




















ECAI-2012 Workshop WL4AI

7'1'(_,475)( ) (1, 1)1fweM(a1/\b1)
(1,) ifw € M(a1 A —b1 A b2)
(1,0)if fw € M (a1 A —b2)
(o, @) ifw € M(az A a1 A ba)
(a,0) if w € M(az A —a1 A —b2)
(0,0) if w € M(—az2).

Note the lexicographic ordering of the evaluation vectors. We now
have 6 layers of interpretations (instead of 4 in the previous view),
which makes it clear that this second view is more refined. However,
in the rest of the paper, all the preferences are viewed as constraints.

4 CP-NETS IN POSSIBILISTIC LOGIC

This section presents a possibilistic logic approach with symbolic
weights that generalizes the representation of preferences reviewed
in Section 3. The proposed method enables the handling of condi-
tional preferences, as well as the representation of prioritized con-
junctions. The approach is both more faithful to user’s preferences
than the CP-net approach as we shall see. Formally, a CP-net [28] IV
over the set of Boolean variables V' = {X1,--- , X, } is a directed
graph over the nodes X1, --- , X,,, and there is a directed edge from
X to X if the preference over the value X; is conditioned on the
value of X;. Each node X; € V is associated with a conditional
preference table C'PT'(X;) that associates a strict (possibly empty)
partial order >cp (u;) with each possible instantiation u; of the par-
ents of X;. A complete preference ordering satisfies a CP-net NV iff it
satisfies each conditional preference expressed in V. In this case, the
preference ordering is said to be consistent with N. Since CP-nets
encode partial orders, while possibilistic logic encodes a complete
preorder (when priorities are given), these two formalisms cannot be
equivalent. The best we can do is to approximate CP-nets in possi-
bilistic logic. A faithful approximation of a CP-net in possibilistic
logic consists in preserving all strict preferences induced by the CP-
net [18, 20]. However, by enforcing appropriate ordering constraints
between symbolic weights, we can obtain an exact representation of
a CP-net in possibilistic logic with symbolic weights [29, 32], as ex-
plained now.

Using an example, we first present the idea of representing con-
ditional preferences by means of possibilistic logic formulas with
symbolic weights. We then introduce a natural preorder between for-
mulas, which may be then completed by further constraints between
symbolic weights. Lastly, a general evaluation procedure is outlined.

4.1 Possibilistic representation of conditional
preferences — An example.

Example 1 taken from [36], is about planning holidays, where one
has the following preferences: one can either go next week (n) or
later in the year (7). One can decide to go either to Oxford (o) or
to Manchester (5), and one can either take a plane (p) or drive and
take a car (p). So, there are three variables X1, X> and X3 where
Xi={n,n}, X2={0, 0} and Xz={p, p}, where X stands for a set of
possible assignments of X. Suppose the person prefers to go next
week than later in the year and prefers to fly than to drive unless he
goes later in the year to Manchester.

Such preferences can be encoded as prioritized goals in possibilis-
tic logic, as explained now. The possibilistic encoding of the condi-
tional preference “in context c, a is preferred to b” is a pair of possi-
bilistic formulas: {(-cV a V b,1), (—c¢V a,a)} with1 > a > 0.
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Namely if ¢ is true, one should have a or b (the choice is only
between a and b), and in context c, it is somewhat imperative to
have a true. This encodes a constraint of the form N(—cV a) > «,
itself equivalent here to a constraint on a conditional necessity
measure N(alc) > « (see, e.g., [23]). This is still equivalent
to II(-alec) < 1 — a, where II is the dual possibility measure
associated with N. It expresses that the possibility of not having
a is upper bounded by «, i. e. —a is all the more impossible
as o is small. Such a modeling has been proposed in [30] for
representing preferences, and approximating CP-nets. It can be
proved that {(—cV aV b, 1), (-cV a,a)} is equivalent to requesting
N(alc) > a > 0 = N(b|c). Note that when b = —a, the first
clause becomes a tautology, and thus does not need to be written.
Strictly speaking, the possibilistic clause (—c V a,a) expresses a
preference for a (over —a) in context c. The clause (—cV a Vb, 1) is
only needed if a V b does not cover all the possible choices. Assume
a Vb = —d (where —d is not a tautology), then it makes sense to
understand the preference for a over b in context c, as the fact that
in context ¢, b is a default choice if a is not available. If one wants
to open the door to remaining choices, it is always possible to use
(meVaVba') with o > a, instead of (-c V a V b, 1). Thus,
the approach easily extends to non binary choices. For instance,
“I prefer Renault () to Chrysler (¢) and Chrysler to Ford (f)" is
encoded as {(r VeV f,1),(r Ve a), (r,a’)}, witha > o

It is worth noticing that the encoding of preferences in this frame-
work also applies to Lacroix and Lavincy’s approach [34], namely,
when one wants to express that “p; A pa is preferred to p1 A —p2"
and p; is mandatory. It is encoded by ((p1 A p2) V (p1 A —p2), 1),
equivalent to (p1, 1), and by (p1 Ap2, 1 — ) equivalent to (p1, 1 — )
and (p2,1 — &), (p1,1 — «) being subsumed by (p1,1). Thus, one
retrieves the encoding (p1,1) and (p2,1 — «), already proposed in
Section 3.

