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Preface

Logics provide a formal basis for the study and development of applica-
tions and systems in Artificial Intelligence. In the last decades there has
been an explosion of logical formalisms capable of dealing with a variety
of reasoning tasks that require an explicit representation of quantitative or
qualitative weights associated with classical or modal logical formulas (in a
form or another).

The semantics of the weights refer to a large variety of intended mean-
ings: belief degrees, preference degrees, truth degrees, trust degrees, etc.
Examples of such weighted formalisms include probabilistic or possibilistic
uncertainty logics, preference logics, fuzzy description logics, different forms
of weighted or fuzzy logic programs under various semantics, weighted ar-
gumentation systems, logics handling inconsistency with weights, logics for
graded BDI agents, logics of trust and reputation, logics for handling graded
emotions, etc. The underlying logics range from fully compositional systems,
like systems of many-valued or fuzzy logic, to non-compositional ones like
modal-like epistemic logics for reasoning about uncertainty, as probabilistic
or possibilistic logics, or even some combination of them.

The aim of the one-day ECAI 2012 workshop WL4AI has been to bring
together researchers to discuss about the different motivations for the use
of weighted logics in Al, the different types of calculi that are appropriate
for these needs, and the problems that arise when putting them at work.
As a result, we are very happy to gather in this proceedings volume a very
interesting set of contributions on different logical formalisms that we believe
are representative of the richness of the area.

Finally, we would like to express our gratitude to:

e Dr. Thomas Vetterlein for having accepted to give an invited talk at
this workshop.

e Our programme committee members for their commitment to the
success of this event and for their work (each paper received 2 re-
views).

e The participants of WL4ATI for the quality of their contributions.

e Our sponsor institutions, namely the IRIT laboratory in Toulouse
and the IITA-CSIC in Barcelona (in particular to Tito Cruz for his
help with the web site, and Nuria Castellote and Daniel Polak for
their help with these proceedings).

Lluis Godo and Henri Prade, Montpellier (France), August 28, 2012.
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Weighted Logics for Artificial Intelligence:
an Introductory Discussion

Didier Dubois! and Lluis Godo? and Henri Prade?

Abstract. We present a brief, structured introductory overview of a
landscape of weighted logics (in a general sense) that can be found in
the literature on Artificial Intelligence, highlighting their fundamen-
tal differences and application areas.

1 Introduction

In the last decades there has been an explosion of logical formalisms
capable of dealing with a variety of reasoning tasks that require an
explicit representation of quantitative or qualitative weights associ-
ated with classical or modal logical formulas (in one form or an-
other). The semantics of the weights refer to a large variety of in-
tended meanings: belief degrees, preference degrees, truth degrees,
trust degrees, etc. Examples of such weighted formalisms include
probabilistic or possibilistic uncertainty logics, preference logics,
fuzzy description logics, different forms of weighted or fuzzy logic
programs under various semantics, weighted argumentation systems,
logics handling inconsistency with weights, logics for graded BDI
agents, logics of trust and reputation, logics for handling graded emo-
tions, etc.

The underlying logics range from fully compositional systems,
like systems of many-valued or fuzzy logic, to non-compositional
ones like modal-like epistemic logics for reasoning about uncer-
tainty, probabilistic or possibilistic logics, or even some combination
of them. Sometimes the weights are not explicit and the formalisms
use total or partial orderings instead.

In this short paper we present an introductory discussion organiz-
ing a landscape of weighted logics (in a general sense) that can be
found in the literature, highlighting their differences and application
areas. In particular we overview the main approaches in Al to deal
with graded notions of uncertainty, truth, preferences and similarity,
we discuss what are the logical issues behind them, and finally we
also point out new emerging areas for graded settings.

We would like to remark that our aim is not to provide a full and
exhaustive overview of graded formalisms in Al, but rather an in-
formed discussion of the main general issues and approaches.

2 Typical graded notions

One heavily entrenched tradition in Artificial Intelligence, especially
in knowledge representation and reasoning is to rely on Boolean
logic. However, many epistemic notions in commonsense reasoning
are perceived as gradual rather than all-or-nothing. Neglecting this

1 IRIT - CNRS, Toulouse, France. Email: didier.dubois @irit.fr
2 [IIA - CSIC, Bellaterra, Spain. Email: godo@iiia.csic.es
3 IRIT - CNRS, Toulouse, France. Email: henri.prade @irit.fr

aspect may lead to insufficiently expressive frameworks and lead to
confusion. Such naturally gradual notions are reviewed below.

2.1 Graded Truth

Truth is a key notion in the philosophy of knowledge that is often
viewed as Boolean in essence. Yet in the scope of information storage
and management, this absolute view becomes questionable. Repre-
senting knowledge requires a language whose primitives are Boolean
or not. Indeed, as claimed quite early by De Finetti [19] commenting
Lukasiewicz logic, deciding that a proposition is an entity that can
only be true or false is a matter of convention, as it is a matter of
choosing the range of a (propositional) variable. In this sense truth is
an ontic notion, as one participating to the definition of a proposition.
One may take into account the idea that in some contexts the truth of
a proposition (understood as its conformity with a precise description
of the state of affairs) is a matter of degree. For instance, if the height
of John is known one might consider that the proposition “John is
tall” is not always just true or false. This is the view held by fuzzy
logic [5].

If the truth set contains intermediary truth degrees, one issue is
whether we can keep or not the truth-functionality assumption which
is the key feature of classical logic. Mathematically, the answer is
yes as demonstrated by the large set of multiple-valued logics that
are now available. However there are a lot of unresolved issues about
many-valued logics and their applications to artificial intelligence
such as

e Why are there so few papers using multiple-valued logics as a
representation of gradual properties in artificial intelligence?

e How to choose among the many available systems?

e Does truth-functionality always make sense?

e How does the notion of many-valued truth articulate with studies
of vagueness [16]?

Finally, the most popular many-valued logics in Al seem to be
those with 3 (Kleene [57]), 4 (Belnap [6]) or 5 (equilibrium logic
[69]) truth values, with a view to handle epistemic notions such as
ignorance, contradiction, negation as failure or default knowledge,
following a long tradition dating back to Lukasiewicz and Kleene
[39]. However, these approaches are questionable as such epistemic
notions are closer to ideas of uncertainty while truth is an ontic no-
tion. For instance, Kleene suggested that the third truth value could
mean “unknown”, and this view has been taken for granted by many.
However, “unknown” can be opposed to “certainly true” and “cer-
tainly false”, not to true and false. This has led to confusing debates
that cannot be solved without letting the representation of uncertainty
enter the picture [25].
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2.2 Uncertainty

Uncertainty modeling pertains to the representation of an agent’s be-
liefs. There are several kinds of reasons for uncertainty

e The random variation of a class of repeatable events leaves an
agent unable to predict the occurrence of the next similar event.

e The sheer lack of information may imply an agent being uncertain
about the answer to a question.

e The presence of inconsistent pieces of information due to too
many sources may equally prevent an agent from asserting the
truth or the falsity of a statement.

There are two traditions in Al for representing uncertainty, that
still need to be reconciled

e The non-graded Boolean tradition of (monotonic) epistemic logics
that rely on the modal formalism, and includes some exception-
tolerant non-monotonic logics.

e The graded tradition typically relying on degrees of probability.
Measures of uncertainty aim at formalizing the strength of our
beliefs in the truth (occurrence) of some propositions (events) by
assigning to those propositions a degree of belief [51].

Whatever the tradition, it must be stressed that belief is a higher order
notion w.r.t. truth, that is, a statement pertaining to belief encapsu-
lates a Boolean proposition inside a belief qualifier: the truth degree
of the statement “I believe p” does not refer to the truth of p, but to
the belief itself: it is the degree of belief in p, irrespectively of p being
true or not. From the mathematical point of view, a measure of un-
certainty is a function that assigns to each event (understood here as
a formula in a specific logical language) a value from a given scale,
usually the real unit interval [0, 1], under some suitable constraints.
A well-known example is given by probability measures which try
to capture our degree of confidence in the occurrence of events by
additive [0, 1]-valued assignments. It can be shown that an uncer-
tainty calculus cannot be compositional with respect to all logical
connectives [32]. For instance, probabilities are only compositional
with respect to negation, while we have seen that degrees of truth can
be truth-functional.

