
JIMSE 2012

2012 Joint Workshop on
Intelligent Methods for Software System Engineering

Proceedings of the Workshop

August 28, 2012
Montpellier, France

This workshop has been supported by the Trustworthy Eternal Systems
via Evolving Software, Data and Knowledge (EternalS) coordination action
(#247758).

Preface

The first Joint workshop on Intelligent Methods for Software System Engineering is held on Au-
gust 28, 2012 in conjunction with ECAI 2012, the biennial European Conference on Artificial
Intelligence. ECAI is the leading conference on Artificial Intelligence in Europe, which will take
place in Montpellier, France, in August, 27-31, 2012.

The workshop aims at bringing together worldwide stakeholders and their related communities
to discuss current research trends on the use of intelligent techniques for effective and efficient
design of software systems. To amplify the impact of the workshop, two different communities
sharing the above-mentioned aim joined for the organization of this event. These include:

The Trustworthy Eternal Systems via Evolving Software, Data and Knowledge (EternalS)
community, who has been developed in conjunction with the homonymous European Coordination
Action (https://www.eternals.eu/). This includes stakeholders of four broad different ICT areas
such as: Machine Learning Systems for Knowledge Management and Representation, Software
Systems, Networked Systems and Secure Systems. This community is sharing competencies and
technology for reciprocally improving the specific areas, for example, applying machine learning
for anomaly detection or for helping establishing network connection between devices.

The Intelligent Techniques in Software Engineering (ISEW) community focuses on intelligent
techniques for addressing, studying, analyzing and understanding critical software development
issues, such as software quality and reliability, software cost estimation, software requirements,
specifications engineering and software project management.

Ten interdisciplinary papers were selected for inclusion in the workshop proceedings through
a rigorous review process. Such papers cover a wide range of intelligent software areas, including
but not limited to: Machine Learning, Software Requirements, Software Testing, Software in the
Cloud, Anomaly Detection, Software Development, Natural Language Processing, Information
Extraction, Information Retrieval. More in detail, the workshop program organizes the topics
above in three main sections:

• Natural Language Processing (NLP) for Software Systems, which proposes four papers
using NLP techniques for automatic software construction. The techniques range from
automatic analysis of software requirements to automatically converting natural language
statement in source code.

• Machine Learning for Software Systems, which focuses on the use of machine learning for
very diverse software applications, ranging from porting and making secure software, e.g.,
in the cloud, to improving the performance of software for networked devices.

• Road-map for future research, which discusses concrete proposals of interesting future re-
search by also presenting the second-year road-map of EternalS.

Finally, the Workshop is also nicely wrapped by an interesting talk of Prof. Hendrik Blockeel, who
will introduce Machine Learning and Data Mining approaches to the JIMSE community.

We thank the authors for their contribution and the members of the Program Committee for timely
and insightful reviews.

The JIMSE 2012 Organizers
Stamatia Bibi, Alessandro Moschitti, Barbara Plank, Ioannis Stamelos

3

Workshop Committee

Stamatia Bibi Aristotle University of Thessaloniki, Greece
Alessandro Moschitti University of Trento, Italy
Barbara Plank University of Trento, Italy
Ioannis Stamelos Aristotle University of Thessaloniki, Greece

Program Committee

Andreas Andreou University of Cyprus, Cyprus
Lefteris Angelis Aristotle University of Thessaloniki, Greece
Roberto Basili University of Rome Tor Vergara, Italy
Helen Berki University of Tampere, Finland
Götz Botterweck Lero, Ireland
Sofia Cassel University of Uppsala, Sweden
Krishna Chandramouli Queen Mary University of London, UK
James Clarke Telecommunications Software and Systems Group, Ireland
Anna Corazza University of Naples Federico II, Italy
Sergio Di Martino University of Naples Federico II, Italy
Michael Felderer University of Innsbruck, Austria
Fausto Giunchiglia University of Trento, Italy
Reiner Hähnle TU Darmstadt, Germany
Falk Howar TU Dordtmund, Germany
Valerie Issarny INRIA, France
Richard Johansson University of Gothenburg, Sweden
Jan Jürjens TU Dortmund, Germany
George Kakarontzas Technical University of Larisa, Greece
Achilles Kameas Hellenic Open University, Greece
Basel Katt University of Innsbruck, Austria
Chris Lokan UNSW@ADFA, Australia
Ilaria Matteucci CNR, Italy
Emilia Mendes University of Auckland, New Zealand
Grzegorz Nalepa AGH University of Science and Technology, Poland
Claudia Niederee L3S Research Center Hannover, Germany
Animesh Pathak INRIA, France
Tomas Piatrik Queen Mary University of London, UK
Hongyang Qu University of Oxford, UK
Rick Rabiser JKU Linz, Austria
Vasile Rus The University of Memphis, USA
Riccardo Scandariato Katholieke Universiteit Leuven, Belgium
Ina Schaefer TU Braunschweig, Germany
Holger Schöner Software Competence Center Hagenberg, Austria
Bernhard Steffen TU Dortmund, Germany
Christos Tjortjis The University of Manchester, UK
Grigorios Tsoumakas Aristotle University of Thessaloniki, Greece
Michalis Vazirgiannis Athens University of Economics & Business
Maria Virvou University of Piraeus, Greece
Qianni Zhang Queen Mary University of London, UK

Table of Contents

Towards a Security Oracle Based on Tree Kernel Methods
Andrea Avancini and Mariano Ceccato . 1

Machine Learning for Emergent Middleware
Amel Bennaceur, Falk Howar, Malte Isberner, Valérie Issarny, Richard Johansson, Alessan-

dro Moschitti, Bernhard Steffen and Daniel Sykes. .5

Assessment of software testing and quality assurance in natural language processing applications
and a linguistically inspired approach to improving it

Kevin Bretonnel Cohen, Lawrence E. Hunter and Martha Palmer . 11

Using Machine Learning and Information Retrieval Techniques to Improve Software Maintain-
ability

Anna Corazza, Valerio Maggio, Sergio Di Martino, Alessandro Moschitti, Andrea Passerini,
Fabrizio Silvestri and Giuseppe Scanniello . 18

Semantic and Algorithmic Recognition Support to Porting Software Applications to Cloud
Beniamino Di Martino and Giuseppina Cretella . 24

Anomaly Detection in the Cloud: Detecting Security Incidents via Machine Learning
Matthias Gander, Michael Felderer, Basel Katt, Alessandro Moschitti and Ruth Breu 31

Robust Requirements Analysis in Complex Systems through Machine Learning
Francesco Garzoli, Danilo Croce, Manuela Nardini, Francesco Ciambra, Roberto Basili . .38

Automatic Generation and Reranking of SQL-Derived Answers to NL Questions
Alessandra Giordani and Alessandro Moschitti . 47

The EternalS Roadmap – Defining a Research Agenda for Eternal Systems
Robert Mullins . 56

Supporting Agile Software Development by Natural Language Processing
Barbara Plank, Thomas Sauer and Ina Schaefer . 62

Abstract invited talk:
Machine learning and data mining: an introductory overview

Hendrik Blockeel . 67

Towards a Security Oracle
Based on Tree Kernel Methods

Andrea Avancini and Mariano Ceccato1

Abstract.
The objective of software testing is to stress a program to reveal

programming defects. Goal of security testing is, more specifically,
to reveal defects that could lead to security problems. Security test-
ing, however, has been mostly interested in the automatic generation
of test cases that “try” to reveal a vulnerability, rather than assessing
if test cases actually “managed” to reveal vulnerabilities.

In this paper, we cope with the latter problem. We investigated on
the feasibility of using tree kernel methods to implement a classifier
able to evaluate if a test case revealed a vulnerability, i.e. a security
oracle for injection attacks. We compared seven different variants
of tree kernel methods in terms of their effectiveness in detecting
attacks.

1 Introduction
Among the programming defects that threat the reliability of web
applications, those that concern security aspects are probably the
most critical. In fact, vulnerabilities could be exploited by attack-
ers to block the correct execution of a business service (denial of ser-
vice) or to steal sensitive data, such as credit card numbers or medical
records.

According to statistics on open source projects [2], one of the most
severe class of vulnerabilities is Cross-site Scripting (XSS for short).
An XSS vulnerability is exploited by input values that contain ma-
licious HTML or JavaScript code. As result of the attack, the vul-
nerable page will contain the injected code and its content and/or
behavior will be controlled by the attacker.

Security testing is a process intended to spot and verify security
vulnerabilities, by showing an instance of input data that exposes the
problem. A developer requested to fix a security defect could take
advantage of a security test case to understand the problem (vulner-
abilities often involve complex mechanics) and to elaborate a patch.
Eventually, a security test can be resorted to assess if the maintenance
task has been resolutive.

There is a number of approaches for security testing of web ap-
plications [15, 9, 10, 7, 6, 8], which are mainly focused on the test
case generation phase. The problem of verifying if a test case actu-
ally exploits a vulnerability has given a marginal importance. In fact,
checking if a test case has been able to exploit a vulnerability is either
addressed by manual filtering [15] or in a way that is customized for
a specific test case generation strategy. For example, in [9], verifying
if a test case is a successful attack relies on the knowledge about how
the test case has been constructed, i.e. if the output page contains the
same JavaScript fragment that has been used to generate the test case
itself.

1 Fondazione Bruno Kessler, Trento, Italy, email: avancini, ceccato@fbk.eu

In the present paper we address the problem of developing a secu-
rity oracle, a classifier able to detect when a vulnerability is exploited
by a test case, i.e. verifying if a test case is an instance of a success-
ful attack. Our oracle is meant to be independent from the approach
deployed to generate test cases, so that it can be reused in many dif-
ferent contexts.

We propose to construct the oracle resorting to tree kernel meth-
ods. The classifier is trained on a set of test cases containing both
safe executions and successful attacks. In fact, it is quite common for
a software project to document past defects (including vulnerabili-
ties) that have already been fixed. The oracle is then deployed when
generating new security test cases, intended to identify new vulnera-
bility problems.

2 Web Application Vulnerabilities

Cross-site Scripting vulnerabilities are caused by improper or miss-
ing validation of input data (e.g., coming from the user). Input data
may contain HTML fragments that, if appended to a web page, could
alter its final content such that malicious code is injected.

Figure 1 shows an example of dynamic web page that contains a
vulnerability. The code between “<?PHP” and “?>” is interpreted
by the web server as PHP2 code and executed when processing the
web page. On incoming HTML requests, the web server executes the
PHP code in the page, which processes input values and generates a
textual output that represents the dynamic part of the requested page.
On PHP termination, the web server sends the resulting output back
to the requester web browser as an HTML response.

The example contains a reflected XSS vulnerability, i.e. there ex-
ists an execution flow along which the input value param is not ade-
quately validated before being printed (echo statement in PHP) in the
output page (line 15). Any code contained in this input value, if not
properly validated, could be added to the current page and eventually
executed.

The page accepts three parameters, param, cardinality and op, and
adopts a quite common pattern, performing different actions accord-
ing to the value of one of the parameters. In case op is set, the page
will show a table, otherwise it will display a menu. The number of
rows in the table and the number of links in the menu depend on the
value of cardinality. Parameter param is just printed.

On lines 1–3, input values are read from the incoming HTML re-
quest (represented in PHP as the special associative array $ GET)
and assigned to local variables $p, $n and $op respectively.

On lines 4–7, input values are validated. In case $n contains a
value smaller than 1 or a string that does not represent a number,

2 Even if the example is in PHP, the approach is general and can be applied
on web applications implemented with server-side language.

1

<html>
<body>
<?php

1 $p = $ GET [’ param ’] ;
2 $n = $ GET [’ c a r d i n a l i t y ’] ;
3 $op = $ GET [’ op ’] ;
4 i f ($n < 1) // inpu t v a l i d a t i o n
5 die ;
6 i f (strpos ($p , ’<s c r i p t ’) !== fa l se)
7 $p=htmlspecialchars($p) ;
8 i f (i s set ($op)) { // p r i n t t a b l e
9 echo ’<t ab l e border=1> ’ ;

10 for ($ i =0; $ i<$n ; $ i++) {
11 echo ’<t r><td> f i r s t c e l l </td>’ .

’<td>second c e l l</td>’ .
’<td>t h i r d c e l l</td></t r>’ ;

}
12 echo ”</t ab l e>” ;

}
else { // p r i n t menu

13 for ($ i =0; $ i<$n ; $ i++) {
14 echo ’<a h r e f=f i r s t . php>l i n k #’ .

$ i . ’’ ;
}

}
15 echo $p ; // v u l n e r a b i l i t y

?>
</body>
</html>

Figure 1. Running example of a XSS vulnerability on PHP code.

the execution aborts (die statement at line 5). At line 7, the value of
variable $p is validated. Validation, however, is done only when con-
dition on line 6 holds, which is not sufficient to cover all the possible
dangerous cases. For example, harmful code containing a different
tag (e.g. <a>) or with a space between < and script could skip
the sanitization.

Depending on the value of variable $op, either a table (lines 8–12)
or a menu (lines 13–14) is shown. Eventually, variable $p is printed
at line 15 possibly causing a security threat, because of inadequate
validation at lines 6–7.

An example of successful attack is represented by an HTML
request containing the parameter param set to the subsequent
JavaScript code:

<a href="" onclick="this.href=

’www.evil.com?data=’%2Bdocument.cookie"> click

here

When such value is appended on the response page, it alters the
HTML structure (%2B is decoded as “+”), and a brand new link
“click here” (i.e., <a> tag) is injected, pointing to an external web
site controlled by the attacker (i.e., www.evil.com). In case such link
is triggered by the legitimate user, his/her cookie is encoded as a
HTML request parameter and sent to the attacker-controlled web site.
With the stolen cookie, the attacker can pretend to impersonate the
legitimate user.

The automatic generation of input values to test a vulnerable page
can be addressed in quite a cheap way. After input generation, how-
ever, output needs to be validated, i.e. a security oracle is required
to check whether code injection took place. In the subsequent sec-
tions we present our approach to use kernel methods to implement a
security oracle, i.e. to classify executions of dynamic web pages as

safe executions or as successful code injections. In the latter case, a
vulnerability is detected.

3 Security Oracle

The goal of an XSS attack is to inject JavaScript or HTML code
fragments into a web page. Thus, consequences of injection should
be evident as structural changes in the page under attack, when com-
pared with the same page running under normal conditions.

Web applications, however, are highly dynamic and their structure
or content may vary a lot, even without code injection. For instance,
on the running example of Figure 1, the same PHP script under harm-
less conditions can display different results (number of table rows)
and can take different alternative actions (showing a table or a menu).

A web page can be represented by the parse tree of the correspond-
ing HTML code. Thus, injection of malicious code corresponds to a
change in the parse tree with respect to the intended structure. Fig-
ure 2 shows the parse trees of three HTML outputs of the running
example. Figure 2(a) and (b) are the parse trees of safe executions
that contain, respectively, a table with three lines and a menu with
tree links. Figure 2(c), instead, represents the parse tree of the page
under attack, a menu with two intended links and, in addition, a ma-
licious link.

By looking at Figure 2, we can observe that the intrinsic variability
of safe executions (e.g., between (a) and (b)) can be wider than the
variability due to code injection (e.g., between (b) and (c)). So, a
similarity metric may not be adequate to detect successful attacks.

The security oracle, then, should distinguish between those vari-
ations that are safe due to the dynamic behavior of the application
and those variations caused by code injection due to successful at-
tacks. The classifier must be trained with instances from both the
classes. Under these assumptions, the security oracle problem can be
formulated as a binary classification problem, that can be addressed
by relying on kernel methods. In particular, we deal with parse trees,
so kernel methods that fit better this problem definition are tree ker-
nels [3].

We construct the security oracle according to the subsequent steps:

1. Test case generation: test cases are automatically generated for
the web page under analysis. For this purpose, any test case gen-
eration approach is applicable in principle. We reused, however, a
tool we developed in a previous work [1] that combines heuristics
(genetic algorithm) and analytic solutions (sat solvers).

2. Attack generation: some test cases are turned into candidate at-
tacks by adding selected attack strings to input values, taken from
a library of malicious fragments of HTML and JavaScript. This
library has been taken from a publicly available tool [14] for pen-
etration testing and black-box fuzzing.

3. Manual filtering: test cases and candidate attacks are run on the
web application under analysis. Results are manually classified as
safe executions or successful injection attacks. The output pages
are then parsed by using Txl [5] and the resulting HTML parse
trees are stored.

4. Training: parse trees of successful attacks and safe executions are
used respectively as positive and negative examples for the learn-
ing phase of the oracle.

5. Classification: the oracle is ready. To evaluate a new test case, the
test must be executed on the application under analysis and the
HTML output must be parsed. Eventually, the oracle relies on the
kernel to classify the HTML parse tree either as safe execution or
as successful attack.

2

< html >

< body >

< table >

border=1 < tr > < tr > < tr >

< td > < td > < td > < td > < td > < td > < td > < td > < td >

< html >

< body >

< a > < a > < a >

href="first.php" href="first.php" href="first.php"

< html >

< body >

< a > < a > < a >

href="first.php" href="first.php" href=""
onclick="this.href=

'www.evil.com?data='
+document.cookie"

(a) (b) (c)

Figure 2. Parse trees of output pages for the running example. Trees (a) and (b) represent safe executions. Tree (c) represents an injection attack.

4 Preliminary Results
A preliminary experimentation has been conducted using SVM-
light-TK3 version 1.5 as kernel machine. This tool extends SVM-
light tool4 with kernel support, by implementing 7 different kernel
methods:

• Standard (Tree) Kernel (SK) [3],
• Sub Tree Kernel (STK) [16],
• Subset Tree Kernel (SSTK) [4],
• Subset Tree Kernel (SSTK) with bag-of-words (BOW) feature

[17],
• Partial Tree Kernel (PTK) [11],
• Partial Tree Kernel with no leaves (uPTK) [12] and
• String Kernel (StrK) [13].

We tested the feasibility of our approach on a case study appli-
cation, a simple web application from which the running example
of Figure 1 has been extracted. It consists of a single PHP script
of 37 lines of code which represents a typical pattern of a dynamic
web page. It implements two different functionalities, according to
the value of an input parameter (generating a table or a sequence of
links). The script contains two XSS vulnerabilities.

3470 test cases have been generated for the application under test.
The test cases have been manually filtered into 600 safe executions
and 60 code injection attacks, to respect a 1:10 proportion among
the two classes5. This corpus of data has been randomly split in two
parts, 50% for training and 50% for assessment. While splitting data,
we took care of splitting attacks uniformly between the two parts.

Tuning of cost-factor value has been achieved with the following
procedure. Initially, only 80% of the training data (270 test cases,
training set) has been used to build an initial model. The remaining
20% (60 test cases, tuning) have been used to tune the cost-factor.
We used the initial model to classify the tuning set by changing it-
eratively the cost-factor value from 1 to 50. We selected the optimal
cost-factor value as the one that shown the best trade off between pre-
cision and recall in classifying the tuning data set. In case of identical
results, cost-factor value that corresponds to the shortest execution
time has been chosen.

Eventually, the final model has been constructed by using all the
training data (training set and tuning set) for learning, applying the
optimal cost-factor value. After the learning phase, performances of
the final security oracle have been assessed on the assessment data
set.
3 http://disi.unitn.it/moschitti/Tree-Kernel.htm
4 http://www.joachims.org/
5 Generating attacks is usually harder than generating safe tests

Kernel Optimal Cost-factor Precision Recall F-measure
SK 1 100% 78% 88%

STK 20 7% 100% 13%
SSTK 1 100% 78% 88%

SSTK + BOW 1 100% 78% 88%
PTK 8 100% 17% 30%

uPTK 7 100% 39% 56%
StrK 1 100% 0% 0%

Table 1. Experimental results.

Table 1 reports experimental results collected on the case study
applications for the 7 different kernel methods. The first column con-
tains the name of the kernel method used, while the second column
reports the optimal cost-factor value that has been chosen to run the
experiment. Third, fourth and fifth columns report precision, recall
and F-measure, obtained by running the classifier on the assessment
data set. Results obtained by running String Kernel (StrK) method
have been added for completeness, despite the fact that the gener-
ated parse trees do not exactly fit the intended input format for this
method (trees instead of sequences of characters).

The best results have been achieved by three methods, SK, SSTK
and SSTK + BOW. By running these methods, reported precision and
recall have been 100% and 78% respectively, meaning that all the test
cases that have been classified as attacks (18) are real attacks, while 5
attacks have been classified as safe tests. After manual inspection, we
discovered the reason for not obtaining 100% recall. Despite the at-
tack library [14] contains several distinct HTML syntactic elements,
we noticed that the training set contained no instances of attacks with
the same HTML syntactic structure used in the 5 misclassified at-
tacks. A richer training set, containing at least one instance of any
possible syntactic form of attacks, would have improved the perfor-
mance of the oracle.

Despite this limit, however, the classifier assigned to the misclas-
sified attacks a prediction value that was closer to the positive class
(true attacks) rather than to the negative class (safe test cases). So, a
revision of the classification threshold may be beneficial.

Among the other tree kernel methods, the best results have been
obtained by uPTK. 9 attacks out of 23 have been classified in the
correct way, achieving a high precision (100%) but a fairly low re-
call (39%). PTK method performed slightly worse, obtaining equal
precision (100%) but even lower recall (17%). In fact, just 4 attacks
have been correctly recognized by this method.

The remaining two methods, StrK and STK, reported the worst
performance. In case of StrK, poor results were expected since the

3

input format adopted is not perfectly suitable for this method, as the
method classified all the candidates as safe test cases (no attacks re-
ported means 100% precision and 0% recall). For STK instead, we
observed an unstable behavior with respect to different cost-factor
values. For cost-factor values lower or equal than 8, all the objects in
the data set are classified as safe test cases (100% precision and 0%
recall) while, for values greater than 8, all the tests are classified as
attacks (low precision and 100% recall).

5 Related Works
A fundamental problem of security testing is deciding about success-
ful attacks, i.e. when a test case is able to inject malicious code and
reveal a defect. Initially, checking code injection was a manual task
delegated to programmers. For instance, in the work by Tappenden et
al. [15], security testing is approached with an agile methodology us-
ing HTTP-unit, while verification of test outcomes is a manual task.

Other approaches provide a higher level of automation. In [9], a
library of documented attacks is used to generate valid inputs for a
web application. A symbolic data base is implemented to propagate
tainted status of input values through the data base to the final at-
tack sinks. A first stage of the oracle adopts dynamic taint analysis
to verify if tainted data are used in a sink, while a second stage per-
forms a comparison of safe pages with pages generated by candidate
attacks. This check consists in verifying if pages differ with respect
to “script-inducing constructs”, i.e. new scripts or different href at-
tributes.

In other works [10, 6], the oracle consists in checking if a response
page contains the same <script> tag passed as input. McAllister et
al. [10] adopt a black-box approach to detect XSS vulnerabilities.
Data collected during the interaction with real users are subjected to
fuzzing, so as to increase test coverage. The oracle for XSS attacks
checks if the script passed as input is also present in the output page.

The paper by Halfond et al. [6] presents a complete approach to
identify XSS and SQLI vulnerabilities in Java web applications. (1)
Input vectors are identified and grouped together with their domains
into input interfaces. Then (2), attack patterns are used to generate
many attacks for these interfaces. Eventually (3), page execution is
monitored and HTTP response is inspected to verify if attacks are
successful. The oracle detects if the response page contains the same
script tag that was injected in the input data.

Limiting the check to injected script tags guarantee a high pre-
cision, but recall may be low, because of vulnerabilities depending
on other tags may not be detected by these oracles. Our approach is
more general, because it relies on structural differences among safe
executions and attacks, that are general enough to capture different
forms of code injection.

6 Conclusion
In this paper, we presented a preliminary investigation on using ker-
nel methods for implementing a security oracle for web applications.
The proposed security oracle has been assessed on a simple PHP ap-
plication, with good performances in terms of precision and recall.
From this initial experiment, we learned which tree kernel methods
are the most appropriate to use in this domain. Moreover, we identi-
fied promising directions on how to improve our approach in terms
of (1) more complete training sets and (2) customized classification
threshold for the kernel methods.

As future works, we intend to experiment with customized kernel
methods to improve the performance of the security oracle. More-

over, we plan to move on to real-world web applications (possibly
written using different programming languages), to assess our ap-
proach also on bigger and realistic web applications.

Acknowledgements
The research described in this paper has been partially supported
by the European Community’s Seventh Framework Programme
(FP7/2007-2013) under the grants #247758: ETERNALS – Trustwor-
thy Eternal Systems via Evolving Software, Data and Knowledge,
and #288024: LIMOSINE – Linguistically Motivated Semantic ag-
gregation engiNes.

REFERENCES
[1] A. Avancini and M. Ceccato, ‘Security testing of web applications:

A search-based approach for cross-site scripting vulnerabilities’, in
Source Code Analysis and Manipulation (SCAM), 2011 11th IEEE In-
ternational Working Conference on, pp. 85–94. IEEE, (2011).

[2] S Christey and R A Martin, ‘Vulnerability type distributions in cve’,
Technical report, The MITRE Corporation, (2006).

[3] Michael Collins and Nigel Duffy, ‘Convolution kernels for natural lan-
guage’, in Advances in Neural Information Processing Systems 14, pp.
625–632. MIT Press, (2001).

[4] Michael Collins and Nigel Duffy, ‘New ranking algorithms for parsing
and tagging: kernels over discrete structures, and the voted perceptron’,
in Proceedings of the 40th Annual Meeting on Association for Com-
putational Linguistics, ACL ’02, pp. 263–270, Stroudsburg, PA, USA,
(2002). Association for Computational Linguistics.

[5] J.R. Cordy, ‘The TXL source transformation language’, Science of
Computer Programming, 61(3), 190–210, (August 2006).

[6] William G. J. Halfond, Shauvik Roy Choudhary, and Alessandro Orso,
‘Improving penetration testing through static and dynamic analysis’,
Software Testing, Verification and Reliability, 21(3), 195–214, (2011).

[7] Yao-Wen Huang, Chung-Hung Tsai, D.T. Lee, and Sy-Yen Kuo, ‘Non-
detrimental web application security scanning’, in Software Reliability
Engineering, 2004. ISSRE 2004. 15th International Symposium on, pp.
219 – 230, (nov. 2004).

[8] Stefan Kals, Engin Kirda, Christopher Kruegel, and Nenad Jovanovic,
‘Secubat: a web vulnerability scanner’, in Proceedings of the 15th in-
ternational conference on World Wide Web, WWW ’06, pp. 247–256,
New York, NY, USA, (2006). ACM.

[9] A. Kieyzun, P.J. Guo, K. Jayaraman, and M.D. Ernst, ‘Automatic cre-
ation of sql injection and cross-site scripting attacks’, in Software Engi-
neering, 2009. ICSE 2009. IEEE 31st International Conference on, pp.
199 –209, (may 2009).

[10] Sean McAllister, Engin Kirda, and Christopher Kruegel, ‘Leveraging
user interactions for in-depth testing of web applications’, in Recent
Advances in Intrusion Detection, eds., Richard Lippmann, Engin Kirda,
and Ari Trachtenberg, volume 5230 of Lecture Notes in Computer Sci-
ence, 191–210, Springer Berlin / Heidelberg, (2008).

[11] Alessandro Moschitti, ‘Efficient convolution kernels for dependency
and constituent syntactic trees’, in Proceedings of the 17th European
conference on Machine Learning, ECML’06, pp. 318–329, Berlin, Hei-
delberg, (2006). Springer-Verlag.

[12] Aliaksei Severyn and Alessandro Moschitti, ‘Large-scale support vec-
tor learning with structural kernels’, in ECML/PKDD (3), pp. 229–244,
(2010).

[13] John Shawe-Taylor and Nello Cristianini, Kernel Methods for Pattern
Analysis, Cambridge University Press, New York, NY, USA, 2004.

[14] N. Surribas. Wapiti, web application vulnerability scanner/security au-
ditor, 2006-2010.

[15] A. Tappenden, P. Beatty, J. Miller, A. Geras, and M. Smith, ‘Agile se-
curity testing of web-based systems via httpunit’, in Agile Conference,
2005. Proceedings, pp. 29 – 38, (july 2005).

[16] S.V.N. Vishwanathan and A.J. Smola, ‘Fast kernels on strings and
trees’, in In proceedings of Neural Information Processing Systems,
(2002).

[17] Dell Zhang and Wee Sun Lee, ‘Question classification using support
vector machines’, in Proceedings of the 26th annual international
ACM SIGIR conference on Research and development in informaion
retrieval, SIGIR ’03, pp. 26–32, New York, NY, USA, (2003). ACM.

4

Machine Learning for Emergent Middleware
Amel Bennaceur and Valérie Issarny and Daniel Sykes1 and Falk Howar

and Malte Isberner and Bernhard Steffen2 and Richard Johansson and Alessandro Moschitti3

Abstract. Highly dynamic and heterogeneous distributed systems
are challenging today’s middleware technologies. Existing middle-
ware paradigms are unable to deliver on their most central promise,
which is offering interoperability. In this paper, we argue for the need
to dynamically synthesise distributed system infrastructures accord-
ing to the current operating environment, thereby generating “Emer-
gent Middleware” to mediate interactions among heterogeneous net-
worked systems that interact in an ad hoc way. The paper outlines the
overall architecture of Enablers underlying Emergent Middleware,
and in particular focuses on the key role of learning in supporting
such a process, spanning statistical learning to infer the semantics
of networked system functions and automata learning to extract the
related behaviours of networked systems.

1 INTRODUCTION
Interoperability is a fundamental property in distributed systems, re-
ferring to the ability for two or more systems, potentially developed
by different manufacturers, to work together. Interoperability has al-
ways been a challenging problem in distributed systems, and one that
has been tackled in the past through a combination of middleware
technologies and associated bridging solutions. However, the scope
and level of ambition of distributed systems continue to expand and
we now see a significant rise in complexity in the services and appli-
cations that we seek to support.

Extreme distributed systems challenge the middleware paradigm
that needs to face on-the-fly connection of highly heterogeneous sys-
tems that have been developed and deployed independently of each
other. In previous work, we have introduced the concept of Emer-
gent Middleware to tackle the extreme levels of heterogeneity and
dynamism foreseen for tomorrow’s distributed systems [13, 4].

Emergent Middleware is an approach whereby the necessary mid-
dleware to achieve interoperability is not a static entity but rather is
generated dynamically as required by the current context. This pro-
vides a very different perspective on middleware engineering and, in
particular requires an approach that create and maintain the models
of the current networked systems and exploit them to reason about
the interaction of these networked systems and synthesise the appro-
priate artefact, i.e., the emergent middleware, that enable them to in-
teroperate. However, although the specification of system capabilities
and behaviours have been acknowledged as fundamental elements of
system composition in open networks (especially in the context of
the Web [8, 16]), it is rather the exception than the norm to have such
rich system descriptions available on the network.

1 INRIA, France, email: first.last@inria.fr
2 Technical University of Dortmund, email: {falk.howard, malte.isberner,

steffen}@tu-dortmund.de
3 University of Trento, email: {johansson,moschitti}@disi.unitn.it

This paper focuses on the pivotal role of learning technologies in
supporting Emergent Middleware, including in building the neces-
sary semantic run-time models to support the synthesis process and
also in dealing with dynamism by constantly re-evaluating the cur-
rent environment and context. While learning technologies have been
deployed effectively in a range of domains, including in Robotics
[27], Natural Language Processing [20], Software Categorisation
[26], Model-checking [23], Testing [12], and Interface Synthesis [2],
and Web service matchmaking [15], this is the first attempt to apply
learning technologies in middleware addressing the core problem of
interoperability.

This work is part of a greater effort within the CONNECT project4

on the synthesis of Emergent Middleware for GMES-based systems
that are representative of Systems of Systems. GMES5 (Global Mon-
itoring for Environment and Security) is the European Programme
for the establishment of a European capacity for Earth Observation
started in 1998. The services provided by GMES address six main
thematic areas: land monitoring, marine environment monitoring, at-
mosphere monitoring, emergency management, security and climate
change. The emergency management service directs efforts towards a
wide range of emergency situations; in particular, it covers different
catastrophic circumstances: Floods, Forest fires, Landslides, Earth-
quakes and volcanic eruptions, Humanitarian crises.

For our experiments, we concentrate on joint forest-fire operation
that involves different European organisations due to, e.g., the cross-
boarder location or criticality of the fire. The target GMES system
involves highly heterogeneous NSs, which are connected on the fly
as mobile NSs join the scene. Emergent Middleware then need to
be synthesised to support such connections when they occur. In the
following, we more specifically concentrate on the connection with
the Weather Station NS, which may have various concrete instances,
ranging from mobile stations to Internet-connected weather service.
In addition, Weather Station NSs may be accessed from heteroge-
neous NSs, including mobile handheld devices of the various people
on site and Command and Control —C2— centres (see Figure 1).
We show how the learning techniques can serve complementing the
base interface description of the NS with appropriate functional and
behavioural semantics. It is in particular shown that the process may
be fully automated, which is a key requirement of the Emergent Mid-
dleware concept.

2 EMERGENT MIDDLEWARE
Emergent Middleware is synthesised in order to overcome the in-
teroperability issue arising from two independently-developed Net-
worked Systems (NSs). Given two Networked Systems where one

4 http://connect-forever.eu/
5 http://www.gmes.info

5

Figure 1. Heterogeneous Connections with Weather Station NSs

implements the functionality required by the other, an Emergent
Middleware that mediates application- and middleware-layer proto-
cols implemented by the two NSs is deployed in the networked envi-
ronment, based on the run-time models of the two NSs and provided
that a protocol mediator can indeed be computed. The following sec-
tion defines the NS model we use to represent the networked sys-
tems and reason about their interoperation. Then we present the by
Enablers, i.e., active software entities that collaborate to realise the
Emergent Middleware ensuring their interoperation.

2.1 Networked System Model
The definition of NS models takes inspiration from system models
elaborated by the Semantic Web community toward application-layer
interoperability. As depicted on Figure 2.(a), the NS model then de-
composes into:

Networked
System

Affordance

Interface

OutputInputFunctionalityKind
Req/Prov

Behaviour

1

1 1 0..n 0..n

0..n

1

Figure 2. The Networked System (NS) Model

• Interface: The NS interface provides a microscopic view of the
system by specifying fine-grained actions (or methods) that can
be performed by (i.e., external action required by NS in the envi-
ronment for proper functioning) and on (i.e., actions provided by
the given NS in the networked environment) NS.
There exist many interface definition languages and actually as
many languages as middleware solutions. In our approach, we use
a SAWSDL-like6 XML schema. In particular, a major requirement
is for interfaces to be annotated with ontology concepts so that
the semantics of embedded actions and related parameters can be
reasoned about.

• Affordances: The affordances (a.k.a. capabilities in OWL-S [16])
describe the high-level roles an NS plays, e.g., weather station,
which are implemented as protocols over the system’s observable
actions (i.e., actions specified in the NS interface). The specifica-
tion of an affordance decomposes into:

6 http://www.w3.org/2002/ws/sawsdl/spec/

– The ontology-based semantic characterisation of the high level
Functionality implemented by the affordance, which is given in
terms of the ontology concepts defining the given functionality
and of the associated Input and Output. An affordance is further
either requested or provided by the NS in the networked envi-
ronment. In the former case, the NS needs to access a remote
NS providing the affordance for correct operation; in the latter,
the NS may be accessed for the implementation of the given
affordance by a remote NS.

– The affordance’s behaviour describes how the actions of the
interface are co-ordinated to achieve the system’s given affor-
dance. Precisely, the affordance behaviour is specified as a pro-
cess over actions defined in the interface, and is represented as
a Labelled Transition System (LTS).

2.2 Emergent Middleware Enablers
In order to produce an Emergent Middleware solution, an architec-
ture of Enablers is required that executes the Emergent Middleware
lifecycle. An Enabler is a software component that executes a phase
of the Emergent Middleware, co-ordinating with other Enablers dur-
ing the process.

The Emergent Middleware Enablers are informed by domain on-
tologies that formalise the concepts associated with the application
domains (i.e., the vocabulary of the application domains and their
relationship) of interest. Three challenging Enablers must then be
comprehensively elaborated to fully realise Emergent Middleware:

1. The Discovery Enabler is in charge of discovering the NSs operat-
ing in a given environment. The Discovery Enabler receives both
the advertisement messages and lookup request messages that are
sent within the network environment by the NSs using legacy dis-
covery protocols (e.g., SLP7) thereby allowing the extraction of
basic NS models based on the information exposed by NSs, i.e.,
identification of the NS interface together with middleware used
for remote interactions. However, semantic knowledge about the
NS must be learned as it is not commonly exposed by NSs directly.

2. The Learning Enabler specifically enhances the model of discov-
ered NSs with the necessary functional and behavioural semantic
knowledge. The Learning Enabler uses advanced learning algo-
rithms to dynamically infer the ontology-based semantics of NSs’
affordances and actions, as well as to determine the interaction be-
haviour of an NS, given the interface description exposed by the
NS though some legacy discovery protocol. As detailed in subse-
quent sections, the Learning Enabler implements both statistical
and automata learning to feed NS models with adequate semantic
knowledge, i.e., functional and behavioural semantics.

3. The Synthesis Enabler dynamically generates the software (i.e.,
Emergent Middleware) that mediates interactions between two
legacy NS protocols to allow them to interoperate. In more detail,
once NS models are complete, initial semantic matching of two
affordances, that are respectively provided and required by two
given NSs, may be performed to determine whether the two NSs
are candidates to have an Emergent Middleware generated be-
tween them. The semantic matching of affordances is based on the
subsumption relationship possibly holding between the concepts
defining the functional semantics of the compared affordances.
Given a functional semantic match of two affordances, the affor-
dances’ behaviour may be further analysed to ultimately generate

7 http://www.openslp.org/

6

a mediator in case of behavioural mismatch. It is the role of the
Synthesis Enabler to analyse the behaviour of the two affordances
and then synthesise—if applicable—the mediator component that
is employed by the Emergent Middleware to enable the NSs to
coordinate properly to realise the given affordance. For this, the
Synthesis Enabler performs automated behavioural matching and
mapping of the two models. This uses the ontology-based seman-
tics of actions to say where two sequences of actions in the two be-
haviours are semantically equivalent; based upon this, the match-
ing and mapping algorithms determine a LTS model that repre-
sents the mediator. In few words, for both affordance protocols,
the mediator LTS defines the sequences of actions that serve to
translate actions from one protocol to the other, further including
the possible re-ordering of actions.

Discovery
Enabler

NS1 NS2

Learning
Enabler

Synthesis
Enabler

 Networked System 1

NS1 NS2

Partial NS Models

NS Models

 Networked System 2 Emergent
Middleware

Monitoring
Enabler

α β

ɣ
δ
ωλρ

ρ

Figure 3. The Enablers supporting Emergent Middleware

The Learning phase is a continuous process where the knowledge
about NSs is enriched over time, thereby implying that Emergent
Middleware possibly needs to adapt as the knowledge evolves. In
particular, the synthesised Emergent Middleware is equipped with
monitoring probes that gather information on actual interaction be-
tween connected systems. This observed Monitoring Data is deliv-
ered to the Learning Enabler, where the learned hypotheses about the
NSs’ behaviour are compared to the observed interactions. Whenever
an observation is made by the monitoring probes that is not con-
tained in the learned behavioural models, another iteration of learn-
ing is triggered, yielding refined behavioural models. These models
are then used to synthesise and deploy an evolved Emergent Middle-
ware.

3 MACHINE LEARNING: A BRIEF
TAXONOMY

Machine learning is the discipline that studies methods for automat-
ically inducing functions (or system of functions) from data. This
broad definition of course covers an endless variety of subprob-
lems, ranging from the least-squares linear regression methods typi-
cally taught at undergraduate level [21] to advanced structured out-
put methods that learn to associate complex objects in the input [18]
with objects in the output [14] or methods that infer whole compu-
tational structures [10]. To better understand the broad range of ma-
chine learning, one must first understand the conceptual differences
between learning setups in terms of their prerequisites:

• Supervised learning is the most archetypical problem setting in
machine learning. In this setting, the learning mechanism is pro-
vided with a (typically finite) set of labelled examples: a set of
pairs T = {(x, y)}. The goal is to make use of the example set

T to induce a function f , such that f(x) = y, for future unseen
instances of (x, y) pairs (see for example [21]). A major hurdle
in applying supervised learning is the often enormous effort of
labelling the examples.

• Unsupervised learning lowers the entry hurdle for application by
requiring only unlabelled example sets, i.e., T = {x}. In order
to be able to come up with anything useful when no supervision
is provided, the learning mechanism needs a bias that guides the
learning process. The most well-known example of unsupervised
learning is probably k-means clustering, where the learner learns
to categorise objects into broad categories even though the cate-
gories were not given a priori. Obviously, the results of unsuper-
vised learning cannot compete with those of supervised learning.

• Semi-supervised learning is a pragmatic compromise. It allows
one to use a combination of a small labelled example set Ts =
{(x, y)} together with a larger unlabelled example set Tu = {x}
in order to improve on both the plain supervised learner making
use of Ts only and the unsupervised learner using all available
examples.

• Active learning puts the supervisor in a feedback loop: whenever
the (active) learner detects a situation where the available test set
is inconclusive, the learner actively constructs complementing ex-
amples and asks the supervisor for the corresponding labelling.
This learning discipline allows a much more targeted learning
process, since the active learner can focus on the important/d-
ifficult cases (see for example [5]). The more structured the in-
tended learning output is, the more successful active learning will
be, as the required structural constraints are a good guide for the
active construction of examples [3]. It has been successfully used
in practice for inferring computational models via testing [11, 10].

Learning technology has applicability in many domains. The next
sections concentrate on the learning-based techniques that we are de-
veloping to enable the automated inference of semantic knowledge
about Networked Systems, both functional and behavioural. The for-
mer relies on statistical learning while the latter is based on automata
learning.