4.2 Preorder induced by formulas with symbolic
priority levels.

When one does not know precisely how imperative the preferences
are, the weights can be handled in a symbolic manner, and then
partially ordered. This means that the weights are replaced by
variables that are assumed to belong to a linearly ordered scale
(the strict order will be denoted by > on this scale), with a top
element (denoted 1) and a bottom element (denoted 0). Thus, 1 — (.)
should be regarded here just as denoting an order-reversing map
on this scale (without having a numerical flavor necessarily), with
1—-(0)=1,and 1 — (1) = 0. On this scale, one has 1 > 1 — ¢, as
soon as a # 0. The weights are different from 1 but are all greater
than 0. We assume that the order-reversing map relates to two scales:
the one graded in terms of necessity degrees, or if we prefer here in
terms of imperativeness, and the one graded in terms of possibility
degrees, i.e. here, in terms of satisfaction levels. Thus, the level of
priority « for satisfying a preference is changed by the involutive
mapping 1 — (-) into a satisfaction level when this preference is
violated.

Example 1: Let N be a CP-net over variables X, X2 and X3,

let I' be a set of constraints, ¢; € I', where o1 = T : n > 7,
w2 =T 10 >0,¢03 =m:p>pP, s =0:p > pand
s = mo : p > p. These constraints do not encode a complete

CP-Net. But it can be completed by making it explicit with the
additional constraints : @g 0:D>P,Yr =nN0:p >D
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and ¢7 = no : p > p. Note that in possibilistic logic, we are not
obliged to explicit all these constraints, indeed it is encoded by the
possibilistic constraints K1 = {¢1 = (n,a),c2 = (0,8),¢c3 =
(AVp,v),ca = (6V p,d),c5 = (nV oV p,e)}. Since the values
of the weights «, 3,+, d, € are unknown, no particular ordering is
assumed between them. Table 1 gives the satisfaction levels for
the possibilistic clauses encoding the five elementary preferences,
and the eight possible choices. The last column gives the global
satisfaction level by minimum combination.

Table 1. Possible alternative choices in Examplel.
C1 C2 c3 C4 [ min

nop 1 1 1 1 1 1
nop 1 1 Iy | 1-0 1 1-v,1-8
nop 1 1-8 1 1 1 1- 8
nop 1 -6 | 1y 1 1 1- 8,1
nop | 1-a 1 1 1 1 I-
nop | l-a 1 1 1-6 1 1- a,1-6
nop 1- 1-8 1 1 1-¢ 1-a, 1- B,1-¢
nop | l-a | 1-3 1 1 1 I-a,1-8

Even if the values of the weights are unknown, as it is the case in
the above example, a partial order between the interpretations (they
are 8 in our example) is naturally induced by a Pareto ordering (de-
noted > pqr) between the corresponding vectors evaluating the satis-
faction levels with respect to the constraints.

Generally speaking, let K = {(a;, ;) } be a set of formulas asso-
ciated with symbolic weights. Let ¢, ¢’ be two interpretations of the
set of formulas {a;|¢ = 1,n)} associated with the vectors of their
evaluations with respect to each formula in K. Then, we have

t >=par tiff 3y C Ty,

where X; (resp. X4/) is the set of formulas in K violated by ¢ (resp.
.

In our example, we have for instance the following Pareto order-
ings between the 5-component vectors

(1-a,1,1,1, 1) > par (1=, 1-5,1,1,1) = par (1—a, 1—-5,1,1,1—¢)

whatever the values of «, 3,e. Thus, we get the following partial
order between interpretations:

nop =par {n0P, nopP, op, NOP, NOP, NOP, NOP }

'ﬁOp >Par ﬁap >Par ﬁaﬁ

nopP >Ppar NOP ; NOP =par NOP

Thus, this partial order amounts to rank-ordering a vector v’ after
a vector v, each time the set of preferences violated in v is strictly in-
cluded in the set of preferences violated in v, since nothing is known
on the relative values of the symbolic levels (except they are strictly
smaller than 1, when different from 1). Then a vector v is greater
than another v’, only when the components of v are equal to 1 for
those components that are different in v and v’.

We could also use the discrimin order denoted by >discrimin
defined in the following way: identical vector components are dis-
carded, and the minima of the remaining components for each vector
are compared. Note that ¢ and ¢’ are comparable only if one of the two
minima returns 1 (which is the only evaluation known to be greater
than any symbolic weight (# 1)). In fact here, the orderings > por
and > giscrimin coincide.
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Order induced by the CP-net

CP-net

n>=n

0>0

.

no:p>p

no:p>p

no:p >p

no:p>p @
Figure 1. CP-net and partial order induced by it

4.3 Introducing preferences between symbolic
weights

The authors of [32] have proposed an encoding of CP-nets by impos-
ing a partial order between the symbolic weights of formulas. The
partial order on symbolic weights is defined as follows. For each pair
of formulas (—u; V z,a;) and (—u; V y, ;) such that X is a fa-
ther of Y where u; is (—u; V —x) or (—u; V ), we put a; > oy
[32, 28]. These constraints between symbolic weights can be ob-
tained by Algorithm 1, which computes the partial order between
symbolic weights from a set of ceteris paribus statements.