It is not easy to reconcile the probabilistic and the logical view
of beliefs. At the most elementary level a set of Boolean formulas
is often interpreted as a belief base containing propositions an agent
believes. In the probabilistic tradition, information is represented by
a single probability distribution on possible worlds, possibly encoded
as a Bayes net. The two approaches are at odds beyond the choice of
Boolean vs. gradual representations of belief:

e The logical approach leaves room for incomplete information.

e The Bayesian approach [70] seems to be very information de-
manding as the lack of belief in a proposition is always equated
with the belief in its negation.

In fact the natural graded extension of the elementary logical ap-
proach is captured by possibilistic logic [33] where degrees of uncer-
tainty may be captured by means of a mere total ordering of possible
worlds and some propositions can be more believed than others. This
plausibility ordering can be encoded as a numerical possibility dis-
tribution if needed.

The use of a modal language enables the syntactic expression of
partial ignorance, and explicit patterns of reasoning from it, which
does not fit with the numerical tradition of representing beliefs.
Putting together the probabilistic and the epistemic logic approaches

to belief leads to reasoning with imprecise probabilities [85] which
explicitly attach degrees of belief and degrees of plausibility to
propositions. Such degrees are graded versions of necessity and pos-
sibility modalities, and possibility distributions can encode special
cases of convex probability families [30].

A nice by-product of reconciling probability, and epistemic or pos-
sibilistic logics is to offer a logical handling of conditioning: pushing
probability down to the Boolean context, in de Finetti style, leads to
the three-valued logic of conditional objects [31], that is also a se-
mantics for non-monotonic logics; adding weights to this construc-
tion bridges the gap between logical representations of belief and
both probability and possibility theories [8].

It remains the issue of choosing a proper scale for grading beliefs
in a given application context, namely how much numerical is it use-
ful to be? A unified framework for reasoning about uncertainty leaves
us the choice between various graded representations: ordinal, quali-
tative (with a finite value scale), integer-based (as with Spohn kappa
functions [78]) or real-valued.

2.3 Preferences

Preferences clearly are not Boolean most of the time. Artificial In-
telligence has developed a Boolean framework for decision-making
problems based on constraint propagation and satisfaction. While
many problems are amenable to a constraint-based formulation, it
makes little sense to ignore the gradual nature of preferences.

The tradition in preference modeling has been to use either order
relations (total or partial) or numerical utility functions, albeit with
little attention to the issue of preference representation in practice.
On the contrary, Artificial Intelligence has focused on compact logi-
cal or graphical representations of preferences on multi-dimensional
(often Boolean domains) [23]. In this situation, an interpretation rep-
resents an option described by Boolean attributes. For instance, CP-
nets have exploited an analogy with Bayes nets to design a graphi-
cal structure encoding ordinal preferences when local decision vari-
ables are Boolean. However CP-nets are far from capturing all possi-
ble ordering relations between possible worlds. More general logical
languages where a preference relation between formulas appears in
the language have been used, that are more expressive. However the
question of the meaning of comparing two logical formulas in terms
of its consequences on a preference ordering between interpretations
is not obvious, and several proposals exist that are at odds with each
other. For instance do we mean that all models of the preferred for-
mula should be preferred to all models of the other formula? Or just
their best models? See, e.g. [53].

One alternative is to use weights attached to Boolean formulas.
Such a weight may reflect the imperativeness of the satisfaction of
the associated proposition, then viewed as a goal to reach (a prior-
itized constraint). This weight penalizes interpretations that violate
the formula and can be viewed as a lower bound of a necessity mea-
sure [9]. However, other approaches exist, e.g., [35, 14], where the
weight is a reward when satisfying the formula, and [59] where de-
sires or preferences have a utilitarian semantics. More generally at
the semantic level one may focus on the least preferred interpreta-
tions that violate the formula or the best preferred that satisfy it. Or
on the contrary, an interpretation may be considered all the better
(resp. worse) as the sum of the rewards (resp. penalties) attached to
formulas it satisfies (resp. violates) is higher (resp. smaller). An al-
ternative to the use of weights is the introduction of a preference
relation inside the representation language, as in, e.g., [84, 80, 10].

In the above preference representation framework, neither the
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presence of several criteria nor the possibility of uncertainty is con-
sidered. In this case, there may be two kinds of weights

e Weights expressing preferences of options over other options.
e Weights expressing the likelihood of events or importance of
groups of criteria.

In the case of decision under uncertainty, one way out is to use two
sets of formulas, one for the knowledge base, one for the preference
base, and to articulate some kind of inference technique exploiting
both bases so as to encode the optimization of a given criterion mix-
ing uncertainty and utility. This approach looks more problematic
on multiple criteria decision-making where value scales may not be
commensurate, and importance weights are yet another kind of eval-
uation.

2.4 Similarity

The use of the idea of similarity in reasoning may refer two different
points of view: either one does not want to differentiate inside a set of
objects that are found to be similar, or one wants to take advantage
of the closeness of objects with respect to others. In the first case,
we perform a granulation of the universe of discourse, while in the
second case we are interested in extrapolation or interpolation.

Similarity is often a graded notion, especially when it is related
to the idea of distance. It may refer to a physical space as in spatial
reasoning, or to an abstract space used for describing situations, as
e.g., in case-based reasoning.

The representation of spatial relations between regions often relies
on first order theories based on a family of partial preorders between
regions, called mereologies. Although the term “mereology” usually
refers to the idea of parthood as a basic notion, the idea of connection
may be also used as a primitive notion. There are eight basic relations
between regions known as RCC relations (RCC stands for “Region
Connection Calculus”) [18]. One may even start with a fuzzy connec-
tion relation (which might be defined from a distance or a pointwise
closeness relation), and then define a “part of”’, or an “overlap” fuzzy
relation between regions for instance, and obtain a graded extension
of RCC calculus [74]. Modal logics are also used for representing
spatial information. Spatial interpretations of modalities have been
provided for capturing various spatial concepts qualitatively with a
topological or geometric flavor such as nearness or distance, for ex-
ample. See [36] for a review of the logic-based representations of
mereotopologies in classical or modal logics, and in fuzzy and rough
sets settings, as well as modal logic representations of geometries.

Spatial regions are viewed as a whole, where one does not distin-
guish between their points. Rough sets provide a formal setting for
the “granulation” of a universe of discourse partitioned into equiva-
lence classes of elements that are found indistinguishable (because
they share exactly the same properties among the ones that are con-
sidered). Modal logics have been proposed for reasoning with lower
and upper approximations of sets of models in such a setting [38, 22].
Clearly the equivalence relation may be turned into a fuzzy relation,
giving birth to a graded calculus [29].

Extrapolation and interpolation reasoning are based on the idea
of closeness between interpretations. Thus, for instance, if the set of
models of a proposition p fails to be included in the set of models of
a proposition ¢, but remains included in the set of interpretations that
are close to models of ¢, one may say that p — ¢ is “close to be true”.
This has been advocated by different authors [73, 56] (and contrasts
with nonmonotonic reasoning where one requires that the preferred
/ normal models of p be included in the models of ¢). The closeness

(or proximity) relation between the interpretations gives birth to a
graded consequence relation, which is the basis for a logic of simi-
larity dedicated to interpolation [26], and captures fuzzy logic-based
approximate reasoning. In a similar spirit, a logic allowing to reason
about the similarity with respect to specific sets of prototypes has
been recently proposed [82].

In the above approaches, similarity is graded. More qualitative ap-
proaches have been proposed, using comparative relations. The logic
CS L [77] is based on a modal binary operator that is used for denot-
ing the set of interpretations that are closer to p than to g. The under-
lying distance-based semantics can be restated in terms of preferen-
tial structures using a ternary relation expressing that all the points in
aregion z are at least as close to region « than to region y [2].

Another qualitative approach, without any grade, relies at the se-
mantic level on the conceptual spaces framework [43] where the pos-
sibility of expressing spatial-like localization such as “being in be-
tween” (by means of a ternary relation), or “parallelism” (by means
of a quaternary relation) provides a basis for capturing interpolative
and extrapolative reasoning respectively [75]. This proposal comes
close to logical reasoning with analogical proportions [71], which
are quaternary statements of the form “a is to b as c is to d”, but
remains more cautious.