4 STATISTICAL LEARNING FOR INFERRING
NS FUNCTIONAL SEMANTICS

As discussed in Section 2.2, the first step in deciding whether two
NSs will be able to interoperate consists in checking the compatibil-
ity of their affordances based on their functional semantics (i.e., on-
tology concepts characterising the purpose of the affordance). Then,
in the successful cases, behavioural matching is performed so as
to synthesise required mediator. This process highlights the central
role of the functional matching of affordances in reducing the over-
all computation by acting as a kind of filter for the subsequent be-
havioural matching. Unfortunately, legacy applications do not nor-
mally provide affordance descriptions. We must therefore rely upon
an engineer to provide them manually, or find some automated means
to extract the probable affordance from the interface description.
Note that it is not strictly necessary to have an absolutely correct
affordance since falsely-identified matches will be caught in the sub-
sequent detailed checks.

Since the interface is typically described by textual documenta-
tion, e.g., XML documents, we can capitalise on the long tradition
of research in text categorisation. This studies approaches for auto-
matically enriching text documents with semantic information. The

7

latter is typically expressed by topic categories: thus text categori-
sation proposes methods to assign documents (in our case, interface
descriptions) to one or more categories. The main tool for imple-
menting modern systems for automatic document classification is
machine learning based on vector space document representations.

In order to be able to apply standard machine learning meth-
ods for building categorizers, we need to represent the objects we
want to classify by extracting informative features. Such features are
used as indications that an object belongs to a certain category. For
categorisation of documents, the standard representation of features
maps every document into a vector space using the bag-of-words ap-
proach [25]. In this method, every word in the vocabulary is associ-
ated with a dimension of the vector space, allowing the document to
be mapped into the vector space simply by computing the occurrence
frequencies of each word. For example, a document consisting of the
string “get Weather, get Station” could be represented as the vector
(2, 1, 1, . . .) where, e.g., 2 in the first dimension is the frequency of
the “get” token. The bag-of-words representation is considered the
standard representation underlying most document classification ap-
proaches. In contrast, attempts to incorporate more complex struc-
tural information have mostly been unsuccessful for the task of cat-
egorisation of single documents [22] although they have been suc-
cessful for complex relational classification tasks [19].

However, the task of classifying interface descriptions is differ-
ent from classifying raw textual documents. Indeed, the interface de-
scriptions are semi-structured rather than unstructured, and the rep-
resentation method clearly needs to take this fact into account, for
instance, by separating the vector space representation into regions
for the respective parts of the interface description. In addition to the
text, various semi-structured identifiers should be included in the fea-
ture representation, e.g., the names of the method and input parame-
ters defined by the interface. The inclusion of identifiers is important
since: (i) the textual content of the identifiers is often highly infor-
mative of the functionality provided by the respective methods; and
(ii) the free text documentation is not mandatory and may not always
be present.

For example, if the functionality of the interface are described by
an XML file written in WSDL, we would have tags and structures, as
illustrated by the text fragment below, which relates to a NS imple-
menting a weather station and is part of the GMES scenario detailed
in the next section on experiments:

<wsdl : message name=” GetWeatherByZipCodeSoapIn”>
<wsdl : p a r t name=” p a r a m e t e r s ”

e l e m e n t =” t n s : GetWeatherByZipCode ” />
</ wsdl : message>
<wsdl : message name=” GetWeatherByZipCodeSoapOut”>

<wsdl : p a r t name=” p a r a m e t e r s ”
e l e m e n t =” t n s : GetWeatherByZipCodeResponse ”/>

</ wsdl : message>

It is clear that splitting the CamelCase identifier
GetWeatherStation into the tokens get, weather, and
station, would provide more meaningful and generalised con-
cepts, which the learning algorithm can use as features. Indeed,
to extract useful word tokens from the identifiers, we split them
into pieces based on the presence of underscores or CamelCase; all
tokens are then normalised to lowercase.

Once the feature representation is available, we use it to learn sev-
eral classifiers, each of them specialised to recognise if the WSDL
expresses some target semantic properties. The latter can also be con-
cepts of an ontology. Consequently, our algorithm may be used to
learn classifiers that automatically assign ontology concepts to ac-
tions defined in NS interfaces. Of course, the additional use of do-

main (but at the same time general) ontologies facilitates the learn-
ing process by providing effective features for the interface repre-
sentation. In other words, WSDL, domain ontologies and any other
information contribute to defining the vector representation used for
training the concept classifiers.

5 AUTOMATA LEARNING FOR INFERRING
NS BEHAVIOURAL SEMANTICS

Automata learning can be considered as a key technology for deal-
ing with black box systems, i.e., systems that can be observed, but
for which no or little knowledge about the internal structure or even
their intent is available. Active Learning (a.k.a regular extrapolation)
attempts to construct a deterministic finite automaton that matches
the behaviour of a given target system on the basis of test-based in-
teraction with the system. The popular L∗ algorithm infers Deter-
ministic Finite Automata (DFAs) by means of membership queries
that test whether certain strings (potential runs) are contained in the
target system’s language (its set of runs), and equivalence queries
that compare intermediately constructed hypothesis automata for lan-
guage equivalence with the target system.

In its basic form, L∗ starts with a hypothesis automaton that treats
all sequences of considered input actions alike, i.e., it has one sin-
gle state, and refines this automaton on the basis of query results,
iterating two main steps: (1) refining intermediate hypothesis au-
tomata using membership queries until a certain level of “consis-
tency” is achieved (test-based modelling), and (2) testing hypothe-
sis automata for equivalence with the target system via equivalence
queries (model-based testing). This procedure successively produces
state-minimal deterministic (hypothesis) automata consistent with all
the encountered query results [3]. This basic pattern has been ex-
tended beyond the domain of learning DFAs to classes of automata
better suited for modelling reactive systems in practice. On the basis
of active learning algorithms for Mealy machines, inference algo-
rithms for I/O-automata [1], timed automata [7], Petri Nets [6], and
Register Automata [10], i.e., restricted flow graphs, have been devel-
oped.

While usually models produced by active learning are used in
model-based verification or some other domain that requires com-
plete models of the system under test (e.g., to prove absence of
faults), here the inferred models serve as a basis for the interaction
with the system for Emergent Middleware synthesis. This special fo-
cus poses unique requirements on the inferred models (discussed in
detail in [9]), which become apparent in the following prototypical
example.

Figure 4 shows a typical interoperability scenario where two NSs
are actual implementations of their specified interfaces. The NS on
the right implements a weather service that provides weather fore-
casts for regions identified by ZIP codes. The NS on the left is a
matching client. The two NSs communicate via SOAP protocol mes-
sages (1), (5), and together realise some protocol, which comprises
a control part (2), and a data part (3) at both NSes. The data parts
may be best described as a set of local variables or registers. The
control part can be modelled as a labeled transition system with ac-
tual blocks of code labelling the transitions (4). Each code block of
Fig. 4 would consist of an entry point for one interface method (e.g.,
GetWeatherByZipCode), conditions over parameters and local
variables (e.g., comparing ZIP codes), assignments and operations
on local variables (e.g., storing returned weather data), and a return
statement.

To infer the behaviour of one NS (say, the right one from Fig. 4),

8

zipcode D-44789

...

<SOAP-ENV:Body> <ns1:GetWeatherByZipCodeSoapIn ...

 ...
 <zipcode>D-44789</zipcode>
 ...

<SOAP-ENV:Body>

 <ns1:GetWeatherByZipCodeSoapOut...

 ...

 <report>5°C, sunny</report>

 ...

1

5

2

4

3

2

weather =
 GetWeatherByZipCode(zipcode)

report_D-44789 5°C, sunny

...

3

GetWeatherByZipCode:
 if (zipcode == 'D-44789') {
 return new Response(rep_D44789);
 }
 break;

weather

Figure 4. Communicating Components

the role of the other NS has to be undertaken by a learning algorithm,
which is aware of the interface alphabet of the NS whose affordance’s
behaviour is to be learned. This interface alphabet is derived auto-
matically from the interface description of the NS under scrutiny. A
test-driver is then instantiated by the Learning Enabler, translating
the alphabet symbols to remote invocations of the NS to be learned.

Now, to capture the interaction of the two NSs faithfully, two phe-
nomena have to be made explicit in the inferred models:

• Preconditions of Primitives: Usually real systems operate on com-
munication primitives that contain data values relevant to the com-
munication context and have a direct impact on the exposed be-
haviour. Consider as an example session identifiers or sequence
numbers that are negotiated between the communication partici-
pants and included in every message. The models have to make ex-
plicit causal relations between data parameters that are used in the
communication (e.g, the exact session identifier that is returned
when opening a new session has to be used in subsequent calls).

• Effects of Primitives: The learned models will only be useful for
Emergent Middleware (mediator) synthesis within a given seman-
tic context. Most NSs have well-defined purposes as characterised
by affordances (e.g., getting localised weather information). A
subset of the offered communication primitives, when certain pre-
conditions are met, will lead to successful conclusion of this pur-
pose. This usually will not be deducible from the communication
with a system: an automata learning algorithm in general cannot
tell error messages and regular messages (e.g., weather informa-
tion) apart. In such cases, information about effects of primitives
rather has to be provided as an additional (semantic) input to the
learning algorithm (e.g., in terms of ontologies [4]), as supported
by the semantically annotated interface descriptions of NSes.

Summarizing, in the context of Emergent Middleware, especially
dealing with parameters and value domains, and providing semantic
information on the effect of communication primitives, are aspects
that have to be addressed with care. We have reaffirmed this analysis
in a series of experiments on actual implementations of NSs.

The automata learning technique is provided by LearnLib [17, 24],
a component-based framework for automata learning. In the pro-
duced model, each transition consists of two parts, separated by a
forward-slash symbol: on the left hand side an abstract parameterised
symbol is denoted, while on the right hand side the named variable
storing the invocation result is specified. Figure 5 depicts the be-
havioural description of the weather station, which was learned in

31 seconds on a portable computer, using 258 MQs.
The model correctly reflects the steps necessary, e.g., to

read sensor data: createProperties, createSession,
getWeatherStation, authenticate and getSensor have
to be invoked before getSensorData can be called success-
fully. Additionally, the actual realisation of authentication, which
cannot be deduced from the interface specification alone, is re-
vealed in the inferred model. When simply looking at the param-
eter types, the action getSensor should be invocable directly
after the getWeatherStation primitive. However, in reality
getSensor is guarded by an authentication mechanism, meaning
that authenticate has to be successfully invoked beforehand.
Also, from the model, it is easily deducible that the authenticate
action will indeed merely affect the provided station data object (and
not, e.g., the whole session): requesting a new station data object will
always necessitate another authentication step before getSensor
can be invoked again, as that action requires an authenticated station
data object.

Figure 5. Behavioural Model of the Weather Station Sensor Network
Service – Starting State is s0

9

6 CONCLUSIONS
This paper has presented the central role of learning in supporting
the concept of Emergent Middleware, which revisits the middleware
paradigm to sustain interoperability in increasingly heterogeneous
and dynamic complex distributed systems. The production of Emer-
gent Middleware raises numerous challenges, among which dealing
with the a priori minimal knowledge about networked systems that
is available to the generation process. Indeed, semantic knowledge
about the interaction protocols run by the Networked Systems is
needed to be able to reason and compose protocols in a way that
enable NSs to collaborate properly. While making such knowledge
available is increasingly common in Internet-worked environments
(e.g., see effort in the Web service domain), it remains absent from
the vast majority of descriptions exposed for the Networked Systems
that are made available over the Internet. This paper has specifically
outlined how powerful learning techniques that are being developed
by the scientific community can be successfully applied to the Emer-
gent Middleware context, thereby enabling the automated learning
of both functional and behavioural semantics of NSs. In more detail,
this paper has detailed how statistical and automata learning can be
exploited to enable on-the-fly inference of functional and behavioural
semantics of NSs, respectively.

Our experiments so far show great promise with respect to the ef-
fectiveness and efficiency of machine learning techniques applied to
realistic distributed systems such as in the GMES case. Our short-
term future work focuses on the fine tuning of machine learning al-
gorithms according to the specifics of the networked systems as well
as enhancing the learnt models with data representations and non-
functional properties, which can result in considerable gains in terms
of accuracy and performance. In the mid-term, we will work on the
realisation of a continuous feedback loop from real-execution obser-
vations of the networked systems to update the learnt models dy-
namically as new knowledge becomes available and to improve the
synthesised emergent middleware accordingly.

ACKNOWLEDGEMENTS
This research has been supported by the EU FP7 projects: CONNECT

– Emergent Connectors for Eternal Software Intensive Network-
ing Systems (project number FP7 231167), EternalS – “Trustwor-
thy Eternal Systems via Evolving Software, Data and Knowledge”
(project number FP7 247758) and by the EC Project, LIMOSINE

– Linguistically Motivated Semantic aggregation engiNes (project
number FP7 288024).

REFERENCES
[1] Fides Aarts and Frits Vaandrager, ‘Learning I/O Automata’, in CON-

CUR 2010 - Concurrency Theory, eds., Paul Gastin and Franois
Laroussinie, volume 6269 of Lecture Notes in Computer Science, 71–
85, Springer Berlin / Heidelberg, (2010).

[2] Rajeev Alur, Pavol Cerny, P. Madhusudan, and Wonhong Nam, ‘Syn-
thesis of interface specifications for Java classes’, in Proc. POPL ’05,
(2005).

[3] Dana Angluin, ‘Learning regular sets from queries and counterexam-
ples’, Inf. Comput., 75(2), 87–106, (1987).

[4] Gordon Blair, Amel Bennaceur, Nikolaos Georgantas, Paul Grace,
Valérie Issarny, Vatsala Nundloll, and Massimo Paolucci, ‘The Role
of Ontologies in Emergent Middleware: Supporting Interoperability in
Complex Distributed Systems’, in Middleware 2011 - 12th Interna-
tional Middleware Conference, (2011).

[5] David A. Cohn, Zoubin Ghahramani, and Michael I. Jordan, ‘Active
learning with statistical models’, J. Artif. Intell. Res. (JAIR), 4, 129–
145, (1996).

[6] Javier Esparza, Martin Leucker, and Maximilian Schlund, ‘Learning
workflow petri nets’, volume 113, pp. 205–228, (2011).

[7] Olga Grinchtein, Bengt Jonsson, and Paul Pettersson, ‘Inference of
Event-Recording Automata Using Timed Decision Trees’, in Proc.
CONCUR 2006, 17th Int. Conf. on Concurrency Theory, pp. 435–449,
(2006).

[8] Andreas Heß and Nicholas Kushmerick, ‘Learning to attach semantic
metadata to web services’, in International Semantic Web Conference,
pp. 258–273, (2003).

[9] Falk Howar, Bengt Jonsson, Maik Merten, Bernhard Steffen, and Sofia
Cassel, ‘On handling data in automata learning - considerations from
the connect perspective’, in ISoLA (2), pp. 221–235, (2010).

[10] Falk Howar, Bernhard Steffen, Bengt Jonsson, and Sofia Cassel, ‘Infer-
ring canonical register automata’, in VMCAI, pp. 251–266, (2012).

[11] Falk Howar, Bernhard Steffen, and Maik Merten, ‘Automata learning
with automated alphabet abstraction refinement’, in VMCAI, pp. 263–
277, (2011).

[12] H. Hungar, T. Margaria, and B. Steffen, ‘Test-based model generation
for legacy systems’, in Test Conference, 2003. Proceedings. ITC 2003.
International, volume 1, pp. 971–980, (30-Oct. 2, 2003).

[13] Valérie Issarny, Bernhard Steffen, Bengt Jonsson, Gordon Blair, Paul
Grace, Marta Kwiatkowska, Radu Calinescu, Paola Inverardi, Mas-
simo Tivoli, Antonia Bertolino, and Antonino Sabetta, ‘CONNECT
Challenges: Towards Emergent Connectors for Eternal Networked Sys-
tems’, in 14th IEEE International Conference on Engineering of Com-
plex Computer Systems, (2009).

[14] Thorsten Joachims, Thomas Hofmann, Yisong Yue, and Chun-
Nam John Yu, ‘Predicting structured objects with support vector ma-
chines’, Commun. ACM, 52(11), 97–104, (2009).

[15] Ioannis Katakis, Georgios Meditskos, Grigorios Tsoumakas, Nick
Bassiliades, and Ioannis P. Vlahavas, ‘On the combination of textual
and semantic descriptions for automated semantic web service classifi-
cation’, in AIAI, pp. 95–104, (2009).

[16] David L. Martin, Mark H. Burstein, Drew V. McDermott, Sheila A.
McIlraith, Massimo Paolucci, Katia P. Sycara, Deborah L. McGuin-
ness, Evren Sirin, and Naveen Srinivasan, ‘Bringing semantics to web
services with OWL-S’, in World Wide Web, pp. 243–277, (2007).

[17] Maik Merten, Bernhard Steffen, Falk Howar, and Tiziana Margaria,
‘Next generation learnlib’, in TACAS, pp. 220–223, (2011).

[18] Alessandro Moschitti, ‘Efficient convolution kernels for dependency
and constituent syntactic trees’, in ECML, pp. 318–329, (2006).

[19] Alessandro Moschitti, ‘Kernel methods, syntax and semantics for rela-
tional text categorization’, in Proceedings of ACM 17th Conference on
Information and Knowledge Management (CIKM), Napa Valley, United
States, (2008).

[20] Alessandro Moschitti, ‘Kernel-based machines for abstract and easy
modeling of automatic learning’, in 11th International School on For-
mal Methods for the Design of Computer, Communication and Software
Systems, SFM-11, (2011).

[21] Alessandro Moschitti, ‘Kernel-based machines for abstract and easy
modeling of automatic learning’, in 11th International School on For-
mal Methods for the Design of Computer, Communication and Software
Systems, SFM-11, pp. 458–503, (2011).

[22] Alessandro Moschitti and Roberto Basili, ‘Complex linguistic features
for text classification: A comprehensive study’, in Proceedings of the
26th European Conference on Information Retrieval Research (ECIR
2004), pp. 181–196, Sunderland, United Kingdom, (2004).

[23] Doron Peled, Moshe Y. Vardi, and Mihalis Yannakakis, ‘Black box
checking’, in FORTE, pp. 225–240, (1999).

[24] Harald Raffelt, Bernhard Steffen, Therese Berg, and Tiziana Margaria,
‘LearnLib: a framework for extrapolating behavioral models’, Int. J.
Softw. Tools Technol. Transf., 11(5), 393–407, (2009).

[25] Gerard Salton, A. Wong, and C. S. Yang, ‘A vector space model for
automatic indexing’, Technical Report TR74-218, Department of Com-
puter Science, Cornell University, Ithaca, New York, (1974).

[26] R.W. Selby and A.A. Porter, ‘Learning from examples: generation and
evaluation of decision trees for software resource analysis’, Software
Engineering, IEEE Transactions on, 14(12), (1988).

[27] Peter Stone and Manuela Veloso, ‘Multiagent systems: A survey from
a machine learning perspective’, Autonomous Robots, 8, (2000).

10

Assessment of software testing and quality assurance in
natural language processing applications and a
linguistically inspired approach to improving it

K. Bretonnel Cohen1 and Lawrence E. Hunter and Martha Palmer

Abstract. Significant progress has been made in addressing the
scientific challenges of biomedical text mining. However, the tran-
sition from a demonstration of scientific progress to the production
of tools on which a broader community can rely requires that funda-
mental software engineering requirements be addressed. In this pa-
per we characterize the state of biomedical text mining software with
respect to software testing and quality assurance. Biomedical natu-
ral language processing software was chosen because it frequently
specifically claims to offer production-quality services, rather than
just research prototypes.

We examined twenty web sites offering a variety of text mining
services. On each web site, we performed the most basic software test
known to us and classified the results. Seven out of twenty web sites
returned either bad results or the worst class of results in response
to this simple test. We conclude that biomedical natural language
processing tools require greater attention to software quality.

We suggest a linguistically motivated approach to granular eval-
uation of natural language processing applications, and show how
it can be used to detect performance errors of several systems and to
predict overall performance on specific equivalence classes of inputs.

We also assess the ability of linguistically-motivated test suites
to provide good software testing, as compared to large corpora of
naturally-occurring data. We measure code coverage and find that
it is considerably higher when even small structured test suites are
utilized than when large corpora are used.

1 Introduction

Biomedical natural language processing tools and data generated by
their application are beginning to gain widespread use in biomedi-
cal research. Significant progress has been made recently in address-
ing the scientific challenges of creating computer programs that can
properly handle the complexities of human language. However, the
transition from a demonstration of scientific progress to the produc-
tion of tools on which a broader community can depend requires that
fundamental software engineering requirements be addressed. Soft-
ware for medical devices has the benefit of explicit quality assurance
requirements per Section 201(h) of the Federal Food, Drug, and Cos-
metic Act; Title 21 of the Code of Federal Regulations Part 820; and
61 Federal Register 52602 [8] (p. 7). However, unless it is embedded
in a medical device, biomedical natural language processing software
is not currently subject to federal quality assurance requirements.

1 Computational Bioscience Program, University of Colorado School of
Medicine, and Department of Linguistics, University of Colorado. Email:
kevin.cohen@gmail.com.

This paper represents the first attempt to characterize the state of
one portion of the diverse world of computational bioscience soft-
ware, specifically biomedical natural language processing applica-
tions, with respect to software testing and quality assurance. We as-
say a broad range of biomedical natural language processing services
that are made available via web sites for evidence of quality assur-
ance processes. Our findings suggest that at the current time, soft-
ware testing and quality assurance are lacking in the community that
produces biomedical natural language processing tools. For the tool
consumer, this finding should come as a note of caution.

2 Approach to assessing the state of natural
language processing applications with respect to
software testing and quality assurance

We looked at twenty web sites offering a variety of text-mining-
related services. In the body of this work, we never identify them
by name: following the tradition in natural language processing, we
do not want to punish people for making their work freely available.
Our purpose is not to point fingers—indeed, one of our own services
is every bit as lacking in most or all of the measures that we describe
below as any. Rather, our goal is to allow the community to make
a realistic assessment of the state of the art with respect to software
testing and quality assurance for biomedical natural language pro-
cessing systems, with the hope of stimulating a healthy change.

The claim to have produced a useful tool is a commonplace in
the biomedical natural language processing literature. The explicitly
stated motivation for much work in the field is to assist in the under-
standing of disease or of life, not to advance the state of computer
science or of understanding of natural (i.e., human) language. (In
this, the biomedical natural language processing community differs
from the mainstream NLP community, which at least in theory is
motivated by a desire to investigate hypotheses about NLP or about
natural language, not to produce tools.) Software is widely known to
be characterized by “bugs,” or undesired behaviors—[15] reviews a
wide range of studies that suggest an industry average of error rates
of 1 to 25 bugs per thousand lines of code in a wide variety of types
of software, and a Food and Drug Administration analysis of 3,140
medical device recalls in the 1990s concluded that 7.7% of them
(242/3,140) were due to software errors [8] (p. 7). Given the stated
intent to provide “mission-critical” tools to doctors and researchers,
one might expect due diligence with regard to the quality of software
artifacts to be a commonplace in the biomedical natural language
processing community and an established subfield of its research mi-
lieu. Surprisingly, that is not the case: on the widest imaginable def-

11

inition of quality assurance, there are fewer than a dozen published
studies on quality assurance for biomedical natural language process-
ing software, despite the high (and rapidly growing) level of activity
in the biomedical natural language processing area reported in [24]
and reviewed in work such as [25]. Given the apparently urgent need
for biomedical natural language processing tools that many papers
claim in an introductory paragraph citing the latest count of papers in
PubMed/MEDLINE, it seems plausible that although researchers in
the area are exercising due diligence with respect to the artifacts that
they produce, they simply are not taking the time to do research on
quality assurance per se. We assayed the extent to which this might
be the case, and report the results here.

3 Methods and results for assessing natural
language processing applications with respect to
software testing and quality assurance

Our methodology was simple. We examined 20 web sites that either
provide some form of text mining service (e.g. gene name identifi-
cation or protein-protein interaction extraction) or provide access to
the output of text mining (e.g. a text-mining-produced database). On
each web site, we tried the most basic software test imaginable. This
test, which our experience suggests is probably the first action per-
formed by a typical professional software tester presented with any
new application to test, consists of passing the application an empty
input. For many web sites, the test consisted of simply hitting the
“Submit” button or its equivalent. For some web sites, this was first
preceded by clearing sample input from a text box. This is indeed
the simplest and most basic software test of which we are aware.
We make the following (undoubtedly simplified) assumption: if the
system builders paid any attention to software testing and quality as-
surance at all, they will have run this test; evidence that they tried the
test will be that the system responds to a blank input by prompting
the user to populate the empty field.

What constitutes an appropriate response to an empty input? We
propose that the best response to an empty input where a non-empty
input was expected is to give the user helpful feedack—to prompt the
user to provide an input. For a GUI-based application, the next-best
response is probably Google’s strategy—to do nothing, and present
the user with the exact same input screen. (For an API, the second-
best response may well be to throw an uncaught exception—this has
the advantage of making it clear to the programmer that something is
amiss.) This second-best response is not necessarily bad.

A bad response would be to return something. For example, we
found that in response to an empty input, many systems will return
something along the lines of “0 results found”. This is bad in that
it does not allow the user (or the calling routine) to differentiate be-
tween the situation where no results were found because the input is
empty and the situation where no results were found because there
truly should not have been any results—the user is given no indica-
tion whatsoever that anything was amiss with the input in the for-
mer case. (A less common phenomenon that we observed was that a
system might return results that are clearly invalid if examined by a
human. For example, one system returned a table full of SQL error
messages when passed an empty input. This may not be a problem
when called from a GUI, but if called by an API, the results might
not be noticed until much later in the processing pipeline, if at all,
and are likely to be difficult to track down to their origin.) Finally,
the worst possible response is to return something that looks like a
legitimate response. For example, one application that we examined
returns a perfectly valid-looking list of disease-associated quantita-

tive trait loci (multiple gene locations that contribute to a single phys-
ical manifestation) when passed an empty input. This program may
seriously mislead an application that calls it.

In total, we examined 23 web sites, selecting them in alphabetical
order from a web page that lists biomedical natural language pro-
cessing applications2. Two of them were down completely, and one
of them crashed every time that we attempted to use it, whether or not
the input field was empty. Table 1 summarizes the results: of the 20
that were operative and did not crash, a full 7/20 returned either the
“bad” or the “worst” type of results, and one of those seven returned
the worst.

This test assesses the user interface, not the underlying functional-
ity. However, we suspect that the testing applied to the interface that
authors use to showcase their work to the world may be better than
the testing applied to their underlying application. And, it is certainly
the case that this test can reveal real problems with the underlying ap-
plication, as in the system described above which returned a table of
SQL error messages in response to the test.

As a reviewer pointed out, the test is not repeatable—web sites
go down, their functionality is changed, and their authors sometimes
respond to bug reports. However, the survey captures a snapshot of
the state of the biomedical natural language processing world at one
point in time, and the general approach is applicable to any applica-
tion.

4 A linguistically motivated approach to testing
natural language processing applications

Although the natural language processing community has a long tra-
dition of global evaluation of applications in terms of global metrics
like precision, recall, and F-measure, there has been much less work
on granular evaluation of the performance of such applications. (In
the remainder of the paper, there is a deliberate blurring or mixing
of metaphors between what Palmer and Finin have called glass-box
evaluation (which I refer to as granular evaluation), or fine-grained
evaluation of specific linguistic features [18]; and finding errors in
performance, or bugs. As will be seen, it is fruitful to blur this dis-
tinction.) There has been correspondingly little research on methods
for doing so. We describe here a methodology for granular evaluation
of the performance of natural language processing applications us-
ing techniques from traditional software testing and from linguistics.
Software testing conventionally makes use of test suites. A test suite
is a set of test inputs with known desired outputs that is structured so
as to explore the feature space of a specified type of input. Test cases
are built by determining the set of features that a type of input might
have and the contexts in which those features might be found. For
a simple example, a function that takes numbers as inputs might be
tested with a test suite that includes integers, real numbers, positive
numbers, negative numbers, and zero. Good testing also includes a
suite of “dirty” or unexpected inputs—for example, the function that
takes numbers as inputs might be passed a null variable, a non-null
but empty variable, and letters.

There is a theoretical background for test suite construction. It
turns out to be overwhelmingly similar to the formal foundations of
linguistics. Indeed, if one examines the table of contents of a book on
the theory of software testing (see several listed below) and Partee et
al.’s textbook on the formal foundations of linguistics [19], one finds
very similar chapters. The table of contents of [19] includes chapters
on basic concepts of set theory, relations and functions, properties

2 http://biocreative.sourceforge.net/
bionlp tools links.html

12

Table 1. Summary of behaviors. 7 of 20 sites returned the “bad” or “worst” type of results.

Response type Sites

Good (prompt or input screen displayed) 13
Bad (invalid-appearing or false 0 returned) 6
Worst (valid-appearing data returned) 1

of relations, basic concepts of logic and formal systems, statement
logic, predicate logic, finite automata, formal languages, and Type 3
grammars. Similarly, if we look at the contents of a good book on
software testing, we see coverage of set theory [2], graphs and rela-
tions [3], logic [2], and automata [2, 3, 14].

The theoretical similarities between software testing and linguis-
tics turn out to translate into practical methodologies, as well. In par-
ticular, the techniques of software testing have much in common with
the techniques of descriptive or field linguistics—the specialty of de-
termining the structures and functioning of an unknown language.
In the case of software testing, an application is approached by de-
termining the features of inputs and combinations of inputs (both
“clean” and “dirty”) that an application might be presented with,
and constructing test suites to explore this feature space. In field lin-
guistics, an unknown language is approached by constructing ques-
tions to be answered about the language that allow us to determine
the elements of the language on all levels—phonemic and phonetic
(sounds), morphological (word formation), lexicon (words), syntac-
tic (phrasal structure)—and the ways in which they can combine.
These questions are formulated in sets called schedules that are as-
sembled to elucidate specific aspects of the language, in a proce-
dure known as scheduled elicitation. The software tester’s test suites
have a clear analogue in the “schedules” of the field linguist. Like
test suites, schedules include “dirty” data, as well—for example, in
studying the syntax of a language, the linguist will test the accept-
ability of sentences that his or her theory of the language predicts to
be ungrammatical. Thus, even though there has not been extensive
research into the field of software testing of natural language pro-
cessing applications, we already have a well-developed methodology
available to us for doing so, provided by the techniques of descriptive
linguistics.

An example of how the techniques of software testing and de-
scriptive linguistics can be merged in this way is provided in [6].
This paper looked at the problem of testing named entity recognition
systems. Named entity recognition is the task of finding mentions
of items of a specific semantic type in text. Commonly addressed
semantic types have been human names, company names, and loca-
tions (hence the term “named entity” recognition). [6] looked at the
application of named entity recognition to gene names. They con-
structed a test suite based on analyzing the linguistic characteristics
of gene names and the contexts in which they can appear in a sen-
tence. Linguistic characteristics of gene names included orthographic
and typographic features on the level of individual characters, such
as letter case, the presence or absence of punctuation marks (gene
names may contain hyphens, parentheses, and apostrophes), and the
presence or absence of numerals. (Gene names and symbols often
contain numbers or letters that indicate individual members of a fam-
ily of genes. For example, the HSP family of genes contains the genes
HSP1, HSP2, HSP3, and HSP4.) Morphosyntactic features addressed
characteristics of the morpheme or word, such as the presence or ab-

sence of participles, the presence or absence of genitives, and the
presence or absence of function words. The contextual features in-
cluded whether or not a gene name was an element of a list, its posi-
tion in the sentence, and whether or not it was part of an appositive
construction. (Gene names can have a dizzying variety of forms, as
they may reflect the physical or behavioral characteristics of an or-
ganism in which they are mutated, the normal function of the gene
when it is not mutated, or conditions with which they are associated.
Thus, we see gene names like pizza (reflecting the appearance of a
fly’s brain when the gene is mutated), heat shock protein 60 (reflect-
ing the function of the gene), and muscular dystrophy (reflecting a
disease with which the gene is associated). This high range of vari-
ability adds greatly to the difficulty of gene name recognition.)

Five different gene name recognition systems were then examined.
These features of gene names and features of contexts were sufficient
to find errors in every system. One system missed every one-word
gene name. One system missed lower-case-initial gene names when
they occurred in sentence-initial position. (Sentences in genomics ar-
ticles can begin with a lower-case letter if they begin with the name
of a gene and the mutant form of the gene, commonly named with a
lower-case-initial name, is being discussed.) One system only found
multi-word gene names if every word of the name was upper-case-
initial. One system only found multi-word names if they ended with
an alphanumeric modifier (e.g. the gene names alcohol dehydroge-
nase 6 or spindle A). One system missed all numerals at the right
edge of gene names (see preceding example). One system missed
names, but not symbols, containing hyphens (catching names like
Nat-1 but missing names like the corresponding N-acetyltransferase
1). One system missed names containing apostrophes just in the case
where they were genitives (catching names like 5’ nucleotidase pre-
cursor but missing names like corneal dystrophy of Bowman’s layer
type II (Thiel-Behnke)). Two systems had failures related to the for-
mat of Greek letters. One system performed well on symbols but did
not recognize any names at all. (Genes typically have both a name,
such as white or N-acetyltransferase 1, and a “symbol,” similar to an
abbreviation, such as w for white and Nat-1 for N-acetyltransferase.)

Test suites are effective for granular evaluation of performance,
but should not be able to predict global measures such as precision,
recall, and F-measure, since the proportions of named entity types in
the test suite do not reflect the distribution of those types in naturally
occurring data. (In fact, this is one of their advantages—as pointed
out by [17], an advantage of test suites is that they limit the redun-
dancy of common entity types and address the scarcity of rare entity
types that are observed in naturally occurring data.) However, it was
hypothesized that test suites might be able to predict performance on
specific equivalence classes of inputs (where an equivalence class is
a set of inputs that are all expected to test the same functionality and
reveal the same bugs; they are similar to what linguists call natural
classes). To test this hypothesis, the authors built a number of simple
test suites, varying only the length of the gene name, letter case, hy-

13

phenation, and sentence position. They then ran a single gene name
recognition system on all of these test suites. Based on the results
obtained from the test suites, they made the following predictions:

1. Recall should be poor for gene names with initial numerals, such
as 12-LOX and 18-wheeler.

2. Recall should be poor for gene names that contain function words,
such as Pray for elves and ken and barbie.

3. Recall should be poor for upper-case-initial gene names in
sentence-medial position.

4. Recall should be poor for 3-character-long symbols.
5. Recall should be good for numeral-final gene names such as yeast

heat shock protein 60.

The system was then used to process two corpora containing gene
names—the BioCreative I corpus [23] and the PMC corpus [22].
Overall performance for the BioCreative I corpus was a precision
of 0.65 and recall of 0.68. Overall performance for the PMC corpus
was a precision of 0.71 and recall of 0.62.

The performance of the system for the various equivalence classes
was as shown in Table 2.

Table 2. Performance on two corpora for the predictable categories [6].

Prediction BioCreative
TP FP FN P R

1 12 57 17 0.17 0.41
2 0 1 38 0.0 0.0
4 556 278 512 0.67 0.52
5 284 251 72 0.53 0.80

PubMed Central
TP FP FN P R

1 8 10 0 0.44 1.0
2 1 0 2 1.0 0.33
4 163 64 188 0.72 0.46
5 108 54 46 0.67 0.70

The predictions based on the test suites were almost entirely sup-
ported. The single anomaly was the high recall observed on the PMC
corpus for prediction 1, where low recall was predicted. In all other
cases, the predictions were correct—recall for the equivalence class
was predicted to be low for 1, 2, and 4 and it was lower than the
recall for the corpus as a whole for these equivalence classes; recall
was predicted to be high for 5, and it was higher than the recall for
the corpus as a whole for this equivalence class.

It will be noted that there are no results given for prediction 3. This
is because it concerns letter case, and letter case had been normalized
to lower case in the corpora. This points out again an advantage of
test suites—we know that such gene names exist in the literature, but
they were not represented in these corpora at all, making the corpora
unsuitable for assessing the performance of a system on this type of
name.

It should be noted that these findings are significant (in the non-
statistical sense of that term) because of the small numbers of items
in some of the cells, not in spite of it. These details of performance
would likely be lost in an evaluation that only assessed precision, re-
call, and F-measure, and are the difference between finding or miss-
ing elusive statements that are of crucial interest to the biologist, per-
haps precisely because of their rarity.

5 An engineering perspective on the use of test
suites versus corpora

To the extent that testing is considered in the natural language pro-
cessing community, there is an implicit assumption that the way to
test an application is by running it on a large corpus. We tested this
assumption by measuring code coverage when a natural language
processing application was run with a large corpus as its input and
with a small structured test suite as its input. The natural language
processing application was a semantic parser known as OpenDMAP
[11]. It allows free mixing of terminals and non-terminals, and se-
mantically typed phrasal constituents, such as “gene phrases.” It
has been applied to a variety of information extraction tasks in the
biomedical domain and has achieved winning results in two shared
tasks [1, 9].

Code coverage is a measure of the percentage of code in an appli-
cation that is executed during the running of a test suite. The goal is
to maximize coverage—bugs in code will not be found if the code is
not executed. Various kinds of coverage can be measured. Line cov-
erage is the percentage of lines of code that have been executed. It is
the weakest indicator of code coverage. Branch coverage is the per-
centage of branches within conditionals that have been traversed. It
is more informative than line coverage.

The corpus that we employed was the largest biomedical corpus
available at the time. It consisted of 3,947,200 words. The test suite
that we used was much smaller. It contained altogether 278 test cases
constructed by the application developer. He did not monitor code
coverage while designing the test suite.

Table 3 (next page) shows the results of running the application on
the corpus and on the test suite. As can be seen, the small test suite
yielded higher code coverage for every component of the system and
every measure of code coverage—sometimes much higher coverage,
as in the case of branch coverage for the rules components, where
the corpus achieved 24% code coverage and the test suite achieved
71% code coverage. The last three columns show the results of an
experiment in which we varied the size of the rule set. As can be seen
from the fact that the coverage for the entire rule set, a partition of
the rule set that only covered nominals, and a partition of the rule set
that covered only verbs, are all equal, the number of rules processed
was not a determiner of code coverage.

In a further experiment, we examined how code coverage is af-
fected by variations in the size of the corpus. We monitored cover-
age as increasingly larger portions of the the corpus were processed.
The results for line coverage are shown in Figure 1. (The results for
branch coverage are very similar and are not shown.) The x axis
shows the number of sentences processed. The thick solid line in-
dicates line coverage for the entire application. The thin solid line
indicates line coverage for the rules package. The broken line and
the right y axis indicate the number of pattern matches.

As the figure shows quite clearly, increasing the size of the cor-
pus does not lead to increasing code coverage. It is 39% when a
single sentence has been processed, 40% when 51 sentences have
been processed, and 41%—the highest value that it will reach—when
1,000 sentences have been processed. The coverage after processing
191,478 sentences—the entire corpus of almost 4,000,000 words—
is no higher than it was at 1,000 sentences, and is barely higher than
after processing a single sentence.

Thus, we see that the “naturally occurring data assumption” does
not hold—from an engineering perspective, there is a clear advantage
to using structured test suites.

This should not be taken as a claim that running an application

14

Table 3. Application- and package-level coverage statistics using the test suite, the full corpus with the full set of rules, and the full corpus with two reduced
sets of rules. The highest value in a row is bolded. The last three columns are intentionally identical [7].

Metric Functional tests Corpus, all rules nominal rules verbal rules

Overall line coverage 56% 41% 41% 41%
Overall branch coverage 41% 28% 28% 28%
Parser line coverage 55% 41% 41% 41%
Parser branch coverage 57% 29% 29% 29%
Rules line coverage 63% 42% 42% 42%
Rules branch coverage 71% 24% 24% 24%
Parser class coverage 88% (22/25) 80% (20/25)
Rules class coverage 100% (20/20) 90% (18/20)

Figure 1. Increase in percentage of line coverage as increasing amounts of
the corpus are processed. The left y axis is the percent coverage. The right y

axis is the number of rule matches [7].

against a large corpus is bad. In fact, we routinely do this, and have
found bugs that were not uncovered in other ways. However, test-
ing with a structured test suite should remain a primary element of
natural language processing software testing.

It will be noted that even with the structured test suite, our code
coverage was less than 60% overall, as predicted by Wieger’s work,
which shows that when software is developed without monitoring
code coverage, typically only 50-60% of the code is executed by test
suites [15] (p. 526). However, as soon as we tried to increase our
code coverage, we almost immediately uncovered two “showstop-
per” bugs.

6 Discussion

Although our assay of the software testing status of biomedical natu-
ral language processing applications was crude, the findings are con-
sistent with the claim that 7/20 biomedical natural language process-
ing web sites have not been subjected to even the lowest, most su-
perficial level of software testing. For the rest, we cannot conclude
that they have been adequately tested—only that they appear to have
benefited from at least the lowest, most superficial level of testing.

This absence of software testing and quality assurance comes de-
spite the fact that like the mainstream NLP community, the biomed-
ical natural language processing community has paid considerable
attention to software evaluation. Some clarification of terminology
is useful here. [10] distinguish between gold-standard-based evalu-
ation and feature-based evaluation. This is completely analogous to
the distinction between what we are referring to as evaluating soft-
ware with respect to some metric (gold-standard-based evaluation)
and what we are referring to as testing it, or attempting to find bugs
(feature-based evaluation). The biomedical natural language process-
ing community has participated enthusiastically in software evalua-
tion via shared tasks—agreed-upon task definitions used to evaluate
systems against a shared data set using centralized, third-party eval-
uation with a corpus (or a document collection) as input and with an
agreed-upon implementation of a scoring metric. However, the com-
munity’s investment in testing its products has apparently been much
smaller. It has been suggested [20] that biomedical natural language
processing applications are ready for use by working bioscientists. If
this is the case, we argue that there is a moral obligation on the part
of biomedical natural language processing practitioners to exercise
due diligence and ensure that their applications do not just perform
well against arbitrary metrics, but also behave as intended.

