. (15)

In the second case, i.e., if no category encloses x(t), predictions
are computed based on the setN of closest neighbours:

N (t) =
{
j ∈ Υb(t) : z

F2b
j (t) ≥ µ+ 1.28σ

}
(16)

µ and σ denote the arithmetic mean and the standard deviation of
z
F2b
j (t) over all F2b neurons, respectively. If the activations were

normally distributed, N (t) would only contain those 10% of the
neurons that have the highest activations.

The contribution of each neighbour to the output function is in-
versely proportional to the distance between its category and x(t):

y
F2b
j (t) =


1

1−zF2b
j (t)∑

n∈N (t)

1

1−zF2b
n (t)

, if j ∈ N (t)

0 , otherwise

(17)

Depending on the data distribution and for computational reasons
it may be advantageous to further limit the number of considered
nodes. Therefore, we incorporated an additional parameter ν which
denotes the maximum cardinality of E(t) andN (t). It does not affect
the underlying representations and may be changed during the appli-
cation of the network. To obtain repeatable results, elements need to
be added to both sets in a predefined way (cf. Eqs. 13 and 16). There-
fore, we decided to add nodes in increasing order of their indices to
E(t) and in decreasing order of their activations to N (t). Provided
that the cardinality has reached the value of ν, the insertion of new
elements is stopped. As a result, established and certain knowledge
is preferred over recently acquired and uncertain knowledge. Due to
this difference to the original output function (cf. Eq. 9), which treats
all nodes equally, we decided to consider not only permanent nodes
but also node candidates for prediction. As a result, the predictions
become slightly less stable. However, the network is better adapted
to recent input, in particular if no established knowledge is available.

In order to make predictions based on incomplete input vectors,
the mask layer F0m is used. Its neurons, the output of which is given
by the mask vector

mF0(t) =
[
mF0

1 (t), . . . ,mF0
d (t)

]T
, (18)



inhibit the network connections that encode elements of the input
vector that are not available; i.e., presented elements are charac-
terised by a mask value mF0

i (t) of 0 and unknown elements by a
value of 1. Hence, the indices of the relevant elements of xF1(t) (cf.
Eq. 2) are given by the index set

M0 =
{
i, i+d : mF0

i (t) = 0
}
. (19)

Using M0, the activation of the F2 nodes of module b can be
determined solely based on the non-inhibited F1 neurons:

z
F2b
j (t) = 1−

∑
i∈M0

∣∣∣min
(
xF1
i (t), w

F2b
ji (t)

)
− wF2b

ji (t)
∣∣∣

1
2
|M0|

(20)

If required, the maximum activation over all F2 nodes of module b
can be applied as a measure of the degree of knowledge the network
has about a certain input vector. Then, input vectors can be rejected
as unknown if the maximum activation is below a threshold.

5 Results
We evaluated TopoART-C using several real-world datasets from the
UCI machine learning repository [12]. In order to show the beneficial
properties of TopoART-C, we selected datasets with varying numbers
of classes and features, with and without missing values, and with
balanced and imbalanced classes (see Table 1). Here, the class ratio
denotes the ratio between the number of samples contained in the
smallest class and in the largest class, respectively. Thus, a class ratio
of 1 shows that a dataset is completely balanced, while class ratios
close to 0 indicate imbalanced datasets.

dataset |Λ| d missing class
values ratio

iris 3 4 no 1.000
ISOLET∗ 26 617 no 0.992
optical digits∗ 10 64 no 0.967
ozone level (1 hour) 2 73 yes 0.030
ozone level (8 hours) 2 73 yes 0.067
page blocks 5 10 no 0.006
pen digits∗ 10 16 no 0.921
wine 3 13 no 0.676
wine quality (red) [9] 6 11 no 0.015
wine quality (white) [9] 7 11 no 0.002
yeast 10 8 no 0.011

Table 1. Number of classes |Λ|, number of features d, existence of missing
values and class ratio for the considered datasets. Those datasets marked

with ∗ contain an independent test set.