Lastly, let us also mention that apart reasoning about similarity,
what may be termed reasoning with similarity has been also pro-
posed as a semantic basis in information updating (which relies on
ternary comparative closeness relation)[55], or in distance-based in-
formation fusion, where, e.g., Hamming distances are computed with
respect to set of interpretations [58]. Another view of information fu-
sion, recently proposed in [76], relies on the idea that inconsistency
can be often resolved by enlarging the sets of models of the informa-
tion to be fused, thanks to similarity relations.

3 Logical Issues

In this section our aim is to lay bare the main distinguishing aspects
of logical formalisms dealing with graded uncertainty and graded
truth.

Let us assume an agent is to reason about what the world and as-
sume first that each of the possible states of the world is described
by a complete Boolean truth evaluation of a given (finite) set of
atomic propositions Var. So let {2 denote the set of Boolean truth-
evaluations w : £ — {0,1} of formulas from a propositional lan-
guage L built from the finite set of variables V ar and with the usual
connectives A, V, — and —. It is well known that the connectives A,
V and — endow £, modulo logical equivalence, with a structure of a
Boolean algebra.

We start considering the case where the agent has complete in-
formation about the world, so he knows that the actual worlds is
wop € (2. In this case there is no uncertainty at all, in fact, knowing in
which world the agent is, he is able to ascertain the truth status of ev-
ery possible proposition. This corresponds to consider agent’s epis-
temic state as being represented by the pair (€2, E') where £ = {wo }.

A first form of uncertainty appears when the agent’s information
only allows him to know for certain that the actual world wy is in
some given subset £ C 2. This is the typical case where the agent
has a theory T’ (a set of formulas) describing what he knows about the
world. The epistemic state of the agent is then represented as (2, F)
where E is a non-empty subset of interpretations, indeed the set of
models of 7', and the agent is only able to determine the truth status
of some propositions, but not for some others. Indeed, a proposition
 is known to be true if E = ¢ (or equiv. T' F ¢ ), it is known to be
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false when E |= — and it is unknown otherwise, i.e. when E [~ ¢
and E £ —. Therefore in this setting, propositions may be in three
different status.

A more refined representation is when the agent may associate
weights to interpretations related to the likelihood of each interpre-
tation of describing the actual world. In this case, the epistemic state
can be an represented as a pair (Q,7), where p : Q — [0,1] at-
taches a weight to each Boolean interpretation or possible world. In
the probabilistic model (see e.g. early works by Nilsson [68]), 7 is a
probability distribution on 2, hence Y _{p(w) | w € Q} = 1, that
allows to rank the likelihood of any proposition of being true accord-
ing to its probability measure P(p) = > {p(w) | w € Q,w = ¢}.
When 7(w) € {0, 1} for all w € Q, then the epistemic state defined
by 7 corresponds to the previously considered three-valued setting
with £ = {w | m(w) = 1}.

In the possibilistic setting [28], 7 is a possibilty distribution, where
m(w) means that is totally possible that w = wp, 7(w) = 0
means that it is discarded that w = wp. Then propositions are
weighted according to the corresponding dual necessity and possi-
bility measures (although other measures can also be used): N (p) =
1 — min{m(w) | w | —¢}, and I(p) = max{7(w) | w = ¢}.
Again, when 7(w) € {0,1} for all w € €, then the epistemic state
defined by 7 corresponds to the previously considered three-valued
setting with £ = {w | m(w) = 1}.

More generally, one may consider graded epistemic states of the
form (€2, ;1), where pi : 2% — [0,1] is an uncertainty measure in
general, attaching likelihood weights to subsets of interpretations, in
such a way that every proposition ¢ can be attached a likelihood
or belief degree of being true as the measure w.r.t. © of the set of
models of ¢, i.e. of u({w € Q | w(y) = 1}). This representation
generalizes the previous probabilistic or possibilistic models, to other
more general ones like for instance those defined by belief functions,
upper and lower probabilities or imprecise probabilities (see e.g. [49,
50] for a general approach encompassing many uncertainty models
in a modal logic setting).

From a syntactical point of view, a number of formalisms cop-
ing with graded uncertainty have been proposed in the literature.
Most of them use a modality, either explicit or implicit, referring
to graded belief. For illustration purposes, we mention three kinds
of languages. For instance, in Halpern’s probability logic [50] for-
mulas express constraints among the probabilities of 1, ..., ¢k as
linear inequalities of the form a1€(y1) + ... + arl(er) > b, with
ai,...,ak,bbeing real numbers. The same language is used to rea-
son about other kinds of uncertainty measures like plausibility mea-
sures, belief functions, etc. In the Serbian school (Markovic, Ogn-
janovic and colleagues) on probability logics [24, 67, 72], they use
graded modalities of the form P> 4, declaring that the probability of
@ is at least a, these probabilistic atoms are then combined by means
of classical connectives. A similar approach is Lukasiewicz’s prob-
abilistic logic [64] uses expressions of the form (¢)[l, u] to denote
that the probability of ¢ lies in the interval [, u], as well as van der
Hoek and Meyer’s approach [81] on graded probabilistic modalities.
On the other hand, in Dubois-Prade’s possibilistic logic [28, 33], for-
mulas are pairs (¢, a), stating that the necessity of ¢ is at least «. Re-
cently, this language has also been generalized to deal with Boolean
combinations of possibilistic atoms N>, in a similar way to the
previous probabilistic logic language.

A different approach by Hdjek and colleagues [47, 46, 44] has
also been proposed where the modality B used to denote graded be-
lief (probability, necessity, etc.) is graded itself, that is, even if ¢ is
Boolean, the atomic modal expression B, read as “y is believed”,

is graded in nature (¢ can be more or less believed, probable, nec-
essary, etc.). In this way, the truth-degree of By can be taken as,
e.g., the probability (or necessity) degree of ¢, and then these graded
atoms are combined using the rules of a suitable fuzzy logic.

Indeed, formalisms that cope with graded truth (fuzzy logics) radi-
cally departs from the formalisms for uncertainty reasoning [32, 27].
By neglecting the bivalence principle and adopting a truth scale (us-
ally the unit real interval [0, 1]) with intermediate degrees between 0
(false) and 1 (true) leads to a number of many-valued truth-functional
systems with connectives extending the classical ones. The most rel-
evant formal systems of fuzzy logic systems are the so-called t-norm
based fuzzy logics [46]. These correspond to logical calculi with the
real interval [0, 1] as set of truth-values and defined by a conjunc-
tion & and an implication — interpreted respectively by a continu-
ous t-norm * and its residuum =, and where negation is defined as
- = ¢ — 0, with 0 being the truth-constant for falsity. In this
framework, each continuous t-norm * uniquely determines a seman-
tical (propositional) calculus PC'(*) over formulas defined in the
usual way from a countable set of propositional variables, connec-
tives A, & and — and truth-constant O (further connectives, like A
as & (p — 1), can also be defined). Evaluations of propositional
variables are mappings e assigning to each propositional variable p
a truth-value e(p) € [0, 1], which extend univocally to compound
formulas as follows:

elpAy) = min(e(p), e(¥))
e(p&y)) = elp)*xe(y)
elp =) = elp) = e(¥)

A formula ¢ is a said to be a 1-tautology of PC(x) if e(¢) = 1
for each evaluation e. The set of all 1-tautologies of PC(x) will be
denoted as TAUT (). Main axiomatic systems of fuzzy logic, like
Lukasiewicz logic (L), Godel logic (G) or Product logic (II), syntac-
tically capture different sets of T"AUT () for different choices of the
t-norm *, see e.g. [48, 46, 45, 17]. Indeed one has:

pisprovableink iff ¢ € TAUT (xg)
(RS TAUT(*G)

p € TAUT (*1m)

@ is provable in G iff
 is provable in IT  iff

where x xp y = max(0,z +y — 1),  *¢ y) = min(z,y) and
THROIY =T - Y.