Once we have got this partial order over symbolic weights, we
use the leximin order defined below, for refining the > p,, ordering
used before:

Leximin with partially ordered weights: Let ¢ = {1 —
a1, 1—ay, 1} be a set of symbolic possibility degrees , and w, w’
two interpretations € €. Let U(w) = (m;(w) - - - mn(w)), ¥(w')
(mi(w') -+ - mn(w")) be their vectors of evaluation in terms of sym-
bolic weights (with respect to the violated formulas). Then the lex-
imin ordering denoted >, between vectors of values belonging to a
totally ordered set consists in applying the discrimin procedure after
reordering their components in increasing order. The leximin order-
ing can be extended as follows:

e delete all pairs (m; (w), 7, (w’)) where m;(w) = 7;j(w’) so we get
U*(w) and U*(w') where U*(w) N ¥* (') =0

® W ey W ff min(P* (w) U T*(w')) C T*(w)

e w and w are incomparable iff min(¥*(w) U ¥*(w')) € ¥*(w)
and min(¥* (w) U ¥*(w')) € T* ().

Note that this leximin ordering is the same as discrimin and
Pareto orderings, if weights are incomparable. When some weights
are comparable, discrimin and Pareto orderings still coincide due
to the particular nature of the vectors that are compared (i.e., vectors
(w1, ,ui, -+ ,un) such as u; € {1,1 — a;}), but the extended
leximin refines the Pareto ordering.

In Example 1, in the order induced by the Pareto ordering, the
interpretations nop, nop, nop are incomparable. Applying algorithm
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1, we give priority to father nodes, i.e., here, we introduce the fol-
lowing constraints between the symbolic weights o« > maxz(7, 6, €)
and 8 > maxz(7v,d,). Then, the application of leximin ordering
allows us to distinguish between {nop,nop} and 7op. So, the
order induced by the CP-net, or equivalently the one induced by the
possibilistic approach giving priority to father nodes (see Figure 1) is:

nop =iew {NOP, ndp, op},
{nop,nop} =iex N0P, {N0P, NOP} >1czx NOP
{nop, nop} >icx NOP >=iex NOP

Algorithm 1 calculates the relative importance between CP-net pref-
erences statements
Require: C a set of constraints of the form (P;, ;)
T a set of preference statement of the form u : = > z’
IDC=0
for o; = u; : x; > z;inT do
for c; in C do
if c; is of the form (u;, «;) then
for ¢ in C do
if cx is of the form (—u; V z;, ax) then
IDC « IDC + (a; > au)
end if
end for
end if
end for
end for
return IDC

5 CP-THEORIES IN POSSIBILISTIC LOGIC

Wilson [35, 36] has proposed a new formalism named CP-theories
that extends CP-nets and TCP-nets in order to express stronger
conditional preferences as well as the usual CP-net ceteris paribus
statements. For a set of variables V', the language £y (abbreviated
to £) consists of all statements of the form v : z > x’ [W], where
u is an assignment to a set of variables U C V (i.e, u € U),
x,x’ € X are different assignments to some variable X ¢ U (and
so z and " correspond to different values of X) and W is some
subset of V. — U — {X}.If p is the statement u : x > x’ [W],
we may write u, = u,Uy, = U,y = z,2, = o/, Wy, = W
and T, = V — ({X} UU U W). Subsets of £ are called
conditional preference theories or CP-Theories (on V). For
p=mu:z >a [W] let " be the set of pairs of interpretations
{(tuzw, tuz'w") : t € Ty, w,w’ € W}. Such pairs (w,w') € p*
are intended to represent a preference for w over w’, and ¢ is
intended as a compact representation of the preference information
©*. Informally, ¢ represents the statement that, given v and any
t, x is preferred to ', irrespective of the assignments to W, it
means that we prefer any outcome with  to any outcome with z’,
in the context w. For conditional preference theory I' C L, define
= U(P cr > so I'" represents a set of preferences. We assume
here that preferences are transitive, so it is then natural to define
order > , induced on V by T, to be the transitive closure of I"*. With
this type of statements (CP-theory statements), we can represent a
CP-net by a statement v : z > 2’ [W] with W = 0 and a TCP-net
with W containing at most one variable [36].

In possibilistic logic, a CP-theory statement ¢ = u : © > z’ [W]

is represented by A(tuz) > T(tuz’) standing for
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MiNytusT(W) > MaTemtum(w’) [33] which has the
same semantics as the “irrespectively" constraint (given u x is pre-
ferred to x’ irrespective of the assignments to W). The possibilistic
encoding of CP-theory expression uses exactly the same possibilistic
formulas (with symbolic weights) as for the corresponding CP-net
expression (when W is ignored). All the additional constraints
between the weights of the father nodes with respect of child node
are also maintained. Further, constraints between weights are added
according to the procedure that we describe now.