For comparison, we used several well-known on-line and off-
line classifiers: the k-nearest neighbour classifier3 (kNN), the naı̈ve
Bayes classifier3 (NB), random trees3 (RTs), the Simplified Fuzzy
ARTMAP (SFAM) [27], and support vector machines4 (SVMs)
using different kernels. These classifiers were compared based on
the harmonic mean accuracy

ACChm =
|Λ|∑

λi∈Λ

1
ACC(λi)

(21)

3 implemented in OpenCV v2.2 [3]
4 implemented in LIBSVM v3.11 [7]

as proposed in [25] for imbalanced datasets. Here, ACC(λi) de-
notes the fraction of correctly classified samples of class λi. In con-
trast to the total accuracy5 and the arithmetic mean of the class-
specific accuracies ACC(λi), ACChm prevents large correctly clas-
sified classes from dominating the classification results; e.g., if one
class cannot be recognised at all, ACChm drops to zero, independent
of the number of test samples available for this class. Provided that
the classification problem is entirely balanced and the class-specific
accuracies are equal, all three accuracy measures are equal.

Table 2 shows the classification results. These results were either
obtained using five-fold cross-validation or refer to the independent
test set that has neither been used for training nor the optimisation of
model parameters before, if available (cf. Table 1). The relevant par-
ameters of the classifiers were determined by means of grid search.6

For training, all features were normalised to the interval [0.05, 0.95].
Input vectors containing missing values were ignored (training and
prediction) and counted as errors (prediction) if the respective clas-
sifier was not able to process incomplete data.

TopoART-C achieved excellent results for the majority (6 of 11)
of the datasets. In particular, it outperformed the other classifiers
on 4 of 6 imbalanced7 datasets including those with missing values
and reached comparatively high accuracies for the remaining two
datasets ‘wine quality (red)’ and ‘wine quality (white)’. Regarding
balanced data, SVMs performed better, especially on the ‘ISOLET’
dataset, which is most likely caused by its large number of features.
Nevertheless, TopoART-C achieved the maximum accuracy on 2 of
5 balanced datasets. In addition, TopoART-C often reached very high
accuracies after a single presentation of all training samples, which is
a good benchmark for incremental on-line learning; without the ca-
pability of stable incremental learning, an on-line learning approach
such as TopoART (cf. Eqs. 5 and 6) would be prone to catastrophic
forgetting resulting in worse results.

6 Conclusion and Outlook

We presented the novel incremental classifier TopoART-C that is
capable of fast on-line learning (cf. Table 2). Accurate predictions
can even be made if the input vectors contain missing values. As
TopoART-C contains the unsupervised TopoART network as major
learning component, it is insensitive to noise (cf. Fig. 2) and can
be applied to non-stationary data (cf. Fig. 3). These properties of
TopoART-C make it an excellent choice for the application to real-
world on-line learning tasks, as they occur, for instance, in cognitive
robotics. In addition, the clusters learnt by the TopoART subnet could
provide additional information on the underlying data.

Furthermore, TopoART-C is not restricted to the usage of
TopoART; alternative neural networks with a TopoART-like structure
such as Hypersphere TopoART [24] can be applied as well. Since
Hypersphere TopoART does not perform complement coding, the re-
sulting classifier could process arbitrarily scaled values even if their
range is not completely known in advance.

5 overall ratio of correctly classified samples
6 kNN: k ∈ {1, 2, . . . , 25}; RTs: use surrogates ∈ {false,true},
variableImportance ∈ {false,true}, nactive vars =
dx with x ∈ [0.1, 0.9] and step size 0.1; SFAM: ρ ∈ [0.75, 1] with step
size 0.01, β ∈ [0.2, 1] with step size 0.2; SVMs: C = 10x with x ∈
[−4, 4] and step size 0.5, γ = 10x with x ∈ [−4, 4] and step size 0.5
(RBF kernel), coef0 = 10x with x ∈ [−4, 4] and step size 0.5 (polyno-
mial kernel), degree ∈ {1, 2, 3, 4, 5} (polynomial kernel); TopoART-C:
ρa ∈ [0.75, 1] with step size 0.01, βsbm ∈ [0, 1] with step size 0.2,
φ ∈ {1, 2, 3, 4, 5}, ν ∈ {1, 2, . . . , 25}