It is worth noticing that, in contrast with classical logic, the al-
gebraic structures of the set of formulas modulo logical equivalence
in these systems of fuzzy logic are no longer Boolean algebras but
weaker structures like M V-algebras, prelinear Heyting algebras, etc.

It is worth noticing that in all these systems, the implication
captures the truth-ordering, since if = is the residuum of a left-
continuous t-norm * (ie., x = y = max{z € [0,1] | z x z < y}),
then x = y = 1iff x < y, and hence e(p — o) = 1 iff
e(p) < e(w)). Therefore, a formula ¢ — 1 actually represents that
1) is at least as true as ¢, this is to say, t-norm based fuzzy logics are
logics of comparative truth. To explicitly deal with truth-degrees in
the reasoning, one may introduce truth-constants 7, e.g. for all ratio-
nal values in r € [0, 1]. Then a formula 7 — ¢ expresses that the
truth-degree of ¢ is at least  (see e.g. [37]).

From an epistemic point of view, in a fuzzy logic setting, the states
of the world are described by complete [0, 1]-evaluations of atomic
formulas. Let Q' be the set of these evaluations, i.e. Q' = {w | w :
Var — [0,1]}. Note that the set {2 of Boolean interpretations is
indeed a subset of Q'. Because of truth-functionality, a completely
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informed scenario thus corresponds now to a precise many-valued
truth-value assignment wo € €’ to all propositional variables. Anal-
ogously to the Boolean case, different kinds of incomplete informa-
tion about the world translates here to different many-valued general-
izations of epistemic states. In general they are of the form (€', '),
where u' : [0, 1}Ql — [0, 1] is a generalized uncertainty measure
over fuzzy sets of interpretations (see e.g. [41, 40] for some logical
formalisms that are able to deal with uncertainty over non-Boolean
(fuzzy) events).

4 New areas for graded settings

Beyond the handling of the ideas of truth, uncertainty, preferences,
and similarity that may require graded settings for a proper handling,
the field of deontic reasoning is another area where one encounters
basic notions whose strengths may be needed to be compared, strati-
fied into layers, or even graded: one may think of graded obligations,
or permissions for instance [60, 20]. One may distinguish between
weak and strong permissions [54]. Priorities, or preference relations
among worlds, aiming at ordering worlds from the most ideal ones
to the least ideal ones, may help solving dilemmas [15].

Besides, there are several domains of active research in artificial
intelligence nowadays where several of the basic notions mentioned
above can be encountered, possibly with other notions which also
need to be graded. Let us review them briefly.

e So called BDI agents [12] are supposed to have beliefs about the
world, desires, from which they elicitate intentions that are fea-
sible desires. Clearly beliefs may be pervaded with uncertainty,
desires may be modeled as collections of goals with different pri-
ority levels, feasibility may be a matter of cost, leading to ordered
/ graded intentions, see, e.g. [13].

e Modeling the trust that can be associated with information sources
or agents, as well as related notions such as distrust or reputation,
is an important issue in practice. Many proposals exist - modal
or numerical - where gradedness has been introduced in various
ways [63] [21][83] [7]. Still, there is not yet a fully clear view of
how graded trust may relate to beliefs and uncertainty.

e Argumentation is another area where the idea of strength seems
naturally associated with arguments [3], as recently investigated
[34][42]. However, it is likely that a uniform view of strength is
not applicable here, since the strength of an argument may refer
to the uncertainty pervading the pieces of information on which it
is based and on the reliability of the source(s) of the argument, as
well as on the rhetoric form of the argument (e.g. its length); more-
over the argument itself may refer to a gradual view of truth (when
stating for instance that “ the higher the fever the more certain the
child should remain in bed”). The handling of such strengths may
also depend on the kind of problem to which argumentation is ap-
plied: persuasion, negotiation, or deliberation, for instance.

e Emotions, such as surprise, fear etc. have been recently modeled
by means of modal definitions [1]. It seems natural here again,
to have these modalities complemented with grades, leading to
hybrid notions that might be a compound of more basic notions
such as uncertainty, preference, or similarity [79][62][61].

5 Conclusions

In this paper we have briefly discussed several logical issues of the
main approaches at work to represent and reason with fundamental
notions in Al, such as truth, uncertainty, preferences, or similarity

(but also trust, permission, obligation, desires, etc.) that may require
a graded treatment. In particular, the basic difference between graded
truth and other graded notions has been highlighted. While the for-
mer implies a change at the ontic level (from two truth values to mul-
tiple truth-values), without any reference to epistemic knowledge or
ignorance, the latter relates to intensional notions that (usually) ap-
ply to Boolean propositions, like their epistemic (belief) status, or
how they compare to other propositions in terms of preference, util-
ity, similarity, etc. This is reflected on the kind of formal models that
support these graded notions, many-valued truth-functional models
in the former case, Kripke-like models and graded modalities in the
latter case.

Actually, many-valued logics have been seriously criticized at the
philosophical level because of the confusion between truth-values on
the one hand and degrees of belief, or various forms of incomplete
information, on the other hand, a confusion that even goes back to
pioneers including Lukasiewicz (e.g., the idea of possible as a third
truth-value). Actually, due to this issue and the numerical flavor of
fuzzy logic, there is a long tradition of mutual distrust between Ar-
tificial Intelligence and fuzzy logic. A possibility to remedy this gap
is to show how reasoning about knowledge and uncertainty can also
be defined on top of fuzzy/gradual propositions by augmenting fuzzy
logic with epistemic modalities. Recent works along this line may be
considered as first steps towards a reconciliation between possibil-
ity theory and other theories of belief as well with fuzzy logic (in the
sense of a rigorous symbolic setting to reason about gradual notions),
see e.g. [11,41].

Finally, we would like to mention that, although we have mainly
focused on logical issues, many of the concerns discussed here have
also echoes in closely related areas like logic programming and an-
swer set programming when they come to handle uncertainty, pref-
erences or fuzziness, see for instance [65, 52, 66, 4] for a variety of
approaches coping with graded uncertainty and/or truth.
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Hierarchies of probability logics

Nebojsa Ikodinovi¢! and Zoran Ognjanovié? and Aleksandar Perovi¢®> and Miodrag Raskovié*

Abstract. Our aim is to present what we call the lower and the up-
per hierarchies of the real valued probability logics with probability
operators of the form P>, and QF, where s € [0,1]g = [0,1] N Q
and F is a recursive subset of [0, 1]g. The intended meaning of P>«
is that the probability of « is at least s, while the intended meaning
of Qra is that the probability of acis in F'.

1 Introduction

The modern probability logics arose from the work of Jerome Keisler
on generalized quantifiers and hyperfinite model theory in the mid
seventies of the twentieth century [8].

Another branch of research that was involved with automatization
of reasoning under uncertainty have led to development of numerous
Hilbert style formal systems with modal like probability operators,
see for instance [5, 2, 11, 13, 14, 17, 18, 20, 23, 24]. The simplest
form of such representation of uncertainty does not allow iteration of
probability operators, so formulas are Boolean combinations of the
basic probability formulas, i.e. formulas of the form

ProbOp(aa,...,an),

where a1, . .., oy are classical (propositional or predicate) formulas
and ProbOp is an n-ary probability operator. Weighted probability
formulas used by Fagin, Halpern and Megiddo in [2] can be treated
as m-ary probability operators. For instance,

w(a) + 3w(B) — 5w(y) > 1

is example of a ternary probability operator.

The vast majority of those formal systems have unary or binary
probability operators. The unary operators are used for statements
about probability of classical formulas: for example we use

Ps3/4(pVaq)
to express “the probability of p V g is at least 3/4”, while

Q n

2 neny(pVq)

in our notation reads “the probability of p V ¢ is an element of the

set {77 [ n € N}”. The binary operators are usually used for the

expression of conditional probability: for instance, we use

CPsy/3(p,q)
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to express that the conditional probability of p given g is at least 1/3.