Consider a CP-theory expression u : z > z’ [W]. It is encoded
by a possibilistic preference statement (—u V x, ;). Then we shall
add the constraint o; > «; for any a;, such that (—u V w, a;)
is a possibilistic preference statement, with the same context wu,
over one variable (or more) w € W. These constraints over
weights can be obtained by Algorithm 2: from a set of CP-theory
statements of the forme u : x > z'[W], we elicit a partial order
over symbolic weights used for inducing the same order between
interpretations as the CP-theory. This procedure indeed guarantees
that the constraints of the form A(tuz) > II(tuz’) which is same
as Vw,w' € W, n(turw) > w(tux’'w’) will be satisfied. Let us
give a sketch of the reason why:

Consider X = {z,z'} and W = {w, w'}, the possibilistic encoding
of the constraint will be ¢; = (—u V z, @;), and consider that we
got a possibilistic constraint ¢; = (—u V w, o). Let the possibility
distribution of the constraint A(tuz) > I(tuz’) Vt € T :

o m(tuzw) > 7(tuz'w)

o m(tuzw') > w(tuzr'w)

o T(tuzw) > m(tuz'w')

o m(tuzw') > w(tuz'w')

Proof: we proceed using reductio ad absurdum, so, we suppose
that a;; > «;. Consider the two interpretations w1 = tuzw’ and
wy = tux’w, wy satisfies the first constraint (c;) and falsifies the
second one (c;), however, wy falsifies the first constraint and satisfies
the second one, let v1 = (1,1 — ;) and v2 = (1 — a4, 1) be
the vectors of satisfactions associated to w; and wsa respectively,
w1 > wz imply 1 —oy; > 1— oy, that means o; < a; (contradiction)
QED.

Example 2 [36] : Let I' be a CP-Theory over three variables
X1, X2 and X3, composed of set of preferences statements p1_5
given by: o1 =T : 1 > @1[X2, X3|, 2 =21 : 3 > ©3[X2], 3
=1 : T2 > T2, Pa=2T1 : T2 > 1‘_2[X3}, Y5 =T1 1 T3 > Z3, this
statements are coded in possibilistic logic by:

Ko = {Cl = (xl,a),CQ = (:LTl ng,ﬂ),C;g = (fl Vv .2132,’}/),84
(1‘1 V xa, (5), Ccs = (1‘1 \Y .’L‘_3,E)}.

Table 2 gives the satisfaction levels for the possibilistic clauses
encoding the five elementary preferences, and the eight possible
choices. The last column gives the global satisfaction level by
minimum combination.

After applying the Pareto ordering (or equivalently here,
discrimin ordering), what we get is an ordering which is less re-
fined than the ordering induced by the CP-theory or by the CP-net
(see Figure 2). But we can capture the CP-theory ordering by taking
into account an ordering between weights that reflects the relative
importance of the constraints, and which can be elicited from the
CP-theory. In the example, we should enforce o > maxz (5,7, 6, &)
due CP-net “father" constraints (X is the father of X2 and of X3);
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Table 2. Possible alternative choices in Example?2.

c1 Co C3 Cy4 Cs5 min
r1T2T3 1 1 1 1 1 1
T1T2T3 1 1-6 1 1 1 1-6
r12L2IT3 1 1 1-~y 1 1 1~
XT1T2T3 1 1-8 1-vy 1 1 1-8,1-y
Z1ToT3 1-a 1 1 1 1-¢ 1-a,1-¢
T1T2X3 1-a 1 1 1 1 1-a
T120x3 | l-a 1 1 1-0 | I-e | 1-a,1-0,1-¢
T1T2X3 1-a 1 1 -0 1 1-a,1-¢

besides, we have 3 > -y due to the “irrespectively" constraint [w. r. t.
X>2]in 2 and we have § > ¢ due to the “irrespectively” constraint
[w. r. t. X3] in 4 (by applying the procedure explained above, or
Algorithm 2). Then, the order induced by the CP-theory and the one
captured by the possibilistic approach (taking account the above in-
equalities between symbolic weights) coincide. It is given by:
T1X2X3 Flex T1L2L3 Hlex L1T2TL3 lex T1T2X3 Mlex L1X2L3 >lex
T1T2T3 ¥ lex T1T2X3 > lex T1X2T3

Algorithm 2 calculates the relative importance between CP-theory
preferences statements

Require: C a set of constraints of the form (P;, ;)
T a set of preference statement of the form u : = > z'[W]
IDC=0
for p; =u; : ; > z;[W;]in T do
if ;=0 then
IDC « IDC + Algorithm 1 (C ,{¢;})
else
for c; in C do
if c; is of the form (—u; V x;, ;) then
for c;, in C do
if ¢ is of the form (—u; V —x; V v, ) or
(—ui V z,a)/z € Wi, v € {V — U} then
IDC « IDC + (a; > ovi)
end if
end for
end if
end for
end if
end for
return IDC

As a summary, the Pareto ordering (here equivalent to the dis-
crimin ordering) is obtained without introducing any inequality con-
straint between importance weights (all symbolic weights, distinct
from 1, remain incomparable). Then the CP-net is obtained by en-
forcing priorities in favor of constraints associated with “father"
nodes, but ignoring the “irrespectively” constraints of the CP-theory.
Note that Pareto ordering is compatible with the CP-net and CP-
theory orderings, but less refined, and the CP-net ordering is less
refined than the CP-theory one (due to the ignorance of “irrespec-
tively" constraints).

6 CONCLUDING REMARKS

In this paper, the possibilistic logic framework has been recalled and
its interest for preference representation strongly advocated. Clearly,
possibilistic logic is still close to classical logic, but the introduction
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CP-theory CP-net (ignoring [W]) Pareto ordering
ordering ordering (discrimin order)
B>yetd>c¢ a >max(f,y,6,¢&)

X1X3%X3

Figure 2. Lexmin, Cp-net and CP-Theory orders in Example 2

of weights substantially increases its representation capabilities, es-
pecially with respect to inconsistency handling. We have shown how
the use of symbolic weights in the possibilistic logic setting enables
us to deal with partial orders (encoding CP-nets and CP-theories in
this way). This constitutes an alternative to the introduction of a pref-
erence relation inside the representation language, as in, e.g., [12].