7 class ratio < 0.1



dataset kNNo NB RTstp SFAMo SVMs TopoART-Cop

1 it. 1 it. ≤25 it. polynomial RBF 1 it. ≤25 it.
iris 97.4±2.7 97.0±2.8 96.7±2.4 97.0±2.0 96.9±3.0 98.4±2.0 96.8±3.1 98.9±1.4 98.2±2.7
ISOLET 90.9 0.0 94.5 92.6 93.9 96.3 96.7 91.2 91.6
optical digits 97.9 94.6 96.9 96.9 97.7 97.5 98.4 97.4 97.4
ozone level (1 hour) 29.5±10.7 0.0±0.0 2.2±4.3 42.8±11.6 42.7±11.6 34.1±6.5 26.3±14.4 50.6±27.5 54.4±22.1
ozone level (8 hours) 45.0±6.8 5.5±4.8 10.7±6.9 50.1±9.1 53.7±6.7 50.2±4.1 45.6±4.2 63.9±3.8 60.6±10.3
page blocks 69.6±6.3 79.6±6.0 82.5±4.1 75.4±3.4 75.5±3.3 77.9±3.0 76.4±6.5 82.5±4.0 82.5±6.5
pen digits 97.7 95.8 96.4 97.4 97.9 97.5 98.2 97.7 97.7
wine 96.6±3.1 98.8±1.5 98.8±1.5 98.7±1.7 98.7±1.7 98.3±1.6 98.8±1.0 98.7±1.7 99.1±1.7
wine quality (red) 0.0±0.0 0.0±0.0 0.0±0.0 15.8±20.1 15.9±20.2 0.0±0.0 0.0±0.0 9.1±18.2 9.3±18.6
wine quality (white) 0.0±0.0 5.6±11.2 0.0±0.0 6.2±12.3 0.0±0.0 2.2±4.4 8.5±16.9 7.3±14.5 7.7±15.5
yeast 11.4±14.0 0.0±0.0 0.0±0.0 24.9±20.9 24.4±20.8 7.3±14.5 11.7±23.4 37.7±19.5 36.7±19.7

Table 2. Harmonic mean accuracies and their standard deviations (over the cross-validation runs) in percent. The best results for each dataset are highlighted.
In order to alleviate the comparison, some relevant capabilities of the classifiers are indicated by superscripts: o = on-line learning, t = accept missing values
for training, and p = accept missing values for prediction. In order to compensate for the negative effects of a possibly too small number of training steps, the

respective training sets were presented to the on-line learning approaches except for the kNN classifier up to 25 times. The results are given for the first
iteration (1 it.) and when they converged or the maximum number of iterations was reached (≤25 it.).
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Episodic Clustering of Data Streams Using a
Topology-Learning Neural Network
Marko Tscherepanow1,2 and Sina Kühnel2,3 and Sören Riechers1,2

Abstract. In this paper, an extension of the unsupervised topology-
learning TopoART neural network is presented. Like TopoART, it is
capable of stable incremental on-line clustering of real-valued data.
However, it incorporates temporal information in such a way that
consecutive input vectors with a low distance in the input space are
summarised to episode-like clusters. Inspired by natural memory sys-
tems, we propose two recall methods enabling the selection and re-
trieval of these episodes. They are demonstrated at the example of a
video stream recorded in a natural environment.

1 Introduction
Incremental on-line learning is a branch of machine learning and ar-
tificial intelligence that has been gaining increasing interest over the
recent years (e.g., [2], [7], [10], [14], and [20]). In contrast to tradi-
tional models requiring distinct training, validation, and test phases,
such approaches allow for a continuous extension of existing know-
ledge while they are already in application. Hence, they are par-
ticularly useful for tasks involving incomplete knowledge or non-
stationary data distributions such as the representation of visual [10]
and multi-modal [2] categories in robotic scenarios or dynamic topic
mining [12]. These methods process incoming data sample by sam-
ple; i.e., in a temporal order. However, this aspect is barely accounted
for, although it might provide additional information.

Humans and animals exploit this information in a natural way.
Consequently, sequence learning is considered as “the most preva-
lent form of human and animal learning” [16, p. 67]. This is reflected
by the formed representations, which relates to the vast research area
of memory.

Memory has been classified along time (short-term, long-term),
processes (encoding, storage, retrieval) as well as regarding stored
content (procedural, perceptual, semantic, episodic) [13]. Episodic
memory is the highest developed system that allows us to remem-
ber our own past in detail. During encoding of episodic memory
information from sensory systems, semantic knowledge as well as
perceptual and procedural information is connected to one coherent
event. This complex event knowledge allows us to perform mental
time travel when remembering past experiences [21]. The impor-
tance of episodic memory becomes clearer when evolutionary traits
and today’s requirements are taken into account. When interacting
in social situations we rely strongly on our ability to encode seman-
tic as well as episodic memories of events. For example, established
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impressions of people and situations can be reevaluted and updated
over time [11].