We showed in our experiments with building linguistically mo-
tivated test suites that such test suites, informed by the techniques
of descriptive linguistics, are effective at granular characterization

15

of performance across a wide variety of named entity recognition
systems. We also demonstrated the surprising finding that such test
suites could be used to predict global performance scores such as
precision, recall, and F-measure (although only recall was predicted
in our experiment) for specific equivalence classes (or, as linguists
call them, natural classes) of inputs.

Drawing directly on a software engineering technique, we used a
test suite to test the commonly held, if tacit, assumption that large
corpora are the best testing material for natural language processing
applications. We demonstrated that in fact even a small test suite can
achieve much better code coverage than a very large corpus.

As a reviewer pointed out, most linguistic phenomena are Zipfian
in nature. How far must we go in evaluating and handling the phe-
nomena in the Zipfian tail? Steedman has an insightful observation
on this question:

We have come to believe that the linguists have forgotten Zipf’s
law, which says that most of the variance in linguistic behavior
can be captured by a small part of the system.
The linguists, on the other hand, think that it is we who have
forgotten Zipf’s law, which also says that most of the informa-
tion about the language system as a whole is in the Long Tail.
It is we who are at fault here, because the machine learning
techniques that we rely on are actually very bad at inducing
systems for which the crucial information is in rare events. . .
One day. . . the Long Tail will come back to haunt us.

[21]

Even for work whose goal is not application-building but basic re-
search, the costs of failing to attend to basic software testing and
quality assurance issues can be quite severe. As Rob Knight has
put it, “For scientific work, bugs don’t just mean unhappy users
who you’ll never actually meet: they mean retracted publications and
ended careers. It is critical that your code be fully tested before you
draw conclusions from the results it produces.” The recent case of
Geoffrey Chang (see [16] for a succinct discussion) is illustrative. In
2006, he was a star of the protein crystallography world. That year
he discovered a simple software error in his code which led to a re-
versal of the sign (positive versus negative) of two columns of num-
bers in his output. This led to a reversed prediction of handedness
in the ABC transporter gene MsbA. This error had implications for
the work of many other scientists in addition to his own. The story
is an object lesson in the potential consequences of failure to attend
to basic software testing and quality assurance issues, although his
principled response to the situation suggests that in his case, those
consequences will be limited to retracted publications and will not be
career-ending (see [5] for the retractions). For the sorts of standard
software testing techniques that we looked for in the work reported
here, a considerable amount of good material is available, ranging
from cookbook-like how-to manuals (e.g. [13]) to theoretical work
[3, 14, 4]. Language processing presents a number of specific test-
ing issues related to unique characteristics of the input data, and the
literature on it is quite limited (but see [6, 12, 7] for some attempts
to address this topic in the biomedical natural language processing
domain, specifically). No non-trivial application is ever likely to be
completely free of bugs, but that does not free us of the obligation to
test for them. As we have shown here, approaches to doing so that
are inspired by linguistic techniques are effective at granular char-
acterization of performance, finding bugs, and achieving high code
coverage.

ACKNOWLEDGEMENTS
We would like to thank our co-authors on some of the work cited
in this paper. Lynette Hirschman (The MITRE Corporation) and Bob
Carpenter (Alias-I) have discussed the general issues of software test-
ing and quality assurance with us extensively. Martin Krallinger’s
web page at

biocreative.sourceforge.net

listing web-based biomedical NLP services was invaluable in per-
forming the work reported here. Jonathan M. Cohen (Monterey
County Public Defender’s Office) and John Pestian (Cincinnati Chil-
dren’s Hospital Medical Center) helped us understand regulatory is-
sues regarding medical software. This work was funded in part by
grants NIH 5 R01 LM009254-06, NIH 5 R01 LM008111-07, NIH 5
R01 GM083649-04, and NIH 5 R01 LM009254-03 to Lawrence E.
Hunter.

REFERENCES
[1] Baumgartner, William A. Jr.; Zhiyong Lu; Helen L. Johnson; J. Gregory

Caporaso; Jesse Paquette; Anna Lindemann; Elizabeth K. White; Olga
Medvedeva; K. Bretonnel Cohen; and Lawrence E. Hunter (2008) Con-
cept recognition for extraction protein interaction relations from biomed-
ical text. Genome Biology 9(Suppl. 2):S9.

[2] Beizer, Boris (1990) Software testing techniques, 2nd edition. Interna-
tional Thomson Computer Press.

[3] Beizer, Boris (1995) Black-box testing: Techniques for functional testing
of software and systems. Wiley.

[4] Binder, Robert V. (1999) Testing object-oriented systems: models, pat-
terns, and tools. Addison-Wesley Professional.

[5] Chang, Geoffrey; Christopher R. Roth; Christopher L. Reyes; Owen
Pornillos; Yen-Ju Chen; and Andy P. Chen (2006) Letters: Retraction. Sci-
ence 314:1875.

[6] Cohen, K. Bretonnel; Lorraine Tanabe; Shuhei Kinoshita; and Lawrence
Hunter (2004) A resource for constructing customized test suites for
molecular biology entity identification systems. BioLINK 2004: Linking
biological literature, ontologies, and databases: tools for users, pp. 1-8.
Association for Computational Linguistics.

[7] Cohen, K. Bretonnel; William A. Baumgartner Jr.; and Lawrence Hunter
(2008) Software testing and the naturally occurring data assumption in
natural language processing. Software engineering, testing, and quality
assurance for natural language processing, pp. 23–30. Association for
Computational Linguistics.

[8] Food and Drug Administration, US Department of Health and Human
Services (2002) General principles of software validation: Final guidance
for industry and FDA staff.

[9] Hakenberg, Joerg; Robert Leaman; Nguyen Ha Vo; Siddhartha Jonnala-
gadda; Ryan Sullivan; Christopher Miller; Luis Tari; Chitta Baral; and
Graciela Gonzalez (2010) Efficient extraction of protein-protein interac-
tions from full-text articles. IEEE/ACM Transactions on Computational
Biology and Bioinformatics, July 2010.

[10] Hirschman, Lynette; and Inderjeet Mani (2003) Evaluation. Chapter 23
of Ruslan Mitkov (editor), The Oxford Handbook of Computational Lin-
guistics, Oxford University Press.

[11] Hunter, Lawrence E.; Zhiyong Lu; James Firby; William A. Baumgart-
ner Jr.; Helen L. Johnson; Philip V. Ogren; and K. Bretonnel Cohen (2008)
OpenDMAP: An open-source, ontology driven concept analysis engine,
with applications to capturing knowledge regarding protein transport, pro-
tein interactions and cell-specific gene expression. BMC Bioinformatics
9(78).

[12] Johnson, Helen L.; K. Bretonnel Cohen; and Lawrence Hunter (2007)
A fault model for ontology mapping, alignment, and linking systems. Pa-
cific Symposium on Biocomputing 2007, pp. 233–244. World Scientific
Publishing.

[13] Kaner, Cem; Hung Quoc Nguyen; and Jack Falk (1999) Testing computer
software, 2nd edition. John Wiley and Sons.

[14] Marick, Brian (1997) The craft of software testing: subsystem testing
including object-based and object-oriented testing. Prentice Hall.

[15] McConnell, Steve (2004) Code complete, 2nd edition. Microsoft Press.

16

[16] Miller, Greg (2006) A scientist’s nightmare: software problem leads to
five retractions. Science 314:1856–1857.

[17] Oepen, S.; K. Netter; and J. Klein (1998) TSNLP – test suites for natu-
ral language processing. In John Nerbonne, editor, Linguistic Databases,
Chapter 2, pp. 13-36. CSLI Publications.

[18] Palmer, Martha; and Tim Finin (1990) Workshop on the evalua-
tion of natural language processing systems. Computational Linguistics
16(3):175-181.

[19] Partee, Barbara H.; ter Meulen, Alice; and Robert E. Wall (1990) Math-
ematical methods in linguistics. Springer.

[20] Rebholz-Schuhmann, Dietrich; Harald Kirsch; and Francisco Couto
(2005) Facts from text—is text mining ready to deliver? PLoS Biology
3(2):188–191.

[21] Steedman, Mark (2008) On becoming a discipline. Computational Lin-
guistics 34(1):137-144.

[22] Tanabe, Lorraine; and W. John Wilbur (2002) Tagging gene and protein
names in biomedical text. Bioinformatics 18(8):1124-1132.

[23] Tanabe, Lorraine; Natalie Xie; Lynne H. Thom; Wayne Matten; and W.
John Wilbur (2005) GENETAG: a tagged corpus for gene/protein name
recognition. BMC Bioinformatics 6(Suppl. 1):S4.

[24] Verspoor, Karin; K. Bretonnel Cohen; Inderjeet Mani; and Benjamin Go-
ertzel (2006) Introduction to BioNLP’06. Linking natural language pro-
cessing and biology: towards deeper biological literature analysis, pp.
iii–iv. Association for Computational Linguistics.

[25] Zweigenbaum, Pierre; Dina Demner-Fushman; Hong Yu; and K. Breton-
nel Cohen (2007) Frontiers for biomedical text mining: current progress.
Briefings in Bioinformatics 8(5).

17

Using Machine Learning and Information Retrieval
Techniques to Improve Software Maintainability

Anna Corazza 1 and Sergio Di Martino 2 and Valerio Maggio 3 and
Alessandro Moschitti 4 and Andrea Passerini 5 and Giuseppe Scanniello 6 and Fabrizio Silvestri 7

Abstract. The software architecture plays a fundamental role in
the comprehension and maintenance of large and complex systems.
However, unlike classes or packages, this information is not explic-
itly represented in the code, giving rise to the definition of differ-
ent approaches to automatically recover the original architecture of
a system. Software architecture recovery (SAR) techniques aim at
extracting architectural information from the source code by often
involving clustering of program artifacts analyzed at different levels
of abstraction (e.g, classes or methods).

In this paper, we capitalize our expertise in Machine Learning,
Natural Language Processing and Information Retrieval to outline
promising research lines in the field of automatic SAR. In particular,
after presenting an extensive related work, we illustrate a concrete
proposal for solving two main subtasks of SAR, i.e., (I) software
clone detection and (II) clustering of functional modules according
to their lexical semantics. One interesting aspect of our proposed re-
search is the use of advanced approaches, such as kernel methods,
for exploiting structural representation of source code.

1 Introduction

Software maintenance is essential in the evolution of software sys-
tems and represents one of the most expensive, time consuming, and
challenging phase of the whole development process. As declared
in Lehman’s laws of Software Evolution [31], a software system
must be continuously adapted during its overall life cycle or it pro-
gressively becomes less satisfactory (Lehman’s first law). Thus, as
software applications are doomed to evolve and grow [13], all of
the applied changes and adaptations inevitably reduce their quality
(Lehman’s second law). Moreover, the cost and the effort necessary
for both the maintenance and the evolution operations (e.g., correc-
tive, adaptive, etc.) are mainly related to the effort necessary to com-
prehend the system and its source code [35]. Erlikh estimated that
the cost needed to perform such activities ranges from 85% to 90%
of the total cost of a software project [15].

According to Garlan [18], architectural information represent an
important resource for software maintainers to aid the comprehen-
sion, the analysis and the maintenance of large and complex systems.
In fact, software architectures provide models and views represent-

1 University of Naples “Federico II”- email: anna.corazza@unina.it
2 University of Naples “Federico II”- email: sergio.dimartino@unina.it
3 University of Naples “Federico II”- email: valerio.maggio@unina.it
4 University of Trento- email: moschitti@disi.unitn.it
5 University of Trento- email: passerini@disi.unitn.it
6 University of Basilicata- email: giuseppe.scanniello@unibas.it
7 ISTI Institute - CNR- email: fabrizio.silvestri@isti.cnr.it

ing the relationships among different software components accord-
ing to a particular set of concerns [13]. However, unlike classes or
packages, these information do not have an explicit representation in
the source code, and thus several approaches have been proposed in
the literature to support software architecture recovery (SAR) [13].
Many of these techniques derive architectural views of the subject
system from the source code by applying clustering analysis tech-
niques to software artifacts, considered at different levels of abstrac-
tion (i.e., classes or methods) [13]. These abstractions represent one
of the key aspect of such techniques as they allow to focus on spe-
cific maintenance tasks, providing different analysis perspectives. In
fact, even if the recovery process is always expressed in terms of a
clustering problem, the analysis of classes or methods leads to differ-
ent SAR analysis, namely the clustering of functional modules and
software clone detection respectively.

One of the typical tasks for the maintainers is to locate groups of
software artifacts that deals with a specific topic, in order to mod-
ify them. For instance, a maintainer could be interested in finding all
the classes that handle a given concept in the application domain, or
that provide related functionality. The greater part of the approaches
for architecture recovery [26, 34] applies clustering algorithms to
large software systems, to partition them into meaningful subsys-
tems. Files containing source code are placed in the same cluster
only in the case they implement related functions. A number of these
approaches generally attempt to discover clusters by analyzing struc-
tural dependencies between software artifacts [47, 1, 37, 5]. How-
ever, if the analysis is based on the sole structural aspect, a key source
of information about the analyzed software system may be lost, i.e.
the domain knowledge that developers embed in the source code lex-
icon. As a consequence, some efforts are being devoted to investigate
the use of lexical information for software clustering [29, 8, 7, 10].

On the other hand, the software clone detection task is focused on
the analysis and the identification of source code duplications. Du-
plicated source code is a phenomenon that occurs frequently in large
software systems [3]. Reasons why programmers duplicate code are
manifold. The most well known is a common bad programming prac-
tice, copying and pasting [41], that gives rise to software clones,
or simply clones. These clones heavily affect the reliability and the
maintainability of large software systems. The main issue in the man-
agement of clones is that errors in the original version must be fixed
in every clone. The identification of clones directly depends on the
degree of similarity between the two compared fragments: the less
their common instructions, the bigger the effort necessary to cor-
rectly detect them as clones [41]. In fact, programmers usually adapt
the copies to the new context by applying multiple modifications
such as adding new statements, renaming variables, etc. In this sce-

18

nario, it could be likely that some clones are not detected, thus af-
fecting the reliability of the system due to the presence of unfixed
bugs.

From the perspective of SAR techniques, the crucial part for both
the considered tasks concerns the definition of a proper similarity
measure to apply in the clustering analysis, which is able to exploit
the considered representation of software artifacts. To this aim, in
this paper we explore the possibility of defining novel techniques
for automatic software analysis that combine different methods gath-
ered from Information Retrieval (IR), Natural Language Processing
(NLP) and Machine Learning (ML) fields to automatically mine in-
formation from the source code. In particular, we investigate the ap-
plication of the so-called Kernel Methods [20, 38] to define similarity
measures able to exploit the structural representation of the source
code. These techniques provide flexible solutions able to analyze
large data set with an affordable computational efficiency. However
a trade-off is imposed on their effectiveness as they solely rely on the
quality of the analyzed data. To this aim, some part of our proposal
will be specifically focused on the definition of a publicly available
data set necessary for the assessment of the proposed approaches.

In the reminder of this paper, Section 2 provides an extensive state-
of-the-art for the two considered SAR tasks, i.e., the clustering of
functional modules and the software clone detection. Section 3 il-
lustrates our proposal for automatic clone detection whereas Sec-
tion 4 propose advanced machine learning methods, such as super-
vised clustering for SAR. Finally, Section 5 derives the conclusions.

2 State-of-the-Art in automatic SAR

A complete and extensive survey of SAR techniques is proposed
by Ducasse et al. [13] where authors provide an accurate taxonomy
of different approaches according to five distinct aspect, namely the
goals, the process, the inputs, the techniques and the outputs. In this
paper, we limit our analysis only to approaches and techniques for
automatic SAR involving clustering analysis techniques. In particu-
lar, we focus on two different SAR subtasks, related to the clustering
of functional modules (Section 2.1) and the identification of cloned
code (Section 2.2).

2.1 State-of-the-art of software clustering methods

The definition of effective methods to automatically partition sys-
tems into meaningful subsystems, requires that several non trivial
issues have to be considered [26]: (i) the level of granularity for the
software entities to consider in the clustering; (ii) the information
used to compare software entities, and (iii) the clustering algorithm
to be exploited in order to group similar artifacts.

In Table 1, we summarize the state of the art regarding software
clustering for the recovery of software architectures.

To better provide a detailed overview of different approaches, in
the following we present the related literature with respect to the
information exploited in the clustering process, namely structural
information, lexical information, and their combinations.

Structural based approaches: The works proposed by Wig-
gerts [47] and by Anquetil and Lethbridge [1] represent the first two
contributions to semi-automatic approaches for the clustering of soft-
ware entities. In particular, in [1] authors present a comparative study
of different hierarchical clustering algorithms based on structural in-
formation. However the proposed solutions require human decisions

Table 1. Overview of architecture recovery approaches

Approach Used Clustering Automatic or
Information Algorithm Semi-automatic

Anquetil structural hierarchical semi-automaticand Lethbridge [1]
Mitchell structural hill climbing automaticand Mancoridis [37]

Doval et al. [12] structural genetic algorithms automatic

Bittencourt
structural

edge
semi-

and Guerrero [5]
betweenness;

automatick-means;
modul. quality;
design structure

matrix

Wu et al. [48] structural
hierarchical; semi-prog. compreh. automaticpatterns;

Bunch
Tzerpos structural hierarchical semi-automaticand Holt [44]

Kuhn et al. [29] lexical hierarchical semi-automatic
Risi et al. [39] lexical k-means automatic
Corazza et al. lexical k-medoids; automatic[8, 7, 10] hierarchical

Maqbool lexical hierarchical semi-automaticand Babri [34] structural
Maletic lexical minimum semi-

and Marcus [33] structural spanning tree automatic
Scanniello et al. [43] lexical k-means automaticstructural

(e.g., cutting points of the dendrograms) to get the best partition of
software entities into clusters.

Maqbool and Babri in [34] highlight the features of hierarchical
clustering research in the context of software architecture recovery.
Special emphasis is posed on the analysis of different similarity and
distance measures that could be effectively used in clustering soft-
ware artifacts. The main contribution of the paper is, however, the
analysis of two clustering based approaches and their experimental
assessment. The discussed approaches try to reduce the number of
decisions to be taken during the clustering. They also conducted an
empirical evaluation of the clustering based approaches on four large
software systems.

Mitchell and Mancoridis in [37] present a novel clustering algo-
rithm, named Bunch. Buch produces system decompositions apply-
ing search based techniques in combination with several heuristics,
such as the coupling and cohesion of produced partitions, specif-
ically designed for the clustering of software artifacts. In particu-
lar, the coupling and the cohesion heuristics are defined in terms of
intra- e inter- clusters dependencies respectively. The evaluation of
the produced partitions has been conducted according to qualitative
and quantitative empirical investigations. Similarly, Dove et al. [12]
propose a structural approach based on genetic algorithms to group
software entities in clusters.

Clustering algorithms based on structural information have
been also used in the analysis of the software architecture evolu-
tion [5], [48]. Wu et al. in [48] present a comparative study of a
number of clustering algorithms: (a) hierarchical agglomerative
clustering algorithms based on the Jaccard coefficient and the
single/complete linkage update rules; (b) an algorithm based on
program comprehension patterns that tries to recover subsystems
that are commonly found in manually-created decompositions of
large software systems; and (c) a customized configuration of an
algorithm implemented in Bunch [37]. Similarly, Bittencourt and
Guerrero [5] present an empirical study to evaluate four widely
known clustering algorithms on a number of software systems
implemented in Java and C/C++. The analyzed algorithms are: Edge
betweenness clustering, k-means clustering, modularization quality
clustering, and design structure matrix clustering.

19

Lexical based approaches: Software clustering approaches ex-
ploiting lexical information are based on the idea that the lexicon
provided by developers in the source code represent a key source of
information. In particular, such techniques mine relevant information
from source code identifiers and comments based on the assumption
that related artifacts are those that share the same vocabulary.

The approach proposed by Kuhn et al. [29] constitutes one of
the first proposals in this direction defining an automatic technique
based on the application of the Latent Semantic Indexing (LSI)
method [11]. The approach is language independent and mines the
lexical information gathered from source code comments. In addi-
tion, the approach enables software engineers to identify topics in
the source code by means of labeling of the identified clusters.

Similarly, Risi et al. [39] propose an approach that uses the LSI
and the k-means clustering algorithm to form groups of software en-
tities that implement similar functionality. A variant based on fold-in
and fold-out is introduced as well. Furthermore this proposal pro-
vides an important contribution on the analysis of computational
costs necessary to assess the validity of a clustering process.

Corazza et al. [8] propose a clustering based approach that
considers the source code text as structured in different zones
providing different relevance of information. In particular, the
relevance of each zone is automatically weighted thanks to the
definition of a probabilistic generative model and the application of
the Expectation-Maximization (EM) algorithm. Related artifacts are
then grouped accordingly using a customization of the k-medoids
clustering algorithm. More recently the same authors propose an in-
vestigation on the effectiveness of the EM algorithm in combination
with different code zones [7] and different clustering algorithms [10].

Structural and Lexical based approaches: Maletic and Mar-
cus in [33] propose an approach based on the combination of lexical
and structural information to support comprehension tasks within the
maintenance and reengineering of software systems. From the lexi-
cal point of view they consider problem and development domains.
On the other hand, the structural dimension refers to the actual syn-
tactic structure of the program along with the control and dataflow
that it represents. Software entities are compared using LSI, while
file organization is used to get structural information. To group pro-
grams in clusters a simple graph theoretic algorithm is used. The al-
gorithm takes as input an undirected graph (the graph obtained com-
puting the cosine similarity of the two vector representations of all
the source code documents) and then constructs a Minimal Spanning
Tree (MST). Clusters are identified pruning the edges of the MST
with a weight larger than a given threshold. To assess the effective-
ness of the approach some case studies on a version of Mosaic are
presented and discussed.

Scanniello et al. [43] present a two phase approach for recover-
ing hierarchical software architectures of object oriented software
systems. The first phase uses structural information to identify soft-
ware layers [42]. To this end, a customization of the Kleinberg al-
gorithm [24] is used. The second phase uses lexical information ex-
tracted from the source code to identify similarity among pairs of
classes and then partitions each identified layer into software mod-
ules. The main limitation of this approach is that it is only suitable
for software systems exhibiting a classical tiered architecture.

2.2 State-of-the-art of clone detection techniques
In this section we summarize research in the area of clone detection,
grouping the proposals according to the features they exploit to iden-

tify similarities among software artifacts (see Table 2.2). Note that
our goal here is not to provide an extensive analysis of the clone
detection approaches presented in the literature but to provide an
overview of most important techniques together with a general back-
ground on the problem, necessary to introduce the proposal presented
in Section 3. An exhaustive survey of clone detection tools and tech-
niques is provided in [41].

Table 2. Overview of clone detection techniques

Approach Used Information Technique
Ducasse et al. [14] Textual String matchingJohnson [22]

Baker [2] Token Pattern matching
Kamiya et al. [23] Suffix-tree matching

Yang [49]

Syntactic

Dynamic Programming
Baxter et al. [3] Tree Matching

Koschke et al. [27] Suffix-tree AST
Bulychev et al. [6] Anti-unification (NLP)

Jiang et al. [21] LSH
Komondoor and Horwitz [25]

Structural
PDG Slicing

Krinke [28] PDG Heuristics
Gabel et al. [17] PDG Slicing

Leitão [32]

Combined

Software metrics
Wahler et al. [46] Frequent Item-sets
Corazza et al. [9] Tree Kernels (ML)

Roy and Cordy [40] Code Transformation

Textual based approaches: Ducasse et al. [14] propose a
language-independent approach to detect code clones, based on line-
based string matching and visual presentation of the cloned code. A
different approach is presented by Johnson [22] where the author ap-
plies a string matching technique based on fingerprints to identify
exact repetitions of text in the source code of large software systems.

The main feature of these techniques relies in their efficiency
and scalability, easily applicable to the analysis of large software
systems. However, their detection capabilities are very limited and
only restricted to very similar textual duplications (line by line). As
a matter of fact these approaches are scarcely usable in practice.

Token based approaches: Baker [2] suggests an approach to
identify duplications and near-duplications (i.e., copies with slightly
modifications) in large software systems. The proposed approach
finds source code copies that are substantially the same except for
global substitutions. Similarly, Kamiya et al. [23] use a suffix-tree
matching algorithm to compute token-by-token matching among
source code fragments. The authors adopt optimization techniques
that mainly normalize token sequences. This is due to the fact that
the underlying algorithm may be expensive when used on large soft-
ware systems. The main drawback of these approaches is that they
completely disregard the syntactic structure of the analyzed source
code, similarly to textual based techniques. As a consequence, these
solutions may detect a large number of false clones, usually not
corresponding to any actual syntactic unit.

Syntactic based approaches: Syntactic based approaches
exploit the information provided by Abstract Syntax Trees (AST)
to identify similar code fragments. Such techniques are more robust
to modifications in code fragments than textual and token based
technique. However, they may possibly fail in case modifications
concerns the inversion or the substitution of entire code blocks: the
so-called gapped-clones [28]. Yang [49] uses dynamic programming
to find differences between two versions of the same source file. A
similar approach is presented by Baxter et al. [3]. It is based on a
tree matching algorithm to compare sub-trees of an AST of a given
software system. On the other hand, Koschke et al. [27] describe

20

an approach to detect clones based on suffix trees of serialized
ASTs. The main contribution of this work is that software clones
can be identified in linear time and space. A different approach is
presented by Bulychev et al. [6], where authors propose a clone
detection technique based on the anti-unification algorithm, widely
used in Natural Language processing tasks. A novel approach for
detecting similar trees has been presented by Jiang et al. [21] in
their tool Deckard. In their approach, certain characteristic vectors
are computed to approximate the structure of ASTs in a Euclidean
space. Locality sensitive hashing (LSH) is then used to cluster
similar vectors using the Euclidean distance metric.

Structural based approaches: Structural based approaches
gather information from control and dependency graphs to identify
clones. In particular these techniques apply algorithms to identify
isomorphic sub-graphs within a graph built considering control and
data flow dependencies (i.e., the program dependence graphs, PDG)
of the software system to analyze. Komondoor and Horwitz [25]
propose an approach based on program slicing techniques, applied
on PDGs. On the other hand, Krinke [28] propose a heuristic based
approach to identify isomorphic sub-graphs. More recently, Gabel et
al. [17] propose a PDG-based technique that maps slices of PDGs to
syntax subtrees and applies the Deckard clone detection tool [21].
The main advantage of these techniques is that they do not depend on
the particular textual representation of the code, allowing to detect
also functional duplications, in addition to the textual based ones
considered by previous approaches. However the identification of
isomorphic sub-graphs is a NP-hard problem and only approximated
solutions may be provided.

Combined approaches: In the literature techniques that com-
bine different artifacts representation have been defined. For exam-
ple, Leitão [32] combines syntactic and semantic techniques using
functions that consider various aspects of software systems (e.g.,
similar call sub-graphs, commutative operators, user-defined equiv-
alences). Differently, Wahler et al. [46] present an approach based
on a data mining technique to detect clones. This approach uses the
concept of frequent item-sets on the XML representation of the soft-
ware system to be analyzed. Morevover, Corazza et al [9] propose
an approach for software clone detection based on the application of
Tree Kernel functions to compare source code fragment according to
their syntactic structure and the associated lexical information. The
effectiveness of the approach has been assessed in comparative ex-
periments with another pure syntactic based approach. Finally, Roy
and Cordy [40] present an approach based on source transformations
and text line comparison to find clones.

3 Clone Detection
As briefly introduced in Section 1, the definition of clones [3] states
that two code fragments form a clone if they are similar according
to some similarity function. However, such similarity can be based
either on their program text, or on their functionality (independent of
their text) [41].

In the literature, all these kinds of code similarities correspond to
the following taxonomy of clones [41]:

Type 1 : An exact copy of consecutive code fragments without mod-
ifications (except for white spaces and comments).

Type 2 : Syntactically identical fragments except for variations in
identifiers, literals, and variable types in addition to Type-1s vari-
ations;

Type 3 : Copied fragments with further modifications such as
changed, added, or deleted statements in addition to Type-2s vari-
ations.

Type 4 : Code fragments that perform similar functionality but are
implemented by different syntactic variants.

According to this classification, only Type 1 clones are represented
by exactly the same set of instructions, while the other three types in-
volve lexical and syntactic variations between the two fragments. As
a consequence, an effective similarity measure has to combine both
the syntactic and lexical information. Thus, the input representation
is the first crucial point to consider when designing a machine learn-
ing based clone detector. In addition, annotated data are needed to
train the considered techniques. In the rest of this section we discuss
these two points in depth and also the assessment protocol.

3.1 Code Similarities and Kernel Methods
Kernel methods [20] have shown to be effective in approaches con-
sidering the similarity between complex input structures. In particu-
lar, tree kernels have been widely used in fields including natural lan-
guage processing [38] and bioinformatics [45], applied to parse and
phylogenetic trees respectively. Thus, considering the source code, it
seems rather intuitive to apply tree kernels to Abstract Syntax Trees
(ASTs) of the source code. However, as the sole syntactic informa-
tion is not sufficient to decide whether two code fragments are clones
or not, we enriched the information present in each (internal) node of
the AST by annotating them with the lexemes gathered from the cor-
responding leaf nodes. Preliminary results are reported in [9].

Such approach can not be applied in detecting Type 4 clones as
their similarity is independent of the corresponding program text. As
in this case the information about the program behavior becomes rel-
evant for the identification of clones, we consider the source code as
represented by the Program Dependency Graph (PDG) onto which
we apply a graph kernel method to detect similar subgraphs. A PDG
is a representation of a function in which nodes correspond to sim-
ple statements and control flow predicates, and edges encode data
and control dependencies [17]. However, the main drawback of these
kernels with respect to the previous ones regards the computational
effort needed in performing the similarity evaluation. As a conse-
quence, it is necessary to find a good trade-off between such com-
putational cost and the information taken into account in the com-
parison of PDGs. To this aim, we consider Weighted Decomposition
Kernels (WDK) [36] as they enable to define criteria to reduce the
total number of comparisons. We generate the PDGs for source code
written in the C language by using the Code Surfer tool.8

3.2 Training data
A crucial problem in adopting machine learning approaches regards
the necessity to arrange two different set of annotated data, namely
the training and the assessment set respectively. Unfortunately, this
kind of data set are harder to get in case of clone detection as the
manual annotation process is too expensive for large systems. There-
fore, in order to alleviate such problem, the generally adopted solu-
tion consider the definition of a pooling process where the manual
check is performed on a limited set of data gathered from different
clone detection tools. An example of such process is provided in [4].
However, the effect of such procedure is that there is no guarantee
of completeness and only a precision measure can be evaluated, by

8 http://www.grammatech.com

21

manually checking the output of the system. Moreover, the so ob-
tained data are not effective for training, as they tend to simulate
the system used to generate them, rather than addressing the actual
clones.

Given such situation, only unsupervised machine learning, i.e.
clustering, can be proposed. However, clustering can not be expected
to be accurate enough for this application, as only the similarity def-
inition can be exploited to guide the algorithm. As an alternative, we
explore the use of simulated data to build a training set and apply su-
pervision to detect the clones. The data set is produced as a variation
of a given software project where clones are modified and injected
by following predefined probability distributions. In this way, we can
control the quality of the training set, without imposing any restric-
tion on its size. A classifier employing the necessary kernels can then
be trained to filter the data produced by the clustering step.

3.3 Parameter Setting and Experimental
assessment

To understand the effectiveness of the proposal, an extensive experi-
mental assessment is needed. In particular, a lot of parameters need
to be set regarding the different input representations, the probability
distributions used in the training set generation and the kernel param-
eters. Given this scenario a k-fold cross validation protocol seems to
be appropriate. As this preprocessing step is performed on a fully la-
beled data set, precision, recall and F-measure are used to estimate
the effectiveness of the considered configurations.

Once the best configuration has been identified, it will be used to
replicate the few available datasets in the literature, in order to com-
pare the proposal with the state-of-the-art. As previously discussed,
since not all the gold positives are labelled, both the recall and F-
measure are underestimated.

4 Architecture Recovery
Recovering the architecture of a software system requires to group
together portions of code jointly performing a certain function and
identifying the structural organization of these functional modules.
The problem can be naturally formalized in terms of hierarchical
clustering (see Section 2). Within such framework, we aim at im-
proving over existing approaches by leveraging over the following
aspects:

1) exploiting the rich structure characterizing software projects, in
terms of hierarchical structuring of the code and relationships given
by e.g. function calls. As already discussed for the clone detection
problem (see Section 3), kernel methods are a natural candidate for
learning problems involving richly structured objects. We will thus
develop structured kernels on AST and PDG testing them in terms
of capacity to recover similarity between related fragments. We will
also employ kernel learning approaches [19], where the similarity
measure is not fully specified a-priori, but is learned from examples
as a combination of similarity patterns. Logic kernels [30] are par-
ticularly promising in this context, as they allow to encode arbitrary
domain knowledge concerning relationships between code fragments
from which similarity measures are to be learned.

2) exploiting all available information, in terms of existing full or
partial architecture documentation, in order to improve performance
of predictive algorithms. The few existing fully documented software
systems can be used as gold standards representing how a correct ar-
chitecture recovery should appear. The problem can be framed in
terms of supervised clustering [16]: gold standards are examples of

inputs (the code) and desired outputs (its architectural organization),
used to train a predictive machine trying to approximate the desired
output when fed with the code. In so doing, the predictor adapts the
similarity measure to improve the approximation. When presented
with a new piece of code, the trained machine clusters it using the
learned similarity measure. We plan to extend this supervised clus-
tering paradigm, mostly developed for flat clustering, to produce a
hierarchy of clusters. Partial architecture documentation can also be
used in a similar fashion by turning the supervised learning problem
into a semi-supervised one: the algorithm is trained to output a full
architectural representation which is consistent with the partial in-
formation available, possibly accounting for inconsistencies due to
labeling errors or ambiguity.

5 Conclusions

In this paper, we presented an extensive related work in the field
of automatic SAR. We also illustrated our experience and proposal
for using advanced Machine Learning, Natural Language Process-
ing and Information Retrieval for automatic SAR. In particular, we
discussed innovative approaches, i.e., kernel methods, to detect the
similarity between complex input structures such as source code rep-
resented in terms of Abstract Syntax Trees. We also proposed hybrid
methods exploiting Program dependency graphs in machine learn-
ing algorithms (MLA) based on graph kernels. Since MLA require
training data, we outlined possible approaches to gather it, ranging
from manual annotation to artificial data generation. In this respect,
we also discussed innovative MLA for learning object similarities,
which are able to integrate background knowledge by means of logic
predicates.

Finally, we proposed new supervised clustering methods which
can automatically learn how to recover software architectures.

ACKNOWLEDGEMENTS

The research described in this paper has been partially supported
by the European Community’s Seventh Framework Programme
(FP7/2007-2013) under the grants #247758: ETERNALS – Trustwor-
thy Eternal Systems via Evolving Software, Data and Knowledge,
and #288024: LIMOSINE – Linguistically Motivated Semantic ag-
gregation engiNes.

REFERENCES
[1] N. Anquetil, C. Fourrier, and T. C. Lethbridge, ‘Experiments with clus-

tering as a software remodularization method’, in In Proceedings of the
6th Working Conference on Reverse Engineering, pp. 235–255, Wash-
ington, DC, USA, (1999). IEEE Computer Society.

[2] B. Baker, ‘On finding duplication and near-duplication in large software
systems’, in IEEE Proceedings of the Working Conference on Reverse
Engineering, (1995).

[3] Ira D. Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant’Anna,
and Lorraine Bier, ‘Clone detection using abstract syntax trees’, in Pro-
ceedings of the International Conference on Software Maintenance, pp.
368–377. IEEE Press, (1998).

[4] Stefan Bellon, Rainer Koschke, Giuliano Antoniol, Jens Krinke, and Et-
tore Merlo, ‘Comparison and evaluation of clone detection tools’, IEEE
Trans. Software Eng., 33(9), 577–591, (2007).

[5] R. A. Bittencourt and D. D. S. Guerrero, ‘Comparison of graph clus-
tering algorithms for recovering software architecture module views’,
in Proceedings of the European Conference on Software Maintenance
and Reengineering, pp. 251–254, Washington, DC, USA, (2009). IEEE
Computer Society.

22

[6] Peter Bulychev and Marius Minea, ‘Duplicate code detection using
anti-unification.’, in Spring/Summer Young Researcher’s Colloquium,
(2008).

[7] A. Corazza, S. Di Martino, V. Maggio, and G. Scanniello, ‘Investi-
gating the use of lexical information for software system clustering’,
in Proceedings of the 15th European Conference on Software Main-
tenance and Reengineering, CSMR ’11, pp. 35–44, Washington, DC,
USA, (2011). IEEE Computer Society.

[8] A. Corazza, S. Di Martino, and G. Scanniello, ‘A probabilistic based
approach towards software system clustering’, Proceedings of the Euro-
pean Conference on Software Maintenance and Reengineering, 88–96,
(2010).

[9] Anna Corazza, Sergio Di Martino, Valerio Maggio, and Giuseppe Scan-
niello, ‘A tree kernel based approach for clone detection’, in Proceed-
ings of the 2010 IEEE International Conference on Software Mainte-
nance, ICSM ’10, pp. 1–5, Washington, DC, USA, (2010). IEEE Com-
puter Society.

[10] Anna Corazza, Sergio Martino, Valerio Maggio, and Giuseppe Scan-
niello, ‘Combining machine learning and information retrieval tech-
niques for software clustering’, in Eternal Systems, volume 255
of Communications in Computer and Information Science, 42–60,
Springer Berlin Heidelberg, (2012).

[11] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and
R. A. Harshman, ‘Indexing by latent semantic analysis’, Journal of the
American Society of Information Science, 41(6), 391–407, (1990).

[12] D. Doval, S. Mancoridis, and B. S. Mitchell, ‘Automatic clustering of
software systems using a genetic algorithm’, in Proceedings of the Soft-
ware Technology and Engineering Practice, pp. 73–82, Washington,
DC, USA, (1999). IEEE Computer Society.

[13] S. Ducasse and D. Pollet, ‘Software architecture reconstruction: A
process-oriented taxonomy’, Software Engineering, IEEE Transactions
on, 35(4), 573 –591, (july-aug. 2009).

[14] S. Ducasse, M. Rieger, and S. Demeyer, ‘A language independent ap-
proach for detecting duplicated code’, in Proceedings of the Interna-
tional Conference on Software Maintenance, pp. 109–118, (1999).

[15] Len Erlikh, ‘Leveraging legacy system dollars for e-business’, IT Pro-
fessional, 2, 17–23, (2000).

[16] Thomas Finley and Thorsten Joachims, ‘Supervised clustering with
support vector machines’, in Proceedings of the 22nd international con-
ference on Machine learning, ICML ’05, pp. 217–224, New York, NY,
USA, (2005). ACM.

[17] Mark Gabel, Lingxiao Jiang, and Zhendong Su, ‘Scalable detection of
semantic clones’, in Proceedings of the 30th international conference
on Software engineering, ICSE ’08, pp. 321–330, New York, NY, USA,
(2008). ACM.

[18] David Garlan, ‘Software architecture: a roadmap’, in Proceedings of
the Conference on The Future of Software Engineering, ICSE ’00, pp.
91–101, New York, NY, USA, (2000). ACM.

[19] Mehmet Gönen and Ethem Alpaydin, ‘Multiple kernel learning algo-
rithms’, J. Mach. Learn. Res., 2211–2268, (July 2011).

[20] Thomas Hofmann, Bernhard Schölkopf, and Alexander J. Smola, ‘Ker-
nel methods in machine learning’, Annals of Statistics, 36(3), 1171–
1220, (2008).

[21] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane
Glondu, ‘Deckard: Scalable and accurate tree-based detection of code
clones’, in Proceedings of the 29th international conference on Soft-
ware Engineering, ICSE ’07, pp. 96–105, Washington, DC, USA,
(2007). IEEE Computer Society.

[22] J. Howard Johnson, ‘Identifying redundancy in source code using fin-
gerprints’, in Proc. Conf. Centre for Advanced Studies on Collaborative
research (CASCON), pp. 171–183. IBM Press, (1993).

[23] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue, ‘Ccfinder: A
multilinguistic token-based code clone detection system for large scale
source code.’, IEEE Trans. Software Eng., 28(7), 654–670, (2002).

[24] J. M. Kleinberg, ‘Authoritative sources in a hyperlinked environment’,
Journal of the ACM, 46, 604–632, (September 1999).

[25] R. Komondoor and S. Horwitz, ‘Using slicing to identify duplication in
source code’, in Proceedings of the International Symposium on Static
Analysis, pp. 40–56, (July 2001).

[26] R. Koschke, ‘Atomic architectural component recovery for program un-
derstanding and evolution’, Softwaretechnik-Trends, (2000).

[27] Rainer Koschke, Raimar Falke, and Pierre Frenzel, ‘Clone detection us-
ing abstract syntax suffix trees’, in WCRE ’06: Proceedings of the 13th
Working Conference on Reverse Engineering, pp. 253–262, Washing-

ton, DC, USA, (2006). IEEE Computer Society.
[28] Jens Krinke, ‘Identifying Similar Code with Program Dependence

Graphs’, in Proc. Working Conf. Reverse Engineering (WCRE), pp.
301–309. IEEE Computer Society Press, (2001).

[29] A. Kuhn, S. Ducasse, and T. Gı́rba, ‘Semantic clustering: Identifying
topics in source code’, Information and Software Technology, 49, 230–
243, (March 2007).

[30] Niels Landwehr, Andrea Passerini, Luc Raedt, and Paolo Frasconi,
‘Fast learning of relational kernels’, Mach. Learn., 78(3), 305–342,
(March 2010).

[31] Meir M. Lehman, ‘Programs, life cycles, and laws of software evolu-
tion’, Proc. IEEE, 68(9), 1060–1076, (September 1980).

[32] António Menezes Leitão, ‘Detection of redundant code using r2d2’,
Software Quality Journal, 12(4), 361–382, (2004).

[33] J. I. Maletic and A. Marcus, ‘Supporting program comprehension using
semantic and structural information’, in Proceedings of the 23rd Inter-
national Conference on Software Engineering, ICSE ’01, pp. 103–112,
Washington, DC, USA, (2001). IEEE Computer Society.