Moreover, it has been recalled how the use of symbolic weights
[11] enables us to represent CP-nets faithfully in the possibilistic
logic setting, by imposing greater priority weights to father nodes.
Moreover, possibilistic logic with symbolic weights has a represen-
tation power much richer than the one of CP-nets, since, e.g., one
may give priority to a constraint associated with a child node (which
is impossible in CP-nets or in TCP-nets). Then, after restating the
CP-theory representation framework, and results illustrating its ex-
pressive power which generalizes CP-nets and TCP-nets [36], we
have shown that a CP-theory can be faithfully represented in pos-
sibilistic logic by introducing further inequalities between symbolic
weights in order to take into account the CP-theory idea that some
preferences hold irrespective of the values of some variables. An in-
teresting question for further research would be to examine the pos-
sible relations that may exist between the non symmetrical notion of
independence in possibilistic networks [1] and some limitations of
graphical representation settings such as CP-nets.

We have also indicated that our handling of preferences statements
in the style of Qualitative Choice Logic remains close to mainstream
database approaches to preference queries pioneered by Lacroix and
Lavency [34]. It has also already pointed out that Chomicki’s ap-
proach [16] based on winnow operator can be also expressed in our
setting [28].

Lastly, let us also mention other possibilistic logic-based works in
preference modeling where one may handle both general statements
about importance levels and (couter)-examples [19, 26]. This kind
of approach may also incorporate a Choquet’s integral-like handling
of importance levels [31]. Moreover, a possibilistic logic represen-
tation of Sugeno integral has been recently proposed [25], and last
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but not least possibility theory setting enables to represent bipolar
preferences, where both negative preferences (rejections) and posi-
tive preferences (what is really desired) can be expressed [7].
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Strong possibility and weak necessity as a basis
for a logic of desires

Emiliano Lorini' and Henri Prade?

Abstract. Strong possibility and weak necessity measures are two
decreasing set functions that have been introduced in the setting of
possibility theory. They are respectively min-decomposable with re-
spect to union and max-decomposable with respect to intersection.
This research note advocates that the characteristic properties of the
strong possibility and weak necessity set functions are meaningful
when modeling the notion of desire and a dual notion of admissible-
ness. This setting thus offers a semantic basis for developing a logic
of graded desires.

1 Introduction

Possibility theory has been originally proposed as an alternative ap-
proach to probability for modeling epistemic uncertainty, indepen-
dently by two authors. In economics, Shackle [17] advocated a new
view of the idea of expectation in terms of degree of surprise (a
disguise for a degree of impossibility). Later in computer sciences,
Zadeh [19] has introduced a setting for modeling the information
originated from linguistic statements in terms of fuzzy sets (under-
stood as possibility distributions). Zadeh’s proposal for a possibility
theory relies on the idea of possibility measure, a max-decomposable
set function with respect to union taking its values in the unit interval.
However, in these works, the duality between possibility and neces-
sity (captured by a min-decomposable set function with respect to
intersection) was not exploited at all.

Later, it has been recognized that two other set functions, which
contrast with the two previous ones by their decreasingness, make
also sense in the possibility theory [6]. These two latter set functions,
which are dual of each other, model an idea of strong (guaranteed)
possibility and of weak necessity respectively, while the original pos-
sibility measure is a measure of consistency between the considered
event and the available information, corresponding to an idea of weak
possibility.

The framework of possibility theory with its four basic set func-
tions exhibits a rich structure of oppositions, which can be also
closely related to other structures of oppositions that exist in modal
logics and other settings such that formal concept analysis for in-
stance [7]. Moreover, possibility theory is graded since the four set
functions can take values in the unit interval. This very general set-
ting can not only be interpreted in terms of uncertainty. It makes also
sense for preference modeling in particular. But it is also of interest
in the modeling of situations that require modal logic languages, and
where grading modalities is meaningful. For instance, when model-
ing uncertainty, necessity measures are useful for representing beliefs
and their epistemic entrenchments [5].

1 IRIT-CNRS, University of Toulouse, France, email: lorini @irit.fr
2 IRIT-CNRS, University of Toulouse, France, email: prade @irit.fr

99

In this research note we provide a preliminary investigation of the
potentials of possibility theory for modeling desires. We first present
a background on possibility theory. We then investigate the model-
ing of desires in terms of strong possibility, as well the dual notion of
admissibleness in terms of weak necessity, before pointing out some
lines for further research on the relationship between possibility the-
ory and the logic of emotions.