From the machine learning perspective, Sun and Gilles [16] dis-
tinguish between four major categories of sequence learning ap-
proaches: sequence prediction, sequence generation, sequence recog-
nition, and sequential decision making. Some popular approaches are
content-addressable memories for temporal patterns [3] (sequence
generation), echo state networks [8] (sequence prediction and gen-
eration), hidden Markov models [15] (sequence prediction, genera-
tion, and recognition), as well as reinforcement learning [17] (se-
quential decision making). Unsupervised vector quantizers for time
series such as Recursive Self-Organizing Maps (RSOMs) [22] con-
stitute a further approach to sequence learning: they learn a mapping
from subsequences to prototype sequences.

The approaches mentioned above deal with sequential data within
a limited time frame. They do not have an absolute representation of
time. Consequently, retrieval of past sequences as performed by nat-
ural memory systems is not possible. Furthermore, they are limited
by a predefined model structure and capacity.

Machine learning approaches including those dedicated to se-
quence learning have been frequently employed so as to develop ar-
tificial memory systems. The CLARION architecture [6] possessing
procedural and semantic memory components and the memory of
the humanoid robot ISAC [9] comprising short-term and long-term
memory components for processing procedural, perceptual, seman-
tic, and episodic data are two examples for complex artificial mem-
ory systems. In addition, specific aspects of natural memory systems
such as consolidation processes for procedural learning [1] and the
categorisation of perceptual patterns [6] have been emulated.

In this paper, we present a novel approach to incremental on-line
clustering (see Section 3) which incorporates temporal information
for the life-long learning of episode-like clusters. In addition to the
common prediction functionality, two recall methods for retrieving
learnt information and reconstructing past episodes based on these
clusters are proposed. As our approach originates from the TopoART
neural network (see Section 2) [18][20], it inherits its capabilities of
fast and stable on-line clustering of possibly noisy or non-stationary
data. Therefore, we call our approach Episodic TopoART. In Sec-
tion 4, we demonstrate the recall methods and show that the inclu-
sion of temporal information may be advantageous given that input
is provided in a meaningful temporal order.

2 TopoART

Adaptive Resonance Theory (ART) neural networks learn top-down
expectations which are matched with bottom-up input. These expec-
tations, which encode different regions of the input space, are called



categories. Their maximum size is controlled by the vigilance par-
ameter ρ.

TopoART (TA) [18][20] is an Adaptive Resonance Theory (ART)
neural network consisting of two modules called TA a and TA b.4

These modules are closely related to Fuzzy ART [4]. They have a
three-layered structure and the input layer F0 is shared by them (see
Fig, 1). Input to TA b is filtered by TA a, which renders the network
insensitive to noise.

F2a

x   (t)=x(t)F0

y     (t), c     (t)F2a F2a

f

r
b

y     (t), c     (t)F2b F2b

x   (t)F1

x   (t)F1

F0

F1ar
a

F2b

x   (t)F1

F1b

node 
candidate

W     (t)F2a W     (t)F2b

TA a TA b

Figure 1. TopoART architecture. TopoART networks comprise two
modules (TA a and TA b) sharing the input layer F0.

As TopoART is an incremental neural network that can be trained
on-line, training and prediction steps can be mixed arbitrarily. In both
cases, input is presented in discrete time steps t. Each input vector
x(t) consists of d real-valued elements xi(t):

x(t) =
[
x1(t), . . . , xd(t)

]T
. (1)

In the F0 layer, x(t) is complement coded. The resulting vector

xF1(t) =
[
x1(t), . . . , xd(t), 1− x1(t), . . . , 1− xd(t)

]T (2)

is propagated to the respective F1 layer. Due to the usage of com-
plement coding, each of the elements xi(t) has to lie in the interval
[0, 1].

2.1 Training
During training, xF1(t) is first propagated to the F2 layer of TA a
where the neurons (also called nodes) are activated (choice function):

zF2
j (t) =

∥∥xF1(t) ∧ wF2,s
j (t)

∥∥
1

α+
∥∥wF2,s

j (t)
∥∥
1

with α = 0.001. (3)

The activation zF2
j (t) measures the similarity between xF1(t) and

the category of node j, which is encoded in the weight vector
wF2,s

j (t). ∧ denotes an element-wise minimum operation.
In addition, a match value

ζF2,s
j (t) =

∥∥xF1(t) ∧ wF2,s
j (t)

∥∥
1∥∥xF1(t)

∥∥
1

(4)

is computed for all F2 nodes j. It constitutes a measure for the size
of the extended category that includes xF1(t).