[34] O. Maqbool and H. Babri, ‘Hierarchical clustering for software archi-
tecture recovery’, IEEE Transactions on Software Engineering, 33(11),
759–780, (2007).

[35] A. Von Mayrhauser, ‘Program comprehension during software mainte-
nance and evolution’, IEEE Computer, 28, 44–55, (1995).

[36] Sauro Menchetti, Fabrizio Costa, and Paolo Frasconi, ‘Weighted de-
composition kernels’, in Proceedings of the 22nd international confer-
ence on Machine learning, ICML ’05, pp. 585–592, New York, NY,
USA, (2005). ACM.

[37] B. S. Mitchell and S. Mancoridis, ‘On the automatic modularization of
software systems using the bunch tool’, IEEE Transactions on Software
Engineering, 32, 193–208, (March 2006).

[38] Alessandro Moschitti, Roberto Basili, and Daniele Pighin, ‘Tree Ker-
nels for Semantic Role Labeling’, in Computational Linguistics, pp.
193–224, Cambridge, MA, USACambridge, MA, USA, (2008). MIT
Press.

[39] Michele Risi, Giuseppe Scanniello, and Genoveffa Tortora, ‘Using
fold-in and fold-out in the architecture recovery of software systems’,
Formal Asp. Comput., 24(3), 307–330, (2012).

[40] Chanchal Kumar Roy and James R. Cordy, ‘Nicad: Accurate detection
of near-miss intentional clones using flexible pretty-printing and code
normalization’, in ICPC, pp. 172–181, (2008).

[41] Chanchal Kumar Roy, James R. Cordy, and Rainer Koschke, ‘Com-
parison and evaluation of code clone detection techniques and tools: A
qualitative approach’, Sci. Comput. Program., 74(7), 470–495, (2009).

[42] G. Scanniello, A. D’Amico, C. D’Amico, and T. D’Amico, ‘Architec-
tural layer recovery for software system understanding and evolution’,
Software Practice and Experience, 40, 897–916, (September 2010).

[43] G. Scanniello, A. D’Amico, C. D’Amico, and T. D’Amico, ‘Using
the kleinberg algorithm and vector space model for software system
clustering’, in Proceedings of the IEEE 18th International Conference
on Program Comprehension, ICPC’10, pp. 180–189, Washington, DC,
USA, (2010). IEEE Computer Society.

[44] V. Tzerpos and R. C. Holt, ‘On the stability of software clustering algo-
rithms’, in Proceedings of the 8th International Workshop on Program
Comprehension, pp. 211–218, (2000).

[45] Jean-Philippe Vert, ‘A Tree Kernel to analyse phylogenetic profiles’,
Bioinformatics, 18(suppl 1), S276–284, (2002).

[46] Vera Wahler, Dietmar Seipel, Jurgen Wolff v. Gudenberg, and Gre-
gor Fischer, ‘Clone detection in source code by frequent itemset tech-
niques’, in SCAM ’04: Proceedings of the Source Code Analysis
and Manipulation, Fourth IEEE International Workshop, pp. 128–135,
Washington, DC, USA, (2004). IEEE Computer Society.

[47] T. A. Wiggerts, ‘Using clustering algorithms in legacy systems remod-
ularization’, in Proceedings of the Fourth Working Conference on Re-
verse Engineering (WCRE ’97), pp. 33–43, Washington, DC, USA,
(1997). IEEE Computer Society.

[48] A. E. Wu, J. Hassan and R. C. Holt, ‘Comparison of clustering algo-
tithms in the context of software evolution’, in Proceedings of the 21st
IEEE International Conference on Software Maintenance, pp. 525–
535. IEEE Computer Society, (2005).

[49] Wuu Yang, ‘Identifying syntactic differences between two programs’,
Software - Practice and Experience, 21(7), 739–755, (July 1991).

23

Semantic and Algorithmic Recognition Support to
Porting Software Applications to Cloud

Beniamino Di Martino and Giuseppina Cretella 1

Abstract.
This paper presents a methodology, a technique and an ongoing

implementation, aimed at supporting software porting (i.e. to adapt
the software to be used in different execution environments), from
object oriented domain towards Cloud Computing. The technique
is based on semantic representation of Cloud Application Program-
ming Interfaces, and on automated algorithmic concept recognition
in source code, integrated by structural based matchmaking tech-
niques. In particular the following techniques are composed and inte-
grated: automatic recognition of the algorithms and algorithmic con-
cepts implemented in the source code and the calls to libraries and
APIs performing actions and functionalities relevant to the target en-
vironment; comparison through matchmaking of the recognized con-
cepts and APIs with those present in the functional ontology which
describes the target API; mapping of the source code excerpts and
the source calls to APIs to the target API calls and elements.

1 Introduction

Software porting over different domains is an important issue, mainly
in the recent years, where porting operation are needed not only for
the reingeenerization of old applications, but mostly to port applica-
tions over different technologies, like Cloud Computing.

In the last years Cloud Computing has emerged as a prominent
model to provide online access to computational resources, thanks to
its characteristics of scalability, elasticity, reduced cost, easiness of
use, simple maintenance. The concept of cloud computing is clearly
expressed by the NIST definition: ”Cloud computing is a model
for enabling ubiquitous, convenient, on-demand network access to
a shared pool of configurable computing resources (e.g., networks,
servers, storage, applications, and services) that can be rapidly pro-
visioned and released with minimal management effort or service
provider interaction.[...]”

One of the issues related to the adoption of the cloud comput-
ing paradigm is the lackness of a common programming model and
open standard interfaces. Many cloud providers offer different cloud
services, but each of their offerings is based on proprietary Applica-
tion Programming Interfaces (APIs). This situation complicates the
already challenging task of building up applications from interop-
erable services provided by different cloud providers; and the spe-
cific APIs, kind of resources and services provided by a given cloud
provider make future migrations costly and difficult (Cloud Vendor
Lock in). Portability of code towards a Cloud providers’ environment
and among Cloud providers’ environments is a severe issue today.

1 Second University of Naples - Dept. of Industrial and Informa-
tion Engineering, Italy, email: beniamino.dimartino@unina.it, giusep-
pina.cretella@gmail.com

The application of semantic techniques to reverse engineering can
enable the automation or automated support of activities such as port-
ing. Understanding the functionalities exposed by software artifacts
represents an essential support for a large range of software reengi-
neering activities such as maintenance, debugging, reuse, modern-
ization, and porting.

This paper presents a methodology, a technique and the ongoing
implementation, aimed at supporting software porting towards Cloud
Computing environments. The technique is based on semantic repre-
sentation of Cloud Application Programming Interfaces, and on au-
tomated Algorithmic Concept Recognition in source code, integrated
by structural based matchmaking techniques.

We combine techniques such as graph based source code represen-
tation, first-order-logic rules for algorithmic recognition and seman-
tic based algorithmic and codes (APIs) knowledge representation.

Objectives of the described work relate porting of applications
towards Cloud through the extraction of knowledge from the Ap-
plication Programming Interfaces, and the association of semantic
description identifying the concepts they implement. The described
technique anyway can target a wide range of applications, from code
reuse to advanced code searching.

The paper is organized as follows. In Section 2 we will present
an overview of works related to reverse engineering solution for pro-
gram comprehension, with particular attention to the works that use
ontologies and graph based representations for code and software ar-
tifacts. In Section 3 we will present the porting methodology, based
on an automatic analysis and representation of code at higher level of
abstraction than the syntactical and structural one. Section 4 presents
the main components of the architecture and the workflow of the
methodology presented in the previous section. Conclusions and fu-
ture works are drawn in Section 5.

2 Background and Related Work

Reverse engineering is the process of system analysis to identify the
components and their interrelationships and create representations
at a higher level of abstraction. Therefore it’s an activity that al-
lows getting specific information about the design of a system from
its code, through extraction and abstraction of system information.
Reverse engineering may require a thorough understanding of sys-
tems (white-box approach) or may be limited to only the external
interfaces (software reengineering of black-box). The white-box ap-
proach supports reverse engineering with a deep understanding of in-
dividual modules and conversion activities. The black-box approach
is limited to the study of the external interfaces of systems and ac-
tivities of encapsulation (wrapping). In reverse engineering various
software artifacts can be analysed. A software artifact is any tan-

24

gible product created during software development. Some artifacts
(e.g. use cases, class diagrams and other UML models, requirements
and design documents) are useful to describe functions, architecture
and software design. Others involve the development process itself,
such as project plans, business cases and risk assignment. The code,
the released executable and the associated documentation are artifact
too. There are two different directions in program comprehension re-
search: the first strives for understanding the cognitive processes that
programmers use when they understand programs and use empiri-
cal information to produce a variety of theories that provide expla-
nations of how programmers understand programs, and can provide
advice on how program comprehension tools and methods may be
improved; the second aims at developing semi-automated tool sup-
port to improve program comprehension. Some of the more promi-
nent approaches include textual, lexical and syntactic analysis (fo-
cus on the source code and its representations), execution and testing
(based on observing program behaviour, including actual execution
and inspection walkthroughs), graphic methods (including earlier ap-
proaches such as graphing the control flow of the program, the data
flow of the program, and producing the program dependence graphs),
domain knowledge based analysis (focus on recovering the domain
semantics of programs by combining domain knowledge represen-
tation and source code analysis). The problem of associating con-
cepts to code is not a problem amenable to be solved in its general
formulation because the human-oriented concepts are inherently am-
biguous, and their recognition is based on a priori knowledge of a
particular domain. The problem can instead be solved under specific
constraints and limitations, such as limiting the range of recognition
at the algorithmic level [10]. A different approach is to understand
the code through the analysis of the documentation associated with
it, with text mining techniques that capture the concepts described
in the documentation and connect them with the appropriate por-
tions of code that implement [2]. The approach in [2] represents var-
ious software artifacts, including source code and documents as for-
mal ontologies. The ontological reasoning services allow program-
mers not only to reason about properties of the software systems, but
also to actively acquire and construct new concepts based on their
current understanding; and introducing an ontology-based compre-
hension model and a supporting comprehension methodologies that
characterize program comprehension as an iterative process of con-
cept recognition and relationship discovery. Application developers
often reuse code already developed for several reasons. The most
common situation is accessing libraries of reusable components or
putting them in the application framework. Unfortunately, many li-
braries and frameworks are not very intuitive to use, and libraries
often lack a comprehensive API documentation and code examples
that illustrate a particular feature or functionality. It is therefore use-
ful to provide advanced tools for code search and suggestion. This
issue is addressed generally representing code in a form suitable to
perform computation and reasoning, as shown in [3], where the code
is represented through an ontology to perform query that can be used
to provide suggestion for library usage. The ontology formalism is
used to represent software assets by building a knowledge base that
is automatically populated with instances representing source-code
artifacts. This approach uses this knowledge base to identify and re-
trieve relevant code snippets. To add formal semantic annotations, it’s
necessary to have a formal knowledge description processable and to
an appropriate level of abstraction. This is not always available, so
it would be useful to have tools that can extract this knowledge au-
tomatically or semi automatically from the sources of information.
One of the major structured sources of knowledge are the public in-

terfaces of libraries of a specific domain. However, a single API con-
tains only a view of the particular domain and it’s not generally suffi-
cient to obtain a complete model of the domain. In addition, the APIs
contain a significant amount of noise due to implementation details
that combine with the representation of knowledge in the domain in-
terfaces. In order to overcome these problems it’s possible to base
the extraction of domain knowledge on multiple APIs that cover the
same domain. This issue is addressed in [4], where it is proposed an
approach to extract domain knowledge capturing the commonalities
among multiple API; the extraction is based on the frequency match-
ing of given elements. In [5] an approach to learning domain ontolo-
gies from multiple sources associated with the software project, i.e.,
software code, user guide, and discussion forums is proposed. This
technique do not simply deal with these different types of sources,
but it goes one step further and exploits the redundancy of informa-
tion to obtain better results. In [6] and [7] it is proposed a method for
domain ontology building by extracting ontological knowledge from
UML models of existing systems, by comparing the UML model el-
ements with the OWL ones and derive transformation rules between
the corresponding model elements. The aim of the process is to re-
duce the cost and time for building domain ontologies with the reuse
of existing UML models.

3 The methodology

The porting methodology we are presenting is based on an automatic
analysis and representation of code at higher level of abstraction than
the syntactical and structural one: namely the algorithmic or func-
tional level.

The methodology assumes that the porting procedure can be real-
ized by restructuring the code to be ported to a target environment
(e.g. Cloud) with suitable calls to functionalities of a given target
Application Programming Interface, implementing all functionalities
needed to deploy and run the code on the environment.

The target API is assumed to be (manually) semantically described
at the algorithmic and functional level, and annotated, with concepts
described by means of an OWL based functional ontology.

It is also assumed that the code to be ported includes implemen-
tations of algorithms and functionalities included in the functional
ontology, and calls or libraries and APIs, which do not (necessarily)
correspond to the target API.

The main idea underlying the methodology is the following: to
automatically recognize the algorithms and algorithmic concepts im-
plemented in the source code and the calls to libraries and APIs
performing actions and functionalities relevant to the target environ-
ment, compare through matchmaking the recognized concepts and
APIs with those present in the functional ontology which describes
the target API and semantically annotates its elements and calls, and
by means of this matching, eventually map the source code excerpts
and the source calls to APIs to the target API calls and elements.

The methodology represents the following components in a uni-
form, graph based, representation, the knowledge base:

• the Target API;
• the Grounding Ontology;
• the Functional Ontology;
• the source code Call Graph;
• the source code API Graph;
• the Candidate API Ontology Graph;
• the source code Program Dependence Graph;
• the source code Abstract Program Representation Graph.

25

The Target API is the Application Programming Interface towards
which the porting activity is addressed. Examples are the APIs ex-
posed by the Cloud providers, offering Cloud resources and services
at Infrastructure, Platform and Application levels. The methodology
assumes that this API is (manually) semantically annotated with con-
cepts of the Functional Ontology.

The Grounding Ontology is a syntactical representation on an API.
It represents a base to build semantic annotations of the grounding
concepts (the syntactical elements of the API) with the Functional
Ontology concepts.

The Functional Ontology represents a collection of concepts from
the domain of Programming Algorithms and Data Structures [8],
general purpose functionalities offered by libraries related to a given
domain, such as Cloud Computing, and Design Patterns [9].

The Call Graph represents the calling relationships between the
source codes procedures.

The Candidate API Ontology is an ontology automatically derived
from an API by applying a set of graph transformation patterns, as
for instance illustrated in [1].

The Program Dependence Graph is a structural level representa-
tion of a program, which represents dependence relationships (con-
trol and data) among the program statements. In our methodology we
use a PDG representation slightly augmented with syntactical control
and data dependence information.

The Abstract Program Representation represents the recognized
algorithmic concepts in the source code and their structure, the rela-
tionships among them, and groundings within the source code.

The above defined knowledge base components can be grouped in
three different levels for both the source and the target porting en-
vironments, as sketched in (Fig. 1). In the first level, the grounding
level, there are the basic information extracted by parsing the source
code to port, which are the Source API Graph (in the scenario we
have an API to map over another API), the Call Graph and the Pro-
gram Dependence Graph (in the scenario we have a source code to
port) in the source environment and the Target API Graph in the tar-
get environment. In the Functional and Algorithmic Concept Level
we have on the source side the Abstract Program Representation
Graph and the Candidate API Ontology Graph witch represent the
high level information derived respectively from the Program De-
pendence Graph and the Source API Graph. On the source side at
functional and algorithm level we have the graph representation of
the Functional Ontology. In the Application Level we have concepts
related to the application domain which can be linked with functional
and algorithmic concepts.

Figure 1. Knowledge base levels

The source code is represented using two graph structures: the
Program Dependence Graph suitable for algorithm recognition, dis-
cussed in Section 4.1, and another based on the Call Graph with one

node for each call in the source code(Fig. 2).

Figure 2. Code to graph transformation

Given these representations, the methodology tries to find an
equivalence of source code components and target API components,
through graphical matchmaking of their graph based semantic rep-
resentations. These are the Abstract Program representation and the
Candidate API Ontology of the source code, and the functional on-
tology with which the target API components are represented and
annotated (Fig. 3).

Figure 3. Matching mechanism for source code to API porting

The same approach can be used to find equivalent implementa-
tions of the same functionalities among different API. If the two APIs
(source and target) are both semantically described and annotated
with the functional ontology the equivalence is quite straightforward
to find because the two annotations will refer to the same functional
ontology concept; while if one of the two APIs is not annotated, we
can produce the Candidate API ontology Graph and match it with the
functional ontology, used to annotate the other API (Fig. 4).

4 Design of the Architecture and ongoing
implementation of the Porting Support
Procedure

The architecture implementing the methodology described in the pre-
vious section, is illustrated in Fig. 5 with the workflow and interac-
tions among the components, while Fig. 6 illustrates the workflow
for the API annotation process.

The architecture is composed of the following four modules.
The ALCOR (ALgorithmic COncept Recognizer) module [10] rec-

ognizes algorithmic concepts in the code, producing the Abstract
Program Representation.

26

Figure 5. Workflow of the porting procedure

Figure 4. Matching mechanism for API to API porting

The API Ontology Builder extracts the graph by parsing source
code and from the graph representing the code produces the API
grounding ontology which represent the base where to ground the se-
mantic annotations. This ontology enables the annotation of the API
elements in a simple way, by adding relation between grounding el-
ements and high level abstraction concept. Additionally the API On-
tology Builder produces the Candidate API ontology graph applying
graph transformation patterns defined for the specific programming
language or model.

The Schema Matcher module [14] accepts two graph based rep-
resentations and performs the matching between the two graphs, by
applying several algorithm including structural-based algorithms and
syntactical ones.

The Annotator allows the user to semantically annotate the target
API with concepts from the functional ontology.

As illustrated in Fig. 5, the inputs to the procedure are, on one side
the source code to be ported, together with APIs utilized, or directly
the APIs; on the other side the target API, semantically described
and annotated with the Functional Ontology (expressed in OWL lan-
guage). The output of the procedure is a mapping between the source

Figure 6. API Semantic Annotation workflow

API components and source code excerpts, and target API compo-
nents which are equivalent (functional equivalence) to the source el-
ements and code, and which represent the candidates to replace the
source elements during the porting activity.

The input components (source code and APIs) are statically anal-
ysed with use of a static code analyser, and the components of uni-
form the knowledge representation, the Program Dependence Graph,
the Call Graph and the API Graph, are produced. On the other hand
an OWL parser produces the OWL graph representation of the func-
tional ontology. The ALCOR module detects, from the Program De-
pendence Graph, the algorithmic concepts implemented within the
source code, and produces the Abstract Program Representation, rep-
resented as a graph in the uniform knowledge base, which represents
the recognized concepts and their hierarchical and control/data de-
pendences, and their grounding (implementation) within the source
code. Details on the recognition procedure and the concepts repre-

27

sentation are provided in sec. 4.1.
The API Ontology Builder module, on the other hand, analyzes the

APIs used by the source code, represented by the API graph, and pro-
duces the Candidate API ontology graph, by applying graph transfor-
mation rule patterns defined for the specific programming language
or model. This Ontology represents the semantics of the components
of the API under analysis, and their semantic relationships. Details
on the transformation rules and on the module implementation are
provided in sec. 4.3.

Once produced the uniform Knowledge base with the components
described, the Matcher performs the matching between the source
and target elements, producing a set of mapping elements specifying
the matching elements together with a similarity value between 0
(strong dissimilarity) and 1 (identity) indicating the plausibility of
their correspondence.

The implementation of the porting support procedure is ongo-
ing work, and it is mainly consisting of (a) the development of the
API Ontology builder and API annotator; (b) the development of the
source code analysis front end (starting from a previous implementa-
tion realized within the ROSE compiler construction toolkit; (c) the
integration of the already developed modules ALCOR and Schema
Matcher; (d) the implementation of a Graphical User Interface, pro-
viding the user with the matching results in a form graphically re-
lating the source code excerpts with suggested target API elements,
in order to perform a suitable and effective support to the porting
activity.

In the following sections we describe in more details the work-
ing principles and the ongoing implementation and integration of the
Algorithmic Concepts Recognition module (sec. 4.1), of the Schema
Matcher module (sec. 4.2) and of the API Ontology Builder module
(sec. 4.3).

4.1 Algorithmic Concepts Recognition
The Algorithmic Concept Recognizer, previously designed and de-
veloped [10, 11] implements a technique for automated algorithmic
concepts recognition in source code [12], where the definition of par-
allelizable algorithmic concept and the technique to describe and de-
tect the algorithmic concepts by using an attributed grammar were
presented, and which is briefly resumed here.

The Algorithmic Concepts Recognition is a Program Comprehen-
sion technique to recognize in source code the instances of known al-
gorithms. The recognition strategy is based on a hierarchical parsing
of algorithmic concepts. Starting from an intermediate representation
of code, Basic Concepts are recognized first. Subsequently they be-
come components of Structured Concepts in a hierarchical and / or
recursive way. This abstraction process, can be modeled as a hier-
archical parsing, by using Concept Recognition Rules that act on a
description of concept instances found in the code.

Basic concepts The building blocks of the hierarchical abstrac-
tion process are the Basic Concepts. They are chosen among the ele-
ments of the intermediate code representation at the structural level.
A slightly modified version of the Program Dependence Graph is
used: it is augmented with syntactical information (e.g. trees struc-
tures representing expressions for each statement node), control and
data dependence information (e.g. control branches, data dependence
level, variables, . . . are added).

Concept Recognition Rules The Concept Recognition Rules are
the production rules of the parsing: they describe the set of charac-

teristics and properties to permit the identification of an algorithmic
concept instance in the code.

Each recognition rule related to an algorithmic concept specifies
how sub-concepts, formed by set of statements and variables linked
by a functionality, are related and organized within a specific abstract
control structure. Each rule describes the concept in a recursive way
by using:

• A composition hierarchy: this is specified by the set of sub-
concepts directly composing the concept and their own compo-
sition hierarchies.

• A set of constraints and conditions to be satisfied by the compos-
ing sub-concepts, and all the relationships among them and with
the sub-concepts of the hierarchy.

A formalism for the specification of the recognition rules is given
by Attributed Grammars [13] for their expressiveness regarding the
specification of the hierarchy, the constraints and relationships, as is
well-known for the specification of programming languages.

A production rule of the grammar specifies: a set sub-concept of
terminal and non-terminal symbols which represent the set of sub-
concepts forming the concept represented by the lhs symbol concept.

The set condition represent the relationships and constraints that
must be fulfilled by the sub-concepts forming the concept, in order
to be recognized as a valid instance.

The set AttributionRule of the production assigns values to the at-
tributes of the recognized concept utilizing the values of attributes of
the composing sub-concepts.

The syntax of a production rule is as follows:

Rule =
rule concept→

composition
{ subconcept }

condition
[local LocalAttributes]
{ Condition }

attribution
{ AttributionRule }

LocalAttributes =
attribute : Type { attribute : Type }

concept ∈ N
subconcept ∈ N ∪ T
attribute ∈ A
Condition ∈ C
AttributionRule ∈ R

The Recognition process The PDG information, together with
syntactical information can be produced as a set of Prolog facts repre-
senting the Abstract Program Representation. The hierarchical pars-
ing process that do the recognition, is performed by an Inferential
Engine that applies the production rules of the parsing (expressed as
Prolog clauses) to the set of terminals, non-terminals and relation-
ships of the Abstract Program Representation.

An overall Abstract Program Representation is generated during
the recognition process. An example is illustrated in Fig. 7.

It has the structure of a Hierarchical PDG (HPDG), reflecting the
hierarchical strategy of the recognition process. As long as the pars-
ing process proceeds and more and more abstract concepts are rec-
ognized, they are represented as nodes in increasingly higher layers

28

Figure 7. Abstract Program Representation

of the HDPG. The nodes of this graph are connected by two kind of
edges. The hierarchy edges connect each node representing a con-
cept to the lower layer nodes representing its subconcepts. The graph
structure determined by this kind of edges represents the hierarchy
of abstraction; this structure is generally a tree, excepted in the case
of shared concepts, i.e. when a concept instance is subconcept of
more than one concept. The dependence edges link together nodes
that have abstract control and data dependence relationships between
them. Note that, during the recognition process, dependence edges
for the newly created abstract concept nodes are inherited from those
of the composing subconcept nodes in a way that is characteristic of
each concept.

4.2 Schema Matcher

A fundamental operation in the manipulation of ontologies is match,
which takes two ontologies as input and produces a mapping between
elements of the two ontologies that correspond semantically. Match
plays a central role in numerous applications, such as web-oriented
data integration, electronic commerce, schema integration, schema
evolution and migration, application evolution, data warehousing,
database design, web site creation and management, and component-
based development. A mapping is defined as a set of mapping el-
ements, each of which indicates that certain elements of schema S1
are mapped to certain elements in S2. Furthermore, each mapping el-
ement can have a mapping expression which specifies how the S1 and
S2 elements are related. The mapping expression may be directional,
for example, a certain function from the S1 elements referenced by
the mapping element to the S2 elements referenced by the mapping
element, or it may be non-directional, that is, a relation between a
combination of elements of S1 and S2.

The Schema Matcher, previously designed and developed [14],
implements a technique based on syntactic and structural schema
matching, among two or more input ontologies.

The matching procedure takes as input two schemas and deter-
mines a mapping indicating which elements of the input schemas

logically correspond to each other. The match result is a set of map-
ping elements specifying the matching schema elements together
with a similarity value between 0 (strong dissimilarity) and 1 (iden-
tity) indicating the plausibility of their correspondence. Our match-
ing procedure combines and integrates a number of matching algo-
rithms, adopting two of the above described approaches: the struc-
tural approach, based on the application of the following algorithms:
Children Matcher [15], Leaves Matcher, Graph and SubGraph Iso-
morphism [16]; the linguistic or syntactic approach, based on appli-
cation of: Edit Distance (Levenshtein Distance) [17] and Synonym
Matcher (through WordNet [18] synonyms thesaurus).

4.3 API Ontology Builder

The production of the Candidate API Ontology Graph from the
source code is performed by the API Ontology Builder module by
applying graph transformation patterns defined for the specific pro-
gramming language or model. We have defined a series of transfor-
mation rules for object oriented model aimed to extract and transform
proper language elements in ontological relation. In [1] similar set of
rules are described. Some of the defined rules are illustrated in the
following:

• (APIClassNodeA)→ (OwlNodeA)
A node representing a class A in the API graph becomes an OWL
class A in the candidate ontology graph.

• (APIClassMethodNodeA)→ (OwlNodeA)
A node representing a method A in the API graph becomes a class
A in the candidate ontology graph.

• (APIParameterNodeA)→ (OwlNodeA)
A node representing a parameter A in the API graph becomes a
class A in the candidate ontology graph.

• (APIClassNodeA ihneritsEdge APIClassNodeB) → (OwlNodeB
subclassOf OwlNodeA)
If a class A inherits a class B in the API graph, the relation be-
comes a subclassOf relation between the correspondent classes of
the OWL graph.

• (APIClassNodeA hasAttributeEdge APIClassNodeB)→ (OwlN-
odeA ObjectProperty: hasProperty OwlNodeB)
If a class A has an attribute B in the API graph, the relation be-
comes an Object Property with label ”hasProperyy” between the
correspondent classes of the OWL graph.

• (APIClassNodeA hasMethodEdge APIClassMethodNodeB) →
(OwlNodeA ObjectProperty: isDoer OwlNodeB)
If a class A has a method B in the API graph, the relation becomes
an Object Property with label ”isDoer” between the correspondent
elements of the OWL graph.

• (APIClassMethodNodeA hasMethod APIClassMethodNodeCon-
structorB and APIClassMethodNodeConstructorB hasInputPa-
rameter APIParameterNodeC) → (OwlNodeClassA ObjectProp-
erty: hasProperty OwlClassC)
If a class A has a constructor with some input parameters, in the
owl graph there are Object Properties with label ”hasProperty”
between the correspondent elements.

• (APIClassMethodNodeA hasInputParameterEdge APIParame-
terNodeB)→ (OwlNodeA ObjectProperty: actsOn OwlNodeB)
If a method A has some input parameter, there are Object Prop-
erties with label ”actsOn” between the correspondent elements on
the OWL graph.

• (APIClassMethodNodeA hasReturnTypeEdge APIClassNodeB)
→ (OwlNodeA ObjectProperty: produce OwlNodeB)

29

If a method A has a return type B there is an Object Property with
label ”produce” between the correspondent elements in the OWL
graph.

5 Conclusion

In this paper we have proposed an approach to perform automatically,
or with automated support, operations like the alignment and map-
ping of software which will be useful to perform software moderniza-
tion and migration. The methodology is based on an automatic anal-
ysis and representation of code at higher level of abstraction than the
syntactical and structural one that enables automatic recognition of
the algorithms and algorithmic concepts implemented in the source
code. Based on matchmaking techniques, the concepts recognized
are compared with functional concepts represented by the ontolo-
gies and the results provide useful information to perform porting of
source code excerpts and API calls to the target cloud programming
environment. The architecture supporting this methodology is com-
posed of four components: the Algorithmic COncept Recognizer,
which recognizes algorithmic concepts in the code, the API Ontol-
ogy Builder, which extracts the graph by parsing source code and
produces an ontology graph applying graph transformation patterns,
the Schema Matcher which performs the matching among graphs and
finally the Annotator which allows the user to semantically anno-
tate the target API with concepts from the functional ontology. This
work represents a contribute to facilitate software development in
cloud scenario, since in cloud computing environment there are many
APIs and services offered by different providers and big efforts are
needed both to port applications in the cloud and to migrate from one
provider to another. Future work planned includes the introduction of
reasoning to extract additional knowledge based on inferential rules
running on the acquired knowledge base and on optimization of the
adopted graph matching algorithms for the specific graph represen-
tations of API components. Natural Language Processing techniques
for ontology extraction, already developed by one of the authors [19],
[20] are planned to be integrated, in order to deal with entire software
artifacts which include natural language components (specification
requirements, documentation, etc.).

ACKNOWLEDGEMENTS

The research leading to these results has received funding from the
European Community’s Seventh Framework Programme (FP7/2007-
2013) under grant agreement n 256910 (mOSAIC Project), and by
the Italian Ministry of University and Research, PRIN programme
(project Cloud@Home).
We would like to thank Manuela Serrao (Second University of
Naples) who has implemented part of the Matchmaking algorithms.

REFERENCES

[1] D. Ratiu and M. Feilkas, J. Jurjens: Extracting Domain Ontologies from
Domain Specific APIs . In: Proc. of the 12th European Conf. on Software
Maintenance and ReengineeringIEEE Computer Society (2008) , p. 203–
212.

[2] Y. Zhang, J. Rilling, V. Haarslev, An Ontology-Based Approach to Soft-
ware Comprehension - Reasoning about Security Concerns, compsac,
vol. 1, pp.333-342, 30th Annual International Computer Software and
Applications Conference (COMPSAC’06), 2006

[3] A. Alnusair, T. Zhao, E. Bodden, Effective API navigation and reuse. In
Information Reuse and Integration (IEEE IRI), pp.7–12. 2010

[4] A. Eberhart and S. Argawal, SmartAPI - Associating Ontologies and
APIs for Rapid Application Development. In Ontologien in der und fr
die Softwaretechnik Workshop anlsslich der Modellierung 2004. Mar-
burg/Lahn.

[5] K. Bontcheva ,M. Sabou, Learning Ontologies from Software Artifacts:
Exploring and Combining Multiple Sources. Workshop on Semantic
Web Enabled Software Engineering (2006), GA, USA.

[6] H.S. Na, O.H. Choi, J.E. Lim, A Metamodel-Based Approach for Ex-
tracting Ontological Semantics from UML Models. WISE 2006: 411-
422

[7] H.S. Na, O.H. Choi, J.E. Lim, A Method for Building Domain Ontolo-
gies based on the Transformation of UML Models, Software Engineer-
ing Research, Management and Applications, 2006. Fourth International
Conference on , vol., no., pp.332-338, 9-11 Aug. 2006.

[8] A. V. Aho,J. E. Hopcroft, and J. D. Ullman, Data Structures and Algo-
rithms. Addison-Wesley, 1983.

[9] E. Gamma, R. Helm, R. Johnson and J. Vlissides. Design Patterns: Ele-
ments of Reusable Object-oriented Software. Addison-Wesley, Reading,
Mass., 1995.

[10] B. Di Martino, Algorithmic Concept Recognition to support High Perfor-
mance Code Reengineering, Special Issue on Hardware/Software Sup-
port for High Performance Scientific and Engineering Computing of IE-
ICE Transaction on Information and Systems, IEICE (Institute of Elec-
tronics, Information and Communication Engineers) Press, Vol. E87-D,
n. 7, pp. 1743-1750, July 2004.

[11] B. Di Martino and C.W. Kessler, Two Program Comprehension Tools
for Automatic Parallelization, IEEE Concurrency, Vol. 8, n. 1, pp. 37-47,
Jan-Mar. 2000.

[12] B. Di Martino, H.P. Zima, Support of Automatic Parallelization With
Concept Comprehension, Journal of Systems Architecture, Elsevier, Vol.
45, n. 6-7, pp. 427-439,Jan. 1999.

[13] D. E. Knuth, Semantics of context-free languages, Math. Syst. Theory,
2(2) pp. 127-145, 1968.

[14] B. Di Martino, Semantic Web Services Discovery based on Struc-
tural Ontology Matching, International Journal of Web and Grid Ser-
vices(IJWGS), Inderscience Press, Vol. 5, n. 1, pp. 46-65, 2009.

[15] H.H. Do and E. Rahm, COMA: System for Flexible Combination of
Schema Matching Approach, VLDB (2002).

[16] L.P. Cordella, P. Foggia, C. Sansone, and M. Vento, Performance evalua-
tion of the VF graph matching algorithm, Proc. of the 10th ICIAP(1999),
IEEE Computer Society Press, pp.11721177.

[17] M. Gilleland, Levenshtein Distance algorithm, Merriam Park Software,
http://www.merriampark.com/ld.html (2000).

[18] Princeton University (2006) Wordnet a lexical database for the English
language, http://wordnet.princeton.edu.

[19] B. Di Martino, An Approach to Semantic Information Retrieval based
on Natural Language Query Understanding, in: Daniel, Florian; Facca,
Federico Michele (Eds.), Current Trends in Web Engineering, Lecture
Notes in Computer Science, pp. 211-222, Vol. 6385, Springer-Verlag,
2010. (ISBN 978-3-642-16984-7).

[20] B. Di Martino, Ontology Querying and Matching for Semantic Based
Retrieval of Semantically Annotated Documents, Proc. of IADIS In-
ternational Conference on Applied Computing, pp. 227-232, Rome,
November 19-21, 2009. (ISBN 978-972-8924-97-3).

30

Anomaly Detection in the Cloud: Detecting Security
Incidents via Machine Learning

Matthias Gander, Basel Katt, Michael Felderer, Adrian Tolbaru, Ruth Breu1, and Alessandro Moschitti2

Abstract. Cloud computing is now on the verge of being embraced
as a serious usage-model. However, while outsourcing services and
workflows into the cloud provides indisputable benefits in terms of
flexibility of costs and scalability, there is little advance in security
(which can influence reliability), transparency and incident handling.
The problem of applying the existing security tools in the cloud is
twofold. First, these tools do not consider the specific attacks and
challenges of cloud environments, e.g., cross-VM side-channel at-
tacks. Second, these tools focus on attacks and threats at only one
layer of abstraction, e.g., the network, the service, or the workflow
layers. Thus, the semantic gap between events and alerts at differ-
ent layers is still an open issue. The aim of this paper is to present
ongoing work towards a Monitoring-as-a-Service anomaly detection
framework in a hybrid or public cloud. The goal of our framework is
twofold. First it closes the gap between incidents at different layers
of cloud-sourced workflows, namely we focus both on the workflow
and the infrastracture layers. Second, our framework tackles chal-
lenges stemming from cloud usage, like multi-tenancy. Our frame-
work uses complex event processing rules and machine learning, to
detect populate user-specified metrics that can be used to assess the
security status of the monitored system.

1 Introduction
Building your own monolithic IT infrastructure is slowly rendered
obsolete by cost efficient cloud solutions that promise on-demand
scalability with leased hardware, i.e. by contracting Infrastructure as
a Service (IaaS) provider such as Amazon’s “elastic compute cloud”
EC2 cloud) [1, 2]. Therefore it is not surprising that corporations opt
to outsource IT related computing units, such as hosts or services,
to such clouds (cloud-sourcing) to become cloud tenants. Leading
analysts forecast a dramatic increase of cloud services revenue, i.e.
Gartner, Inc. forecast Software as a Service (SaaS) to increase 17.9%
from the 2011 revenue of $12.3 billion.3 Cloud tenants though, of-
ten have to pay a price. Increased scalability of resources demands
dynamical compositions of computing machinery resulting in design
inherent weaknesses, for instance, tenants share the same cloud and
are potentially allowed to interact by design [23].
This results in potentially hostile machines residing within the corpo-
rate network that has to be secured. Hostile machines on the network
tear security holes in multiple layers of computation. Infrastructure
items, such as hosts, can be broken into by a competing company to
attain confidential information about its users and other data that is
1 University of Innsbruck, Austria, email: {matthias.gander, michael.felderer,

basel.katt, adrian.tolbaru, ruth.breu}@uibk.ac.at
2 Information Engineering and Computer Science Department, University of

Trento, Italy, email: moschitti@disi.unitn.it
3 http://www.gartner.com/it/page.jsp?id=1963815, Accessed: July 30, 2012

stored on the machine. This in turn allows workflows to be changed,
i.e. by breaking in a system and patching the code-base or the plat-
form itself [27, 15], or simply by reverse engineering workflows and
creating rogue clients. A thusly changed workflow has semantical
consequences on its logic, for instance, bypassed checks for suf-
ficient funds in a credit card application, a compromised XACML
(or Kerberos) infrastructure that grants authorizational access to re-
stricted entities.
Another problem is that attacks themselves have become sneakier.
Attackers tend to use more advanced techniques, and more persis-
tence to eventually mask an attack as inside job4. For example, if
credentials of legitimate service users are stolen and information is
leaked gradually and persistently over a longer time period. Such at-
tacks usually manifest in a change of behavior of entities involved
in any given activity (e.g. behavioural changes observed in off-key
working hours, spiking access over document data etc.).
To decrease the chance of successful attacks, security monitoring
was introduced to analyse events committed by sensors in the corpo-
rate network. The analysis of events usually involves signature-based
methods. Features, extracted from logged event data, are compared
to features in attack signatures which in turn are provided by ex-
perts [17, 25]. Other approaches, e.g. anomaly detection, often make
use of machine learning-based algorithms [11]. Anomalies are an un-
expected event (or a series of unexpected events) that exhibit a signif-
icant change in behaviour of an entity, for example, a user. If anoma-
lous behavior can be distinguished from normal behavior by hard
bounds that are known beforehand, then signature-based approaches
can be used to classify attacks immediately. However, when it is hard
to specify all entities and their normal behaviour completely before-
hand, then statistical measures have to be used to classify deviations
in oder to detect possible attacks.
Unfortunately, probabilities and patterns of unwanted behaviour are
very hard to procure and labeled training data for a new system
is sparse [11, 22]. But it is reasonable to assume that most activ-
ity in a network is not triggered by compromised machines and at-
tacks are represented by only a tiny fraction of the overall behaviour.
Therefore, methods provided by unsupervised learning yield outliers,
which in turn may represent attacks [22, 18, 5]. Unsupervised learn-
ing can roughly be classified in, nearest-neighbour, rule-mining, sta-
tistical, and clustering techniques. Each of which have advantages
and disadvantages, depending on how they are used, see Chandola et
al. [5]. For our purpose of grouping anomalous instances, clustering
seems best suited. The disadvantages of clustering, i.e. the complex-
ity of clustering algorithms and possible misclassifications, can be
reduced by leveraging optimized algorithms, assumptions, and false-

4 http://www.schneier.com/blog/archives/2011/11/advanced persis.html, Ac-
cessed: July 30, 2012

31

positive reductions [22, 13].
Both methods, signature-based and anomaly-based, have strengths
and weaknesses. The main drawback of signature-based methods is
the inherent limitation that they always have to consult the signature
database to match detected features with the information therein [22].
If a new attack is out, it is probable that the signature database does
not contain the latest attack pattern. Anomaly-based detection tech-
niques, on other hand, have their true potential in detecting previ-
ously unseen patterns [11]. A common limitation both detection tech-
niques share is a lack of “context”. This context needs to provide
information about inherent relations among users, services they use,
the hosts from which they operate, and for which workflow they are
assigned to. For instance, it is not sufficient to know that a service has
longer than average response time, the correlation of response time
and measurable changes of user and network host behaviour offers
more valuable clues.
In order to get benefits from signature- and anomaly-based moni-
toring we propose to combine them into a context-based anomaly
detection framework. This framework consists of three main tiers:

i The specification of a DSL which allows to model the cloud-
sourced IT landscape in detail such that workflows can be spec-
ified, monitoring rules can be generated, and computing entities
can be put into relation.

ii The detection of workflow aberrations, or semantic gaps, caused
by attacks via Complex Event Processing (CEP) based on mon-
itoring rules generated by the model. CEP is a signature-based
method to analyze event streams in a midtoupper size IT infras-
tructure [8]. The purpose of CEP is to derive more meaningful
events (in this case alerts).

iii The detection of abnormal entities, i.e. users, services, network
hosts, and workflows, by leveraging unsupervised machine learn-
ing, to detect unforeseen changes in the behavior.

The application of our framework in a cloud-sourced health-care en-
vironment provides the means necessary to unravel the following in-
cidents:
• Semantic Gaps. A document retrieval workflow doctor accessing

the database without proof of first having received a permission
token, replay attacks, workflow aberrations through patched code.