2 Background on possibility theory

Let 7 be a mapping from a set of worlds W to [0, 1] that rank-orders
them. Note that this encompasses the particular case where 7 reduces
to the characteristic function of a subset £ C W . The possibility dis-
tribution 7 may represent a plausibility ordering (and E the available
evidence) when modeling epistemic uncertainty, or a satisfactoriness
ordering (E is then the subset of satisfactory worlds) when modeling
preferences. Let us recall the complete system of the 4 set functions
underlying possibility theory [6] and their characteristic properties:

e i) The (weak) possibility measure (or potential possibility)

I1(4) = maxm(w)
evaluates to what extent there is a world in A that is possible.
When 7 reduces to F, II(A) = 1if AN E # @, which expresses
the consistency of the event A with E, and II(A) = 0 otherwise.
Possibility measures are characterized by the following decom-
posability property:

II(AU B) = max(II(A),II(B))
e ii) The dual (strong) necessity measure (or actual necessity)

N(A) = glirjl —7(w) =1-1(A4)
evaluates to what extent it is certain (necessarily true) that all pos-
sible worlds are in A. When 7 reduces to £, N(A) = 1if E C A,
which expresses that F entails event A (when F represents evi-
dence), and N(A) = 0 otherwise. The duality of N w. r. t. II
expresses that A is all the more certain as the opposite event A is
impossible. Necessity measures are characterized by the following
decomposability property:

N(AN B) = min(N(A), N(B))

e iii) The (strong) possibility measure (or actual, or “guaranteed”
possibility)

A(A) = lruneng w(w)
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evaluates to what extent any value in A is possible. When 7 re-
duces to E, A(A) = 1if A C E, and A(A) = 0 otherwise.
Strong possibility measures are characterized by the following
property:

A(AU B) = min(A(A), A(B))

iv) The dual (weak) necessity measure (or potential necessity)

V(A) =max1—7m(w) =1 - A(A)
wgA
evaluates to what extent there is a value outside A that is impos-
sible. When 7 reduces to E, V(A) = 1if AUE # U, and
V(A) = 0 otherwise. Weak necessity measures are characterized
by the following property:

V(AN B) = max(V(A), V(B))

A and V are set decreasing functions. This contrasts with (weak)
possibility and (strong) necessity measures which are both set in-
creasing functions.

A modal logic counterpart of these 4 modalities has been proposed
in the binary-valued case (things are possible or impossible) [3].

The close linkage between Spohn functions and (weak) possibility
and (strong) necessity measures can be found in [5].

3 A and V as operators of desire

The possibility operator IT and the necessity operator /N have a clear
epistemic interpretation both in the framework of possibility theory
and in the framework of Spohn’s theory of uncertainty [18] generally
referred to as ‘x calculus’ (Goldszmidt & Pearl [11] refer to it as
‘rank-based system’ and ‘qualitative probabilities’).

Differently from the operators II and N, the operators A and V
do not have an intuitive interpretation in terms of epistemic attitudes.
More generally, although A and V make sense from the point of
view of possibility theory and also from a logical point view, it is not
completely clear which kind of mental attitudes these two operators
aim at modeling.

Here we defend the idea that A and V can be viewed as operators
modeling motivational mental attitudes such as goals or desires.’ In
particular, we claim that the operator A can be used to model the
notion of desire, whereas the operator V can be used to model the
notion of admissibleness (or desire compatibility).*

According to the philosophical theory of motivation based on
Hume [12], a desire can be conceived as an agent’s motivational at-
titude which consists in an anticipatory mental representation of a
pleasant (or desirable) state of affairs (representational dimension of
desires) that motivates the agent to achieve it (motivational dimen-
sion of desires). In this perspective, the motivational dimension of an
agent’s desire is realized through its representational dimension. For
example when an agent desires to be at the Japanese restaurant eat-
ing sushi, he imagines himself eating sushi at the Japanese restaurant
and this representation gives him plesaure. This pleasant represen-
tation motivates him to go to the Japanese restaurant in order to eat
sushi.

3 We use the term ‘motivational’ mental attitude (e.g., a desire, a goal or an
intention) in order to distinguish it from an ‘epistemic’ mental attitude such
as knowledge or belief.

4 Another possible term is desire admissibility that we take it to be synony-
mous of desire compatibility.
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Intuitively speaking, with the term admissibleness we refer to a
weaker form of motivational attitude. We assume that an agent con-
siders a given state of affairs ¢ admissible if ¢ does not conflict with
the agent’s current desires. In this sense, ¢ is admissible if it is com-
patible with the agent’s current desires.

Following the initial ideas presented in [14], let us explain why the
operator A is a good candidate for modeling the concept of desire
and why the the operator V is a good candidate for modeling the
concept of desire compatibility.

To this aim, we introduce a simple propositional language defined
by the following grammar:

pl-ploAe

14

where p ranges over a given set of atomic propositions Atm
{p, q,...}. The other Boolean constructions T, L, V, — and < are
defined from p, — and A in the standard way. Furthermore, we define
amodel as a tuple M = (W, des, V') where:

o W is a set of worlds or states,

e des: W — [0, 1] is a total function mapping every world w in
W to its desirability (or pleasantness) value in [0, 1],

o V : Atm — 2" is a valuation function which maps every
atomic proposition to the set of worlds in which the atomic propo-
sition is true.

For any model M = (W, des, V') and atomic proposition p € Atm,
lIp|| = {fw € W : w € V(p)} denotes the extension of p. The
extension of propositional formulas is defined in the standard way as
follows:
=@l = W\ [lel|
lle Al = [lell Ol

We here assume for any model M there exists a world in this
model with a minimal degree of desirability 0. This type of nor-
mality constraint is traditionally assumed in the context of possi-
bility theory. Formally speaking we assume that for every model
M = (W, des,V):

(Normp.;) there is w € W such that des(w) = 0.