4 In general, the number of modules must be larger than or equal to 1.

The maximum category size Smax depends on the dimensionality
of the input space d and the vigilance parameter ρ:

Smax = d(1− ρ). (5)

Therefore, the weights wF2,s
j (t) of an F2 node j are only allowed to

be adapted if

ζF2,s
j ≥ ρ. (6)

In order to learn a new input vector, the nodes with the highest and
the second highest activation while fulfilling Eq. 6 (match function)
are sought. They are referred to as the best-matching node (bm) and
the second-best-matching node (sbm), respectively. Only the weights
of these two neurons are adapted:

wF2,s
j (t+ 1) = βj

(
xF1(t) ∧ wF2,s

j (t)
)

+(1− βj)wF2,s
j (t)

with j ∈ {bm, sbm} and βbm = 1. (7)

In addition to its weight vector, each F2 node j possesses a
counter nj which is incremented whenever its weights are adapted.
Furthermore, if two neurons bm and sbm that fulfil Eq. 6 were found,
they are connected by an edge so as to learn the topological structure
of the input data.

In order to reduce the sensitivity to noise, all F2 nodes with nj<φ
including their edges are removed every τ learning cycles.5 There-
fore, such nodes are called node candidates. If nj≥φ, node j is per-
manent.

TA b learns in an identical way like TA a using a higher value for
its vigilance parameter ρb:

ρb =
1

2
(ρa + 1). (8)

In addition, xF1(t) is only propagated to TA b if the best-matching
node of TA a is permanent. As a consequence, TA b learns a refined
clustering which is less prone to noise.

If the respective F2 layer does not contain any node yet or
no node fulfilling Eq. 6 could be found, a new F2 node with
wF2,s

new (t+ 1)=xF1(t) is incorporated.

2.2 Prediction
During prediction steps, learnt cluster labels are associated to un-
known input. After complement coding, presented input vectors are
directly propagated to both modules. Here, the nodes of the respec-
tive F2 layer are activated using a modified activation function:

zF2
j (t) = 1−

∥∥∥(xF1(t) ∧ wF2,s
j (t)

)
− wF2,s

j (t)
∥∥∥
1

d
. (9)

In contrast to Eq. 3, Eq. 9 is independent of the category size.
After activation, the node with the highest activation is chosen

as the best-matching node bm of the respective module. The match
function is not checked. Then, both modules provide an output vector
yF2(t) with

yF2
j (t) =

{
0 if j 6= bm
1 if j = bm

(10)

5 The learning cycles are individually counted for each module.



and a clustering vector cF2(t) containing the cluster labels of the
F2 neurons. These cluster labels are determined by a labelling al-
gorithm assigning unique integer labels to connected components of
F2 nodes.

3 Episodic TopoART
Episodic TopoART (ETA) contains a TopoART network as a ma-
jor learning component (see Fig. 2). This component is extended in
order to enable the encoding and the retrieval of information within
its spatio-temporal context.

F2a

x   (t)=x(t)F0

f

r
b

x   (t)F1

x   (t)F1

F0

F1ar
a

F2b
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c     (t)F2b

t

Figure 2. Structure of Episodic TopoART networks. Like TopoART,
Episodic TopoART consists of two modules sharing a common input layer
F0. The structures adopted from TopoART (blue) are extended by neurons

representing temporal information and an additional layer required for recall
(green).

Due to the structural similarities of TopoART and Episodic
TopoART, both networks can easily be substituted by each other, e.g.,
in order to serve as components of more complex networks fulfilling
alternative tasks such as the supervised TopoART-R network [19].
However, there are several functional differences between Episodic
TopoART and TopoART, which are explained in the following. In
addition to the training and prediction steps known from TopoART,
Episodic TopoART provides a more complex recall functionality.

3.1 Training
The input of Episodic TopoART networks is equal to TopoART;
i.e., individual input vectors x(t) comprise d elements xi(t). x(t) is
complement coded and propagated to the respective F1 layer. Thus,
Episodic TopoART is able to learn spatial relations of samples in the
input space like TopoART and it requires a normalisation of all xi(t)
into the interval [0, 1].

In addition to the nodes representing the current input, the F0
layer of Episodic TopoART networks contains a single node repre-
senting the current time step t=tF0(t). It reflects the total number of
performed training steps. Its actual value is not crucial as long as it
is incremented by 1 after each training step. Therefore, it constitutes
a subjective, internal representation of time.