• Anomalies. An increase of service activity, service calls at unusual
hours, abnormal users, detectable by a gradually increasing num-
ber of document requests, suspiciously active hosts, but also a
change in flow behavior of service calls and network hosts (i.e.
payload analysis of web-service parameters). The entities, ser-
vices, users, hosts, workflows, constituting the unusual behaviour
are labeled as anomaly.

The paper will continue with a description of the framework in Sec-
tion 2, including the DSL 2.1, the usage of CEP 2.2, profiling enti-
ties 2.3 and anomaly detection via fingerprints 2.4. Section 3 depicts
the used architecture and Sections 6 and 5 discuss future work and
related work respectively.

2 Framework Overview
In this section we discuss the framework in more detail. We begin
with the DSL to specify the IT infrastructure consisting of work-
flows, services, hosts, users, and their relations. This in turn leads to
the discussion of how CEP is included in the framework. Afterwards
our discussion will continue with details about the profiling of enti-
ties for anomaly detection purposes, i.e. discuss the different profiles,

the features for fingerprints, the clustering method and distance mea-
sure, and round it up with a description of the architecture.
Every monitoring system needs events to determine the actual state
of the system. Our framework expects events from the infrastruc-
ture, in form of TCP and UDP packets sent from the machines in the
network, and in form of service calls. TCP and UDP packets are ag-
gregated as flows that have multiple characteristics, such as, source,
destination, ports, time, among others, duration. Service events are
used to derive the current state of the services, show user behaviour
(i.e. access requests), and give general information on the state of
workflows. Information that should be present is, the duration of a
call, the time, the user, and the object id that was requested.

2.1 A DSL for IT landscapes
The use of metamodels or domain specific languages (DSL) is not
uncommon [4, 16], their main use is to provide the vocabulary for
experts to let them express their knowledge to represent the system
in a textual 5 (or graphical) model. These models can later be ac-
cessed for look-ups, reasoning, and/or code generation.
Our DSL, therefore, allows the creation of a model that in turn al-
lows harvesting information of entities (i.e. traceability of deployed
entities to model information) and monitoring rule-generation. The
model in Figure 1 reuses concepts from Breu et al. [4, 16], for exam-
ple the introduction of multiple conceptual layers. The event-driven
process chain paradigm [19] that is used in the model facilitates the
modeling process, since it allows to represent services through their
behaviour in form of events. A workflow activity, therefore, is not
modeled via services and their call-sequence but rather as a series of
events.
A model derived from the DSL contains three layers, Workflow, Ser-
vice and Infrastructure. The workflow layer contains three classes,
these are WF Activity, Role, and Actor. Activities and service events
are related by arcs (Arc) which describe the way a workflow is exe-
cuted. These arcs can have different types, i.e. AND, OR, XOR, SEQ.
SEQ denotes that if said arc lies between two workflow activities A
and B, then A is followed by B. AND, OR and XOR relate events in a
boolean fashion. For instance A AND B,C denotes that after A, B and
C is executed. Roles, role is a set of responsibilities and obligations
for a stakeholder, that can influence heuristics during the analysis of
events. As discussed above, services are not modeled directly, but are
modelled as ServiceEvent of various types (EventTypeEnum). Event
emitters are services, on top of hosts. Hence, among other features
provided by the service event, i.e. variable ones such as timestamps
and session ids (to identify the Actor), we assume a source and a
destination pointing to the hosts that were responsible for the event.
This allows us to connect the service layer to the infrastructure layer.
Hosts (Node in the model) can be of various types (NodeType), this
makes it easier to map events to their corresponding workflow activ-
ity during runtime.

Identifier defines the set of identifiers, i.e. all elements are con-
nected to it via identifiedBy, such as hosts, service events, and actors
are identified by it (via UUID and a location). The elements doing
the execution are hosts from the infrastructure, hence the (runsOn)
class.

2.2 Complex Event Processing
To monitor proper execution of systems rule-based approaches tend
to be used, i.e. in form of CEP. For CEP much research has been
5 xText: http://www.eclipse.org/Xtext, Accessed: July 20, 2012

32

Figure 1. A language to describe an IT landscape.

invested in query languages to handle the stream of events in query-
based languages similar to SQL6, ESPER7, Oracle CEP8, Coral89

and Aleri10. In our case we need to listen for events that are mod-
elled beforehand, i.e. we need to listen for sequences that represent a
workflow. These sequences give all the information necessary to in-
fer who is responsible for certain actions. Part of our work focuses on
the creation of CEP rules automatically based on the model created
by the expert. For CEP rules the Esper Query Language (EQL)11 in
combination with the Esper CEP engine was chosen, since it is open
source (GPL GNU Public License v2.0), has an active community
and has shown potential in several benchmarks [12]. The translation
from workflow models to query rules is straight forward, since EQL
provides the same boolean logical connectives as our model and also
provides the possibility to model sequences −−→

seq
. For instance, the

formula Ev0 −−→
seq

Ev1 is only satisfied if and only if Ev0 is em-

mitted before Ev1. In summary a workflow model, as used for com-
pliance detection, is nothing more than a series of CEP rules that are
verified by the CEP engine.

2.3 Profiling of Entities
To determine anomalies in the activity of a corporate network, the ac-
counting information of banks, or more general in usage behaviours,
it is common to first create a profile that describes a normal behaviour
of key entities [6, 7]. The profile types, service, user, host, and work-
flow, that we consider reflect the key entities that are involved in an
on-line data processing. Gartner, Inc. [20] states, for instance, that
there is the need for user profiling to monitor user behaviour to pre-
vent data theft. Service profiles are needed to determine, among oth-
ers, a gradual decrease of performance compared to itself or an over-

6 http://www.w3schools.com/sql/default.asp, Accessed: July 20, 2012
7 http://esper.codehaus.org/, Accessed: July 20, 2012
8 http://tinyurl.com/OracleCEP, Accessed: July 20, 2012
9 http://tinyurl.com/Coral8CEP, Accessed: July 20, 2012
10 http://tinyurl.com/AleriStreaming, Accessed: July 20, 2012
11 http://esper.codehaus.org/, Accessed: July 20, 2012

all different behaviour from other services. Communication patterns
among hosts also need to be considered in form of a host profile.
Outliers in each of these types of entities have an impact on the per-
formance/security of workflows and their activity profile.
Assume, for instance, a compromised machine that gradually in-
creases the number of requests for classified object information in
the name of an existing user U over service S by using machines
M0..n. Normally, this is not easy to trace, especially if U has per-
missions to query restricted information (no CEP alerts will be gen-
erated). A time-based analysis, though, yields detectable changes in
the behaviour of U, S, andM0..n. These are, more queries per in U ’s
name, more queries spread to machines M0..n, more queries at un-
usual hours for S by U , and at the end, a detectable change of the
workflow behaviour itself. The profiles are further refined into, an
immediate, hourly, and monthly track.

i To perform an on-line analysis of individual service events, CEP is
used. CEP alerts have an immediate impact on the immediate track
as well as statistical information gathered from the event itself, i.e.
z-scores from parameters, duration, and the payload.

ii An hourly track allows to aggregate some more information about
hourly deviances, for instance, the average number of calls for a
service, the number of its users, average call duration, extreme
values such as maximum duration and minimum duration, the
number of alerts produced by the immediate track during selected
hours, and more.

iii To assess more subtle patterns of deviance, a longer time-period is
of need. To give an example consider the following scenario of a
persistent attack. A competing company or government managed
to break into the system and hides its activities of espionage, e.g.,
by leaking of sensitive documents, in form of an insider attack.
For this, the real attackers stole the credentials of some user U to
gradually query more and more documents, for instance creating
2-3% more queries per day (hour) than was normal. The immedi-
ate and hourly track are not built to detect such subtle aberrations
and, hence, fail to detect them. The comparison of absolute access
numbers over, for instance a monthly basis, shows a huge increase

33

of query activity.

Information from the hourly (h) and monthly (m) track of an en-
tity is represented by fingerprints (F e

h , F
e
m) and represent, hence, a

measure of the overall behaviour of the selected entity (e). Finger-
prints are basically feature vectors vi = (vi0, . . . , vin−1), contain-
ing continuous data. Fingerprints contain for instance, the number of
CEP alerts in an hour, the number of alerts raised from immediate
profiles, or z-score outliers. Our framework uses these fingerprints to
compare its behaviour to other entities’ behaviours but also to mea-
sure potential deviances of its own behaviour over time.

2.4 Clustering Fingerprints for Anomaly Detection
To determine abnormal entities in relation to other entities of the
same type it is necessary to compare individual features of a pro-
file and attain a sense of distance. Since individual characteristics of
a profile might not change sufficiently to determine that an entity is
an anomaly, we take into consideration all of the individual features
that were collected. To take all features into consideration clustering
can be used [24]. Clustering makes use of the inherent structure of
data and groups data instances (clustering) by common attributes and
a similarity measure. After the outliers have been found, the model
can then be used to further link entities and detect correlations among
outlying users, and, for instance, services. Figure 2 summarizes how
the layers are related.

Although other distance measures exist, e.g., Jaccard, Dice, and
Russell/Rao [24, 10], which have their use when comparing dichoto-
mous data, the measure of distance which we use is the Euclidean
metric, see Formula 1. It gives us the opportunity to measure dis-
tances of continuous multi-dimensional variables, i.e., vi ∈ Rd.

d(vi,v
′
i) =

(
n−1∑

k=0

(vik − v′ik)
2

) 1
2

(1)

Various clustering algorithms have been proposed, e.g. DB-
SCAN [9]. DBSCAN finds clusters based on a density measure, i.e.,
it finds clusters in which data instances have only a maximal dis-
tance to each other. Hence, points near to each other are grouped in
the same cluster. This may lead to arbitrary shaped clusters, including
spherical cluster shapes. On the one hand, arbitrary shaped clusters
do not lead to any clear results, and on the other hand, clusters in
our case might have varying density values ε, which is problematic
for DBSCAN. The algorithm of our choice is fixed-width cluster-
ing [22, 21]. The algorithm, described in Figure 3, has the benefit
of a better runtime complexity, compared to other clustering algo-
rithms, e.g., standard k-means, since it computes clusters with just
a single passage through the data instances (fingerprints). In fixed-
width clustering, clusters have a maximal width and a cluster center,
called centroid. Data instances that are clustered based on their fea-
ture vector either surpass the maximal width (based on the distance
measure) and create a new cluster or have a smaller distance and be-
come part of the cluster and have a certain distance to its centroid.
The fewer data instances are inside a cluster the more probable it is
that those data instances are in fact outliers. This is basically the as-
sumption discussed before: normal behaviour represents the major-
ity of data instances whereas abnormal behaviour is represented by
only few data instances (which represent potential attacks). Hence,
clusters containing fewer instances than a user-configured threshold,
represent anomalous data points. For instance if less than 1% of data

instances are within a cluster it is labeled as anomalous. We leverage
the distance notation from Formula 1 to d(vi, C) to denote the dis-
tance from a feature vector to a cluster (represented by its centroid).
The algorithm to cluster the fingerprints, as described in [21, 22],
consists of 3 steps:

1. The set S of clusters is first initialized to the empty set.
2. A fingerprint vi = (vi, . . . ,vin−1) is taken from the set of fin-

gerprints (unlabeled set of fingerprints).

IF The set S is still empty then the fingerprint will create a
new cluster C and vi will be the centroid.

ELSE The cluster C with the smallest distance is selected
argmin

C∈S
(d(vi, C)) such that the fingerprint does not surpass

the maximal width. If such a cluster is found, the fingerprint
is inserted, otherwise a new cluster is generated and vi will be
the centroid.

3. The second step is repeated for all remaining fingerprints.

Figure 3. Single Linkage Clustering [21, 22].

2.4.1 Detecting Abnormal Entities and False-Positives.

Clusters containing less fingerprints than the user-specified thresh-
old are automatically labeled as outliers. The fingerprints within, and
their entities they represent, are then also labeled as anomalous. For
each entity there are two possibilities for creating an anomaly alert,
(i) either through a change of behaviour from itself, or (ii) by being
substantially different from other entities of the same type. The idea
behind (i) is that the system collects fingerprints for a single entity
over an amount of time, i.e., hours or months, and clusters them. If
an entity did not change its behaviour, its fingerprints are in the same
dense cluster c. The more changes an entity undergoes (stored in the
behavioural profile) the more the fingerprints change. Eventually the
generated fingerprint surpasses the distance to the centroid of c and
results in an anomaly alert. In case of (ii) fingerprints are used to
compare entities among each other. A user, who exhibits a signifi-
cant different usage pattern, creates his own cluster and is labeled as
anomalous. In case a new user, service, or host is introduced to the
system, it can be determined automatically if said entity is abnormal
or not, simply by comparing its fingerprint.
Through the use of the domain model, entities are put in relation
to each other, i.e., users to hosts, or services to workflows. Anoma-
lies are, thus, put into context and alerts propagated upwards. For
instance, abnormal services, hosts, and users, determine the security
status of the assigned workflows. Vice-versa, drilling down on an
abnormal workflow (e.g., too much network traffic or too many doc-
ument queries), exposes abnormal entities, e.g., anomalous services,
users, hosts, and speeds-up root-cause analysis.
It is possible, even likely, that some clusters that are detected anoma-
lous are actually not anomalous. Groups of fileservers will, for in-
stance, have different fingerprints than mail servers or timeservers. It
is therefore important to consider various degrees of optimization to
prevent false-positives. There are a couple of options, since the clus-
tering algorithm is parameterized by two variables, the width and the
threshold for anomalies, tweaking either of them will reduce false-
positives. An increased cluster-width allows sparse clusters, exhibit-
ing a significant higher variance, to be normal. Rising the threshold

34

Figure 2. Overview of connecting the layers.

allows to have clusters with few instances to be normal as well. An-
other option is the creation of tests to determine the true state of an
entity, but that is left for future work. If a cluster, and the ensuing
entities within, are still labeled as anomalies the framework provides
to relabel them as normal.

3 Architecture

Figure 4 indicates the different components of our monitoring archi-
tecture, which can be offered by a cloud provider as a Monitoring
as a Service solution. A tenant uses the DSL provided by the model-
ing component to provide a model which describes his IT landscape.
This model is aligned to the three layers we discussed above. Based
on the model, rules to detect workflow non-compliance are created
to configure the CEP engine. To customize the monitoring service,
the tenant supplies the policy engine with policies (which are rules
or metrics) to enable the cloud provider to react on alerts. Policies
specify (i) the gravity of alerts and (ii) what should happen in case
they happen. By providing a policy, a tenant bids the cloud provider
to cut off a virtual host from the network, if said host is classified
as an information leaking host. This state can be mantained until the
host is classified as normal. The event processing component consists
of service and network sensors as well as a normalization feature
extraction element. The sensors act as event sinks for multiple ser-
vice and network event emitter sources. The service sensor receives
JSON12 encoded service call data, whereas the network monitor is
built as a netflow-collector. Analysis of workflow compliance (i.e.
via CEP) and outlier detection (i.e., via Clustering) is done in the
analysis component. Statistical methods, i.e., z-scores are computed
by “The Apache Commons Mathematics Library”.13 The CEP engine
of choice is ESPER14. Based on the outcome of the analysis and the
severity of alerts, the policy engine populates the dashboard and de-
termines reactive measures for the cloud provider (policies provided
by the tenant). The dashboard displays integral information about a
tenant’s infrastructure, i.e., the infrastructure in tabular form, impor-
tant alerts, and anomalous entities.

12 http://www.json.org/, Accessed: July 30, 2012
13 http://commons.apache.org/math/, Accessed: July 30, 2012
14 http://esper.codehaus.org/, Accessed: July 20, 2012

4 Evaluation

The evaluation consists of a real-life healthcare scenario where ser-
vices, data, and hosts, are outsourced to an IaaS cloud. The ar-
chitecture consists of all services necessary to allow a regulated
flow of action in a hospital, e.g., image retrieval services, diagnose
services, and an XACML-Kerberos like access control infrastruc-
ture. Based on the runtime behaviour of the system we train our
machine-learning component and measure deviations of user- and
network-activity. To measure the effectiveness of our approach the
healthcare architecture will be subject to various stealthy attacks,
i.e., a failed XACML architecture, leak attacks from insiders, fuzzy
security-testing of web-services from other tenants, or TCP/UDP
malware propagation across the cloud. The evaluation will show if
the anomaly detection can provide information about these attacks.

5 Related Work

In this section we discuss related work in the areas of anomaly de-
tection, CEP, and monitoring. There has been plenty of research
for anomaly detection via clustering, a survey on this topic is
provided by [11]. Clustering is quite versatile as the approaches
in [22, 21, 18, 13] point out. Portnoy et al. [22] detect attacks, e.g.,
denial of service, in the KDD 1999 data via clustering of network
activity set.15 Gu et al. [13] use clustering for the detection of bot-
nets by a framework called “Botminer”. The Authors in [18] improve
clustering for NIDS by using a density-based clustering algorithm
and a grid-based metric and evaluate their efforts on the KDD 1999
data set. To measure hosts we create profiles of their network be-
haviour by sampling their TCP/UDP flows based on [14, 13]. To our
knowledge, the clustering algorithm itself was first presented in [22].
Instead of clustering individual multi-dimensional features form the
KDD training set we cluster fingerprints of various entities. The main
difference from the proposed work of Gu et al. [13] is that the for-
mer only profiles hosts for the specific detection of botnets, whereas
we only try to find outliers and assemble outliers in a holistic profile
of the infrastructure. The approach presented in [14] is more similar
to ours since it also profiles machines in the network. But we’re not
restricted to machines only, but also services, users, and workflows.

15 http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html, Accessed: July
20, 2012

35

Figure 4. Overview of the monitoring architecture.

The multi-tier DSL proposed in this paper allows the definition of
node hierarchies, roles, actors, and distinguishes three layers. These
design decisions are in its core similar to [4, 16]. Breu and Inner-
hofer et al. provide a model-based approach with concepts for secu-
rity management. There is related work for DSLs to create service in-
frastructures Berre et al. [3] present the Service Oriented Architecture
Modeling Language (SoaML) and Popescu et al. provide the Service
Markup Language SML. SoaML was not desireable for our scenario,
since our interest was more cloud oriented than SOA-centric. Our
DSL allows the definition of event-sequences, which in turn allow
to detect deviances to rules generated by the workflow model. The
paradigm of modeling services as events is similar to event-driven
process chains (EPC), discussed in-depth in [26]. Workflow compli-
ance in SOA via CEP has been discussed by Mulo et al. [19]. A
service invocation is regarded as an event and business process activ-
ities as event-trails. These event-trails guide the creation of queries
which a CEP engine uses to identify and monitor business activities.
Anomaly detection itself has been done frequently in many domains,
though to the best of our knowledge, there is no cloud monitoring
approach that allows CEP and anomaly detection to monitor (a) the
execution of workflows for semantic gaps and (b) detect infrastruc-
ture anomalies relative to said workflows. Due to the formal repre-
sentation of “behaviour” of entities we’re able to pinpoint suspicious
services, users, hosts, and workflows.

6 Conclusion and Future Work

We have sketched a context-based anomaly detection framework to
facilitate real-time monitoring of cloud-sourced workflows and in-
frastructures. Our research differs from existing monitoring work as
we aim to mitigate cloud threat-scenarios with web services and in-
frastructure anomaly detection, and CEP. The framework is able to
keep multiple profiles of entities on various layers and to link de-

tected anomalies and semantic gaps up to workflows. Future work
will consist of,

• An implementation and an evaluation based on a real-world sce-
nario, machine learning algorithms will be tested on standard ma-
chine learning datasets.

• Carefully evaluating other clustering methods, e.g., Entropy Max-
imization, to reduce false-positives and attain a better clustering
result.

• A CEP rule repository to further allow the reduction of false-
positives with domain knowledge, detect additional signature-
based events to augment the profiles for entities in general. Along
the way goes the inclusion of other monitoring tools such as
Snort16 and Ossec17 to get a more elaborate profile for hosts.

• Finding anomalies is a good first step, but it serves a wider pur-
pose, i.e., the semi-automatic labeling of clusters via supervised
learning. First, normal and anomalous clusters are labeled, then
based on the fingerprints in these clusters training data for super-
vised learning, e.g., Naive-Bayes, Random Forests, is easily gen-
erated. New fingerprints can then be readily classified as a specific
form of behaviour.

ACKNOWLEDGEMENTS

This work is supported by QE LaB-Living Models for Open Systems
(FFG 822740), and SECTISSIMO (FWF 20388) and has been par-
tially supported by the European Community’s Seventh Framework
Programme (FP7/2007-2013) under the grants #247758: ETERNALS
– Trustworthy Eternal Systems via Evolving Software, Data and
Knowledge, and #288024: LIMOSINE – Linguistically Motivated
Semantic aggregation engiNes.

16 http://www.snort.org/, Accessed: July 30, 2012
17 http://www.ossec.net/, Accessed: July 30, 2012

36

REFERENCES

[1] EC Amazon, ‘Amazon elastic compute cloud (amazon ec2)’, Amazon
Elastic Compute Cloud (Amazon EC2), (2010).

[2] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R. Katz, A. Konwin-
ski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, et al., ‘A view of cloud
computing’, Communications of the ACM, 53(4), 50–58, (2010).

[3] A. Berre. Service oriented architecture modeling language (soaml)-
specification for the uml profile and metamodel for services (upms),
2008.

[4] R. Breu, F. Innerhofer-Oberperfler, and A. Yautsiukhin, ‘Quantita-
tive assessment of enterprise security system’, in The Third Interna-
tional Conference on Availability, Reliability and Security, pp. 921–
928. IEEE, (2008).

[5] V. Chandola, A. Banerjee, and V. Kumar, ‘Anomaly detection: A sur-
vey’, ACM Computing Surveys (CSUR), 41(3), 15, (2009).

[6] D.E. Denning, ‘An intrusion-detection model’, Software Engineering,
IEEE Transactions on, (2), 222–232, (1987).

[7] Nancy A. Durgin, Pengchu Zhang, Nancy A. Durgin, and Pengchu
Zhang. Profile-based adaptive anomaly detection for network security,
2005.

[8] M. Eckert and F. Bry, ‘Complex Event Processing (CEP)’, (2009).
[9] M. Ester, H.P. Kriegel, J. Sander, and X. Xu, ‘A density-based algorithm

for discovering clusters in large spatial databases with noise’, in Pro-
ceedings of the 2nd International Conference on Knowledge Discovery
and Data mining, volume 1996, pp. 226–231. AAAI Press, (1996).

[10] H. Finch, ‘Comparison of distance measures in cluster analysis with
dichotomous data’, Journal of Data Science, 3(1), 85–100, (2005).

[11] P. Garcia-Teodoro, J. Diaz-Verdejo, G. Macia-Fernandez, and
E. Vazquez, ‘Anomaly-based Network Intrusion Detection: Tech-
niques, Systems and Challenges’, computers & security, 28(1-2), 18–
28, (2009).

[12] Stefan Grohe, Christoph Schlameu, and Ralf Sommer, ‘Performancev-
ergleich von cep-engines’, Technical report, Hochschulschriftenserver
der Universitt Stuttgart [http://elib.uni-stuttgart.de/opus/oai2/oai2.php]
(Germany), (2010).

[13] G. Gu, R. Perdisci, J. Zhang, and W. Lee, ‘Botminer: clustering analysis
of network traffic for protocol-and structure-independent botnet detec-
tion’, in Proceedings of the 17th conference on Security symposium, pp.
139–154, (2008).

[14] F. Hernandez-Campos, A.B. Nobel, F.D. Smith, and K. Jeffay, ‘Under-
standing patterns of tcp connection usage with statistical clustering’, in
Modeling, Analysis, and Simulation of Computer and Telecommunica-
tion Systems, 2005. 13th IEEE International Symposium on, pp. 35–44.
IEEE, (2005).

[15] G. Hoglund and J. Butler, Rootkits: subverting the Windows kernel,
Addison-Wesley Professional, 2006.

[16] F. Innerhofer-Oberperfler, R. Breu, and M. Hafner, ‘Living security
collaborative security management in a changing world’, in Parallel
and Distributed Computing and Networks/720: Software Engineering.
ACTA Press, (2011).

[17] Jack Koziol, Intrusion Detection with Snort, Sams, Indianapolis, IN,
USA, 1 edn., 2003.

[18] K. Leung and C. Leckie, ‘Unsupervised anomaly detection in network
intrusion detection using clusters’, in Proceedings of the Twenty-eighth
Australasian conference on Computer Science-Volume 38, pp. 333–
342, (2005).

[19] E. Mulo, U. Zdun, and S. Dustdar, ‘Monitoring web service event trails
for business compliance’, in Service-Oriented Computing and Applica-
tions (SOCA), 2009 IEEE International Conference on, pp. 1–8. IEEE,
(2009).

[20] M. Nicolett and Kavanaugh Kelly, ‘2012 Gartner Critical Capabilities
and Magic Quadrant for SIEM’, (2012).

[21] J. Oldmeadow, S. Ravinutala, and C. Leckie, ‘Adaptive clustering for
network intrusion detection’, Advances in Knowledge Discovery and
Data Mining, 255–259, (2004).

[22] L. Portnoy, E. Eskin, and S. Stolfo, ‘Intrusion detection with unlabeled
data using clustering’, in Proceedings of ACM CSS Workshop on Data
Mining Applied to Security, (2001).

[23] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, ‘Hey, you, get
off of my cloud: exploring information leakage in third-party compute
clouds’, in Proceedings of the 16th ACM conference on Computer and
communications security, pp. 199–212. ACM, (2009).

[24] P.N. Tan, M. Steinbach, and V. Kumar, ‘Cluster Analysis: basic con-

cepts and algorithms’, Introduction to Data Mining, Addison-Wensley,
(2006).

[25] Inc. Trend Micro. Ossec documentation. http://www.ossec.
net/ [accessed: December 14, 2010].

[26] W.M.P. van der Aalst, ‘Formalization and verification of event-driven
process chains’, Information and Software technology, 41(10), 639–
650, (1999).

[27] Dj Walker-Morgan. Vsftpd backdoor discovered in source code.
Website, 2011. Available online at http://h-online.com/
-1272310; visited: July 4, 2011.

37

Robust Requirements Analysis in Complex Systems
through Machine Learning

Francesco Garzoli1, Danilo Croce2, Manuela Nardini3, Francesco Ciambra4, Roberto Basili5

Abstract. Requirement Analysis is a relevant application for Se-
mantic Technologies focused on the extraction and exploitation of
knowledge derived from technical documents. Language processing
technologies are useful for the automatic extraction of concepts (e.g.
devices, parts and functionalities) as well as norms (e.g. constraints
on their use) that play a key role in machine learning processes. A
distributional method to train a kernel-based learning algorithm (i.e.
SVM) is here proposed, as a cost-effective approach to the validation
stage in Requirement Analysis of Complex Systems, i.e. Naval Com-
bat Systems. These latter are complex systems based on software
components able to manage System Equipments in different mission
scenarios. The application of Requirement Identification (RI) and In-
formation Extraction (IE) techniques is here discussed in the realm of
robust search processes that allows to locate software functionalities
within large collections of requirements written in natural language.
Results show clearly the advantages of these technologies that are
largely applicable (as they are based on commonly available anno-
tated texts and relatively independent on a priori knowledge bases)
and cost-effective.

1 Introduction
The aims of a very complex technological process such as Require-
ments Engineering (RE) are different and heterogenous. They in-
clude at least the identification of the goals to be achieved by the
envisioned system, the operationalization of such goals into services
and constraints, and the assignment of responsibilities for the result-
ing requirements to agents such as humans, devices, and software.
Different processes are involved in RE, such as domain analysis,
elicitation, specification, assessment, negotiation, documentation and
evolution. Such source of information is expressed in natural lan-
guage and need to be manually analyzed, and getting high quality
requirements is difficult, critical and costly. During the design of a
novel system, all of these phases must be performed, and generally
they are carried out without any reuse of old analysis performed over
previous systems.

In this scenario, information retrieval systems are usually em-
ployed to help analysts to access information stored in documents.
Unfortunately key-word based search may not be able to find the
needed information. As an example, the searching “attack scenario”
a system could not be able to retrieve documents containing the ex-
pression “assail”. A more semantic-driven search is needed to in-
crease the benefits of automatic analysis tools in RE. Furthermore
1 University of Rome, Tor Vergata, Italy, email: garzoli@info.uniroma2.it
2 University of Rome, Tor Vergata, Italy, email: croce@info.uniroma2.it
3 Finmeccanica SELEX Sistemi Integrati, email: mnardini@selex-si.com
4 Finmeccanica SELEX Sistemi Integrati, email: fciambra@selex-si.com
5 University of Rome, Tor Vergata, Italy, email: basili@info.uniroma2.it

the validation of design choices could be automatized, e.g. checking
the consistency of requirement pre-conditions. However, translating
user requirements and problem domain described in natural language
into the consistent modeling of the target application is still a great
challenge. According to [7], “We are not really having a problem
coding a solution - we are having a problem understanding what so-
lution to code . . . If you focus on requirements and verification and
validation, the coding will take care of itself ”. Vagueness and ambi-
guity are the main phenomena that make the natural language used to
describe user requirement a challenging task. Consider the complex-
ity of a sentence when it contains clauses and phrases that describe
and relate several objects, conditions, events and/or actions. More-
over sentences are vague as they may refer to some important infor-
mation without an explicit mention, or they are opened to multiple
interpretations. On the other hand, natural language is a very robust
mean of communication, represented by using complex structures to
supply at incomplete knowledge, which is resulted from incomplete
lexicon and incomplete grammar.

Natural Language Processing (NLP) approaches have gained
much interest in the community of Software Engineering, as shown
by several works. In [8] the use of a similarity measure based on NL
information has been investigated to cluster related software artifacts.
In particular, authors have explored the effects of mining lexical in-
formation from different artifact element, such as Function Names,
Parameter Names or Software Comments. In [4] an automatic ap-
proach to extract the affordances of web services is discussed: affor-
dances are made available by classifying the natural-language text
describing a service with respect to a pre-defined ontology of sys-
tems. Regarding Requirement Analysis, Abbot [1] proposes a tech-
nique attempting to guide the systematic procedure that compiles
design models from textual requirements. While it was able to pro-
duce static analysis and design modules, it was nonetheless requir-
ing high levels of user involvement for decision making. Saeki et.
Al. [17] illustrates a process of incrementally constructing software
modules from object-oriented specifications as obtained by interpret-
ing text requirements. Nouns were considered as classes and their
corresponding verbs as methods. These were automatically extracted
from the raw textual descriptions but lexical ambiguity problems and
hand-coding were striking limitations in the construction of fully
reusable formal specifications. In the REVERE [18] system, a sum-
mary of requirements from a natural language text is derived. The
system makes use of a lexicon to recognize suitable word senses in
the texts. However, no attempt to model the system at the functional
level is carried out. In [16] a model that decomposes requirements
in a uniform fashion regardless of their functional or non-functional
nature is presented. This approach identifies coarse-grained relation-
ships among requirements using NLP techniques. In [5] natural lan-

38

guage analysis is suggested as a possible approach for automatically
compile formalized control mechanisms in the requirement specifi-
cations. An expressive semantics-based point cuts within a require-
ment are detected and mapped into the RDL semi-formal description
language. The authors suggest that syntactic and semantic analysis
of natural language expressions can be made precise enough to sup-
port the definition of a flexible composition mechanism for require-
ments analysis. All those systems, while exploring the applicability
of NLP, propose traditional tools for the specific RE context. Most of
the limitations of NLP are thus inherited by the above works, namely
costly design and development processes, complex maintenance of
the large Knowledge Bases necessary for full NL analysis as well as
poor portability across domain, systems and scenarios.

In this work we propose statistical learning methods embedded
in a large scale natural language processing system in support of
Requirement Analysis. The adoption of advanced NLP techniques
combined with Machine Learning capabilities, i.e. Statistical Infor-
mation Extraction, is a crucial advance to improve applicability of
this technology on a large scale.

Moreover, the effectiveness of acquired information is evaluated
in a Information Retrieval scenario, where a robust search engine has
been defined to search existing software functionalities in a specific
domain through user requirements expressed in natural language.

In the rest of the paper, Section 2 discusses the application of
Human Language Technologies in Requirement Analysis. Section 3
proposes the architecture of an automatic system for Requirement
Analysis. Section 4 presents the evaluation of the adopted techniques
for the Naval Combat Systems requirement analysis. Finally, Section
5 derives the conclusions.

2 Robust Language Technologies for Requirement
Analysis

The robustness recently achieved by NLP technologies makes their
applicability in the support the analysis and design of system and
software development very promising. As an example, the reuse of
existing technological components during the design stages of new
complex system can be drastically increased whenever a semantic
search system from the targeted component repository is available.
Such a search engine would be able to analyze conceptual notions
in the user queries (such as functions, norms or preconditions), as
they are originally expressed in technical specification documents,
retrieve components suitable for the design needs and validate them
according to their compliancy to the overall requirements and their
composability. This will allow a proactive support to the analyst, in
the incremental of the design through the strict reuse of previously
developed sub-systems. The role of Human Language Technology
(HLT) is here clear. HLT is crucial to support robust and accurate
analysis of unstructured text, in order to shallowly enrich them by se-
mantic meta-data and other kinds of information implicit in the texts.
HLT allows extracting the interesting semantic phenomena and map-
ping them into structured representation of a target domain. When
a semantic meta-model is available, for example in form of an ex-
isting ontology, HLT allows to locate concepts in the text (irrespec-
tively from the variable forms in which they appear in the free text),
mark them according to Knowledge Representation Languages (such
as RDF or OWL) thus unifying different shallow representations of
the same concepts. In this way, semantic annotations of concepts in
the text (i.e. automatic semantic indexes) are obtained for the orig-
inal document, making it more suitable for clustering, retrieval and
browsing activities. In synthesis, HLT enables to perform and sim-

plify several advanced functionalities (e.g. semantic and not keyword
based search) that are possible over the text. The semantic annotation
task, just outlined above, has been largely studied by the NLP com-
munity and it is known as the Information Extraction (IE) process.
Relying on the definition provided in [12], IE is “The identification
and extraction of instances of a particular class of events or rela-
tionships in a natural language text and their transformation into
a structured representation (e.g. a database).” IE is typically per-
formed in three stages. First, the target information is abstracted and
designed as structured set of inter-related categories. These struc-
tures are called templates and the categories that need to be filled
with information are called slots. For example, if we want to detect
conceptual information about vessels from specifications, we may be
interested in the name but also in the type of ship or its maximum
speed, as well as its combat system equipment. Therefore, a SHIP

template can be defined as a conjunctive combination of slots such
as name, ship type, maximum speed or combat system equipment.
Once the template is given, the text fragments containing relevant in-
formation to fill the template slots (i.e. specific values associated to
the attributes of a certain SHIP instance) need to be identified in a
text. The recognition of textual information of interest results from
pattern matching against extraction rules. Finally, in a third phase,
whenever the information of interest is identified in the text, its map-
ping in the suitable SHIP template slot is required. The above chain is
not trivial and contemporary IE systems6 are usually integrated with
large scale knowledge bases, determining all the lexical, syntactic
and semantic constraints needed for a correct interpretation of usu-
ally domain-specific texts. Unfortunately, the manual construction of
these resources is a time-consuming task that is often highly error-
prone due to the subjectivity and intrinsic vagueness that affects the
semantic modeling process. One approach to the knowledge acqui-
sition task is to use Machine Learning algorithms to automatically
learn the domain-specific information from annotated data [14]. One
of challenging aspect of this task is the involved complexity required
to induce general patterns and rules from the individual sentences
in domain texts. Language learning systems usually generalize lin-
guistic observations into statistical models of higher level semantic
tasks, such as IE. Statistical learning methods [11] assume that lexi-
cal or grammatical aspects of training data are the basic features for
modeling the different inferences. They are then generalized into pre-
dictive patterns composing the final induced model. Lexical informa-
tion captures semantic information and fine grained context depen-
dent aspects of the input data. However, it is largely affected by data
sparseness as lexical evidence is often poorly represented in training.
It is also difficult to be generalized and non scalable, as the develop-
ment of large scale lexical KBs is very expensive. Moreover, other
crucial properties, such as word ordering, are neglected by lexical
representations, as syntax must be also properly addressed. The syn-
tax refers to the rules and principles that govern the sentence struc-
ture of any individual language. After a statistical language processor
has processed a free text, it is assumed to be able to locate slot in-
formation for a specific instance of a template type (e.g. SHIP). The
resulting template can be employed at this point to populate an exist-
ing knowledge base whose semantic schema corresponds or can be
mapped to the template structure. Moreover, any kind of reasoning
over the extracted information, e.g. identifying relations or depen-
dencies respect to existing requirements, can be still performed. For
example retrieval of existing already developed components could be
realized as a form of reasoning. Imagine having access to the onto-

6 OpenCalais: http://viewer.opencalais.com/

39

logical repository of already available templates for existing compo-
nents. A template COMPONENT could declare the functions, precon-
ditions and effects/post-conditions as conceptual slots of a specific
instance component. Notice that these could be derived via IE over
their existing specification documents. The applicability of an earlier
COMPONENT X in a new project, needing a certain function F, could
be realized by proofing (via some reasoning over the templates) that
the slot functions of X includes F (or simply implies F) among the
functionalities offered by X.

3 Machine Learning in Text Processing for
Requirement Analysis

In Requirement Analysis some NLP applications like Information
Extraction tasks could be very useful to support people to perform
this task practically and in a cost-effective way. Statistical NLP ap-
proaches provide domain specific models of target interpretation
tasks by acquiring and generalizing linguistic observations. Several
Statistical Machine Learning paradigms have been defined to pro-
vide robust models that easily adapt across different (and possibly
specific) domains. These techniques are the basis to our proposed
approach and we will discuss them hereafter. This problem is nor-
mally treated as a Statistical Classification problem, where the target
is to identifying the sub-population to which new data belong, where
the identity of the sub-population is unknown (the test data), on the
basis of a training set of data containing observations whose sub-
population is known (the training data). In this scenario we may be
interested for example to induce a template slot for a candidate text.
Support Vector Machine (SVM), as discussed in [19] and [3], rep-
resents one of the most known learning paradigm for classification,
based on Statistical Learning Theory. Given training instances, each
one associated with a class and a set of “features”, i.e. the dimen-
sions of the employed geometrical representation of each example,
the goal of SVM is to produce a model (based on the training data)
which predicts the target values of the test data given only the test
data features. In a geometric perspective, SVM classifiers learn a de-
cision boundary between two data classes that maximizes the min-
imum distance or margin from the training points in each class to
the boundary. The notion of distance used in such feature space can
be adapted to a specific classification problem to better separate ex-
amples. This is explicitly the role of kernel functions [19] aiming to
separate the learning task from the representation through a proper
although implicit mapping to a newer space more expressive for the
target problem.

In a scenario where multiple classes are involved and each in-
stance has to be mapped in one specific class, the SVMmulticlass

schema described in [13] is applied7 to implicitly compare all class
and select the most likely one, using the multi-class formulation de-
scribed in [9]. Formally, the algorithm thus acquires a specific func-
tion fy(x) for each class y ∈ Y , with |Y| = k. Given a feature
vectors x ∈ X representing a novel requisite, SVMmulticlass al-
lows to predict a specific class y∗ ∈ Y by applying the discriminant
function y∗ = arg maxy∈Y fy(xi), where fy(x) = wy ·x is a linear
classifier associated to each y.

Given a training set (x1, y1) . . . (xn, yn) the learning algorithm
determines each classifier parameters wy by solving the following

7 http://svmlight.joachims.org/svm multiclass.html

optimization problem:

min
1

2

∑

i=1...k

‖wi‖2 +
C

n

∑

i=1...n

ξi

s.t. ∀i,∀y ∈ Y : xi · wyi ≥ xi · wy + 100∆(yi, y)− ξi

where C is a regularization parameter that trades off margin size and
training error, while ∆(yi, y) is the loss function that returns 0 if
yi equals y, and 1 otherwise. To solve the optimization problem, the
cutting-plane algorithms is applied in order to handle the exponential
number of constraints and to solve this problem up to a precision of
ε in polynomial time, as discussed in [13].

3.1 A general adaptive architecture for Advanced
Requirement Analysis

In this section we present the architecture of a requirement analy-
sis system. It handles Requisite Documents and automatically ex-
tracts the information needed in the generic requirement manage-
ment phase. In the next session, we will discuss how this system
can be employed in a real use case as the underlying requirement
management phase of a Combat Management System (CMS) is pre-
sented. This system processes semi-structured documents , i.e. writ-
ten in natural language, and enriches texts with linguistic information
employed by other modules. Then, all sentences expressing one or
more requisites are retrieved and the target information is extracted.
Interesting slots of the templates modeling different concepts in the
requirement analysis are filled. These template instances are used to
populate the Requirement Repository that can be later easily accessed
by the analyst. Moreover, the system also analyzes the extracted in-
formation in order to recognize/acquire existing dependencies among
different requisites.

In Figure 1, the overall architecture is shown and the interaction
between the different functions that contribute to the main workflow,
as well as their interactions and dependencies is reported. On the
top of the architecture, the basic Natural Language Processing (NLP)
chain is foreseen. This module carries out different NL steps needed
to analyze a document, extracting all linguistic information useful to
later modules in the chain. This includes steps such as a Sentence
Splitter, a Part-of-Speech tagger, a Name Entity recognizer, a Word
Sense Disambiguation module and a Syntactic Parser. These modules
are based on different knowledge bases, modeling different aspects
of the overall RA process:
• Domain specific Lexicon: it contains the specific domain dictio-

naries providing lexical information about the application domain,
e.g. involved entities and acronyms.

• Domain ontology: it provides an ontological model of the appli-
cation domain, as well as an abstraction of the requirements (i.e.
the template for the Information Extraction activity). Moreover it
provides the relations among different requirements, e.g. depen-
dency rules among pre-conditions and post-condition that enable
the reasoning.

• Template Definition: it represents the repository of different tem-
plates involved in the IE activity, that are certainly domain specific
(as the ontology), but possibly more specific than the concepts or
relations in the domain ontology.