31

We here assume that in order to determine how much ¢ is desirable
an agent takes into consideration the worst situation in which ¢ is
true. Therefore, for any model M = (W, des, V') and propositional
formula ¢, we can interpret

Modeling desire using A

A(llell) = min des(u)

uellel|

as the extent to which the agent desires ¢ to be true.
Let us justify the following two properties for desires:

Allle vV ll) = min(A(llel]), A1)

and
A(lle Al]) = max(A(l[e]]), A]|4]]))

According to the first property, an agent desires ¢ to be true with
a given strength « and desires 9 to be true with a given strength 3
if and only if the agent desires ¢ or v to be true with strength equal
to min(c, 3). Notice that in the case of epistemic states, this prop-
erty would not make any sense because the plausibility of ¢ V ¢
should be clearly at least equal to the maximum of the plausibili-
ties of ¢ and . For the notion of desires, it seems intuitively sat-
isfactory to have the opposite, namely the level of desire of ¢ V
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should be ar most equal to the minimum of the desire levels of ¢
and 9. Indeed, we only deal with here with “positive” desires (i.e.,
desires to reach something with a given strength). Under this pro-
viso, the level of desire of ¢ A ¢ cannot be less than the maximum
of the levels of desire of ¢ and 1. According to the second property,
the joint occurrence of two desired events ¢ and v is more desir-
able than the occurrence of one of the two events. This is the reason
why in the right side of the equality we have the max. The latter
property does not make any sense in the case of epistemic attitudes
like beliefs, as the joint occurrence of two events ¢ and v is epis-
temically less plausible than the occurrence of a single event. On
the contrary it makes perfect sense for motivational attitudes likes
desires. By way of example, suppose Peter wishes to go to the cin-
ema in the evening with strength « (i.e., A(||goToCinemal|) = «)
and, at the same time, he wishes to spend the evening with his
girlfriend with strength 8 (i.e., A(||stay WithGirlfriend||) = 3).
Then, according to the preceding property, Peter wishes to to go
the cinema with his girlfriend with strength at least max{h, k} (i.e.,
A(||goToCinemaA stay WithGirlfriend||) > max{c«, 8}). This is
areasonable conclusion because the situation in which Peter achieves
his two desires is (for Peter) at least as pleasant as the situation in
which he achieves only one desire. A similar intuition can be found
in [1] about the min-decomposability of disjunctive desires, where
however it is emphasized that it corresponds to a pessimistic view of
desires.

3.2 Modeling admissibleness using V

From the normality constraint (Normp.s), we can deduce the
following inference rule:

A(llell) >0

A(ll=ell) =0

This means that if an agent desires ¢ to be true — in the sense that
he desires ¢ to be true with some strength o > 0 — then he does
not desire ¢ to be false. In other words, an agent’s desires must be
consistent.

As pointed out above, we claim that the operator V allows to cap-
ture a concept of admissibleness (or desire compatibility): V(||¢]|)
represents the extent to which an agent considers ¢ an admissible
state of affairs or, alternatively, the extent to which the state of affairs
 is compatible with the agent’s desires. An interesting situation is
when the state of affairs ¢ is maximally admissible for the agent (i.e.,
V(||¢ll) = 1). This is the same thing as saying that the agent does
not desire ¢ to be false (i.e., A(||¢||) = 0). Intuitively, this means
that ¢ is totally admissible inasmuch as the level of desire for - is
0. In particular, when the subset £ C W of satisfactory or desirable
worlds is not graded, V(||¢||) = 1ifand only if EN||~¢p|| # 0, i.e.,
- is consistent with what is undesirable, represented by the com-
plement E of E in W. Another interesting situation is when the state
of affairs ¢ is maximally desirable for the agent (i.e., A(||¢]|) = D).
This is the same thing as saying that — is not at all admissible for
the agent (i.e., V(||=¢||) = 0).

It is worth noting that if an agent desires ¢ to be true, then ¢
should be maximally admissible. This property is expressed by the

5 The distinction between positive and negative desires is a classical one in
psychology. Negative desires correspond to state of affairs the agent wants
to avoid with a given strength, and then desires the opposite to be true.
However, we do not develop this bipolar view here.
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following valid inference rule which follows straightforwardly from
the previous one and from the definition of V(||¢||) as 1—A(||¢]]):

A(llell) >0

Vllell) =1

Let us now consider the case in which the agent does not desire ¢
(i.e., A(]|¢l|]) = 0). In this case two different situations are possible:
either A(||-¢||) = 0 and ¢ is fully compatible with the agent’s de-
sires (i.e., V(||e]]) = 1), or A(||=¢]||) > 0 and then ¢ is not fully
compatible with the agent’s desires (i.e., V(||¢|]) < 1).

4 Further inference rules

The following is a valid inference rule for A-based logic, see [3, 8]
for the proof:

Allle AYll) > a
A(ll=e A xl) > B

A([l¢ A xll) = min(e, B)

Therefore, if we interpret A as a desire operator, we have that if
an agent desires ¢ A 1 with strength at least o and desires ~¢ A x
with strength at least 3, then he desires 1 A x with strength at least
min(c, 3). This seems a reasonable property of desires. By way of
example, suppose Peter desires to be in a situation in which he drinks
red wine and eats a pizza with strength at least o and, at the same
time, he desires to be in a situation in which he does not drink red
wine and eats tiramisu as a dessert with strength at least 3. Then, it is
reasonable to conclude that Peter desires to be in a situation in which
he eats both a pizza and tiramisui with strength at least min(c, 3).