The problem with clustering temporal data in conjunction with
presented input consists in the different characteristics of this infor-
mation. While the elements of the input vector x(t) are real-valued

and normalised, tF0(t) is a positive integer value which is strictly
increasing during learning and not bounded. Therefore, it is not pos-
sible to use complement coding for tF0(t). However, the effects of
complement coding can be emulated. In particular, xF1(t) corres-
ponds to a category comprising only x(t) as a single point in the
input space where xi(t) and xi+d(t) encode for the lower and upper
bounds along dimension i, respectively. During learning, a category
grows; i.e., it spans a certain range along different dimensions. Re-
garding tF0(t), a similar effect is achieved by the following encod-
ing:

tF1(t) =
[
tF1
1 (t), tF1

2 (t)
]T
. (11)

Here, tF1
1 (t) encodes the minimum time step and tF1

2 (t) the max-
imum time step that is represented. For an individual sample, both
values are equal to tF0(t).

Due to the different type of information processed, all F2 nodes
j have two types of weights: the spatial weights wF2,s

j (t) adopted
from TopoART and the temporal weights

wF2,t
j (t) =

[
wF2,t

j,1 (t), wF2,t
j,2 (t)

]T
. (12)

Like in TopoART networks, the activation of the F2 nodes is com-
puted according to Eq. 3; i.e., it reflects only spatial similarities.
However, an additional temporal match value

ζF2,t
j (t) =

tmax −min
(
tF1
2 (t)− wF2,t

j,1 (t), tmax
)

tmax
(13)

is computed in order to incorporate temporal information in the
learning process. The match values ζF2,s

j (t) and ζF2,t
j (t) are com-

bined in a new match function:

ζF2,s
j ≥ ρ and ζF2,t

j ≥ ρ. (14)

As a result, the F2 nodes represent spatial similarities which were
encountered within a certain time frame bounded by tmax.

Using Eq. 14 for the processing of data streams causes a new prob-
lem. As explained in Section 2.1, edges are added between two nodes
fulfilling the match function. However, if input is arriving as a data
stream and temporal information is also considered, the overlap of
categories is less probable, since new nodes are only added if no ex-
isting node can fulfil Eq. 14. Hence, the chance to find two nodes
fulfilling the match function is considerably smaller. As a result, cat-
egories belonging to a cluster cannot be connected. Therefore, nodes
need to be added earlier utilising a stricter match function for the
determination of the best-matching nodes (cf. Eqs. 5 and 6):

ζF2,s
j ≥ 1

2
(ρ+ 1) and ζF2,t

j ≥ 1

2
(ρ+ 1). (15)

If new input is to be learnt and the F2 nodes have been acti-
vated, the node with the highest activation while fulfilling Eq. 15
is determined. If such a node can be found, it becomes the best-
matching node bm. Otherwise, a new node with wF2,s

new (t)=xF1(t)
and wF2,t

new (t)=tF1(t) is added. This new node automatically fulfils
Eq. 15 and, therefore, becomes the new best-matching node.

Afterwards, a second-best-matching node is sought. Here, Eq. 14
is applied as match function; i.e., the unmodified value of the respec-
tive vigilance parameter (ρa or ρb) is used. Hence, the categories can
reach the same size in the input space as with the original TopoART.
Furthermore, nodes rejected as best-matching nodes before can still
become the second-best-matching node.



The spatial weights wF2,t
j (t) and the temporal weight wF2,t

j,2 (t)
of the nodes bm and sbm are adapted according to Eq. 7. However,
wF2,t

j,1 (t) remains constant once a node has been created, as the time
step t is strictly increasing and wF2,t

j,1 (t) denotes the lower temporal
bound of the respective category.

Like in the original algorithm, node candidates are removed every
τ learning cycles, ETA b is trained in an identical way to ETA a using
a vigilance value of ρb according Eq. 8, and input to ETA b is filtered
by ETA a. As a result, ETA b learns a refined and noise-reduced
clustering. Therefore, the output of ETA a is neglected for recall; the
main function of this module consists in directing the attention of the
network to relevant areas of the input space (cf. [19]).

3.2 Prediction of Cluster Labels
The prediction of cluster labels is performed in an identical way
to TopoART (see Section 2.2). Temporal information is completely
neglected and tF0(t) is not incremented. However, the formed clus-
ters reflect the spatio-temporal relationships encountered during
training; i.e., each cluster summarises similar samples which were
learnt in close succession.