According to our machine learning perspective, each module per-
forms the corresponding task according to a model of the domain
that has been automatically previously acquired from real data. These
are requirement documents that have been previously annotated by
the analysts, with the same information the IE system is expected

40

Processed	
Document	

Learning

IE	
Model	 IE	

Model	 Req.	 Class.	
Model	

Application

Sentences Containing
Requirements

Presentation

Requirements
Analyst

IE	
Model	 IE	

Model	 IE	 Model	

Natural	 Language	 Processing	 System	

Domain	
Ontology	 Domain	

Ontology	

Domain-‐specific	 	
Lexicon	

Template	
DefiniCon	 Template	

DefiniCon	

Annotated	
Requisit	
Document	

Annotated	
Requisite	
Document	

Requisit	
Document	 Requisite	

Document	

Requirement	 IdenCficaCon	

IE	 Learning	 Module	

Requirement	 IdenCficaCon	
Learning	 Module	

IE	 	 System	 Requirement	
Repository	

Figure 1: Conceptual Graph employed to evaluate the Requisite Analysis System

to precisely detect in future texts. The general architecture is thus
divided in different main blocks to distinguish models directly em-
ployed in the (on-line, i.e. interactive) Requirement Analysis Appli-
cation workflow from the ones employed in the (off-line) Learning
workflow. In the Application Block the following modules process
requirement as follows:

• Requirement Identification Module: This module classifies docu-
ments by performing an analysis of the document. This latter is
thus enriched with linguistic information in order to then suitably
locate sentences containing concepts (and relations) of interest in
the requirements analysis domain. These sentences are then pro-
vided to next processing stage.

• Information Extraction (IE) System: Once a specific requisite is
found, the extraction of its relevant information is carried out as
a slot-filling process over the existing templates. Once that a tem-
plate is filled, it is made available (i.e. it populates) the Require-
ment Repository in order to be made available for the analysis.

In a machine learning perspective, each module performs the cor-
responding task according to a model of the domain that must be
automatically acquired from annotated data. In this view the second
block in the architecture of Fig. 1, i.e. the Learning block, is dedi-
cated to the acquisition of the individual IE models. Finally, the Pre-
sentation block is responsible for the interaction with the analysts in
(1) accessing the extracted information as well as (2) in providing
feedback to the system in form of acceptance or rejection of some of
its decisions.

4 Semantic Technologies in a real application
scenario

New Generation Naval Combat Systems are very complex systems
based on a sw component able to manage all the Combat System
Equipment (CSE) in different mission scenarios: The Combat Man-
agement System (CMS) as in [6]. The main objective of the CMS
is to enable the Command Team to manage the ships CSE to con-
duct the missions in the scenarios. The CMS is mainly composed
of a real time component (C2S) which provides the Combat System
with facilities for the management of short term activities (Conduct
of action); and a Command Support System (CSS), which provides
the Combat System with facilities for the management of medium
and long term activities in the conduct of operational tasks. From
the functional point of view the C2S is decomposed into application
segments that allow the system to perform the following functions:

1. global tactical picture compilation,

2. missions conduction in different domains (Air, Surface, Subma-
rine, Land) at platform and force level,

3. Tactical Data Link exchange data functions.

Each functional requirement of CMS is allocated to Computer Soft-
ware Configuration Items (CSCI). CSCIs communicate exchanging
data over the ship network through a common application layer. The
communication principles are different according to the relationships
among the components that communicate each other. Independently
of the communication model the strategy is that each sw component
shares data with the other system components to enable them, i.e.
allow them to carry out their own functionalities. A key aspect for
managing the overall CMS complexity is the design and descrip-
tion of CSCI interactions in terms of data each component has to
publish for the benefit of the users. A system like the CMS has a
large number of users, a large number of connections to CSE and
heavy requirement on the processing applications that must be ex-
ecuted in real-time. Further constraints are given by the demanding
performances, security requirements and by the incorporation of Off-
The-Shelf software. It is clear how this class of systems needs clear
requirement description and management throughout its entire sys-
tem life cycle. The introduction of Semantic Technologies such as IE
(as described in previous sections) in the Requirement Analysis pro-
cess of naval CMS is bringing significant benefits in different phases
of project life cycle. In particular, the application of Machine Learn-
ing techniques in the initial phase of the project has allowed filling
the gap between the contractual technical specifications and system
design description. Thanks to the machine learning method, the tool
illustrated in this paper automates the process of recognition of sev-
eral inferences about system components directly from the texts that
characterize them, i.e. the requirements. Next Section described the
empirical evaluation of the proposed methods to a real Naval Combat
Systems Requirements Analysis scenario.

4.1 Experimental Evaluation
Machine-learning techniques for requirement analysis described in
the previous Sections have been implemented in a Requirement
Analysis System, according to the Architecture shown in Figure 1.
The resulting adaptive system has been applied to a real scenario, i.e.
the requirement analysis of a Naval Combat Systems, focusing on the
SW system, namely the Combat Management System (CMS). This
Section thus provides the empirical evaluation of system functionali-
ties, such as the Requirement Identification (RI) and Information Ex-
traction (IE) as applied to the CMS requirement analysis. Requisites
here refer to different aspects of the CMS, such as Functional Re-
quirements (FNC) or Performance requirements (PRF). The dataset

41

adopted in our tests is made of 4,727 annotated requirements, re-
lated to three different scenarios, called EAU, FREMM and NUM.
Each requisite has been labeled according to one of the five requi-
site types, which are specific aspects of the resulting system, such as
FNC or PRF, as shown in Table 1.

ABBR Type Number
NFC Non-Functional Requirements 74
DCC Design and Construction Constraints 288
OPR Operator requirements 2,587
PRF Performance Requirements 249
FNC Functional requirements 1,529
Total 4,727

Table 1: Requisite Types

The Requirement Identification system of Fig. 1 has been trained
to recognize and characterize requirements. The module applies the
SVMmulticlass learning algorithm to associate each requirement its
suitable specific class, reflected into the corresponding type. Differ-
ent models of observable text properties allowed to investigate differ-
ent linguistic information and to identify the most informative repre-
sentations for the learning algorithm:

• The Bag-of-Word (BoW) model mainly accounts for the lexical
information: requisites are mapped into sets of words, neglecting
word order, i.e. syntactic information.

• The Bag-of-Word and N-gram of Words (N-Words) model provides
a first form of grammatical information, by mapping short word
sequences into n-grams of words.

• A Bag-of-Word and N-gram of Part-of-Speech (N-POS) introduces
grammatical information as it attaches part-of-speech to n-grams,
by further generalizing the sequences of words as they are met in
the textual requisite.

• The Comprehensive (BoW + N-Words + N-POS) model accounts
for all the previous information, i.e. as it includes Bag-of-Words,
n-grams of Words and n-grams of Part-of-Speeches.

The objective of the experiments was also to measure and compare
the adaption capabilities of SVM classifiers to different scenarios:
the idea is that SVMs should be able to induce meaningful classifi-
cation models from the data available in a specific scenario, i.e. the
in-domain scenario, but also provide accurate predictions even when
applied to different, i.e. out-of-domain, scenarios.

40%	

50%	

60%	

70%	

80%	

90%	

100%	

EAU	 NUM	 FREMM	 EAU-‐NUM	 EAU-‐FREMM	 FREMM-‐NUM	 ALL	
BoW	 BoW	 +	 N-‐Words	 BoW	 +	 N-‐POS	 BoW	 +	 N-‐POS	 +	 N-‐Words	

Figure 2: Requisite Classification Results

Figure 2 reports the classification results, in terms of accuracy, i.e.
the percentage of correctly classified requisites. Different colors re-
flect the different adopted feature models. The first three histograms
provide results when classifiers are trained over requisite from one
single scenario (i.e. EAU, NUM and FREMM respectively) and ap-
plied to the other remaining scenarios. The second group of his-
tograms shows results when classifiers are trained over two scenar-
ios (i.e. (EAU-NUM), (EAU-FREMM) and (FREMM-NUM)) and

applied to requisites in the single remaining scenario. Finally, the
last group shows results from an in-domain setting, when the 80%
of requisites from all scenarios are used to train classifiers, while the
remaining 20% are used as test set. In all experiments, SVM parame-
ters are estimated over an held-out 20% of the training data. Results,
especially when lexical and grammatical features are considered, i.e.
the BoW + N-words + N-POS model, are very good and an accu-
racy higher of 93% is achieved. Moreover, the system robustness is
very promising, as accuracy higher than 85% is reached even in out-
of-domain tests. Errors refer to reasonable and genuinely ambiguous
cases. For example, the system labels as FNC both requisites “The
CMS shall display the progress of each engagement.” and “The CMS
shall display single manoeuvre request within . . . ”, although this lat-
ter is associated to OPR. Once a specific requisite is located, the In-
formation Extraction (IE) System (Fig. 1) carries out the extraction
of its relevant information, as a slot-filling process over the reference
templates. Templates are automatically generated from the analysis
of a Domain Ontology, which provided a model of the application
domain as well as an abstraction of individual requirement types.
These types ontologically determine different capabilities, i.e. de-
sired characteristics of a target system. Moreover, the ontology pro-
vides hierarchies that group capabilities according to their seman-
tics and the expected grain of analysis. Coarse grained capabilities
refer to high level system characteristics, such as such RESOURCE

MANAGEMENT, that in turn groups together several fine-grained ca-
pabilities. These latter specialize the considered aspects, for example
NAVIGATION RADAR(NAV), that specializes the notion of Resource
Management in Navigation Radar systems. The IE system is asked to
associate a requisite like “The CMS shall monitor information trans-
mitted by the Navigation Radar” to the NAV template, thus recog-
nizing its particular and finer-grained aspect.

BoW BoW + N-Words
87,61% (1,16%) 88,5% (1,46%)

Table 2: Information Extraction overall Accuracy

The database of Templates, defined by the ontology, includes 65
templates that correspond to the range of the function mapping each
requisite to its corresponding template. The high number of target
classes makes this task very challenging with respect to the previous
requisite identification problem, where the number of classes equal
to five.

0%	

20%	

40%	

60%	

80%	

100%	

CEM	 SMA	 NAV	 MFR	 SSR	 IFF	 TRG	 SMC	 VDF	 ILD	

Resource	 Management	

(a)

NSF	 ASuW	 AAW	 ASW	 FIA	 MCG	

Threat	 Evalua,on	 	

(b)

Figure 3: Accuracy of the IE process for the best and the worst capa-
bilities

Table 2 shows classification results, in term of percentage of req-
uisite correctly covered by a template. SVM classifiers have been
employed even in this task: parameter estimation has not been em-
ployed, to prove the low dependence of the learning algorithm from

42

Figure 4: Conceptual graph employed to evaluate the semantic similarity function

external parameters; instead, results are reported as mean accuracy
and (negligible) standard deviation in parenthesis. Requisites are
here represented similarly to the previous task, thus employing the
BoW model, that consider only lexical information, and the BoW
+ N-Words model that consider also the shallow syntactic informa-
tion of the requisites. Even in this evaluation, results show an accu-
racy of 88% proving the IE system as a largely applicable process.
A deep analysis has been carried out to verify results over differ-
ent coarse-grained capabilities. Figure 3 shows results achieved for
the RESOURCE MANAGEMENT, which achieves the highest accu-
racy score of 94% among all the templates. For sake of completeness,
we also evaluated another coarse-grained capability, i.e. the THREAT

EVALUATION, for which the worst accuracy (72%) is achieved. This
seems to suggest that no significant performance drop across differ-
ent coarse-grained capabilities emerge from our analysis.

4.2 Retrieval in large repositories of software
documentation

In this section the contribution of the proposed approach for Require-
ments Analysis (RA) is investigated in an Information Retrieval sce-
nario to improve the software reusability during the RA phase.

In order to retrieve a piece of software or any other existing func-
tionality satisfying a specific user requirement, a Requirement Ana-
lyst usually retrieves existing documentation through a search engine
through specific term-based queries. In a Ad-hoc Retrieval scenario
[3], the quality of the retrieved material is strictly dependent from
the expressed query reflecting user needs. In this section we instead
define a robust search engine to enable the Requirement Analyst to
retrieve existing software functionalities by expressing software re-
quirements in natural language.

In Section 3 a complete Architecture for RA has been presented:
first, in the Requirement Identification (RI) phase, an high-level char-
acterization of all requirements expressed in a text is provided; then,
in the Information Extraction (IE) phase, a slot-filling process over
the existing templates allows to enrich texts with meta-data (i.e. the
templates) with specific information concerning the target applica-
tion domain. This semantic enrichment of software requirements is
shown to enable a more conceptual kind of search: requirements here

determine complex queries that are processed by our RA software
and used to retrieve existing software compatible with the function-
alities expressed by the user requirements. More formally, the user
expresses a requisite ri ∈ R in order to retrieve one of the spe-
cific functionalities f i

1, . . . , f
i
ni

satisfying ri. We denote the set of
all {f i

j |j = 1, ..., ni} as Fi, where ni = |Fi|.
As an example, given a requisite r “The CS shall provide facili-

ties for Human Computer Interface presentation”, we would like to
retrieve the implemented functionalities satisfying the specific need,
such as the functionality f “The CMS shall provide the following fa-
cilities at CMS consoles: screens, pointing device, keyboards, MFKA,
service settings”. In fact, in this case, the requisite r is satisfied by f ,
because it expresses the available facilities to interact with the soft-
ware system. We collected all the pairs RF = {〈ri, Fi〉}, where ri
is a system requirement and Fi is the set of the corresponding func-
tionalities satisfying ri, denoted by {f i

1, f
i
2, ... , f

i
ni
}.

In order to associate a generic f to a given r, we first exploit the
vector representation described in Section 4.1 that reflects the generic
notion of semantic text similarity [2, 15]. This is a geometric repre-
sentation of textual meaning based on the set of lexical and grammat-
ical features expressed in the resulting weighted vector, that estab-
lishes a variety of latent semantic relations between requirements. In
fact, the closer two requirements are in the representation space, the
stronger is their semantic relation. A first use of this representation
is shown in a Graphical User Interface (GUI), that allows to analyze
complex semantic relationships between individual requisites, such
as the redundancy due to the paraphrases that introduce duplicates.
As shown in Figure 4, individual requisites are represented through
a conceptual graph where edges between vertices express weighted
semantic similarity relationship between two instances. In Figure 4
the graph of requisites closer to the requisite CMS-OPR-3333, i.e.
“The CMS shall monitor the equipment Status through reception, ex-
traction and display of the information that is periodically transmit-
ted by the surveillance radar to assess equipment availability.” is
shown. Notice how the most similar text is CMS-OPR-33355: “The
CMS shall monitor the Health Status through reception, extraction
and display of the information that is periodically transmitted by the
surveillance radar.”. This confirms that the captured notion of simi-
larity well reflects rich semantic relations. This relationship instance

43

is in fact a form of textual entailment [10], i.e. the directional rela-
tionship between a text pair 〈T,H〉, made by T , i.e. the entailing
“Text”, and H , i.e. the entailed “Hypothesis”. It is usually stated that
T entailsH if a human that reads T (assuming it to be true) would ac-
cept that H is most likely true. This definition is somewhat informal
but models an underlying useful form of commonsense knowledge
for human expert. Graphs such as the one reported in Figure 4 cap-
ture large sets of useful semantic generalizations within a text col-
lection and can be profitably used for powerful inferences, ranging
from core stages of machine translation chains, document relevance
in text retrieval as well as semantic similarity judgments.

The way a graph is built depends on the distance metrics estab-
lished within the underlying vector space. Given a requisite r, the
short texts describing functionalities f can be ranked according to
their semantic similarity with the specific r, modeled through the co-
sine similarity sim between the corresponding vectors −→r and

−→
f :

sim(r, f) =
−→r · −→f

||−→r || · ||−→f ||
(1)

In this evaluation, we considered a set of 290 requisites and
1,474 functionalities of the Combat Management System (CMS).
The mean number of functionalities for each r was 5, with a standard
deviation of about 3.5. For each ri, the set Fi specifies all function-
alities realizing ri: these are the gold standard, i.e. the set of texts
expected to be retrieved by the analyst querying by ri. As they are
short texts, individual ri as well as fj are modeled according to the
Comprehensive model, i.e. the BoW + N-POS + N-Words vector rep-
resentation, as it achieves the best results in the RA discussed in Sec-
tion 4.1.

The information acquired during the RA is here exploited in order
to define a Re-ranking phase. The ranking provided by the semantic
similarity function is thus adjusted to filter out all those functionali-
ties that do not share the same characterization of the target require-
ment ri, i.e. the same type and capability, as discussed in Section
4.1. Thus, four different retrieval strategies are applied, giving rise to
four IR systems:

• No filter: for each ri, the most similar fj are retrieved and ranked
according to Eq. 1: no filter is applied.

• Type: the ranking provided by Eq. 1 is grouped in two lists: the
first, ranked higher, is made by functionalities sharing the same
type of ri and a second list including the remaining fj whose type
is different. In this way functionalities fj of the same type of ri
are always ranked first than the other ones.

• Capability: the two lists are created as before with respect to the
capability assigned to the target ri, so that functionalities with the
same capabilities of ri are ranked first;

• Type+Capability: the ranking provided by Eq. 1 is modified as
before according to the sharing the both type and capability of ri.

Different strategies are evaluated according to standard IR evalu-
ation metrics: Precision (P), Recall (R), F-measure (F1) and Mean
Average Precision (MAP). Precision is expressed as

P =
tp

tp+ fp

where tp is the number of the relevant functionalities retrieved, and
fp is the number of the not relevant functionalities retrieved. Recall
is expressed as

R =
tp

tp+ fn

where fn is the number of the relevant functionalities not retrieved.
While Precision estimates the capacity to retrieve correct functional-
ities, Recall is more interesting in this scenario as it measures system
capacity to retrieve all existing functionalities; in many cases, it is
more important to retrieve all existing software instead of spending
more time reading useless documentation. F-measure considers both
aspects as it is estimated as the harmonic mean of Precision and Re-
call:

F1 =
2 · P ·R
P +R

Finally,MAP provides a single accuracy measure across different
recall levels. MAP is based on the oracle given by RF={〈ri, Fi〉}
that are pairs of a requisite ri and a functionality set Fi. Every req-
uisite ri also corresponds to a ranked list of retrieved functionalities,
ordered according to the similarity function in Eq. 1 and the different
adopted strategies. Let F k

i be the list of retrieved functionalities f i
j

from the top result (here f i
1 is considered the most similar function-

ality ranked by the system) to the f i
k, that corresponds to the position

where k functionalities in Fi are returned. In this way, the number of
true positive for a requirement is exactly k. Then, the Mean Average
Precision at level k of recall is denoted as:

MAP@k =
1

|RF |

|RF |∑

i=1

1

|F k
i |

|Fk
i |∑

k=1

P (F k
i)

where |F k
i | obviously denotes the number of relevant functionalities

for a given requisite ri that varies with i, and P (F k
i) expresses the

precision against the first k true positives for ri.
The results in terms of Recall with respect to increasing number

of retrieved functionalities are shown in Figure 5 for the different
retrieval strategies. Moreover, Table 3 report evaluation figures for
varying size of the retrieved document lists.

0%	
10%	
20%	
30%	
40%	
50%	
60%	
70%	
80%	
90%	

1	 10	 20	 30	 40	 50	 60	 70	 80	 90	 100	 120	 140	 160	 180	 200	

Number	 of	 retrieved	 documents	

No	 filter	

Type	

Capability	

Type+Capability	

Figure 5: System Recall

Moreover, in Table 4 the results of MAP are reported: rows cor-
respond to different strategies while columns report different MAP
values obtained when k is fixed to 1, 2 and 5, respectively.

When no filter is applied, results are quite low, especially in term
of Recall: when 50 functionalities are retrieved only 20% are usually
relevant for the user. The high-level filter, represented by the Type
strategy, improves results even if the difference is not very relevant.
The Capability information produces a considerable improvement:
when 50 functionalities are retrieved, more than 70% of them are
relevant for the user. Finally, the filter considering both type and ca-
pability is quite effective when few items are retrieved and it is con-
firmed by the highest value of MAP achieved for lower levels of
k. A qualitative analysis of the retrieval accuracy can be carried out
by studying some examples of returned functionalities. We queried

44

1 5 10 15 20 25 30 35 40 45 50
P 0,158 0,036 0,021 0,016 0,014 0,012 0,011 0,010 0,010 0,009 0,008

No filter R 0,092 0,093 0,102 0,107 0,122 0,124 0,128 0,142 0,147 0,152 0,160
F1 0,116 0,052 0,035 0,028 0,026 0,022 0,020 0,019 0,018 0,017 0,016
P 0,175 0,046 0,029 0,024 0,022 0,020 0,018 0,017 0,016 0,015 0,015

Type R 0,097 0,112 0,126 0,141 0,157 0,178 0,196 0,211 0,219 0,226 0,242
F1 0,125 0,065 0,047 0,042 0,038 0,036 0,033 0,032 0,030 0,029 0,028
P 0,407 0,151 0,106 0,085 0,073 0,065 0,060 0,056 0,052 0,051 0,049

Capability R 0,176 0,255 0,363 0,415 0,484 0,525 0,553 0,588 0,615 0,659 0,680
F1 0,246 0,189 0,165 0,141 0,127 0,116 0,108 0,102 0,097 0,094 0,091
P 0,488 0,167 0,113 0,089 0,073 0,066 0,060 0,055 0,050 0,047 0,044

Type+Capability R 0,196 0,296 0,430 0,497 0,538 0,553 0,561 0,585 0,661 0,677 0,683
F1 0,280 0,214 0,179 0,150 0,128 0,118 0,109 0,101 0,093 0,088 0,083

Table 3: Accuracy figures for different IR strategies and sizes of the returned sets of functionalities

the IR service by a system requirement r such as “The CS shall pro-
vide facilities for Human Computer Interface presentation”. Table
5 shows the retrieved functionalities obtained by applying the com-
bined filter (type and capability) to the input r.

Filter MAP@1 MAP@2 MAP@5
No filter 0.139 0.126 0.117
Type 0.149 0.142 0.135
Capability 0.305 0.284 0.273
Type+Capability 0.368 0.354 0.347

Table 4: Mean Average Precision

ri The CS shall provide facilities for Human Com-
puter Interface presentation

f i
1 The CMS shall provide similar controls and

means of interaction with all displays, i.e. they
should be the same where possible and consis-
tent otherwise.

f i
2 The CMS shall provide the following facilities

at CMS consoles : screens, pointing device, key-
boards, MFKA, service settings.

f i
3 The CMS shall display alerts on primary view

area
f i
4 The CMS shall provide a pointing device at each

console. The pointing device shall operate a
marker to allow operators to select and interact
with displayed facilities

Table 5: Example of retrieved functionalities

It is clear that the returned functionalities have a quite good rel-
evance for the queries requisite, as the first hits in the Table show.
Reported MAP values suggest that manual analysis of the very first
subset of returned functionalities is able to gather most of the rele-
vant information, an issue able to strongly increase the productivity
of Requirement Engineering and Software Documentation in realis-
tic scenarios.

5 Conclusions
While Semantic Technologies show a large set of promises in the De-
fense System Engineering domain, they are usually very demanding
from the point of view of complexity in design, optimization and
maintenance. Traditional (i.e. Knowledge-based) HLT approaches
are in this class of technologies. The results achieved in Statistical
Natural Language Processing by the adoption of robust and accurate
Machine Learning algorithms allowed to increase the applicability
of these methods in several domain, from Business Analysis, Web
Communication and Security.

In this paper, a general architecture for large scale and adaptive Re-
quirement Analysis has been presented. Its application in the specific

Defense System Engineering domain is evaluated and discussed:
the application of Requirement Identification (RI) and Information
Extraction (IE) techniques has been applied in the realm of robust
search processes to allow the retrieval of software functionalities
within large collections of requirements written in natural language.
The system has been experimented in a specific scenario of Com-
bat System Equipment, applied to the management of the design and
description of the Computer Software Configuration Items interac-
tions. Results show clearly the advantages of these technologies that
are largely applicable (as they are based on commonly available an-
notated texts and relatively independent on a priori knowledge bases)
and cost-effective.

The proposed approach can support significant cost reduction,
products’ quality enhancement as well as the improvement of En-
gineering processes. The first one is mainly due to the reduction of
time spent on requirements analysis, given the easier querying and
access modality made available to the analyst, since the preliminary
project definition phase in the design of complex systems. Given the
current accuracy reachable, the introduction of an IE-based computer
aid search engine in the system engineering processes is shown here
to give a better degree of confidence to the system engineer as a real
support system for requirements analysis classification and disam-
biguation.

REFERENCES

[1] Russel J. Abbott, ‘Program design by informal english descriptions’,
Communications of the ACM, 26(11), 882–894, (1983).

[2] Eneko Agirre, Daniel Cer, Mona Diab, and Aitor Gonzalez-Agirre,
‘Semeval-2012 task 6: A pilot on semantic textual similarity’, in *SEM
2012: The First Joint Conference on Lexical and Computational Se-
mantics – Volume 1: Proceedings of the main conference and the shared
task, and Volume 2: Proceedings of the Sixth International Workshop on
Semantic Evaluation (SemEval 2012), pp. 385–393, Montréal, Canada,
(7-8 June 2012). Association for Computational Linguistics.

[3] Roberto Basili and Alessandro Moschitti, Automatic Text Categoriza-
tion: from Information Retrieval to Support Vector Learning, Ingegne-
ria industriale e dell’informazione, Aracne, 2005.

[4] Amel Bennaceur, Richard Johansson, Alessandro Moschitti, Romina
Spalazzese, Daniel Sykes, Rachid Saadi, and Valérie Issarny, ‘Inferring
affordances using learning techniques’, in 1st European Workshop on
Eternal Systems. Springer, (2012).

[5] Ruzanna Chitchyan, Awais Rashid, Paul Rayson, and Robert Waters,
‘Semantics-based composition for aspect-oriented requirements engi-
neering’, in Proceedings of the 6th international conference on Aspect-
oriented software development, AOSD ’07, pp. 36–48, New York, NY,
USA, (2007). ACM.

[6] Francesco Ciambra and Manuela Nardini, ‘Naval combat system de-
sign: System engineering approach and complexity management’, in
Proceedings of the Fourteenth Annual International Symposium of
the International Council on Systems Engineering, Toulouse, France,
(2004). INCOSE.

45

[7] David Cook. Evolution of programming languages and why a
language is not enough to solve our problems. Available online at:
http://lsc.fie.umich.mx/ juan/Materias/FIE/Lenguajes/
Slides/Papers/Evolution.html, 1999.

[8] A. Corazza, S. Di Martino, V. Maggio, and G. Scanniello, ‘Combin-
ing machine learning and information retrieval techniques for software
clustering’, in 1st European Workshop on Eternal Systems, (2011).

[9] K. Crammer and Y. Singer, ‘On the algorithmic implementation of
multi-class svms’, Journal of Machine Learning Research, 2, 265–292,
(2001).

[10] Ido Dagan and Oren Glickman, ‘Probabilistic Textual Entailment:
Generic Applied Modeling of Language Variability’, in Learning Meth-
ods for Text Understanding and Mining, (January 2004).

[11] Daniel Gildea and Daniel Jurafsky, ‘Automatic Labeling of Semantic
Roles’, Computational Linguistics, 28(3), 245–288, (2002).

[12] Ralph Grishman, ‘Information extraction: Techniques and challenges’,
Information Extraction A Multidisciplinary Approach to an Emerging
Information Technology, 10–27, (1997).

[13] Thorsten Joachims, Thomas Finley, and Chun-Nam Yu, ‘Cutting-plane
training of structural SVMs’, Machine Learning, 77(1), 27–59, (2009).

[14] Christopher D. Manning and Hinrich Schütze, Foundations of statis-
tical natural language processing, MIT Press, Cambridge, MA, USA,
1999.

[15] Rada Mihalcea, Courtney Corley, and Carlo Strapparava, ‘Corpus-
based and knowledge-based measures of text semantic similarity’, in
In AAAI06, (2006).

[16] Ana Moreira, João Araújo, and Awais Rashid, ‘A concern-oriented
requirements engineering model’, in Proceedings of the 17th inter-
national conference on Advanced Information Systems Engineering,
CAiSE’05, pp. 293–308, Berlin, Heidelberg, (2005). Springer-Verlag.

[17] Motoshi Saeki, Hisayuki Horai, and Hajime Enomoto, ‘Software devel-
opment process from natural language specification’, in Proceedings of
the 11th international conference on Software engineering, ICSE ’89,
pp. 64–73, New York, NY, USA, (1989). ACM.

[18] Pete Sawyer, Paul Rayson, and Roger Garside, ‘Revere: Support for re-
quirements synthesis from documents’, Information Systems Frontiers,
4(3), 343–353, (September 2002).

[19] Vladimir N. Vapnik, The Nature of Statistical Learning Theory,
Springer–Verlag, New York, 1995.

46

Automatic Generation and Reranking of
SQL-Derived Answers to NL Questions

Alessandra Giordani and Alessandro Moschitti 1

Abstract. In this paper, given a relational database, we automati-
cally translate a factoid question in natural language to an SQL query
retrieving the correct answer. We exploit the structure of the DB to
generate a set of candidate SQL queries, which we rerank with a
SVM-ranker based on tree kernels. In particular we use linguistic de-
pendencies in the natural language question and the DB metadata to
build a set of plausible SELECT, WHERE and FROM clauses en-
riched with meaningful joins. Then, we combine all the clauses to
get the set of all possible SQL queries, producing candidate queries
to answer the question. This approach can be recursively applied
to deal with complex questions, requiring nested SELECT instruc-
tions. We sort the candidates in terms of scores of correctness using
a weighting scheme applied to the query generation rules. Then, we
use a SVM ranker trained with structural kernels to reorder the list
of question and query pairs, where both members are represented as
syntactic trees. The f-measure of our model on standard benchmarks
is in line with the best models (85% on the first question), which use
external and expensive hand-crafted resources such as the semantic
interpretation. Moreover, we can provide a set of candidate answers
with a Recall of the answer of about 92% and 96% on the first 2 and
5 candidates, respectively.

1 Introduction
In the last decade, a variety of approaches have been developed
to automatically convert natural language questions into machine-
readable instructions. In the area of databases, question answering
(QA) systems are supposed to answer to natural language questions
by executing one or more SQL queries. This is obviously a complex
task as systems have to deal with the lexical gap between natural
language expressions and database structure. In this paper, we will
demonstrate that it is possible to fill such gap by relying on (i) the
informative metadata embedded in all real databases, (ii) natural lan-
guage processing methods, e.g., syntactic parsing, and (iii) advanced
machine learning to build kernel-based rerankers.

When designing a database, domain experts are requested to orga-
nize entities and relationships naming tables and columns in a mean-
ingful way (i.e. state name or capital instead of table 1 or table 2).
Moreover the database schema also specifies constraints and data
types. This metadata is stored in an underlying database that contains
tables of each database. The latter, in turn, contain columns referring
to table names and column names. Such logic organization is referred
to as catalog, and in SQL systems it is stored in a database called IN-
FORMATION SCHEMA (IS for brevity). A fragment sample is shown
in Figure 1. IS can be inspected as a normal database, posing SQL

1 Department of Computer Science and Engineering, University of Trento,
Italy, email: agiordani@disi.unitn.it

queries to obtain useful fields to build a new SQL query. In practice,
we can use the same technique and technology to generate an answer
to a given question and retrieve the answer.

This approach can also deal with cross-domain questions, as long
as IS embeds shared metadata between multiple databases. For ex-
ample, if we have both GEOQUERY and SAKILA data in the same
database systems, we can find an answer for cross-domain questions
like “Which movies were recorded in major cities of Texas?”.

In addition instead of using tailored dictionaries, we can enrich
our knowledge based on the metadata added by the domain expert,
when designing the database. Of course, it will be essential to rely
on WordNet and similarity measure to generalize such metadata. For
example, an answer for the question “Which rivers run through New
York” can be found in the GeoQuery corpus. This is associated with a
spatial database whose structure is stored in IS as shown in Figure 1.

While we have a simple matching for the word rivers with table
river and column river name, there isn’t a direct mapping between
the word run in the question and any of the columns in the meta-
data. However, the disambiguation of the term run can be easily per-
formed by looking at the less semantically distant metadata entry,
i.e., traverse. This matching is re-confirmed when investigating on all
possible interpretations of New York in this database (i.e. city name,
state name, etc.), by the existing reference between column traverse
in table river and column state name in table state.

However, a link between both words New and York is not so easy,
since there is no evidence of relatedness between the two words in
the metadata: this means that the whole database should be looked up
for their stems. Words can be matched with lots of values (e.g., ”New
York” both as city and as state name, but also with ”New Jersey”), as
shown by Figure 2. We can generate all possible (even ambiguous)
queries exploiting related metadata information (i.e. primary and for-
eign keys, constraints, datatypes, etc.) and select the most plausible
one using a re-ranker.

Last but no least, we deal with complex natural language (NL)
questions, containing subordinates, conjunctions and negations and
nested SQL queries. In particular, we designed a mapping algorithm
that matches dependencies between NL components and SQL struc-
ture that allows to build a set of possible queries that answers a given
question. This question answering problem and our proposed solu-
tion are described in detail later on in the paper. Section 2 gives a
formal description of the problem while Section 3 describes the ba-
sic steps of our algorithm used to build clause. Section 4 shows how
we prune and weigh queries in their possible combinations to gen-
erate an ordered set of meaningful queries among which we find the
answer. Section 5 describes tree kernels our kernel-based rerankers.
Section 6 discusses the results obtained using a reranking algorithm,
while Section 7 draws some conclusions.

47

Figure 1. A DBMS catalog containing GEOQUERY and SAKILA

Figure 2. GEOQUERY database fragment

2 The Problem

We will begin by introducing the notion of typed dependencies and
how to obtain a collapsed list of dependencies starting from an NL
sentence. Then we will introduce the subset of Structured Query Lan-
guage that our system can deal with and, in order to formalize the
problem, we will recall the notation of corresponding operations in
relational algebra.

2.1 NL Questions and Dependencies List

To represent the textual relationships of the NL sentence we use
typed dependency relations. The Stanford Dependencies represen-
tation [9] provides a simple and consistent description of the binary
grammar relations existing between a governor and a dependent. As
shown in the example below, each dependency is written as abbre-
viated relation name (governor, dependent). The governor and the
dependent are words in the sentence associated with a number indi-
cating the position of the word in the sentence.

In particular we refer to collapsed representation, where depen-
dencies involving prepositions, conjuncts, as well as information
about the referent of relative clauses are collapsed to get direct de-
pendencies between content words.

For example, the Stanford Dependencies Collapsed (SDC) rep-
resentation for the question, q1: “What are the capitals of the states
that border the most populated state?” is the following:

SDCq1 = attr(are-2, what-1), root(ROOT-0, are-2),
det(capitals-4, the-3), nsubj(are-2, capitals-4),
nsubj(border-9, states-7), rcmod(states-7, border-9),
det(states-13, the-10), advmod(populated-12, most-11),
amod(state-13, populated-12), dobj(borders-9, state-13)

The current representation contains approximately 53 grammatical
relations but for our purposes we only use the following: adverbial
and adjectival modifier, agent, complement, object, subject, relative
clause modifier, prepositional modifier, and root.

2.2 SQL queries and Relational Algebra

The general SQL query with which our system can deal has the fol-
lowing form:

SELECT COLUMN FROM TABLE [WHERE CONDITION]
(1)

The query is interpreted starting from the relation in the FROM
clause, selecting tuples that satisfy the condition indicated in the
WHERE clause (optional) and then projecting the attribute in the
SELECT clause.

In relational algebra, selection and projection are performed by σ
and π operators respectively. The meaning of the SQL query above
is the same as that of the relational expression:

πCOLUMN (σCONDITION (TABLE)) (2)

It is worth noting that while relational algebra formally applies to
sets of tuples (i.e. relations), in a DBMS relations are bags so it may
contain duplicate tuples [4]. For our purposes the fact of having du-
plicates in the result adds nois; this is why we always delete multiple
copies of a tuple by using the keyword DISTINCT in the COLUMN
field. In our QA task we expect that questions can be answered with
a single result set (e.g. we can deal with “Cities in Texas” and “Pop-
ulations in Texas” but not with the combined query “Cities and their
population in Texas”). That is, even if in general COLUMN could

48

be a - possibly empty - list of attributes, in our system it just con-
tains one attribute. We can apply to this attribute aggregation oper-
ators that summarize it by means of SUM, AVG, MIN, MAX and
COUNT, always combined with DISTINCT keyword (e.g. SELECT
COUNT(DISTINCT state.state name)).

Instead, CONDITION is a logical expression where basic con-
ditions, in the form eL OP eR, with OP={<,>,LIKE,IN}, are com-
bined with AND, OR, NOT operators. While eL is always in the form
table.column, eR could be:

• numerical value (e.g. city.population > 15000) or
• string value (e.g. city.state name LIKE "Texas") or
• nested query (e.g. city.city name IN (SELECT state.
capital FROM state)

An example of a complex WHERE condition could be the follow-
ing: city.population > 15000 AND city.city name
NOT IN (SELECT state.capital FROM state))
AND NOT city.state name LIKE "Texas" (i.e. “major
non-capital cities excluding texas”).

The meaning of TABLE is more straightforward, since it should
contain table name(s) to which the other two clauses refer. This
clause could just be a single relation or a join operation, which se-
lectively pairs tuples of two relations. We only deal with theta-joins
where we take the Cartesian product of two relations and exclusively
select those tuples that satisfy a condition C. The notation for theta-
joins of relations R and S based on condition C is R./S

C . We use
the SQL keyword ON to keep this condition C separated from the
other WHERE conditions since it reflects a database requirement and
shouldn’t match to anything of the NL question. (e.g. city JOIN
state ON city.city name = state.capital).

The complexity of generated queries is fairly high indeed, since we
can deal with questions that require nesting, aggregation and nega-
tion in addition to basic projection, selection and joining (e.g. “How
many states have major non-capital cities excluding Texas”).

2.3 Problem Definition
The question answering task of finding an SQL query that retrieves
an answer for a given NL question reduces to the following problem.

Given a question q represented by means of one typed dependency
collapsed list SDCq , generate the three sets of clauses S,F ,W (ar-
gument of SELECT, FROM and WHERE, respectively) such that:

∃s ∈ S,∃f ∈ F ,∃w ∈ W s.t. πs (σw(f)) answers q (3)

The query answer πs (σw(f)) is chosen among the set of all pos-
sible queries A ={SELECT s× FROM f× WHERE w} in a way
that maximizes the probability of generating a result set answering
question q.

3 Building Clauses Sets
In order to generate all possible queries for a question q we need to
find their possible SELECT, FROM and WHERE clauses (S,F and
W). We start from a dependency list SDCq and (a) prune and stem
its components, (b) add synonyms, (c) create the set of stems used to
build S andW and (d) keep only dependencies possibly used in the
recursive step to generate nested queries. Building the set F from S
andW is straightforward.

We are now going to briefly discuss some examples to introduce
the objective of individual steps and clarify how the entire process is

carried out. The first question we take into account is the simplest
one: “What is the capital of Texas?”. Its answer can be retrieved
executing the query: SELECT capital FROM state WHERE
state.state name=’Texas’. We can see that they share only
two stems, capital and Texas. The key of categorizing stems (Section
3.2) is to recognize that the first stem will be used in S and the second
one inW . In particular, since the word Texas is not a value in the IS,
it is used as a r-value in the WHERE expression, while the l-value is
derived from the column name under where it appears (Section 3.4).

The fact of being respectively projection and selection oriented
can be inferred looking at their grammar relations, i.e. inspecting
the dependency list (e.g. root of the sentence together subject
dependent are typically used for projections). This list needs to be
preprocessed (section 3.1) to take into account only relevant relations
between the stems of the question. Let us consider for example the
question: “What is the capital of the most populous state?” and its
associated answering query SELECT capital FROM state
WHERE population = (SELECT max(population)
FROM state). The matching words are capital and state, while
stemming also allows to find a mapping through popul. We can
note that this stem is used both in the l-value and in the r-value of
the WHERE expression. In fact, this query requires nesting and
indeed the categorizing algorithm needs to be recursive. This stem is
classified both as a selection oriented stem for the outer query, and
as a projection oriented one for the inner query (note that it requires
aggregation, handled when generating the SELECT clause set, see
Section 3.3).

Finally we will introduce one last example to clarify Section
3.5. While with the other examples it is straightforward to com-
pile the FROM clause, since the other clauses refer to the same
table, when we deal with columns belonging to different tables
things get complicated. Take question “What are the capitals states
bordering Texas?”) and its associated query SELECT capital
FROM ... WHERE border = ’Texas’. How can we fill in
the dots in the FROM clause? Fields capital and border belong re-
spectively to tables state and border info. Form the database cat-
alog, we learn that these two tables are connected via the for-
eign key state name and so the final F will include the following
join: state JOIN border info on state.state name
= border info.state name.

3.1 Optimizing the Dependency List
As introduced in Section 2.1, we don’t need all grammatical relations
provided in output by the Stanford Dependency parser. For this rea-
son before preprocessing the list of dependencies we need to prune
the useless ones and remove from governors and dependents the ap-
pended number (indicating the position of the word in question q).
Then, govs and deps are reduced to stems (using the Porter stem-
mer2).

In order to disambiguate the sense of the stems that do not appear
in metadata but could match with it, we create a list of synonyms
using off-the-shelf resources (like Wordnet and similarity measures)
combined with our internal knowledge (represented by database con-
straints). Using this list we can substitute certain stems with their
stemmed synonyms.

The resulting SDCq is optimized to be processed by the next step.
An example showing SDCopt

q1 with respect to the original SDCq1

introduced in Section 2.1 can be found in Table 1.