Over the course of two decades we have developed various prob-
ability logics with the mentioned types of probability operators - an
extensive survey including a uniform notation for logics is presented
in [17]. The aim of this paper is to put the certain class of probability
logics into the wider context of mathematical phenomenology - to
compare mathematical concepts according to some natural criterion
(expressive power, class of models, consistency strength and so on).
Here we will focus on the classification of two sorts of probability
logics: LPPs p.g.0 logics introduced in [12] and LPP, "™ logics
introduced in [3, 13, 17, 20, 24] (L for logic, the first P for proposi-
tional, and the second P for probability). Independently, several au-
thors in [4, 6] have developed the fuzzy logics F'P (L, ) that extend
Lukasiewicz logic. The LPP2F r(n) logics can be embedded into those
logics. For the LP P> p,,0 logics we introduce the comparison cri-
terion with respect to the classes of models, while the LPP,"™
logics we compare in terms of the interpretation method. We show
that both criteria can be joined in a single one. Thus we have obtained
the hierarchy of probability logics where the lattice of LPP» p.g,0
logics is the end extension of the lattice of LPP}"™ logics.

The rest of the paper is organized as follows: in Section 2 we
present some definitions and theorems from [12] that are needed
afterwards. In Section 3 we introduce the upper hierarchy of
LPP; pq,0 logics, prove the characterization theorem and show
that the upper hierarchy is a non-atomic non-modular lattice. In Sec-
tion 4 we introduce the lower hierarchy of LPPZ}T r(n) logics, prove
the characterization theorem and show that the lower hierarchy is an
atomic non-modular lattice. Due to the characterization theorems 4
and 10, both hierarchies can be naturally merged into a single hier-
archy, where the upper hierarchy is an end extension of the lower
hierarchy. Concluding remarks are in the final section.

2 LPP; pgo logics

In [12] we have introduced a class of LP P> p g, o logics as probabil-
ity logics with the new type of probability operators - namely the Q »
operators as the natural generalization of the basic probability opera-
tors P> . Here O ranges over recursive families of recursive subsets
of the set of rational numbers from the real unit interval (denoted by
[07 1]@)-

The subscript 2, P, @, O has the following meaning: 2 denotes the
fact that any LPP» p,q,0 logic is an extension of LP P, logic; P
and Q) stand for two type of probability operators P>, and Qr; O is
a recursive family of recursive subsets of [0, 1]g.

As it was shown in [12], an LP P> p g,0 logic needs not to be
recursive. However, the cardinality of O has a minor impact on
the completion technique (instead of w-iterations there would be x-
iterations, where  is the cardinality of the set of formulas) and no
impact on the properties of the hierarchy, so decidable O’s nicely re-
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flect the general case. In addition, we prefer to have recursive syntax
whenever this restriction is not deterring in logical sense.

In this section we will state some definitions and facts regarding
LPP; p,q,o logics that are necessary for development of the hierar-
chy.

2.1 Syntax and semantics

By Var we will denote a countably infinite set of propositional let-
ters; variables for propositional letters are p and ¢, indexed if neces-
sary. The set of all propositional formulas built over the set of propo-
sitional letters will be denoted by Forc (C stands for “classical”,
so Florc reads “classical formulas”™). Variables for classical proposi-
tional formulas are o, 5 and -, indexed if necessary.

The basic probability formulas are P>sa and Qra. Here s €
[0,1]g and F' € O, where O is a recursive family of recursive subsets
of [0, 1]g. In the sequel, O is an arbitrary but fixed family. Probabil-
ity formulas are Boolean combinations of basic probability formulas.
Note that iterations of probabilistic operators in formulas are not al-
lowed. Variables for probability formulas are ¢, ¥ and 6, indexed
if necessary. The set of all probability formulas will be denoted by
For(P,Q,0).

In order to simplify notation we introduce the operators P¢,, P,
P.s and P—; as follows:

Pgsa is P;lfs(_\a);
Psais ~(Pgsa);
Posais ~(Pssa);
P_sais P>sa A Pgsa.

A model, or an LPP» p q,o-structure is a tuple
M = <W’ H7 U? /‘L>
with the following properties:

e IV is a nonempty set whose elements are traditionally called
worlds;

e v: WX Forc — {0,1}; v(w,«) = 1 means that « is sat-
isfied in w, while v(w, @) = 0 means that « is not satisfied in
w. In addition, v is compatible with the standard truth tables of
propositional connectives;

e H is a subalgebra of the Boolean algebra (P(W),N,U,*, 0, W)
such that for each o € Forc the set

[a] ={w e W |v(w,a) =1}

isin H;
e 4 : H — [0,1] is a finitely additive probability measure.

Though LP P> p,q,o-structures form a proper class, without any
loss of generality we can consider only LP P» p,q o-structures with
classical evaluations as worlds and classical satisfiability as valuation
v : W x Forc — {0, 1}. Therefore, the class M of all such
LPP; p,q,o-structures is actually a set.

The satisfiability relation |= between LP P> p g, o-structures and
For(P,Q,O) is defined inductively as follows:

<VV,H,U,,[L> |:P>Sa lff:u[a] 2 S5

(W, H,v, 1) E Qraiff pla] € F;

(W, H,v, 1) |= ¢ iff (W, H,v, 1) = ¢;

(W, H,v, 1) = ¢ A iff (W, H,v, ) = ¢and (W, H,v, p) =
.

An LPP> p,g,o-theory T (T is a set of LP P> p g,o-formulas) is
satisfiable iff there is an LP P> p g o-structure M such that M = ¢
for all ¢ € T'; T is finitely satisfiable iff every finite subset of T is
satisfiable. A probability formula ¢ is satisfiable iff {¢} is satisfiable;
¢ is valid iff M = ¢ for each LP P> p g, o-structure M.
Furthermore, M (¢) is the set of all M € M such that M = ¢.
Similarly, M(T) is the set of all M € M such that M = T.

Theorem 1 Compactness theorem fails for LPP; p.q,o0, i.e., there
is a finitely satisfiable LP P> p g o-theory T which is not satisfiable.

Proof. Let T = {Psop} U {P_jp-»p | n € N}. We will show
that 7" is finitely satisfiable and that it is not satisfiable. Indeed, to
see that 7" is not satisfiable, let M = (W, H, v, 1) be an arbitrary
LPP; p,q,o-structure. If p[p] = 0, then M = Psop. If plp] > 0,
then, since R is an Archimedean field, there is a positive integer m
such that p[p] > 10™™. By the definition of |=, it follows that M =
P1g-mp.

It remains to show that 7" is finitely satisfiable. Let Tp be an arbi-
trary nonempty finite subset of 7" and let n be the maximal nonneg-
ative integer such that the operator P_;,—» appears in at least one
formula from 7. Note that in order to satisfy Tp it is sufficient to
satisfy the formula

Psop A\ /\ P_io-ip.

i=0

Let us define f,g : Var — {0, 1} by

f(po) =1iff po =p and g(po) = 1iff po # p, po € Var.

Furthermore, let W = {f, g}, H = P(W), v(f,a) = 1iff f = o,
v(g,a) = 1iff g = o, and let p(0) = 0, u(W)=1, p({f}) =
107" " and u({g}) =1 —10"""1.

Clearly, M = (W, H, v, 1) is an LP P> p,g,0-structure. Further-
more, it is obvious that [p] = {f}, so u[p] = 107", which im-
plies that M = Psop A A\ P<19—ip. Consequently, M = Tp. O

2.2 Axioms and inference rules of LPP, p ) o

The LPPs p q,0 logic is a Hilbert style formal system with the fol-
lowing three groups of axioms (propositional axioms, bookkeeping
axioms and probability axioms) and three inference rules (modus po-
nens, the Archimedean rule and the @ p-rule). All axioms and infer-
ence rules are listed below:

Propositional axioms

Al Substitutional instances of classical tautologies;
Bookkeeping axioms

A2 Pssa— Psra,r < s;
A3 Posa — Pssa;

Probability axioms

A4 Proay

A5 P-_iq, ais a tautology;

A6 (P;SO( A P;r/B A P;l(ﬁa Vv jB)) — P}min(l’ﬁﬂ«)(a Vv ﬂ),
A7 (Pgsa AN P<Tﬂ) — Pgmin(l,s+r) (OZ Vv B),

A8 P—s;a— Qra,s € F.

10
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Inference rules

R1 (modus ponens) From ¢ and ¢ — 1 infer 3;

R2 (Archimedean rule) From ¢ — P,_1 /., for every positive in-
teger k > 1/s, infer § — Pssa;

R3 (Qp-rule) From P—sa — ¢, forall s € F, infer Qra — ¢.