3.3 Recall of Spatio-Temporal Relationships
For recall, the formed clusters are interpreted as episodes, as they rep-
resent related input vectors (stimuli) in their temporal order. To recall
information within the respective spatio-temporal context, Episodic
TopoART distinguishes between two principal procedures: inter-
episode recall and intra-episode recall. While inter-episode recall
provides access to different episodes comprising stimuli similar to
the presented input, intra-episode recall reconstructs episodes start-
ing from a time step when a stimulus similar to the presented input
vector was observed. Like the prediction mechanism, both proced-
ures require that the F2 nodes of ETA b have activated according to
Eq. 9 and labelled.

3.3.1 Inter-Episode Recall

The procedure for inter-episode recall is strongly related to the itera-
tive recall procedure used by TopoART-AM [20] for recalling associ-
ations between real-world associative keys. However, TopoART-AM
is not able to account for temporal relationships.

The actual recall mechanism is realised by the temporary F3 layer
of ETA b. It is created after a stimulus has been presented. Each node
of this layer represents an individual episode and is connected to all
of its F2 nodes. The activation

zF3
l (t) = max

j,c
F2b
j (t)=l

zF2
j (t) (16)

of an F3 node l is equal to the maximum activation of the connected
F2 nodes; i.e., it is a measure for the similarity of the presented stim-
ulus with this episode. After the activation of the F3 nodes, the iter-
ative recall process is initiated:

1. set iteration counter i to 1
2. find the F3 node ri with the highest activation
3. inhibit all F2 nodes j with zF2

j (t)<zF3
ri (t) which are connected

to ri
4. find theF2 node bmi with the highest activation within the current

episode

5. return the output vector y(t, i) of the current iteration i
6. reset ri

(
zF3
ri (t)=−1

)
7. increment i
8. start next iteration (go to step 2)

The recall process either stops if all F3 nodes have been reset or a
desired number of recall steps has been performed. Afterwards, the
F3 layer is removed.

The output vector y(t, i) is computed as the centre of gravity of
the respective best-matching category bmi:

y(t, i) =
1

2


wF2,s

bmi,1
(t) + 1− wF2,s

bmi,d+1(t)
...

...
wF2,s

bmi,d
(t) + 1− wF2,s

bmi,2d
(t)

 (17)

3.3.2 Intra-Episode Recall

Intra-episode recall requires an F2 node j as a starting point. For
example, the best-matching nodes bmi determined by means of inter-
episode recall can be applied here.

After a suitable F2 node j has been chosen, the temporal order of
all its topological neighbours n is analysed. Those nodes which were
created after j, i.e. wF2,t

n,1 (t)>wF2,t
j,1 (t), are put into the set N+(j).

Then, a best-matching node bmi is computed as

bmi = arg max
n∈N+(j)

∥∥wF2,t
j (t)− wF2,t

n (t)
∥∥
1
. (18)

Like with inter-episode recall, Eq. 17 is used, to generate an
output for bmi. Afterwards, bmi is used as the starting node for
the next intra-episode recall cycle. The recall process is stopped, if
N+(j)=∅. In this case, one possible end of the episode has been
reached.

4 Results
We conducted two different experiments in order to analyse Episodic
TopoART. First, we compared the prediction results of TopoART6

and Episodic TopoART using a synthetic dataset (see Section 4.1).
Then, we investigated its prediction and recall capabilities by means
of real-world video data (see Section 4.2).

4.1 Synthetic Data
For the first experiment, we employed the well-known two spiral
dataset (see Fig. 3a) [5]. It consists of two intertwined spirals com-
prising 97 points each. For validation, we randomly determined 250
additional samples for each spiral (see Fig. 3b). During training, both
spirals were presented one after another. Furthermore, the samples of
each spiral were presented with increasing radius. Thereby, both spi-
rals can be considered as two consecutive episodes.

The clustering results for TopoART and Episodic TopoART are
shown in Figs. 3c–f. The parameters ρ, βsbm, and φ of both ap-
proaches were obtained by grid search using the validation dataset.
Here, the Rand index R [23] for separating both spirals into two
distinct clusters/episodes was maximised. Based on previous experi-
ments (e.g., in [19]), τ was set to 200. As the new parameter tmax of
Episodic TopoART denotes a time frame like τ , tmax was also set to
200. Each training sample was only presented once to each network.