Another rule, never published, mixes A (alias desire) and V
(alias admissibleness). Namely

Alle Al]) =
V(ll=eAxl) 2 8

V[l Axll) = axp
whereax =aifa>1—FandaxF=0if1 — 3> a.

Proof. First, we have by duality A(||¢ AY|]) > a < V(||-e V
) <1-a

Then observe —p A x = (m@ V =) A (e V) A x

Thus V([|=¢ A x[[) = max(V(||=¢ Vv =[]), V([[(=¢ V ) A
xl) =B

which leads to max(1 — o, V(||¢0 A x||)) > B from which the
result follows.

The last inequality is obtained by noticing that V(||(—¢ V 9) A
xl) < V(|[¢ A x||) due to the decreasingness of V.

It can be shown that « * 3 is the tightest lower bound that can be
established for the above pattern. QED

Thus, in particular, if ¢ is fully admissible (V(||¢||) = 1), and
- A 1 is fully desirable (A(]|—¢ A ¥||) = 1), then ¢ is fully
admissible (V(||¢]]) = 1.

The two above inference rules are the counterparts of the pattern



ECAI-2012 Workshop WL4AI

N(lleVvyl) > a
N(||=eVXIl) > 8

N(ll¢V xl) = min(a, 5)

which is the basic inference rule in standard possibilistic logic, and
of the pattern [4]:

N(lle Vel = a
(|- VxIl) > B

H([y VX)) =2 axg
withax (8 =aifa>1—Fandax3=0if1 — 3 > a.

They are themselves the graded counterparts of two inference rules
well-known in modal logic [9, 4].

5 Conclusive remarks: towards emotions

In the previous sections, we have shown that possibility theory offers
a unified logical framework in which both epistemic attitudes such
as beliefs and motivational attitudes such as desires can be modeled.
While the operators of weak possibility II and strong necessity NV
have a clear epistemic interpretation, the operators of strong possi-
bility A and weak necessity V can be interpreted respectively as an
operator of desire and as an operator of admissibleness.

In this conclusion, we want to discuss how these two components,
the epistemic one and the motivational one, can be combined in order
to model basic emotion types such as hope and fear. Similar ideas on
the logic of emotion intensity have been recently presented in [2]
without making a connection with possibility theory.

According to psychological models and computational models of
emotions (see, e.g., [16, 13, 15, 10, 2]), the intensity of hope with
respect to a given event ¢ is a monotonically increasing function
of the degree to which the event is desirable and the likelihood of
the event (i.e., the strength of the belief that ¢ is true). That is, the
higher is the desirability of ¢, and the higher is the intensity of the
agent’s hope that ¢ will occur; the higher is the likelihood of ¢, and
the higher is the intensity of the agent’s hope that ¢ will occur.
Analogously, the intensity of fear with respect to a given event ¢ is
a monotonically increasing function of the degree to which the event
is undesirable and the likelihood of the event (i.e., the strength of the
belief that ¢ is true).

There are several possible merging functions which satisfy these
properties. For example, we could define the merging function
merge as an average function, according to which the intensity of
hope about a certain event ¢ is the average of the strength of the be-
lief that ¢ will occur and the strength of the desire that ¢ will occur.
Another possibility is to define merge as a product function (also
used in [10, 16]), according to which the intensity of hope about ¢
is the product of the strength of the belief that ¢ will occur and the
strength of the desire that ¢ will occur. Here we do not choose a
specific merging function, as we leave this issue for future research’.

6 According to Ortony et al. [15] the intensity of hope and fear is determined
by a third parameter called the (temporal and spatial) proximity to the ex-
pected event (the higher is the proximity to the expected event, and the
higher is the intensity of hope/fear.) This third dimension is not considered
in the present analysis.

7 The use of average or product here is however not fully in the spirit of the
kind of ordinal modeling proposed here, and minimum may be a more suit-
able merging operator. Although the minimum-based ordering of pairs of
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We only show how the basic operators of possibility theory discussed
above can be exploited in order to model intensity of hope and fear.

The operator of strong necessity N has been used in the past
to model a notion of graded belief both in possibility theory and
in the context of Spohn’s x calculus (where it amounts to state
the complete impossibility of worlds). That is, N(||¢||) can be
interpreted as the extent to which the agent believes that ¢ is
true. We have shown above that A(]|p]||) can be interpreted as the
extent to which the agent desires that ¢ is true. Therefore, we can
define the intensity of the hope about ¢ and the intensity of the
fear about ¢ as follows® where N and A are associated with two
distinct possibility distributions modeling epistemic uncertainty and
desirability respectively). If N(||¢]|) < 1 then,

Hope(||¢l|) = merge(N([[¢l]), Alll#l]))
Fear(|[¢]) = merge(N([|#l]), Alll=¢l1)

In the preceding two definitions of hope and fear, the strength of
the belief is supposed to be less than 1 in order to distinguish hope
and fear, which imply some form of uncertainty, from happiness and
distress which are based on certainty (i.e., N(||¢||) = 1). This is
consistent with OCC psychological model of emotions [15] accord-
ing to which, while joy and distress are triggered by actual conse-
quences, hope and fear are triggered by prospective consequences
(or prospects).’
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