3.2 Categorizing Stems
Before building S andW sets we need to identify those stems that are
projection and/or selection oriented. Those stems will be added re-
2 http://tartarus.org/martin/PorterStemmer/

49

(1)root(ROOT, are),
(2)nsubj(are, capital),
(3)prep of(capital, state),
(4)nsubj(border, state),
(5)rcmod(state, border),
(6)advmod(populat, most),
(7)amod(state, populat),
(8)dobj(border, state)

Π = {capital, state}
Σ = {are} ⇒ Σ = φ

Π′ = {state, border}
Σ′ = {border, state}

Π′′ = {most, populat, state}
Σ′′ = φ

Table 1. Categorizing stems into projection and/or selection oriented sets

spectively to Π and/or Σ categories according to the following rules.
For each grammatical relation rel(gov,dep) in SDCopt

q :

1. If it is ROOT, dep is the key to populate W so add it to Σ and
remove the relation from SDCopt

q . This stem can be an auxiliary
verb, e.g., is, are, has, have and so on. It is useless to build the
arguments of the queries but it could be used transitively to add
other stems3.

2. If it starts with nsubj, check if gov ∈ Σ. If not (because there isn’t
any ROOT relation) add gov to Σ. Then add dep to Π and remove
rel from SDCopt

q , otherwise keep it, since it could be a subject
related to a subordinate (we will need it in the recursive steps).

3. If it starts with prep or it ends with obj, we used it to create con-
ditions (possibly involving nesting):

• check if gov ∈ Π. If not (because no ROOT or nsubj relations
were found so far) add gov to Π.

• Then add dep to Σ if there is not any table.column like 4

gov.dep. Otherwise, also add dep to Π and remove rel from
SDCopt

q .

4. If it ends with mod, it implies that dep is a modificator of gov, so
they should be paired together: if gov ∈ Σ add dep to Σ and if gov
∈ Π add dep to Π and remove rel from SDCopt

q . This should be
done only if dep is not a superlative (i.e. doesn’t end with -st). The
non-removed relations will be taken into account in the recursive
step, adding both dep and gov to Π.

5. If none of the above rules can be applied, iterate the algorthm re-
cursively building Π′ and Σ′, Π′′ and Σ′′ and so on, until SDCopt

q

is empty.

In order to show how these steps are used to build projection
and/or selection oriented sets from which we generate S andW , let
us consider the list of optimized dependencies SDCopt

q1 in Table 1.
At the first iteration we use ROOT to add are to Σ, then we also ex-

ploit it to add capital and include state to Π as soon as we check that
there is an occurrence state.capital in IS. At this point these
three relations have been deleted from SDCopt

q1 obtaining SDCopt
q1
′

used in the next iteration. Note that since are is a short stem, it should
be deleted from Σ.
3 Stems of 3 or less characters would introduce too much noise in retrieving

matching strings, so they will be eliminated in an additional step 6. Useful
words like in, of, not, or, and are embedded in relation abbreviations when
collapsing dependencies.

4 We query metadata seeking for something similar to gov as a ta-
ble and to dep as a column, i.e. we search for table names using
πtable name

(
σtable name∼=dep∧column name∼=gov(IS.Columns)

)
.

For brevity we use the symbol s1 ∼= s2 for s2 substring of s1, i.e. s1 LIKE
”%s2%”.

Figure 3. A subset of SELECT clauses for q1

At the second iteration (first recursion step) we don’t have a ROOT
relation so we use nsubj to add add border to Σ′ and state to Π′.
Since with rcmod we find an occurrence border.state name
in IS, border is added also to Π. At this point, seeking through the
end of the list we discard dobj because even if border ∈ Π′ we do
not find state.border in IS, so these other three relations are
deleted from SDCopt

q1
′ obtaining SDCopt

q1
′′ for the last iteration.

In the third iteration we have SDCopt
q1
′′ composed by two mod

relations, so we add all stems to Π′′ and delete their associated rela-
tions from the list.

3.3 Building the SELECT Clauses Set
Once we have identified the set Π of projection-oriented stems, we
can use it to search in metadata all the fields that could match with
them. The generation process for S is described by the following
generative grammar.

S → AGGR ’(’ FIELD ’)’ | FIELD
AGGR→ max | min | sum | count | avg
FIELD→ TAB.COL
TAB ∈ ⋃x∈Ππtable name(σtable name∼=x(IS.Tables))
COL ∈ ⋃x∈Ππcolumn name(σcolumn name∼=x(IS.Columns))

With each element of S, we also associate a weight wi, calculated
according to the procedure described in Section 4.3 (we will discuss
it later). For example, considering the IS scheme in Figure 1, the
SELECT clauses originated from Π of Table 1 are shown in Fig. 3.
Note that the superscript numbers indicate the weight associated with
each statement.

3.4 Building the WHERE Clauses Set
Before generating WHERE clauses, the selection-oriented set of
stems Σ should be divided into two distinct sets: ΣL and ΣR.

The set ΣL contains stems that find their matching in IS and allow
us to build the set of left-hand side expressions WL → FIELDwi ,
where FIELD is defined above and computed with ΣL in place of Π
(wi is its associated weight).

For the remaining stems ΣR = Σ − ΣL we should
look up in the database to find a match5: ∀col ∈
IS.Columns, ∀tab ∈ IS.Tables we generate the set
WR =

{
x|πcount(∗) (σcol∼=x(Geoquery.tab)) >= 0

}
.

Then, in order to build the WHERE clause set, W , ∀eL ∈
WL,∀eR ∈ WR we first generate basic expressions expr = eL
OP R and combine them by means of conjunctions and negations
(see Section 2.2), keeping only those expressions expr such that the
execution of πcount(∗) (σexpr(table)) does not lead to an error for at
least a table in the database.

To understand how it works, let us introduce a new exam-
ple question q2: “what are the capitals of states bordering
New York?”. The SDCopt

q2 is similar to SDCopt
q1 except for

the last three relations. Row (6) disappears while rows (7) and

5 Non-matching stems may semantically match a whole condition and need
to be handled carefully. For example, major, if associated with city is trans-
lated into ′city.population > 15000′ while when talking about river is
associated withs ′river.length > 750′[2]

50

Figure 4. Possible pairing between clauses for q2

(8) are replaced by amod(york, new) and dobj(border, york),
leading to Σ′ = {border, new, york}. This set is split into
Σ′L = {border} and Σ′R = {new, york}. We build W ′L ={
border info.border3, border info.state name2

}
and W ′R ={′new york′2,′ new mexico′1,′ new jersey′1,′ newark′1

}
. Fi-

nally we generate the set of possible valid conditions and their
weights:W = {border info.border = ‘new york′5,

border info.state name = ‘new york′4, ...}.
Anyway, the set ΣR could happen to be empty. For example, when

the WHERE condition requires nesting: in this case eR will be the
whole subquery (e.g. Σ′ in Table 1). It could be the case that also
ΣL is empty. In fact a query without a WHERE clause is valid
(e.g. Σ′′ in Table 1). In any case, even if there are no selection-
based stems, W may not be empty (e.g. Σ in Table 1). Taking
into account all tables and columns we can get more conditions:
W*R = {tab.col such that tab ∈ πtable name (IS.Columns) and
col ∈ πcolumn name (IS.Columns)}.

3.5 Building the FROM Clauses Set
The generation of the FROM clause F is straightforward given S
andW . This set will contain all tables to which clauses in S andW
refer, enriched by pairwise joins.

As stated before, this information can be found running
SQL queries over IS exploiting metadata stored in table
KEY COLUMN USAGE (in short, K; see Figure 2). This table iden-
tifies all columns in the current databases that are restricted by some
unique, primary key, or foreign key constraint. That is, for each us-
age of foreign key column in the table, we can determine how many
aggregate table columns match that column usage.

First, we extract tables appearing in S andW (i.e. words ending
with dot), creating a set F . At the beginningF=F . Then ∀t1, t2 ∈ F
πcol name,ref col name (σtable name=t1∧ref table name=t2(IS.K))

retrieves c1, c2 to perform the: join t1./t2
c1=c2 . In this way F in enriched

whit the two-table join t1 join t2 on t1.c1 = t2.c2. In addition
we can allow for more distant joins by finding an intermediate table
useful to link two tables that are not directly referencing each other.
This can be done performing a complex join between two instances
of KEYS with multiple conditions, but due to for lack of space this
can not be illustrated here.

With respect to our example with question q1 and its SELECT
clauses shown in Figure 3, the set of FROM clauses is:
F ′ = {state, border, state join border onstate.state name =
border info.border, ...}.

Note that there are no weights associated with FROM clauses be-
cause it is not possible to backtrack how many stems made each table
appear in F .

4 Generating Queries
In the previous section we saw how to create building blocks for
queries starting from a question q. These elements should be paired
together in a smart way to generate the set of queries that possibly
answer q. This pairing is obtained by creating the Cartesian product

between clauses sets from which non-valid, redundant and meaning-
less clauses are deleted. We use a weighting scheme to order the most
probable correct candidate queries.

4.1 Clause Cartesian Product
In order to find possible answering queries we generate the set A =
{S×F×W} ∪ {S×F}. Given that at least one such query exists
there should be one pairing 〈s, f, w〉 ∈ A, such that the execution
of SELECT s FROM f [WHERE w] retrieve the correct answer.
Given that each clause set contains on average up to ten items, this
product can result in a very huge set. Thus, when generating all pair-
ings some preliminary conditions are verified, e.g. tables appearing
in SELECT and WHERE clauses should appear in the FROM clause
as well, otherwise the execution of that query will fail. This avoids
generating incorrect queries and wasting time trying to execute them.

To give a simple example, we illustrate in Figure 4 some gener-
ated clauses for the question q2 , together with possible pairings.
The pairing 〈s1, f1, w1〉 is not correct: it leads to the MySQL error
Unknown table: border info.

4.2 Pruning Useless Queries
Once the set A of all valid pairings is built, we additionally prune
some of them which are not useful. For example, meaningless queries
project the same field compared to a value in the selection (e.g. the
pairing 〈s3, f2, w2〉 answers the question “Which state is New York?”
and is clearly useless).

Moreover there could be redundant queries that, if optimized,
allow us to remove duplicates in the set, reducing its cardinal-
ity. For example, the pairing 〈s2, f3, w1〉 requires the columns
state.state name and border info.border to be the same, so w2

would select the same rows of w′2(i.e. state.state name=’new york’),
but this means that table border info is no longer used and this pair-
ing is equivalent to 〈s2, f1, w

′
2〉which, as said above, is meaningless.

4.3 Weighting Scheme
As introduced in the previous sections, we weigh each clause in S
and W by counting how many stems in the original question origi-
nated that clause.

In particular, for the SELECT clause, if there is a table that
matches with a stem, its weight is +2 while the matching with
columns weighs +1 (common stems between table and column are
not valid). Superlatives matching with aggregation operators count
as +1.

For the WHERE clause, a weight is computed in the same way as
for the left-hand side of the conditions and a +1 is added for each
matching value in the right-hand side. In addition when dealing with
nested queries, the WHERE clause inherits also the weight of the
nested query.

The FROM clauses are not associated with weights. However, we
will take into account how many joins are involved when ordering
queries with the same weight.

51

When pairing clauses the total weight is obtained just summing up
the weight of its components, and it is used to order the final set Ā
of possible useful queries from the most to the least probable.

Figure 4 highlights this probabilistic score (obtained by the
heuristic one by normalization) through the thickness of connection
lines. Dashed lines illustrate pruned queries. The final ordered set
answering q2 is the following one:
Ā={〈s1, f3, w2〉7 , 〈s3, f2, w1〉6 , 〈s2, f3, w2〉6 , 〈s1, f1〉3 , 〈s2, f1〉2 ,
〈s3, f2〉1}.
From the pairing with highest weight we derive the answering
query, that is: SELECT state.capital FROM state join
border on state.state name =border info.border
WHERE border info.state name=’new york’.

It is worth noting that more then a query can have the same
weight. To deal with that, we implemented a comparator that priv-
ileges queries involving less joins and embed the most referenced
table (e.g. state in the case of GEOQUERY). See, for example, the
order of the second and third pairings in Ā: they have been swapped
since f3 contains a join while f2 doesn’t.

5 Kernel Methods for Ranking
Question/Query Mapping
Once an initial rank of the candidate SQL queries has been derived,
we can rely on machine learning methods to improve the probability
of finding the correct answer in the top position. The need of design-
ing suitable representations of the question and query pairs makes
this operation quite complex. For this purpose, we rely on kernel
methods.

5.1 Kernel Methods
In kernel-based machines, both learning and classification algorithms
only depend on the inner product between instances. In several cases
this can be efficiently and implicitly computed by kernel functions by
exploiting the following dual formulation:

∑
i=1..l yiαiφ(oi)φ(o)+

b = 0, where oi and o are two objects, φ is a mapping from the
objects to feature vectors ~xi and φ(oi)φ(o) = K(oi, o) is a kernel
function implicitly defining such mapping. In case of structural ker-
nels, K determines the shape of the substructures that describe the
objects above.

In the following section, we are going to first propose a structural
representation of the question and query pairs, then we will illustrate
the Syntactic Tree Kernel (STK) [3], which computes the number
of syntactic tree fragments. In the last subsection we will show how
to engineer new kernels from them, while the reranking kernel is
presented in Sec. 5.5

Figure 5. Question/Query Syntactic trees

5.2 Representing Question and Queries Pairs
In Data Mining and Information Retrieval the so-called bag-of-words
(BOW) has been shown to be effective to represent textual docu-
ments, e.g. [13, 7]. However, in case of questions and queries, we

deal with small textual objects in which the semantic content is ex-
pressed by means of few words and poorly reliable probability dis-
tributions. In these conditions the use of syntactic representation im-
proves BOW and should be always used.

Therefore, in addition to BOW, we represent questions and queries
using their syntactic trees, as shown in Figure 5: for questions (a)
we used the Charniak’s syntactic parser [1] while for queries (b) we
implemented an ad-hoc SQL parser. The latter builds a SQL parse
tree for each query following its syntactic derivation according to
MySQL grammar. The grammar has been slightly modified to ac-
commodate the usage of the symbol • for the production of items in
the SELECT clause and in WHERE conditions. In such an SQL tree,
the internal nodes are only the SQL keywords of the query plus the
special symbol •whereas the leaves are names of tables and columns
of the database, category variables or operators. Note that, although
we eliminated comma and dot from the grammar, it is still possible to
obtain the original SQL query, by just performing a preorder traver-
sal of the tree. The above structures can be represented in a learning
algorithm using the kernel described in the next section.

5.3 Syntactic Tree Kernels (STK)
Convolution tree kernels [3] compute the similarity between two
trees T1 and T2 by counting the common sub-trees, without enu-
merating the whole fragment space. In more detail, letN1 andN2 be
the set of nodes in T1 and T2, respectively. Moreover, let Ii(n) be an
indicator variable that is 1 if subtree i is rooted at n and 0 otherwise.
Then the convolution kernel K over T1 and T2 is computed as:

STK(T1, T2) =
∑

n1∈N1,n2∈N2

∆(n1, n2) (4)

where
∆(n1, n2) =

∑

n1∈N1

∑

n2∈N2

∑

i

Ii(n1)Ii(n2)

is computed efficiently using the following recursive definition:
• If the production rules6 at n1 and n2 are different, then

∆(n1, n2) = 0.
• If the production rules at n1 and n2 are the same and n1 and n2

are pre-terminals, then ∆(n1, n2) = λ.
• If the production rules at n1 and n2 are the same and n1 and n2

are not pre-terminals, then:

∆(n1, n2) = λ

nc(n1)∏

j=1

(1 + ∆(ch(n1, j)), ch(n2, j))

where nc(n1) is the number of children of n1 in the tree and the j-
th children of node ni is denoted by ch(ni, j) (note that nc(n1) =
nc(n2) since the production rule is the same). λ (0 < λ < 1) is a
decay factor to make the kernel less variable with respect to tree-
fragment sizes.

5.4 Kernel Combination for Pairs
We need to represent the members of a pair and their interdepen-
dencies. For this purpose, given two kernel functions, k1(., .) and
k2(., .), and two pairs, p1 = 〈n1,s1〉 and p2 = 〈n2,s2〉, a first ap-
proximation is given by summing the kernels applied to the compo-
nents: K(p1, p2) = k1(n1, n2) + k2(s1, s2). This kernel will pro-
duce the union of the feature spaces of questions and queries. A more
effective kernel is the product k(n1, n2)× k(s1, s2), since it gener-
ates pairs of fragments, which are member of the Cartesian product
of kernel spaces of the questions and queries. As additional feature

6 In a syntactic tree a node with its children correspond to a production rule
of the grammar that generated it.

52

Figure 6. Recall of the correct answer within different k positions of the system rank

and kernel engineering, we also exploit the ability of the polynomial
kernel to add feature conjunctions. By simply applying the function
(1 + K(p1, p2))d, we can generate conjunction up to d features.
Thus, we can obtain tree fragment conjunctions and conjunctions of
pairs of tree fragments.

The next section will show how to use such kernels for an SVM-
based reranker.

5.5 Preference reranker
Our reranking model consists in learning to select the best candi-
date from a given candidate set. In order to use SVMs for train-
ing a reranker, we applied the Preference Kernel Method [14]. In
the Preference Kernel approach, the reranking problem – learning to
pick the correct candidate h1 from a candidate set {h1, . . . , hk} –
is reduced to a binary classification problem by creating pairs: posi-
tive training instances 〈h1, h2〉, . . . , 〈h1, hk〉 and negative instances
〈h2, h1〉, . . . , 〈hk, h1〉. This training set can then be used to train a
binary classifier. At classification time, pairs are not formed (since
the correct candidate is not known), while, the standard one-versus-
all binarization method is still applied.

The kernels are then engineered to implicitly represent the
differences between the objects in the pairs. If we have a valid kernel
K over the candidate space T , we can construct a preference kernel
PK over the space of pairs T × T as follows: PK(x, y) =

PK(〈x1, x2〉, 〈y1, y2〉) = K(x1, y1)+

K(x2, y2)−K(x1, y2)−K(x2, y1),
(5)

where x, y ∈ T × T . It is easy to show that PK is also a valid
Mercer’s kernel. This makes it possible to use kernel methods to train
the reranker. The several kernels defined in the previous section can
be used in place of K7 in Eq. 5.

6 The Experiments
We ran several experiments to evaluate the accuracy of our approach
for automatic generation and selection of correct SQL queries from
NL questions. We experimented with a well-known dataset GeoQuey
developed in order to study semantic parsing.

6.1 Setup
To learn the reranker, we used SVM-Light-TK8, which extends the
SVM-Light optimizer [7] with tree kernels. i.e. Syntactic Tree Kernel
(STK) as described in Section 5. We modeled many different combi-
nations described in the next section. We used the default parameters,

7 More precisely, we also multiply K for the inverse of rank position.
8 http://disi.unitn.it/˜moschitt/Tree-Kernel.htm

Figure 7. Learning curve comparison between simple answer generator
and the reranking model using the STK × STK kernel.

i.e. the cost and trade-off parameters = 1 (for normalized kernels) and
λ = 0.4 (see Sec. 4).

To generate the set of possible SQL queries we applied our algo-
rithm described in Section 3 to GEOQUERIES9 corpus. We started
from a set of 700 NL questions10. Thanks to our generative algo-
rithm we discovered and fixed all errors and inconsistencies in SQL
queries, except for 3 cases that still lead to a MySQL error. Indeed,
since we can’t test the correctness of our generated query (without a
result set to compare with) we considered a subset of 697 pairs.

6.2 Generative Results

Given a question from GeoQuery, our algorithm was able to gener-
ate a correct SQL query in the first 25 in 95.3% of the cases. This
also means that our system cannot answer to 33 questions. This is
due to (1) empty clauses set S and/orW , for example, “How many
square kilometers in the us?” does not contain any useful stem; and
(2) from mismatching nested queries, for example, “Count the states
which have elevations lower than what alabama has” contains an im-
plicit reference to a missing piece of question. In addition there are
ambiguous questions like “Which states does the colorado?” from
which we retrieve an incomplete dependency set.

For all remaining questions from which we succeed in generating
an ordered list of possible queries, we find that the query on top of
the list retrieves the correct result set in 82% of the cases. For the
other questions, it can be found within the first 10 generated answers

9 Available at http://www.cs.utexas.edu/ ml/geo.html
10 This are the first 700 questions of the 880 ones that Mooney’s group [15]

paired with logical formulas in Prolog and that Popescu et al. [11] manu-
ally converted into SQL.

53

Table 2. Kernel combination recall (± Std. Dev) for GEO dataset

Combination Rec@1 Rec@2 Rec@3 Rec@4 Rec@5
NO RERANKING 81.4±5.8 87.6±3.8 90.8±3.1 94.0±2.4 95.0±2.0

STK + STK 83.5±3.6 90.4±3.5 94.2±2.9 95.8±2.0 96.7±1.7
STK × STK 86.5±4.0 92.6±3.7 95.3±3.2 97.0±1.8 97.7±1.4
(1+STK2)2 87.2±3.9 94.1±3.4 95.6±2.7 97.1±1.9 97.9±1.4

BOW × STK 86.7±4.1 92.1±3.2 95.6±2.5 97.1±1.4 97.6±1.2

for 99% of the questions (once the 33 questions above have been re-
moved). This can be observed in Figure 6, which plots the Recall (of
the correct question) curve of the generative approach, i.e., the base-
line. As pointed out in the graphic, the right query is found among
the first three in 93% of the cases.

6.3 Reranking Results

Figure 6 also shows the plot for different rerankers using the fol-
lowing kernels: STK+STK, STK×STK and (1+STK×STK)2, which
provide better rankings (the first STK is applied to the question parse
trees whereas the second STK is applied to the query derivation tree).
For example, the latter kernel retrieved the correct answers 94% of
times by only using the first two answers.

To better evaluate the results of our rerankers, we applied standard
10-fold cross validation and measure the average Recall and Std Dev.
of selecting a query for each question. The results for different ker-
nel models for reranking are reported in Table 2. The first column
of Table 2 lists kernel combination by means of product and sum
between pairs of basic kernels used for the question and the query,
respectively. The other columns show the percentage of questions
for which we found at least 1 correct answer in the top @X positions
(average Recall@X over 10 folds ± Std. Dev).

The results are rather exciting since they compare favorably with
the state-of-the-art. The best system on this datasets was designed in
[16] and shows a Precision of 96.3% and a Recall of 79.3%, for an
f-measure of 86.9%, while our system shows a Precision of 82.8%
and a Recall of 87.2%, for an f-measure of 85.0% (when we include
the 33 missing questions in the evaluation). Two main facts should
be noted:

• our system performs just 2 points less than the system designed in
[16] but it does not need any hand-crafted manual resource, i.e.,
the semantic trees manually designed in [16] for each question,
and it is very simple to implement.

• unlikne it has been done in previous work, we can also provide
multiple ranked answers. If we select the first n candidates, we
highly increasing the Recall of the correct answers, e.g., within
the first 2 we have a f-measure of 90% (considering the 33 missing
questions).

Other closely related work, e.g., [5], suggests that lower results
than ours can be obtained using different approaches. These rely ei-
ther on semantic grammar specified by an expert user [10], or on
enriching the information contained in the pairs [11] and implement-
ing ad-hoc rules in a semantic parser [8, 12]. Our system instead, re-
quires no intervention since the database metadata already contains
all the needed data.

Finally, we report the learning curve of one basic reranker in Fig-
ure 7, showing how recall of STK×STK increases for larger training
sets. The plot reveals that as soon as we provide a reasonable per-
centage of training data (25% of the available data corresponding to
9 folds of 700 questions – one fold is used for testing) for reranking,
the model improves on the baseline.

The main contribution of this research consist in the fact that given
a NL question we can generate a set of mapping SQL queries. More-
over if we can rely on a relatively small set of correct pairs of ques-
tions and queries to train a SVM classifier, we are able to re-rank
the set of generated pairs to select the correct one with a fairly high
accuracy.

7 Conclusions and Future Work

In this paper, we have approached the question answering task of im-
plementing a NL interface to databases by automatically generating
SQL queries based on grammatical relations and matching metadata.
To our knowledge, the underlying idea that we have proposed to build
and combine clauses sets is novelty. Additionally, we are firstly ex-
perimented with a preference reranking kernel, which is able to boost
the accuracy of our generative model.

Given the high accuracy, the simplicity and the practical useful-
ness of our approach, (e.g., we can generate the correct question in
the first 5 candidates in 95% of the cases), we believe that our meth-
ods can be successfully used in the future for real-world applications.

In the future we plan to experiment with datasets in different do-
mains (e.g. ATIS corpus). Moreover, given that current challenges in
Semantic Web tackle similar problem [6] (scaling question answer-
ing approaches to Linked Data, i.e. Question Answering over Linked
Data), it would be interesting to apply our algorithms to semantic
search and question answering over RDF data.

ACKNOWLEDGEMENTS

The research described in this paper has been partially supported
by the European Community’s Seventh Framework Programme
(FP7/2007-2013) under the grants #247758: ETERNALS – Trustwor-
thy Eternal Systems via Evolving Software, Data and Knowledge,
and #288024: LIMOSINE – Linguistically Motivated Semantic ag-
gregation engiNes

REFERENCES

[1] E. Charniak, ‘A maximum-entropy-inspired parser’, in Proceedings of
NAACL’00, (2000).

[2] Philipp Cimiano and Michael Minock, ‘Natural language interfaces:
What is the problem? - a data-driven quantitative analysis’, in NLDB,
pp. 192–206, (2009).

[3] M. Collins and N. Duffy, ‘New ranking algorithms for parsing and tag-
ging: Kernels over discrete structures, and the voted perceptron’, in Pro-
ceedings of ACL’02, (2002).

[4] Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom,
Database Systems: The Complete Book, Prentice Hall Press, Upper
Saddle River, NJ, USA, 2 edn., 2008.

[5] Alessandra Giordani and Alessandro Moschitti, ‘Corpora for automat-
ically learning to map natural language questions into sql queries’, in
Proceedings of LREC’10), Valletta, Malta, (may 2010). European Lan-
guage Resources Association (ELRA).

54

[6] Johan Granberg and Michael Minock, ‘A natural language interface
over the musicbrainz database’, in Proceedings of the 1st Workshop
on Question Answering over Linked Data (QALD-1) : Co-located with
the 8th Extended Semantic Web Conference, pp. 38–43, (2011). QC
20120413.

[7] T. Joachims, ‘Making large-scale SVM learning practical’, in Advances
in Kernel Methods, eds., B. Schölkopf, C. Burges, and A. Smola,
(1999).

[8] Rohit J. Kate and Raymond J. Mooney, ‘Using string-kernels for learn-
ing semantic parsers’, in Proceedings of the 21st ICCL and 44th Annual
Meeting of the ACL, pp. 913–920, Sydney, Australia, (July 2006). As-
sociation for Computational Linguistics.

[9] Bill MacCartney Marie-Catherine de Marneffe and Christopher D.
Manning, ‘Generating typed dependency parses from phrase structure
parses’, in Proceedings LREC 2006, (2006).

[10] Michael Minock, Peter Olofsson, and Alexander Näslund, ‘Towards
building robust natural language interfaces to databases’, in NLDB ’08:
Proceedings of Natural Language and Information Systems, Berlin,
Heidelberg, (2008).

[11] Ana-Maria Popescu, Oren A Etzioni, and Henry A Kautz, ‘Towards
a theory of natural language interfaces to databases’, in Proceedings
of the 2003 International Conference on Intelligent User Interfaces,
Miami, (2003). Association for Computational Linguistics.

[12] S Ruwanpura, ‘Sq-hal: Natural language to sql translator’.
[13] Gerard Salton, ‘Recent trends in automatic information retrieval’, in SI-

GIR’86, Proceedings of the 9th Annual International ACM SIGIR Con-
ference on Research and Development in Information Retrieval, Pisa,
Italy, September 8-10, 1986, pp. 1–10. ACM, (1986).

[14] Libin Shen and Aravind K. Joshi, ‘An SVM-based voting algorithm
with application to parse reranking’, in Proceedings of the Seventh Con-
ference on Natural Language Learning at HLT-NAACL 2003, pp. 9–16,
(2003).

[15] L. R. Tang and Raymond J. Mooney, ‘Using multiple clause construc-
tors in inductive logic programming for semantic parsing’, in Proceed-
ings of the 12th European Conference on Machine Learning, pp. 466–
477, Freiburg, Germany, (2001).

[16] Luke S. Zettlemoyer and Michael Collins, ‘Learning to map sentences
to logical form: Structured classification with probabilistic categorial
grammars’, in UAI, pp. 658–666, (2005).

55

The EternalS Roadmap – Defining a Research Agenda for
Eternal Systems

Robert Mullins
1

Abstract.1 Science, technology and business are increasingly
dependent on software. This trend is driven by increasing system
size, complexity, diversity and flexibility and the obligation for
tailored integration of end-users, processes and evolving
technologies. The complexity scale of current systems exceeds our
current understanding of systems engineering and the number of
system parameters to be controlled as part of the overall design
process exceeds the performance of the associated tools and
techniques we are using. This leads to excessive costs for software
maintenance and system degradation over its lifetime. The tools
and techniques must evolve to take into account this increasing
systems, software and architecture scale and complexity. Software
intensive systems must be flexible to accommodate a range of
requirements and operating conditions, and capable of evolving to
allow these parameters to change over time. Software Engineering
approaches to reusability and maintenance must cope with the
dynamics and longevity of future software applications and
infrastructures, e.g., for the Future Internet, e-commerce, e-health,
and e-government. The EternalS project is developing a roadmap
for the next two decades to inspire a research agenda for software
and systems engineering to help address these issues. This paper
presents some of the key issues outlined above, the roadmapping
process and some of the key findings to date.

1 INTRODUCTION

This paper presents the Eternal Systems research community’s

analysis on the key technologies, methodologies and processes

supporting the development and maintenance of large, complex,

mission critical and long lived software systems, and its

perspective on the priorities for the future systems engineering

research under the European Commission’s (EC’s) Framework

Program 8 (FP8). The scope covers the vision, challenges and

research needs for each of the eternal systems areas as identified by

the EternalS project, a Coordination Action supported by the 7th

Framework Programme of the EC within the FET (Future and

Emerging Technologies) scheme.

Changing user requirements, operating conditions and technologies

continue to be an issue for all stages of the systems development

including its maintenance. This is the context into which future

research must deliver and take into account that systems need to

adapt to changes in user requirements and application domains.

1 TSSG, Waterford Institute of Technology, Ireland, email:

rmullins@tssg.org

Much research in software engineering have been focused on

improving software quality and automating the maintenance

process to reduce software costs and mitigate complications

associated with the evolution process. Despite all the effort

expended in this area, these are still high cost and effort activities,

software still continues to be unreliable, and software bugs can

wreak havoc on software producers and consumers alike.

The EternalS group has identified a number of key disciplines that

they believe can make a very positive contribution to advancing

research against this background. These include Variability

Management through Software Product Line Engineering,

Software LifeCycle, Adaptation and Time awareness through

Model Centric and Driven Design, and Machine Learning as and

enabler for the evolution and self adaptability of software.

2 TECHNOLOGY ROADMAPS

The possibilities of technology are often analyzed in an isolated

manner by those with expert knowledge exclusively in that field.

These forecasters tend to trace straight lines into the future, that

project the present, assuming that the current context is perennial

and fundamentals are invariant and durable. They generally forget

about inevitable disruptions such as major scientific breakthroughs

or game changing technology. These would appear to be likely

and expected, if the forecasters considered the larger picture, not

only of their specific area of study, but also taking into account the

entire landscape.

Any engineered products, including software, should be viewed

from a business perspective, not just from a technological one. Of

particular interest are:

• Proven and emerging business models: software as a product,

software as a service, mobile applications ecosystems, open

source;

• The intersection of software engineering with the software

business: business perspectives on technologies such as cloud

computing, requirements engineering and software

architecture;

• Outsourcing: long-term economic implications, new models;

• The software business in public administrations: strategies and

approaches for maximizing the public value of software;

• Public support for the software business: initiatives at the

government level to stimulate or shape the software business,

including standards and specifications;

56

• The software-intensive product: the evolving business context

as software increasingly replaces hardware in products,

ranging from regulatory implications in safety-critical

environments (e.g., health, automotive) to the impact on

market positioning as new powerfully featured, software-

driven products blur the distinction between traditional

segments.

The roadmapping process attempts to map out a path over a period

of time, taking into account the perspectives outlined above and

also taking account of at least expected developments which could

have a material impact during the period under consideration. This

is what the EternalS project is undertaking and the results of the

project will be documented via the roadmaps. The plan has been

for three versions of the roadmaps deliverables for the project to be

produced. Two have already been produced; the first version, D2.1

was created in July 2011 and the second D2.2 was created in April

2012. A number of EU funded FET (Future and Emerging

Technology) projects (CONNECT, HATS, LivingKnowledge, and

Secure Change) which are oriented towards research which is of

relevance to Eternal systems, have been involved in the EternalS

roadmapping process and have contributed to the roadmap

deliverables. The TSSG research group, part of Waterford Institute

of Technology leads the roadmap activity as editors and

contributors.

3 A VISION FOR ETERNAL SYSTEMS
RESEARCH

A software system must evolve, or it becomes progressively less

satisfactory. The question of how to cope with imposed or induced

change is particularly challenging in the context of trends driving

the Future Internet. At the infrastructure level, the Future Internet

will leverage new technologies and protocols to promote the

convergence of traditional and small/portable devices on a much

larger scale than present. At the service level, systems will no

longer be able to address a closed universe of stake-holders.

Additionally, market forces, technological innovation and new

business models will push system fragmentation even further.

On the other hand, those complex, fragmented systems of the

Future Internet (or at least parts of them) are expected to be

operational for a very long time. Design and implementation

decisions must be made in a broad context, considering long-term

goals under the constraint of currently available resources and

technologies. To cope with these challenges, long-living Future

Internet Systems need to be exceptionally flexible. They will have

to constantly evolve to adjust to the changing requirements.

However, evolution represents a constant threat to the system’s

quality. Since large-scale, long lived software-based systems

(Eternal Systems) increasingly pervade our daily life and put an

ever rising number of digital assets at risk, it is a topic of greater

significance. The questions of how to build and manage Eternal

Systems leads to a broad array of research challenges. In recent

years, there have been a lot of studies aimed at characterizing the

evolution of a software system. Many of these studies analyze the

behavior of a variable over a given period of observation. How

does the size of a software system evolve? What about its

complexity? Does the number of defects increase over time or does

it remain stable?

These lead to a number of key focus areas in software intensive

and systems engineering:

• Models - the need to enumerate and classify modeling

dimensions for obtaining precise models to support run-time

reasoning and decision making for achieving evolvable need

compliance;

• Requirements - the need to define a new requirements

language for handling uncertainty to give flexible and self-

adaptive systems the freedom to do adaptation;

• Variability – over the last number of years there has been an

explosion in the number of devices that use software, ranging

from the obvious (mobile phones, consumer electronics) to

the less obvious (medical implants, vehicles). The processes

and methodologies required to create, test and deploy software

for such vast numbers and purposes, and manage reusability

need to be developed.

• Engineering - the need to consider feedback control loops as

first-class entities during engineering of flexible and self-

adaptive systems;

• Security – this must be an integral part of all software and

systems in an increasingly open and connected ecosystem.

• Assurances - the need to define novel verification and

validation methods for the provision of assurances that cover

the flexibility and self-adaptation of systems.

• Evolution and Self adaptability – Systems that can

automatically detect and adapt themselves to their

environment and changes to their environment. The belief is

that machine learning is the key to this capability.

Recent software evolution studies rely on fine-grained information

mined by integrating several kinds of repositories, such as

versioning systems, bug tracking systems, or mailing lists.

Nowadays, many other sources of information, ranging from code

search repositories, vulnerability databases, informal

communications, and legal documents are also being considered.

This would possibly aid to capture the rationale of some events

occurring in a software project, and link them to statistical relations

observed.

The road towards shifting from solid empirical models towards

“principles of software evolution” will likely be long and difficult,

therefore we should prepare ourselves to traverse it and go as far as

possible. To do this, we need to pay attention to:

1. Combining quantitative studies with qualitative studies,

surveys, and informal interviews,

2. Using appropriate statistical and machine learning techniques

able to capture the temporal relation among different events,

introducing robustness and adaptability and

3. Making extensive use of natural language processing and text

mining to automatically process the various sources of

information available

57

4 KEY RESEARCH TOPICS

The following sections document the key research technologies,

processes and methodologies identified by the EternalS project as

being relevant to the future research of Eternal Systems. These are

looked at under the headings the software engineering challenges

of managing diversity among multiple systems that are essentially

similar but slightly different, managing the evolution over time of

long lived systems and finally examining machine learning as a

means of addressing some of the key issues found in the

aforementioned areas.

4.1 Managing Diversity

Diversity impacts all phases of software development and leads to

an increase in complexity, because variability has to be anticipated

in requirements analysis, design, implementation, and validation

stages.

The key methodology supporting software diversity management is

Software Product Line Engineering (SPLE). Software intensive

systems in certain domains may share a large amount of

commonalities. Instead of developing each product individually,

SPLE looks at these systems as a whole and develops them by

maximizing the scale of reuse of platforms and mass

customization. It is claimed that SPLE can help reduce both

development cost and time to market. A key distinction of SPLE

from other reuse-based approaches is that the various assets of the

product line infrastructure contain variability, which refers to the

ability of an artifact to be configured, customized, extended, or

changed for use in a specific context.

Variability in a product line must be defined, represented,

exploited, implemented, and evolved throughout the lifecycle of

SPLE, which is called Variability Management (VM). This has

been studied for almost 20 years since the early 1990s. Feature-

Oriented Domain Analysis (FODA) method and the Synthesis

approach were two of the first contributions to VM research and

practice.

SPLE is a two-stage process which is split into a family

engineering and an application engineering phase. During family

engineering, the scope of the product line is defined by determining

which products should be included in the product line. Reusable

artifacts are then developed and stored in the product line artifact

database. During application engineering, the product line artifacts

are customized and assembled in order to realize a given product

configuration.

4.2 Managing the Software Lifecycle

The question on how to build and manage long-lived security-

critical systems, leads to a broad array of challenges, two of which

are mentioned below. The first one refers to the engineering

process: how should stakeholders (e.g., end users, business

analysts, requirements analysts, system architects etc.) cope with

the various aspects of change that may come with the evolution of

long-living systems? Current process models have considerable

shortcomings: security is only integrated superficially, runtime

adaptability is not addressed at all, model and runtime artifacts are

hardly kept consistent.

The second challenge refers to the architecture and implementation

of Future Internet Systems: how could such systems be designed

and realized so that they are flexible enough to evolve over time

accommodating the various changes? Promising approaches can be

found in the area of pattern-based and model-driven engineering

with a broad set of formal, semi-formal and informal techniques for

the transformation of models, the deployment and (re)configuration

of components, functional and non–functional testing, and the

verification of properties.

Software architectures are the main blueprints of software systems

and need to be designed from the ground up to accommodate

evolution. To date this has not been the case and even if an

architecture is put in place, changes and modifications during both

the development process and post deployment evolution may

introduce architectural decay. These changes are seldom updated in

documentation.

To deal with this almost universal software engineering challenge,

over the last 10-15 years a number of model-centric, model-driven

(collectively called MD*) approaches have been proposed. The

vision of this approach is that systems are described at the level of

abstract models, often with the help of graphical notation. Code is

not written by hand, but automatically generated and evolved from

the models. The converse of this is also possible and models can

be automatically learned from the codebase and a representative set

of execution traces. This is known as Software Architecture

Recovery (SAR) and is described below. This makes it possible to

deal with legacy systems and to (self-) adapt to new environments

more easily. Because code generation does not come with any

correctness guarantees, an important aspect of research of the

model centric approach is formal verification.

Complementary to MD*, it is also possible to automatically

reconstruct models from the codebase and, possibly, a

representative set of execution traces. SAR is the process of

focusing on recovering the high-level design of a system from its

source code. SAR processes and tools use both static and dynamic

analysis. Concerning static analysis, clustering techniques and

other heuristics (e.g., based on naming conventions) are often

applied to the source code and configuration files to create a

representation for the architecture and to identify software patterns.

The quality and accuracy of the results is typically improved when

dynamic analysis is also used, e.g., by looking at representative

execution traces, as well as system logs. This is particularly

important with Object Oriented programs, which employ

polymorphism in ways which may not be obvious from the source.

Other areas such as resource usage can also be relevant to

understanding the architecture.

4.3 Middleware and Cloud Computing

Distributed systems are experiencing a period of rapid and intense

change, at a rate that is unprecedented since the inception of the

area in the early 1980s. With the advent of cloud computing, we

can see the deployment of very large-scale distributed systems

offering a range of novel and exciting new services, including

58

interesting new paradigms for large-scale computation.

Furthermore, distributed systems are becoming significantly more

heterogeneous spanning very small devices embedded in the

physical environment around us through data centers housing

massive cluster computers. Users of distributed systems are often

mobile, resulting in significant context changes over time, which

the system must adapt to. Networking technologies continue to

evolve with, for example, the emergence of a range of new ad hoc

networking techniques and peer-to-peer approaches to

implementing core network services.

Distributed systems are also being challenged by the new styles of

applications and services now being considered. A key illustration

of this is the rapid emergence of social computing, that is

supporting social behaviours in distributed systems through tools

such as wikis, blogs and social networking sites. Social computing

is also now being taken a step further as the associated tools exploit

the emergence of mobile devices and also start to embrace the new

potential offered by ubiquitous computing.

Security is a key concern in Cloud Computing. The common use of

virtualization introduces a new layer between software and

hardware and this in turn introduces a new layer which can be

potentially compromised. Other concerns with cloud include

managing and verifying the identity of the clients who use cloud

infrastructure, privacy of data contained in the cloud, physical

access and security concerns for the remote hardware, availability

of resources and legal issues as cloud technology separates the

physical location from where the services are being used.

4.4 Security

Security is increasingly becoming a fundamental part of software

development rather than simply a functional requirement. It is

becoming understood that with increasingly open and networked

systems, security is a primary system requirement and it needs to

be designed into the software from the ground up, and needs to be

examined and addressed on an ongoing basis, as the environment

evolves and new types of threats become apparent.

Risk Management is key to the process of assessing and managing

the security risks associated with the software systems of an

organisation and planning how to deal with events that may occur.