6 LibTopoART (version 0.37), available at www.LibTopoART.eu
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Figure 3. Clustering results for the two-spiral problem. The categories formed after training with the two-spiral dataset (a) are depicted as coloured rectangles
(c and e). Here, categories connected to the same cluster share a common colour. In addition, the cluster labels were predicted for 101×101 equidistant test

points distributed in the entire input space (d and f).

Figure 3 shows that both neural networks were able to learn
the training samples after a single presentation. While Episodic
TopoART correctly created two clusters corresponding to the two
spirals (see Figs. 3e and 3f), TopoART created numerous clusters
(see Figs. 3c and 3d), since its categories could not be linked appro-
priately. Furthermore, some categories enclose samples from both
spirals. We therefore conclude that the inclusion of temporal infor-
mation and the modified learning mechanism of Episodic TopoART
supported the clustering process.

4.2 Real-World Data
In order to examine Episodic TopoART under more realistic condi-
tions, we recorded a video stream by cycling with a mountain bike
in the Teutoburg Forest. In comparison to indoor scenarios, outdoor
environments are less structured and more diverse. In addition, they
probably had a higher impact on human and animal evolution. The
experimental setup and the generation of training data is explained in
Fig. 4.

video recording

downscaling and blurring

Figure 4. Experimental setup. An iPod touch 4G mounted on the
handlebar of a mountain bike was used for recording image sequences in HD
720p with 30 frames per second. These images were downscaled to 64×36
pixels and subjected to a Gaussian blur (11×11 pixels). Images with even

indices were used for training, while the remaining images were reserved for
test purposes.

After preprocessing, a total of 29, 747 training and 29, 747 test
images was available. Several Episodic TopoART networks were
trained in a systematic way. However, to our knowledge there is no
commonly accepted quality criterion for evaluating episodes. Rather,
episodes formed based on the same event may even differ between
different persons. Therefore, we resorted to manual evaluation. Fig-
ure 5 depicts the assignment of episodes7 to video scenes computed
by two different networks.

7 prediction for the test images

Figure 5. Assignment of episodes. The video is represented by 100 test
images taken at every 600th time step (left to right and top to bottom). The
colour bars over each image visualise the assignment of episodes for two

different networks (top bar: ρa=0.5; bottom bar: ρa=0.7; remaining
parameters for both networks: βsbm=0.25, φ=5, τ=200, tmax=400).

Each episode is denoted by an individual colour.

Here, it needs to be emphasised that the episode length is not pre-
defined. Rather, episodes are split if the input vectors differ consid-
erably8 for a longer9 time interval. This is reflected by Fig. 5. While
two episodes suffice to group the presented test images for ρa=0.5,
the episodes are refined for ρa=0.7. In particular, Episodic TopoART
formed a reasonable set of episodes with episode changes mainly
caused by visible scene changes for ρa=0.7. A further increase of ρa
would result in a higher number of created episodes. Hence, higher
values of ρa result in a decline of the average episode length.

The more complex recall functionality of Episodic TopoART is
demonstrated in Fig. 6. Here, the network trained with ρa=0.7 for
the previous experiment (cf. Fig. 5) was used again.

Figure 6 demonstrates that the similarity of the test stimulus to the
episodes provided by inter-episode recall decreases with each itera-

8 defined by ρa, see Eqs. 4 and 14
9 defined by ρa and tmax, see Eqs. 13 and 14



Figure 6. Recall functionality of Episodic TopoART. An exemplary test image was applied as a stimulus for initiating the inter-episode recall process. It
originates from the last 10% of the video, between the second and the third image in the bottom line of Fig. 5. In each iteration i, the node bmi was further

used as the starting point for intra-episode recall. The recall results are limited to the first three iterations of the inter-episode recall algorithm and a maximum
of 14 cycles for each intra-episode recall call.

tion. In this example, the best matching node bm1 of the first itera-
tion encodes the correct episode. The reconstruction of this episode
by means of intra-episode recall shows how the input changed from
the second image to the third image in the bottom line of Fig. 5.

5 Conclusion
We extended the TopoART neural network in such a way that it can
create spatio-temporal representations of presented input vectors. In
particular, input is grouped in episode-like clusters which can be ac-
cessed by two novel recall methods. Furthermore, the modified train-
ing procedure may be superior to TopoART provided that the input
is presented in a meaningful temporal order. In the future, additional
recall methods could be developed, in particular for intra-episode re-
call, as each episode is an undirected graph, which can be traversed
in numerous ways. In addition, multi-modal data and semantic in-
formation could be applied in order to create episodes being more
similar to their natural counterparts.
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