As we have mentioned before, LPP, p g o-theories are
nonempty sets of formulas. Notice that R2 and R3 are infinitary in-
ference rules, so the classical notion of deduction should be modified
accordingly.

Definition 2.1 Let T be an LPP; p g o-theory and ¢ an
LPPs pq,o-formula. Then'T' &= ¢ means that there exist a sequence
Yo, ..., Yx41 (X is finite or countable ordinal) of LPPs p g 0-
formulas, such that Yx41 = ¢ and for all i+ < XN+ 1, 9; is an
axiom-instance, or Y; € T, or ¥; can be derived by some inference
rule applied on some previous members of the sequence. g

As itisusual, T' F ¢ reads “¢ is deducible from 77, “¢ is a syn-
tactical consequence of 7" and so on. Instead of () - ¢ we write - ¢.
Any formula ¢ such that - ¢ will be called a theorem. A theory 7" is
consistent if there is a formula ¢ such that 7" I/ ¢; T" is complete if it
is consistent and, for all ¢, either T'+ ¢ or T' F —¢.

2.3 Note on additivity

Strictly speaking, we cannot formally express the additivity condi-
tion
placv Bl = pla] + plA]

for disjoint formulas v and S (i.e. « A 3 is a contradiction). However,
axioms A6 and A7 completely describe finite additivity.

Indeed, suppose that we have defined the notion of a model with-
out the finite additivity condition for . By A6, the lower bound of
e V B] cannot be lesser than p[a] + 5] for disjoint o and 3. By
A7, the upper bound of p[a V (] cannot be greater than p[a] + p[3].
Since p : H — [0,1], it must be pla V 8] = pla] + p[B] for
disjoint o and /3.

2.4 Some important properties of LP P, p ) o
logics

We will start with a list of important model and proof theoretical
properties of the LP Ps p q,0 logics. Then, we will define the notion
of a quasi complement and state some facts about recursive families
of recursive subsets of [0, 1]g that are essential for the main topic
of this work. The proofs or theorems and facts listed below can be
found in [12].

Facts:

1. (soundness) If T'F ¢, then T |= ¢;

2. If « is equivalent with 3, then - ¢(...,,...) = &(...,5,...);

3. F P—i(a — B) — (P>sa — P>sf3). As a consequence, equiva-
lent formulas have the same probabilities;

4. (deduction theorem) T'F ¢ — ¢ iff T, ¢ I 1)

5. (strong completeness) Every consistent theory is satisfiable;

6. (undecidability) There exists a recursive family O of recursive
subsets of [0, 1] such that the LP P p g o-logic is undecidable.
d
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Definition 2.2 Let F' C [0, 1]g. The set
1-F={1-s:s5€F}.

O

is the quasi complement of F.

For example, if F' = {% r=1,2,.. .}, then, following the def-
2'—1

inition 2.2,
1—F:{ 50 .i:1,2,...}.

It is easy to see that the quasi complement has the following proper-
ties:

e 1 (FNG)=(1-F)n(1-0G),
e 1-(FUG)=(1-F)U(l-G),
o 1—(F\G)=(1-F)\(1—-G)and
e l1—(1—F)=F.

These properties, as well as the properties of U, N and \, guarantee
that an arbitrary expression on the language {U,N,\,1—} can be
rewritten in a normal form as a finite union of finite intersections of
differences between sets and quasi complements of sets.

Definition 2.3 Let O1 and O3 be recursive families of recursive sub-
sets of [0, 1]q. Let F1 € On. F1 is representable in O if it is equal to
a finite union of finite intersections of sets, differences between sets
and quasi complements of sets from Oz and sets [r, s], [r, s), (r, s]
and (1, s), where r and s are rational numbers from [0, 1]. The family
of sets O is representable in Oy if each set I € O is representable
in Og. O

As an example, consider a positive integer £ > 0, the sets

Fi={k:i=kk+1l. JU{E2i=kk+1,..}
Fr={5:i=12,..}
Fy={g5:i=12,..}

and the family O
sentable in O3 because Fy = (F> N[0, 55])U((1—F3)N [3’;;1
On the other hand, the set

1=1,2,.. }

1
F4 = {ﬁ :

is not representable in Os.

Theorem 2 Let O1 and Oz be recursive families of recursive sub-
sets of [0, 1]q. Let F1 € O1 be representable in Os. Then, for an ar-
bitrary formula o € Forc, there is a formula ¢ € For(P,Q,02)
such that M(Qr, o)) = M(9), i.e. Qr,  and ¢ have the same mod-
els.

{F3, F5}. By Definition 2.3, F is repre-
1))

Definition 2.4 Let O1 and Oz be recursive families of recursive sub-
sets of [0, 1]q, and L1 and Lo be the corresponding LP P> p,g,0-
logics. The logic Lo is more expressive than the logic L1 (L1 < L2)
if for every formula ¢ € For(P,Q,0O1) there is a formula b €
For(P,Q, O2) such that M(¢) = M(¥).

Theorem 3 Let O1 and Oz be recursive families of recursive ra-
tional subsets of [0,1], and L1 and Lo be the corresponding
LPPs pq.o-logics. The family O1 is representable in the family O2
iff L1 < Lo.
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2.5 Note on decidability

There are recursive families O of recursive subsets of [0, 1]g so that
the corresponding probability logics are decidable. For instance, such
is the family Og,, of all nonempty finite subsets of [0, 1]g. Indeed, for
arbitrary F' € Ogy, we have that

FQra < \/ P,

s€F

so LPp,q,0, is a conservative extension of the probability logic
LPP; (see [17], pages 45-56), which is decidable.

The main difficulty with decidability of certain LPP» p q,0 logic
is the following one: satisfiability of any LP P> p g ,o-formula can
be equivalently reduced to satisfiability of finite disjunction of arith-
metical predicates of the form

k l
(3;? €, 1]5") (@(a‘s) AN iy € Foy A\ @m; ¢ F§_7,> :
j=1 j=1

where ®(Z) is a system of linear inequalities in variables
Z1,...,Tan containing Z?:l z; = 1 and /\f:l x; > 0; such predi-
cates need not to be recursive. In fact, the existential fragment of the
first order theory of the rational field is unknown to be decidable (it
is known that the whole theory is not).

3 The upper hierarchy

Theorem 3 correlates the relations of ’being more expressive’ be-
tween the LP P p q,0-logics, and "being representable in” between
the corresponding families of sets. In the sequel we investigate the
later relation having in mind the former one. The relation ’being
more expressive’ describes the hierarchy of expressiveness of the
LPP; pq,o0-logics.

Definition 3.1 Let O be a recursive family of recursive subsets of
[0, ]q. The family of all recursive subsets of [0, 1]q that are repre-
sentable in O is denoted by O. a

It is easy to see, using Definition 2.3, that a family O is closed un-
der finite union, finite intersection, quasi complement and difference
of sets. Each family O contains all finite rational subsets of [0, 1].
Since the operations of union and intersection satisfy the commu-
tative, associative, absorption and distributive laws, every family O
with the standard set operations is a distributive lattice. Note that,
if the complement of a set F is understood as [0, 1] \ F, then O is
not a Boolean algebra since [0,1] \ F ¢ O. On the other hand, if
[0,1]g € O, and complement is understood as [0, 1]g \ F, then O
becomes a Boolean algebra.

Definition 3.2 Let O1 and Oz be recursive families of recursive sub-
sets of [0, 1]q. The binary relation ~ is defined such that O1 ~ Oa
iff O1 = Os. O

The relation ~ is an equivalence relation on the set O of all re-
cursive families of subsets of [0, 1]g. We use O, to denote the
corresponding quotient set. Each equivalence class o € O, con-
tains a unique maximal family O, such that O, = O,. For such an
equivalence class o and the corresponding family O, we say that O,
represents o. Let the set {O, : 0 € O,...} be denoted by O*. Clearly,
O and O™ are countable.