This is a particularly important process for eternal systems as by

their nature, both the systems and their environment evolve over

their (long) lifetimes, and the risks faced change and the risk

management process needs to handle this change and also adapt as

new risks occur and older risks are no longer relevant. For this

reason, to be effective, risk analysis is an ongoing requirement.

A new branch of software engineering, Security Software

Engineering focuses on integrating security-centric processes

(including awareness and training) into all aspects of the software

development process. In particular, the focus of the research

community is shifting towards dealing with security concerns as

early as possible in the development process, i.e., starting from the

requirements and risk analysis, as well as the architectural and

detailed design. An explicit representation of security needs and

security mechanisms is the stepping stone to systematically support

the evolution of security in Eternal Systems.

4.5 Adaptation and Awareness through
Machine Learning

The simultaneous explosion of information, the integration of

technology, and the continuous evolution from software-intensive

systems to ultra-large-scale systems require new and innovative

approaches for building, running, and managing software systems.

Self-adaptation - systems that are able to adjust their behaviour in

response to their perception of the environment and the system

itself – has become an important research topic.

Adaptation can be seen as an “intelligent function” that can

automatically select different functionalities, e.g., by composing

different software components. Such function can hardly be based

on predefined handcrafted rules since predicting the future working

conditions caused by changes in the environment or in the user

requirements is too complex. As previously mentioned ML owns

two important properties; it can:

• learn its function models using millions of variables,

accurately describing the system and environment conditions;

and

• use a probabilistic characterization of the environment to

produce the most effective evolution choice. Such

management of uncertainty also produces evolution functions

that are robust to unexpected conditions.

However, the use of ML requires the modeling of system and

environment conditions in terms of input objects for the target

learning algorithm. As previously mentioned structural kernels can

help the definition of such objects. The most comprehensive

examples of the use of kernels can be found in automatic extraction

tools that harvest the unstructured data sources that abound on the

web.

5 FUTURE RESEARCH

5.1 Diversity Awareness

In the early phases of software development, such as requirements,

the anticipated diversity of the set of systems to be developed has

to be discovered and specified by suitable modelling approaches.

Current practice captures variability at the requirements level

mainly by domain models, feature models or by decision-oriented

modelling concepts. This so called problem space variability is

well understood and can be rigorously analysed by mathematical

means. However, it is mostly disconnected from solution space

variability that has to be formulated in terms of the reusable

development artifacts. This highlights the need for new variability

modelling techniques that can be integrated into a model-based

development process for diverse systems. In this model-based

development process, the variability of the set of systems to be

developed should be traceable from the product features via

different abstraction layers to the actual implementation level.

The importance of validation and verification cannot be under

estimated. Methods to guarantee essential system qualities, such as

integrity, consistency, correctness, and efficiency, are essential for

diverse systems. Diversity increases system complexity which

leads to a greater risk for system failures. Moreover, the

59

complexity introduced by diversity makes quality assurance even

more complicated as for single systems. Hence, incremental and

compositional verification and validation techniques have to be

devised to deal with the special requirements of diversity.

Ensuring software integrity is of prime importance. Given the

critical nature of eternal systems, it is very important that software

can validate itself and ensure that has not been changed or

compromised by an external party. This can be quite a challenge

particularly in the case of SPLE where so many legitimate variants

of a software system can exist and where software may also be

built with the capability to self adapt. This challenge will be

addressed through research in the area of Automated test case

generation and formal testing in SPLE in product derivation and

application engineering.

5.2 The Software Lifecycle and Evolution

There is a strong requirement in software engineering to improve

the evolution management process to ensure that software artifacts

are kept consistent over systems evolution. It is envisioned that

machine learning can influence software evolution and will lead to

new testing approaches that are more pragmatic. This requires

interdisciplinary research for instance information retrieval (for

documents, images, etc.). These advances will improve the

evolution management process by ensuring that the artifacts

(requirements, architecture, etc) are kept consistent over time.

There is a need to advance the state of the art of Software

Engineering in the areas of managing the evolution of software

architectures and their corresponding implementations. To this end,

the abstract modelling of software architectures and corresponding

code generation promises a real breakthrough in the way we

produce and think about software systems. However, the state of

the art is characterized by a number of challenges that yet have to

be overcome as investigated in Model-Driven Engineering, and

spanning support for Model-to-Model, Model-to-Code and

Models@Runtime. Some of these are:

• There are many modelling formalisms, but as yet no "end-to-

end" approach that takes evolvability into account

• Code generation is often from CASE tools is partial and needs

to be completed in a manual process. Full automation of code

generation and formal verification methods to prove

correctness need to be developed.

• There is as yet no systematic link between development

processes and modelling languages

• Development methods should be applicable to the growing

number of safety-critical applications (e.g., in the embedded

systems area), which in many cases require certification

Future research directions include combining abstract modelling,

diversity, time awareness and machine learning to address

problems of future software systems. It has been established that

there are several overlaps and common interests between the areas

of software evolution and adaptation, diversity management and

machine learning which are fruitful for future research. Machine

learning techniques can be employed to improve the diversity and

evolution management of software to handle their configuration,

collaboration, and adaptation issues.

5.3 Cloud Computing and Middleware

Manageability in the cloud environment is a major challenge,

where manageability is defined as “the collective processes of

deployment, configuration, optimization, and administration during

the lifecycle of IT systems and services”. Intrinsic to this are the

security issues associated with cloud computing. This becomes

particularly important when some of the main applications enabled

through the cloud; enterprise computing, Web 2.0 and High

Performance Computing are considered.

While many observers of cloud computing tend to emphasise the

“computing on demand” and data storage elements of cloud

infrastructure, there is also an important role for distributed

computing in the cloud. While cloud computing often assumes a

certain level of homogeneity in applications and execution

environments, in reality there can be high levels of heterogeneity in

the nature of the underlying clusters and also in the workloads

imposed by the applications. This places heavy demands on the

underlying scheduling algorithms underpinning cloud computation

services. The emergence of technologies such as MapReduce

highlights the key research challenges associated with

heterogeneity particularly for job scheduling. There are also

implications of heterogeneity for other cloud services.

Middleware in this type of massively distributed infrastructure also

raises some new research topics. What are the right abstractions for

the development of future distributed systems given the scale of

complexity of the underlying infrastructure? How can we abstract

over this complexity? What do we need in terms of middleware

APIs, programming languages and associated software engineering

methodologies? How do we achieve interoperability and openness

in this new world we find ourselves in, especially given the

extreme heterogeneity we encounter in the distributed systems of

today? What principles and approaches do we need to deal with

such extreme heterogeneity? Do existing approaches to

interoperability and openness still work?

5.4 Security

Risk Management as described above is a key process in securing

software systems. Currently, risk analysis is a manual and time

consuming process and as such creating methodologies and finding

ways of automating this process is a good candidate for research

within the context of Eternal Systems. Some existing research

work has been completed and some tools (CORAS, Proseco) are

available in this area. The SecureChange project, part of the

“Forever Yours” group of FET projects has completed some

research in the area of systematic processes for risk analysis.

Security and how it is applied to the various branches of Cloud

Computing will continue to be a very important area of research

with immediate practical applications.

60

5.5 Machine Learning

The key challenge for Machine Learning in the context of Eternal

Systems is to develop methods that allow systems to adapt and

evolve as their environment changes. For instance, we may

encounter problems such as:

• Adaptation of legacy systems.

• Reconciliation of systems whose interfaces are evolving.

• Introduction of new components in an existing environment

before and after

• Automatic risk analysis to deal with evolving security

concerns.

Machine-learned systems may need to evolve as the distribution of

the data on which they operate evolves. This is particularly true for

natural language processing systems since new terms frequently

enter the vocabulary. Component-based systems need adaptation

mechanisms as partly incompatible components are introduced and

some components become obsolete.

A further research area is the automatic application of user

requirements by means of natural language processing. The latter

can automatically interpret the modifications in user requirements

and convert them in actions to make evolve software system, e.g.,

by selecting new components in the system.

An important area where ML can be brought to bear on software

engineering and variability management is Automated test case

generation and execution. This would help solve the major problem

of testing in SPLE for product derivation and application

engineering use cases

Further Machine Learning challenges in the domain of software

engineering of Eternal Systems include:

• Researching the correct criteria for the selection of state of the

art machine learning techniques such as Finite State Automata

and Kernel Methods, particularly Support Vector Machines

and their application to real world problem domains that today

can only be addressed with simplified or inadequate models.

• Resolving differences in current approaches and seeking

reconciliation between the approaches of automata learning

and kernel methods to produce a universal model.

• Application of machine learning techniques to learn systems

behaviour and semantics and thereby assist automated

software composition

6 Conclusion

This paper gives an overview of the EternalS project and the

roadmapping process, its objectives and a summary of the main

areas of focus. Certain key areas of software engineering are

introduced and their relevance to Eternal Systems is explained.

Machine Learning is introduced as a potentially effective tool to

help address some of the core challenges.

The main future research areas are discussed at some length and

topics which would be considered to be both valuable and

interesting in their respective areas are outlined.

For more information, the EternalS roadmapping deliverable

discusses and elaborates on the topics mentioned above in much

greater detail.

Table 1 : Table outlining broad research challenges and estimated

difficulty to achieve tangible results, rated from 1 to 5.

ACKNOWLEDGEMENTS

This work has been co-financed by the European Commission -

IST EternalS (FP7-247758). Apart from this, the European

Commission has no responsibility for the content of this paper. The

information in this document is provided as is and no guarantee or

warranty is given that the information is fit for any particular

purpose. The user thereof uses the information at its sole risk and

liability.

REFERENCES

[1] Markus Voelter, Iris Groher, Product Line Implementation using

Aspect-Oriented and Model-Driven Software Development, (2006)

[2] Roy S. Kalawsky, Grand Challenges for Systems Engineering

Research, 7th Annual Conference on Systems Engineering Research

2009 (2009)

[3] Q. Tao, D.-J. Chu, and J. Wang, “Recursive Support Vector

Machines for Dimensionality Reduction,” IEEE Trans. Neural

Networks, vol. 19, no. 1, 2008, pp. 189–193.

[4] H. Simon, “Why Should Machines Learn?” Machine Learning: An

Artificial Intelligence Approach, R. Michalski, J. Carbonell, and T.

Mitchell, eds., Tioga Press, 1983, pp. 25–38.

[5] Y. Lin, “Support Vector Machines and the Bayes Rule in

Classification,” Data Mining and Knowledge Discovery, vol. 6, no. 3,

2002, pp. 259–275.

Difficulty Level

Research Challenge 1 2 3 4 5

Variability Modeling *

Formal Verification

Methods

*

Automated Test Case

Generation

 *

Model Driven Design *

Advances in Code

Generation Technologies

 *

Middleware for

massively distributed

computing

 *

Automated Risk

Management

 *

Security Software

Engineering

*

Software Adaptation

through ML

 *

Natural Language

Requirements Definition

 *

Reconciliation between

Kernel methods and

automata based AI

 *

61

Supporting Agile Software Development
by Natural Language Processing

Barbara Plank1 and Thomas Sauer2 and Ina Schaefer3

Abstract. Agile software development puts more emphasis on
working programs than on documentation. However, this may cause
complications from the management perspective when an overview
of the progress achieved within a project needs to be provided. In this
paper, we outline the potential for applying natural language process-
ing (NLP) in order to support agile development. We point out that
using NLP, the artifacts created during agile software development
activities can be traced back to the requirements expressed in user
stories. This allows determining how far the project has progressed
in terms of realized requirements.

1 INTRODUCTION

Over the last decade, agile software development has evolved from
a fiercely debated novelty into standard practice of many organiza-
tions. When properly applied, agile software development method-
ologies such as Scrum [14] help to develop software more pre-
dictably, more reliably, and with higher overall quality. This is mainly
achieved by dividing the development process into iterations, which
in Scrum are also known as sprints. In each sprint, a working in-
crement of the system is realized. The development activities to do
so are split into manageable chunks of work, so-called tasks. Devel-
opers are kept motivated by avoiding excessive documentation and
unnecessary tools or procedures.

In Scrum, requirements are expressed as user stories, which de-
scribe a certain system feature from the perspective of a stakeholder
[4]. User stories can refer to all sorts of requirements, including func-
tional as well as non-functional system properties. When starting
a new sprint, i.e., a new development cycle, the development team
chooses as many user stories as they believe can be turned into a
working increment of the product. A product owner is responsible
for providing enough user stories such that a working increment of
the product can be actually implemented during an iteration. That is,
before a new sprint can start, the product owner needs to have the
user stories readily identified that are most important at the current
stage of the development. After the sprint is done, the product owner
is also responsible for deciding whether a user story has been suffi-
ciently realized, or whether there is work remaining.

This requires that the product owner has a deep understanding of
what the team has actually produced during the sprint. Especially,
when the product owner has to fulfill other duties in the organiza-
tion, it can be overwhelmingly complex and time-consuming to keep

1 University of Trento, Italy, email: barbara.plank@disi.unitn.it
2 rjm business solutions GmbH, Lampertheim, Germany, email:

t.sauer@rjm.de
3 Technische Universität Braunschweig, Germany, email: i.schaefer@tu-

braunschweig.de

up with the current status of the development. During a sprint, de-
velopers typically coordinate themselves in daily Scrum meetings,
personal communication, etc., but the product owner is usually only
a passive participant. For agile software development by Scrum to
work, however, it is crucial that the product owner has the relevant
requirements and user stories for the system to be developed and their
priorities available when needed.

In this paper, we propose the use of natural language processing
(NLP) techniques to overcome the problem that the product owner
needs to keep track of the current status of development and the
completed or non-completed user stories. By analyzing the artifacts
created by the developers, such as source code, code comments or
bug reports, links can be established between the user stories that are
planned to be completed during the sprint and the actual progress
achieved by the development team. As the artifacts that are produced
usually are not captured by some formal representation, natural lan-
guage processing techniques are promising in order to automatically
discover these connections. We propose a two step approach: in the
first phase, linking, connections between artifacts and agile practices
(user stories) need to be established; we can here build on prior work
on traceability between software artifacts, e.g. [3, 9] and initial work
on linking user stories to lines of code [12], to be further discussed in
Section 4. In the second phase, information aggregation, the previ-
ously connected data will be used for information aggregation. The
goal is to abstract from the single information items found and ad-
vance current technologies in order to support the project owner by
automatically providing information on the progress status.

2 BACKGROUND

User stories in Scrum often follow a certain template to express the
roles involved, the goals to achieve, and the business value connected
with the requirement. For instance, [4] suggests to express user sto-
ries in the format of “As a (role) I want (some goal) so that (benefit)”.
Figure 1 shows an example user story for implementing a string pro-
cessing method. When starting a new sprint, the development team
splits each user story into smaller tasks that can be accomplished in
a single day. Typical tasks include implementation activities, writing
unit tests, or reviewing code. For the example, there could be two
tasks where the first task includes the implementation of the fancy
case method and a second task the test of the implemented method.

Many development teams prefer to store the user stories and tasks
for a sprint using physical task boards, index cards etc. But, there
are numerous project management applications that allow keeping
track of the user stories, tasks and their allocation to the different
team members. For our approach, we assume that at least the product
owner uses an electronic backlog to keep track of the user stories.

62

As a string manipulation library user,
I want to have a fancy case method
in order to gain fancy cased strings.
* The fancy case method should print the
characters of a string alternating in upper
and lower case.

* Whitespace should be ignored.

Figure 1. Example of a user story for string manipulation taken from [8].

2.1 Development Artifacts
During a sprint, developers typically use a large variety of tools for
their development activities, including IDEs, code repositories, bug
tracking systems, etc. This leads to a large number of artifacts that
are created besides the actual implementation when the Sprint team
works on their tasks. Some of them follow some formal representa-
tion including a well-defined structure while others are more ad-hoc
and mainly consist of natural language text without an external struc-
ture. The artifacts that we consider in our approach are the following:

• Code comments: In order to obtain code that is easy to debug and
to maintain, code comments should be introduced at the relevant
places to document the functionality of single methods or classes.
For instance, using JavaDoc, these comments are placed within the
actual code using special annotations from which an external doc-
umentation can be generated. Also unfinished issues in the code
can be marked with ToDo such that these remaining issues can
be tracked by the IDE. Both code comments and todo entries are
natural text which can refer to tasks or to user stories.

• Unit test definitions: Along the lines of test-driven develop-
ment [2], the tests are written together with the implementation
or even before the actual implementation. The tests refer to meth-
ods or classes in the implementation and may contain comments
in natural language as well which state which scenarios from user
stories are tested with the defined test cases. In the Java world,
these test definitions are usually written using JUnit4 such that
they can conveniently be executed from the IDE.

• Commit messages: When a versioning system, such as Subversion
or Git, is used, each developer may add the code he has imple-
mented to complete a task or a smaller chunk of work, into a cen-
tral repository. Each commit is usually accompanied with a com-
mit message which is usually natural language text stating which
changes or additions have been made. The commit message may
for instance refer to the addressed task.

• Bug reports: Deficiencies found while testing or reviewing the im-
plementation are usually stored in a bug tracking system, such as
Bugzilla.5 Each issue found is commonly described with a unique
identifier and a detailed description when and how the software
misbehaves. When the problem is fixed, this is also entered into
the bug tracking system, e.g., with a reference to the correspond-
ing commit in the versioning system.

• Build scripts and reports: Continuous integration systems such
as Hudson6 are often used to automatically integrate and com-
pile the different components of a software system. Further, au-
tomatic testing can be triggered. In combination with the results

4 http://junit.sourceforge.net
5 http://www.bugzilla.org
6 http://www.hudson-ci.org

reported, the integration steps currently configured can provide in-
sight about the status the project is in and which parts are already
finished.

• Task lists: In order to keep track of the tasks and their alloca-
tion to different team members, project management tools such
as TinyPM7 are typically used. Furthermore, the status of each
task is maintained, e.g., whether a task is still pending, has been
already started, or is already completed. Tasks can also be asso-
ciated with the user stories within such a system. Thus, a project
management system can provide the most detailed input from the
management perspective, assuming that the team members keep
the status of the tasks up-to-date. This facts needs to be validated
from the other artifacts that are created during development.

• Wiki pages: Many organizations use Wiki systems to manage the
knowledge obtained while working on a project. This may include
best practices, lessons learned or specific design decisions. Wiki
pages usually consist of natural language text that is only weakly
structured by, e.g., marking section headings.

• Calendar entries: Group calendars are ubiquitous tools for most
development teams. They may store information about meetings
concerning specific issues within the development, such as deci-
sions how to solve specific tasks. The information about the date
and time of the meeting and its content, and maybe also the ac-
cording meeting minutes, can provide insights into the progress of
the project.

• IM messages and social network postings: Instant messaging and
social networks can be used by developers for quick communi-
cation with colleagues about specific issues during development,
e.g., if a framework or API does not work as expected. These mes-
sages and posting may refer to tasks or the outcome of tasks and,
thus, may be valuable in determining progress.

2.2 Natural Language Processing

Natural Language Processing (NLP) [7] is an interdisciplinary field
between computer science, artificial intelligence, machine learn-
ing and linguistics concerned with the study of computational ap-
proaches to understand and/or produce human (natural) language.
Building systems that are able to do so is a difficult task, given the
intrinsic properties of natural language. One of the major challenges
for NLP is the ambiguity of natural language, exemplified in the fol-
lowing sentence: The product owner gave her user stories. Humans
usually have no trouble identifying the intended meaning (that the
product owner gave some user stories to ’her’, presumably a software
developer), while a computer usually identifies many possible read-
ings (e.g. the alternative reading of the product owner giving some
kind of stories to ’her user’ – thus identifying ’her’ as possessive pro-
noun and splitting the compound noun). Ambiguity is pertaining to
all levels of linguistic processing. For instance, structural ambiguity
(whether ’her’ attaches to the verb or noun) or word-level ambiguity
(whether her is a personal or a possessive pronoun).

While early approaches to NLP were mainly symbolic and rule-
based, the field has changed dramatically since the development
of annotated corpora (text collections), the introduction of machine
learning and the associated growth and availability of computa-
tional power, leading to data-driven statistical approaches for learn-
ing. Current research largely focuses on the use of data-driven ap-
proaches to learn from annotated (supervised learning), partially la-
beled data (semi-supervised) or unlabeled data (unsupervised learn-

7 http://www.tinypm.com

63

S

VP

S

VP

VP

NP-GOAL

NN

method

JJ

fancycase

DT

a

AUX

have

TO

to

VBP

want

NP

PRP

I

PP

NP-ROLE

NN

user

NN

library

NN

manipulation

NN

string

DT

a

IN

As

Figure 2. A syntactic parse tree for the sentence “As a string manipulation
library user, I want to have a fancycase method” from the example user story

(punctuation omitted, abbreviated for space reasons). The tree is enriched
with the target entity information (in bold face).

ing/clustering). Some of the NLP tasks include, amongst others: Part-
of-Speech tagging (determining the part of speech, or word-class, for
each word in a sentence), Named Entity Recognition (NER, given a
text, determine which items in the text refer to, e.g. proper names, lo-
cations, geopolitical entities), Parsing (extracting the syntactic struc-
ture of natural language sentences), Relation Extraction (RE, iden-
tify relationships between entities in text, e.g. who is working for
whom), Semantic Role Labeling (SRL, sometimes also called shal-
low semantic parsing, the detection of the semantic arguments asso-
ciated with the predicate or verb of a sentence and their classification
into their specific roles, e.g. agent, patient), Machine Translation (au-
tomatic translation between texts in different languages) and Senti-
ment Analysis (also known as Opinion Mining; extracting subjective
information from text, e.g. opinion statements, overall polarity).

We here propose to use NLP to analyze the natural language-based
artifacts created during the software development process. For in-
stance, natural language parsing is the task of uncovering the syn-
tactic structure of natural language sentences, which is represented
in forms of trees. For example, if we apply a constituent parser (a
parser that provides a hierarchical structure in which smaller parts
are combined into larger parts called phrases, e.g. a noun phrase de-
noted NP) to the user story shown in Figure 1, we obtain the syntactic
parse tree shown in Figure 2.

The same process can be applied to the artifacts: parsing the com-
mit messages, the code comments, etc. Based on the syntactic struc-
ture, a classifier can be trained that determines the constituents that
encode ROLE, GOAL or BENEFIT of a user story (indicated in
bold face in Figure 2) and similarly of the artifacts. This leads to a
possible structured instance representation that can be exploited, as
discussed in the next section.

3 APPROACH
In order to establish a connection between the user stories on one
side and the artifacts on the other site, we need a mechanism to as-
sociate them based on their similarity. In this section, we outline our
proposed approach to apply NLP to artifacts obtained during agile
software development in order to support the product owner’s deci-
sions.

To this end, we propose a two-step approach as depicted in Fig-
ure 3: In the first linking step, we establish connections between user

User
stories Artifacts

Step 1: Linking Step 2:
Information
Aggregation

Figure 3. Overview of the proposed approach

stories and the development artifacts (cf. Section 2.1). In the sec-
ond information aggregation step, we classify user stories according
to their status (to be implemented/not yet started, in progress, com-
pleted) based on the artifacts found. This helps the product owner to
get a better understanding of the current status of the project at the
user story level.

In the first linking step (cf. Figure 4), the information contained
in the development artifacts is analyzed in order to discover which
artifacts belong to the realization of which user story. For instance,
a code comment or a commit message can refer to the implementa-
tion of the fancy case method of the example user story in Figure 1
allowing to link it to the first task of the user story. Additionally, the
comments of a JUnit test can reference parts of the user story such
that the test case can be associated to the second task of this user
story. The artifacts that have tight links to the code, such as code
comments or commit messages, can be augmented with information
derived from bug reports or development Wiki. Also other sources of
information might be exploited (which are less structured and more
distant to the code, as shown in Figure 4), such as instant messag-
ing (IM) within the company network or social network posts. Even
at the start of a sprint, typically enough meaningful information is
available from communication with the product owner to effectively
perform NLP.

To make the linking step technically more concrete from the NLP
perspective, we need to reason about i) possible instance represen-
tations of the artifacts and the user stories, and ii) possible learning
mechanisms able to identify similar objects. For the instance repre-
sentation, a first attempt might consist in applying information re-
trieval [10] techniques: representing the information contained in the
artifact or user story in a simple bag-of-words model in the vector
space (i.e. counting how often a word appeared in a user story, pos-
sibly weighted). If we also want to link actual source code to user
stories, then it will be also necessary to identify and split source
code identifiers into actual words [9]. Then, similarity between these

3URMHFW�
0DQDJHPHQW�WRRO

8VHU�VWRU\

7DVN�� 7DVN�Q���

�NHHSV�WUDFN�RI�WDVNV�

$UWLIDFWV�

&RGH�FRPPHQWV�	�
-XQLW�WHVW�GHILQLWLRQV

&RPPLW�PHVVDJHV %XJ�UHSRUWV

:LNLV

,0�6RFLDO�QHWZRUN
PRUH�WR�OHVV�
VWUXFWXUHG��

FORVHQHVV�WR�FRGH

DXJPHQWHG�E\�
OLQNLQJ

8VHU�VWRU\���DUWLIDFWV

D��/LQNLQJ�XVHU�VWRULHV�ZLWK�DUWLIDFWV

E��,QIRUPDWLRQ�DJJUHJDWLRQ�WR�VXSSRUW�WKH�SURMHFW�RZQHU

��WR�EH�GRQH�"
��LQ�SURJUHVV�"
��FRPSOHWHG�"

FODVVLILFDWLRQ

8VHU�VWRU\���DUWLIDFWV
��VXPPDU\�RI�DUWLIDFWV
�QXPEHU�RI�FRPLWV��
OLQHV�RI�FRGH��HWF����

Figure 4. Step 1: Linking User Stories with Artifacts

64

INSTANCE

DETAILS

D2

ignore whitespace

D1

print alternating

BENEFIT

VP-BENEFIT

GOAL

NP-GOAL

ROLE

NP-ROLE

Figure 5. Instance Representation. The roof is a compact representation to
represent tree information.

unstructured objects (vectors) can be calculated based on the an-
gle between the feature vectors in the vector space (e.g. their cosine
similarity). Alternatively, deep natural language processing might be
applied to gather structured objects. For instance, the example user
story could be represent as shown in Figure 5, where natural lan-
guage parsing and argument classification has been applied. This
representation could be further enriched with other NLP tools like
a semantic role labeler, a named entity recognizer, or distributional
semantic techniques. Then, machine learning algorithms able to deal
with structured input data, like tree-kernel based support vector ma-
chines [5, 11] could be applied to learn a similarity function in the
structured space.

Once a mapping between artifacts and user stories has been estab-
lished, the second information aggregation step is performed (cf. Fig-
ure 6): a classifier is trained to determine the status of the user story:
“to be implemented/not yet started”, ”in progress“, “completed”. The
amount of artifacts found in the first stage, as well as related meta-
data (e.g. number of lines of code associated with a commit mes-
sage, amount of JUnit tests related to the user story, status of unit
tests, number of bugs fixed, etc.) could be exploited to train a system
to classify user stories into the three categories, while further giving
aggregated information on the collected artifacts. For instance, if in
the example user story (cf. Figure 1), code comments and commit
messages referring to the first task of implementing the fancy case
method are found the user story is classified as ”in progress”. If also
test cases are found with a positive reporting and no bug reports re-
ferring to the fancy case method are found, the user story can be
labelled as ”completed”.

4 RELATED WORK
Monitoring development activities for supporting project manage-
ment has been discussed before as software project telemetry [6]. The
development environment is instrumented by software “sensors” at-
tached to editors, test suites or bug-tracking databases. The sensors
continuously send data to a central anaysis component, where met-
rics of interest such as code churn or build failures are calculated.

3URMHFW�
0DQDJHPHQW�WRRO

8VHU�VWRU\

7DVN�� 7DVN�Q���

�NHHSV�WUDFN�RI�WDVNV�

$UWLIDFWV�

&RGH�FRPPHQWV�	�
-XQLW�WHVW�GHILQLWLRQV

&RPPLW�PHVVDJHV %XJ�UHSRUWV

:LNLV

,0�6RFLDO�QHWZRUN
PRUH�WR�OHVV�
VWUXFWXUHG��

FORVHQHVV�WR�FRGH

DXJPHQWHG�E\�
OLQNLQJ

8VHU�VWRU\���DUWLIDFWV

D��/LQNLQJ�XVHU�VWRULHV�ZLWK�DUWLIDFWV

E��,QIRUPDWLRQ�DJJUHJDWLRQ�WR�VXSSRUW�WKH�SURMHFW�RZQHU

��WR�EH�GRQH�"
��LQ�SURJUHVV�"
��FRPSOHWHG�"

FODVVLILFDWLRQ

8VHU�VWRU\���DUWLIDFWV
��VXPPDU\�RI�DUWLIDFWV
�QXPEHU�RI�FRPLWV��
OLQHV�RI�FRGH��HWF����

Figure 6. Step 2: Classifying User Stories

This enables detecting unwanted development in time. In contrast
to our approach, management roles such as product owners have to
draw their own conclusions how current activities are connected to
specific requirements.

Connecting user stories with concrete agile development activities
is discussed in [12]. The authors present a tool for associating newly
created or recently modified lines of code with the individual tasks
of a user story. While the initial association has to be made man-
ually, subsequent development activity is automatically tracked by
analyzing revison control usage. However, links between user stories
and higher-level development artifacts other than source code are not
supported.

For reducing the efforts required to link requirements with devel-
opment results, automated traceability [3] has been suggested. By
applying information retrieval algorithms, the likelihood of connec-
tions between specific requirements and code documents, UML dia-
grams, etc. is determined by, e.g., calculating the similarity of terms.
A survey of applicable techniques can be found in [15]. The NLP ap-
proach presented in this paper augments these techniques by specif-
ically supporting the concept of user stories in agile software devel-
opment. If we also include actual source code, then an important pre-
processing step related to this is the work on automatically splitting
source code identifiers into component terms (e.g. drawRectangle or
drawrect into draw and rectangle), as done in [9].

NLP has been already found useful for general systems engineer-
ing [1], requirements engineering of legacy systems [13] and for
specific agile techniques, such as behavior-driven development [8].
Here, product owners provide an abstract test script for each user
story. Using an ontology, these scripts are related with their corre-
sponding implementation. When the development team is working
on a new user story and its test script, NLP techniques are applied for
extracting the nouns and verbs contained in the story. The extracted
entities enable to find similar test steps by consulting the ontology,
fostering efficient test code reuse.

5 CONCLUSION AND FUTURE WORK
In this paper, we have presented the idea of using natural language
processing techniques for supporting agile development. By analyz-
ing the artifacts created during development activities, such as writ-
ing code, committing a patch, or filing a bug report, connections
are established between the user stories which represent the system
requirements. This supports the roles representing the stakeholders,
such as product owners in a Scrum project, to understand what the
team has actually produced during a development cycle.

Although user stories are expressed in free-form text, they are typ-
ically not free of form. Instead, certain templates are followed, which
encode roles, goals or organizational benefits. Similar applies to ar-
tifacts such as source code, commit messages, or bug reports. This
allows using proven NLP techniques to create structured representa-
tions, which in turn enables finding interdependencies.

In future work, we plan to evaluate the templates and patterns
found in real-world product backlogs.

REFERENCES
[1] Vincenzo Ambriola and Vincenzo Gervasi, ‘On the systematic analysis

of natural language requirements with circe’, Autom. Softw. Eng., 13(1),
107–167, (2006).

[2] Kent Beck, Test Driven Development By Example, Addison-Wesley,
2002.

[3] Jane Cleland-Huang, Raffaella Settimi, and Eli Romanova, ‘Best prac-
tices for automated traceability’, Computer, 40(6), 27–35, (2007).

Figure 5. Instance Representation. The roof is a compact representation to
represent tree information.

unstructured objects (vectors) can be calculated based on the an-
gle between the feature vectors in the vector space (e.g. their cosine
similarity). Alternatively, deep natural language processing might be
applied to gather structured objects. For instance, the example user
story could be represented as shown in Figure 5, where natural lan-
guage parsing and argument classification has been applied. This
representation could be further enriched with other NLP tools like
a semantic role labeler, a named entity recognizer, or distributional
semantic techniques. Then, machine learning algorithms able to deal
with structured input data, like tree-kernel based support vector ma-
chines [5, 11] could be applied to learn a similarity function in the
structured space.

Once a mapping between artifacts and user stories has been estab-
lished, the second information aggregation step is performed (cf. Fig-
ure 6): a classifier is trained to determine the status of the user story:
“to be implemented/not yet started”, ”in progress“, “completed”. The
amount of artifacts found in the first stage, as well as related meta-
data (e.g. number of lines of code associated with a commit mes-
sage, amount of JUnit tests related to the user story, status of unit
tests, number of bugs fixed, etc.) could be exploited to train a system
to classify user stories into the three categories, while further giving
aggregated information on the collected artifacts. For instance, if in
the example user story (cf. Figure 1), code comments and commit
messages referring to the first task of implementing the fancy case
method are found the user story is classified as ”in progress”. If also
test cases are found with a positive reporting and no bug reports refer-
ring to the fancy case method are found, the user story can be labeled
as ”completed”.

3URMHFW�
0DQDJHPHQW�WRRO

8VHU�VWRU\

7DVN�� 7DVN�Q���

�NHHSV�WUDFN�RI�WDVNV�

$UWLIDFWV�

&RGH�FRPPHQWV�	�
-XQLW�WHVW�GHILQLWLRQV

&RPPLW�PHVVDJHV %XJ�UHSRUWV

:LNLV

,0�6RFLDO�QHWZRUN
PRUH�WR�OHVV�
VWUXFWXUHG��

FORVHQHVV�WR�FRGH

DXJPHQWHG�E\�
OLQNLQJ

8VHU�VWRU\���DUWLIDFWV

D��/LQNLQJ�XVHU�VWRULHV�ZLWK�DUWLIDFWV

E��,QIRUPDWLRQ�DJJUHJDWLRQ�WR�VXSSRUW�WKH�SURMHFW�RZQHU

��WR�EH�GRQH�"
��LQ�SURJUHVV�"
��FRPSOHWHG�"

FODVVLILFDWLRQ

8VHU�VWRU\���DUWLIDFWV
��VXPPDU\�RI�DUWLIDFWV
�QXPEHU�RI�FRPLWV��
OLQHV�RI�FRGH��HWF����

Figure 6. Step 2: Classifying User Stories

4 RELATED WORK

Monitoring development activities for supporting project manage-
ment has been discussed before as software project telemetry [6]. The
development environment is instrumented by software “sensors” at-
tached to editors, test suites or bug-tracking databases. The sensors
continuously send data to a central analysis component, where met-
rics of interest such as code churn or build failures are calculated.
This enables detecting unwanted development in time. In contrast
to our approach, management roles such as product owners have to
draw their own conclusions how current activities are connected to
specific requirements.

Connecting user stories with concrete agile development activities
is discussed in [12]. The authors present a tool for associating newly
created or recently modified lines of code with the individual tasks
of a user story. While the initial association has to be made manu-
ally, subsequent development activity is automatically tracked by an-
alyzing revision control usage. However, links between user stories
and higher-level development artifacts other than source code are not
supported.

For reducing the efforts required to link requirements with devel-
opment results, automated traceability [3] has been suggested. By
applying information retrieval algorithms, the likelihood of connec-
tions between specific requirements and code documents, UML dia-
grams, etc. is determined by, e.g., calculating the similarity of terms.
A survey of applicable techniques can be found in [15]. The NLP ap-
proach presented in this paper augments these techniques by specif-
ically supporting the concept of user stories in agile software devel-
opment. If we also include actual source code, then an important pre-
processing step related to this is the work on automatically splitting
source code identifiers into component terms (e.g. drawRectangle or
drawrect into draw and rectangle), as done in [9].

NLP has been already found useful for general systems engineer-
ing [1], requirements engineering of legacy systems [13] and for
specific agile techniques, such as behavior-driven development [8].
Here, product owners provide an abstract test script for each user
story. Using an ontology, these scripts are related with their corre-
sponding implementation. When the development team is working
on a new user story and its test script, NLP techniques are applied for
extracting the nouns and verbs contained in the story. The extracted
entities enable to find similar test steps by consulting the ontology,
fostering efficient test code reuse.

5 CONCLUSION AND FUTURE WORK

In this paper, we have presented the idea of using natural language
processing techniques for supporting agile development. By analyz-
ing the artifacts created during development activities, such as writ-
ing code, committing a patch, or filing a bug report, connections
are established between the user stories which represent the system
requirements. This supports the roles representing the stakeholders,
such as product owners in a Scrum project, to understand what the
team has actually produced during a development cycle.

Although user stories are expressed in free-form text, they are typ-
ically not free of form. Instead, certain templates are followed, which
encode roles, goals or organizational benefits. Similar applies to ar-
tifacts such as source code, commit messages, or bug reports. This
allows using proven NLP techniques to create structured representa-
tions, which in turn enables finding interdependencies.

In future work, we plan to evaluate the templates and patterns
found in real-world product backlogs.

65

ACKNOWLEDGEMENTS
This research has been supported by the European Community’s
Seventh Framework Programme (FP7/2007-2013) under the grants
#247758 (ETERNALS) and #288024 (LIMOSINE).

REFERENCES
[1] Vincenzo Ambriola and Vincenzo Gervasi, ‘On the systematic analysis

of natural language requirements with circe’, Autom. Softw. Eng., 13(1),
107–167, (2006).

[2] Kent Beck, Test Driven Development By Example, Addison-Wesley,
2002.

[3] Jane Cleland-Huang, Raffaella Settimi, and Eli Romanova, ‘Best prac-
tices for automated traceability’, Computer, 40(6), 27–35, (2007).

[4] Mike Cohn, User Stories Applied For Agile Software Development,
Addison-Wesley, 2004.

[5] Michael Collins and Nigel Duffy, ‘Convolution kernels for natural lan-
guage’, in Proceedings of NIPS., (2001).

[6] Philip M. Johnson, Hongbing Kou, Michael Paulding, Qin Zhang,
Aaron Kagawa, and Takuya Yamashita, ‘Improving software develop-
ment management through software project telemetry’, IEEE Software,
22(4), 76–85, (2005).

[7] Daniel Jurafsky and James H. Martin, Speech and Language Process-
ing, Prentice Hall Series in Artificial Intelligence, Prentice Hall, 2008.

[8] Mathias Landhäußer and Adrian Genaid, ‘Connecting user stories and
code for test development’, in Proc. of the 3rd International Workshop
on Recommendation Systems for Software Engineering (RSSE 2012),
pp. 33–37, (2012).

[9] N. Madani, L. Guerrouj, M. Di Penta, Y. Gueheneuc, and G. Antoniol,
‘Recognizing words from source code identifiers using speech recogni-
tion techniques’, in Software Maintenance and Reengineering (CSMR),
2010 14th European Conference on, pp. 68–77, (march 2010).

[10] Christopher Manning, Prabhakar Raghavan, and Hinrich Schütze, In-
troduction to information retrieval, Cambridge University Press, 2008.

[11] Alessandro Moschitti, ‘A study on convolution kernels for shallow
semantic parsing’, in Proceedings of the 42nd Meeting of the ACL,
Barcelona, Spain, (2004).

[12] Sukanya Ratanotayanon, Susan Elliott Sim, and Rosalva Gallardo-
Valencia, ‘Supporting program comprehension in agile with links to
user stories’, in AGILE Conference, pp. 26–32. IEEE Computer Soci-
ety, (2009).

[13] Peter Sawyer, Paul Rayson, and Roger Garside, ‘Revere: Support for re-
quirements synthesis from documents’, Information Systems Frontiers,
4(3), 343–353, (2002).

[14] Ken Schwaber and Mike Beedle, Agile Software Development with
Scrum, Prentice Hall, 2001.

[15] Stefan Winkler and Jens von Pilgrim, ‘A survey of traceability in re-
quirements engineering and model-driven development’, Software and
Systems Modeling, 9, 529–565, (2010).

66

Machine learning and data mining:
An introductory overview

Hendrik Blockeel

KU Leuven, Department of Computer Science
Celestijnenlaan 200A box 2402, 3001 Leuven, Belgium

Abstract: Machine learning and data mining keep gaining impor-
tance in terms of providing auxiliary methods and tools to other fields.
They are strongly related to each other, in the sense that they address
similar tasks and problems settings. They are also very broad with respect
to the type of task that is addressed, the type of data being analyzed,
the type of patterns that can be found, and the kind of approach that is
used.

This talk will give an overview of this diversity. The focus will not be
on how specific methods or algorithms work, but on:

1. Tasks: what are the prototypical tasks and problem settings that have
been identified in these areas;

2. Representations: how can the input be represented, what impact does
the choice of input representation have, how can the output be rep-
resented, what are the advantages and disadvantages of output repre-
sentations;

3. Approaches: from the use of ready-made push-the-button systems to
approaches that allow for active modeling of the task and background
knowledge.

The discussion will be illustrated with concrete applications, including
applications in software design where available.

67

Author Index
Avancini, Andrea 1
Basili, Roberto 38
Bennaceur, Amel 5
Blockeel, Hendrik 67
Breu, Ruth 31

Ceccato, Mariano 1
Ciambra, Francesco 38
Cohen, Kevin Bretonnel 11
Corazza, Anna 18
Cretella, Giuseppina 24
Croce, Danilo 38

Di Martino, Beniamino 24
Di Martino, Sergio 18

Felderer, Michael 31

Gander, Matthias 31
Garzoli, Francesco 38
Giordani, Alessandra 47

Howar, Falk 5
Hunter, Lawrence E. 12

Isberner, Malte 5
Issarny, Valérie 5

Johansson, Richard 5

Katt, Basel 31

Maggio, Valerio 18
Moschitti, Alessandro 5, 18, 31, 47
Mullins, Robert 56

Nardini, Manuela 38

Palmer, Martha 11
Passerini, Andrea 18
Plank, Barbara 62

Sauer, Thomas 62
Scanniello, Giuseppe 17
Schaefer, Ina 62
Silvestri, Fabrizio 18
Steffen, Bernhard 5
Sykes, Daniel 5

68