Definition 3.3 Let O1 and O be different families from O. Then
O1 < Oz iff Oy is representable in O. O
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Theorem 4 Let O1 and Oz be different families from O*. Then
01 <O2lﬁc01g02

Proof. The statement is an immediate consequence of the corre-
sponding definitions. U

Theorem 5 The structure (O*, <) is a lattice.

Proof. Since C is a partial ordering, by Theorem 4, the relation <
defined on O™ is a partial ordering, too. Moreover, any two elements
of (O, <) posses both the least upper bound, and the greatest lower
bound. Suppose O1,02 € O*. Let O3 = O1 U O2. Obviously,
01 < O3, and O2 < Os. Suppose that there is an O4 € O, such
that O1 < O4 and Oz < Og. But then, by Theorem 4, O1 C Oy,
Oy C Oy, and O1 U Oz C Ogy. It follows that O3 < O4. Hence,
O1 U Oz is the least upper bound of {O1, O2}. Similarly, the great-
est lower bound of {O1,02} is O1 N O,. Since (O, ) is a par-
tially ordered set such that any two elements posses both a least up-
per bound, and a greatest lower bound, it is a lattice. O

The meet () and join (4) operations can be defined as usual:

e O1-03=01N03, and
e O1+0- 01 U Os.

Since every set that is representable both in O; and in Oa, is repre-
sentable in O1 N O3, we have O1 N O2 = O1 N Oz, and O - O2 =
O1 N Oz. On the other hand, note that the join operation and the set
union do not coincide, because for some 01,02 € OF, it can be
01 U032 # 01 UOs.

Theorem 6 The lattice (O™, <) is non-modular.

Proof. We can find a counter example for the modularity law: if
O2 < O4, then (01 - (O2 + O3)) (O2 + (O1 - O3)). Let
Prim = {ki, k2, ...} denote the set of all prime numbers. Then,
consider the sets: F1 = {3 : i = 1,2,...}, F = {2i1
1,2,...},and F3 = F1 \ {2@% :4 = 1,2,...}, and the fam-
ilies O1,02,03 € O, such that O1 = {F1, F>}, 02 = {F2},
and Oy = {F3}. Obviously, O2 C O, and Oz < O;. Since
I3 F> U F3, I is representable in Oz + Os, and also in
O1 - (O2 + O3). On the other hand, F} is neither representable in
O3 nor in Os. Thus, F} is not representable in Oz + (O - O3), and
the modularity law does not hold. O

1=

Theorem 7 () is the smallest element of (O*, <).

Proof. §) contains all the finite subsets of [0, 1] only. Since an
arbitrary O € O™ contains these sets, PCOandd <O. O

Let Fi = {ro,r1,...} be a recursive subset of [0, 1]g with only
one accumulation point. Let O1 = {F1 }, O2 € O*, and Oz < Os.
Note that a set F» € Os can be either a finite set, or an infinite set
such that symmetric difference of either Fy and F, (Fi \ F2) U
(F2\ F1), or 1 — Fy and F is finite. If all the sets from Oy are finite,
then O2 = 0. Suppose that there is an infinite set F> € Os that is
representable in O1. F5 differs from Fy (or 1 — F7y) in finitely many
elements. It follows that F is representable in Oz, O1 < Oo, and
O1 = Os. Hence, O1 is an atom of (O™, <). Suppose that a family
O € O contains a recursive set F' with finitely many accumulation
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points. For every ;1 C F' with only one accumulation point, and
O1 = {F1} holds O1 < O. Finally, let us consider a family which
contains a set with infinitely many accumulation points. Suppose that
a recursive set Fy is dense in (ao, bo) C [0, 1], and Oy = {Fp}. We
can obtain two sequences ap < a1 < a2 < ...and by > by >
ba > ... suchthat a; < b; for every 7 and j, a sentence of sets Fo D
F1 D F, D ... thatare dense in (a1,b1) C [0,1], (az,b2) C [0, 1],
..., respectively, and an infinite sentence of families O1 = {F1},
Oz = {F>},...,suchthat 0 < ... < O2 < O1 < Og. Obviously,
there is no atom in this sequence.
In particular, we have the following theorems:

Theorem 8 A necessary and sufficient condition that an O € O™ be
an atom is that O = {F'}, where F' is a recursive set with only one
accumulation point. The lattice (O™, <) is non-atomic.

Theorem 9 There is no greatest element in (O*, <). Consequently,
the lattice O is o-incomplete.

Proof. Since the family of all recursive subsets of [0, 1]g is not
recursive, for each recursive family O of recursive subsets of [0, 1]g
there is a recursive F' C [0, 1]g non-representable by O. Hence, there
is no greatest element in O™.

In particular, o-incompleteness is an immediate consequence of
the fact that O™ is a countable ordering without upper bounds. [

Thus, we can define a hierarchy of the LP P> p g, 0-logics, so that
a logic L is less expressive than a logic Lo (L1 < Lo) iff the cor-
responding families O1 and Oz of subsets of [0, 1] satisfy a similar
requirement (O1 < O2). The hierarchy of the probability logics is
isomorphic to (O™, <). For instance, the probability logic LP P, is
the minimum of the hierarchy of the LP P> p g, 0-logics and corre-
sponds to the 0-element of (O™, <).

As we have seen, for all LPP> p,g,0-logics Ly and Lo, L1 < Lo
iff O1 C O,. The natural maximum of (O*, <) would be the mini-
mal extension of all LPP» p,qg,0 logics. Such logic can be obtained
as follows:

1. the set of LP P, p g ,o-formulas is the smallest superset of the set
{P>s0,Qra|s € [0,1]g,a € Forg, F C [0, 1]g is recursive}

that is closed for Boolean connectives;
2. axioms and inference rules are the same as for any LP P> p,q.0
logic.

That logic will be denoted by LP P> p,,an1. Here “all” stands for
the family of all recursive subsets of [0, 1]g. Though the set of
LPP; pq,an-formulas is not recursive, from now on we will as-
sume that LP P, p g an is also an LPPs p g o-logic. The strong
completeness of LP P> p g a1 can be straightforwardly derived from
the corresponding argumentation for LP P p ¢, 0-logics that is pre-
sented in [12].

4 The lower hierarchy

In this section we will study the hierarchy of LP Py logics. For
the given positive integer n the corresponding LP132F r(n) logic has
the following axioms and inference rules:

Propositional axioms

Al Substitutional instances of classical tautologies;

Bookkeeping axioms

A2 Posa— Psra,r < 85
A3 Pssa— Pssa;

Probability axioms

A4 P;()Oé;

A5 P-iq, ais a tautology;

A6 (P%a A P)Tﬂ A P>1(ﬂa Vv ﬁﬁ)) — P>111in(1,s+r)(05 Vv ﬁ),
A7 (Pgs()z/\P<r6) — Pgmin(l’ﬁ_”(a\/ﬂ);

A8 \/Z:O Pzﬁ L.

Inference rules
R1 (modus ponens) From ¢ and ¢ — 4 infer 1.

Note that A8 imposes range restrictions on probability functions, i.e.
the range of any probability function that verifies A1-A8 is a subset
of the set Fr(n) = {0,4,2,... »=1 1}

We shall define the lower hierarchy in the same manner as the
upper one (see Definition 2.4).

Definition 4.1 Let L1 and L2 be arbitrary LPPQFr(")—logics. We say
that the logic Lo is more expressible than L1 and write L1 < Lo iff
for each Li-formula ¢ exists an Lo formula v such that M(¢) =
M) (i.e. ¢ and 1 have the same models). O

It is easy to see that the introduced relation is reflexive and transi-
tive. Furthermore, for any LPPQF (") _tormula ¢, an L P P>-formula
1 defined by

Y =det ¢ A /\ \/P:%a

a€Forc(¢) k=0

have the same models as ¢ (here Forc(¢) is the set of all classical
propositional formulas appearing in ¢), so we can naturally consider
the upper hierarchy as an end-extension of the lower hierarchy.

We shall show that the characterization theorem for the upper hier-
archy (Theorem 4) has the natural counterpart in the lower hierarchy.
Theorem 10 Suppose that Ly and Lo are arbitrary LPPQFr (n).
logics. Then, L1 < Lo if and only if Fr(n1) C Fr(n2).

Proof. Suppose that Fr(n1) C Fr(nz) and let ¢ be an arbitrary
L;-formula. As above, we define an Lo-formula 1) by

p=asdn NV Pora

wy
ac€Forc(¢) k=0

Clearly, ¢ and v have the same models, so L1 < Lo.

Conversely, let Fr(ni) ¢ Fr(nz). Then, we can chose s €
Fr(ni1) \ Fr(n2). Let p be an arbitrary propositional letter. Then,
P_,pis satisfiable as L;-formula, while by A8, 1, - P—,p. Hence,
L1 L Lo. O

Since Fr(1) C Fr(n) for all positive integers n, the LPP, r(1)
logic is the minimum of the lower hierarchy. Moreover, F'r(n) is
a proper subset of F'r(2n) for all positive integers n, so the lower
hierarchy has no maximal elements.

Note that logics Ly and L2 are incomparable if and only if the
symmetric difference of Fr(n1) and Fr(nz) is nonempty. Thus, the
hierarchy contains incomparable elements (for instance, Fr(2) =
{0,%,1} and Fr(3) = {0, 1, 2, 1}).

13
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Another immediate consequence of Theorem 10 is the fact that
the lower hierarchy is a lattice. Namely, the greatest lower bound of
Ly and Lo is determined by Fr(n1) N Fr(nz2) = Fr(GCD(n1,n2)),
while the least upper bound of L; and Lo is determined by Fr(n1) U
FI“(’N,Q) = Fr(LCM(n1 s ng)) Notice that L1 < Lo iff nq |n2 (n1
divides n2).

Theorem 11 The lower hierarchy is atomic and non-modular.

Proof. Concerning non-modularity, it is well known that any lattice
is non-modular iff the pentagon lattice /N5 can be embedded into it. In
particular, we can embed N5 into the lower hierarchy in the following
way:

0,1, 1 1)

——
(an)
Wl
Wt
—
——

{0,1}

Figure 1. NS5 lattice embedded into the lower hierarchy

Moreover, by Theorem 10, the logics L1 and L» are incomparable
iff Fr(n1) A Fr(ni) # 0 (A is the symmetric difference of sets).
As a consequence, atoms of the lower hierarchy are determined by
Fr(n), where n is a prime number. O

As we have mentioned earlier, it is quite natural to merge the up-
per and the lower hierarchy into the single hierarchy of probability
logics due to the same definiton of <. Since each LPPZf T<")-logic
can be embedded into any LP P> p, g,0-logic in the same manner as
we have demonstrated for the L PP, logic, the upper hierarchy is an
end-extension of the lower hierarchy.

LPP pg,0.a1

LPP,

Lpp®

Figure 2. Hierarchies of probability logics

5 Conclusion

From a theoretical point of view, the introduced hierarchy (the merge
of the upper and the lower hierarchy) of probability logics gives us a

nice classification criterion, which is of interest on its one right due
to the general trend of classification of mathematical concepts, which
may be seen as the central theme of the research in mathematics.
Undecidability of LP P> p,g,0 logics might be seen as a major
obstacle with respect to potential applications. One possible way to
overcome this is to use different types of sets in the operators Q.
For instance, for any semialgebraic subset of R™ we can introduce
the m-ary probability operator )7, where the intended meaning of
Qr(ai1,...,an)isthat (ulai], ..., pulan]) € F. Inthis way we can
obtain a decidable probability logic with probability operators of all
positive arities. Notice that decidability is a consequence of the fact
that each semialgebraic set is a finite union of solution sets of some
systems of polynomial inequalities. Hence the satisfiability problem
for probability formulas is reducible to the problem of solvability
for systems of polynomial inequalities, which is PSPACE-complete
in the most general case. Such a logic could be easily developed by
modification of the methodology presented for LP P> p g0 logics.
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Conditional p-adic probability logic

Angelina Ili¢ Stepi¢ 'and Zoran Ognjanovié¢ > and Nebojsa Ikodinovié

Abstract. This paper presents the proof-theoretical approach to a
p-adic valued conditional probabilistic logic CPLq,. In this logic
formulas are built from the finite set of propositional letters. We pro-
pose a class of probabilistic models and corresponding infinitary ax-
iomatization for which we prove strong completeness theorem. De-
cidability of the presented logic is proved.

1 Introduction

There are strong historical links between probability theory and
mathematical logic. In the last decades more and more areas of these
subjects have been very closely connected in investigations of log-
ical systems called probabilistic logics with a broad range of pos-
sible application areas (learning from data [20], causal reasoning
[22, 26], multi-agent systems [7], robotics [27], logic programming
[13], among other fields). There are numerous proposals for proba-
bilistic logics [2, 5, 6, 17, 21, 23]. Many of them are based on the
standard Kolmogorov’s (measure theoretical) approach to the prob-
ability, but there is an increasing number of those based on an al-
ternative approach. Many of alternative approaches share the same
basic ideas: omission of the condition of ¢-additivity and consid-
eration of probabilities of a different range. In this paper, as well
as in [10, 11, 12, 24], we develop a logic that is based on one of
the mentioned approaches. Let us also mention the coherence-based
approach adopted in recent years by many authors, that, differently
from the approach used in this paper, allows direct use of conditional
probabilities, with no need of representing them as ratios of uncon-
ditional probabilities (for more details see, for instance [4]).

In [16] Khrennikov gives a detailed and inspiring presentation on
p-adic probability theory and discuss its applications in physics (es-
pecially quantum mechanics). It is well known that any non-trivial
norm on the field of rational numbers Q is equivalent to either the
usual real absolute value or a p-adic norm | - |,, for some prime
p. Therefore, by completing the field of rational numbers we ob-
tain the field of real numbers or some field Qp. On the other hand,
values of relative frequencies of random experiments are rational
numbers. Therefore, to calculate the probability of the correspond-
ing event we can take limes of these frequencies in the field of real
numbers, as we used to, but we can also calculate limes in the field
Qp, for some prime number p. If we choose Qp as the range of
probability we obtain two new features compared to the real ac-
cess. Field of p-adic numbers cannot be turned into an ordered field,
it is possible to construct several partial orders. Thus, p-adic ap-
proach gives the opportunity to work with probabilities in situations
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when it is not possible to compare the probability of two events.
Another benefit of p-adic access is the possibility of negative val-
ues for the probability. Following the concepts of Khrennikov’s ap-
proach to probability [14, 15, 16], in [12] the authors developed a
propositional probability logic Lgq, which is an extension of clas-
sical propositional logic with modal-like operators K. ,, where the
intended meaning of K, ,c is that the probability of « is in the ball
Kir,p] = {a € Qp : |r — a|p < p}. As the corresponding seman-
tics, probability Kripke like models are introduced, and the range of
probability functions is restricted on balls of finite diameters. The pa-
per [12] gives a formal system which is sound and strongly complete
with respect to the corresponding semantics. Also, the decidability
of the logic Lq, is proved.

Now, we introduce the probabilistic logic C'PLq, by extending
classical propositional logic with a list of conditional probability op-
erators of the form C' K ,. The intended meaning of C K, ,«, 3 is
that the conditional probability of truthfulness of « given f is in the
ball K|[r, p]. One of the essential conditions for the p-adic measure
is the boundedness condition: If F is a field of subsets of some set {2
then, for every A € F

sup{|p(B)|p : B€ F,B C A} < o

In [12] this condition is ensured by reducing the range of probabili-
ties to an arbitrarily large (but fixed) ball K0, p™], where M is some
fixed integer. When handling conditional probabilities there is a need
for multiplying p-adic numbers. Since arbitrary ball K [0, p™] is not
closed for multiplication, these balls are no longer useful for the logic
CPLq,. Here we might proceed in two ways. We can choose unit
ball K0, 1] as a range of probability, which is closed for multipli-
cation. Second way, which is presented in this paper, is to built for-
mulas from the finite set of propositional letters, but to retain Qp as
a range of probability. In this way we compute supremum of finitely
many numbers of the form p”, n € Z, which is again a finite num-
ber. Thus, logic C'P Lq,, has two key differences with respect to the
logic Lq,,: the set of propositional letters is finite and the range of
probability functions is the whole Q.

In this paper we present the proof-theoretical approach to
CPLq,, while a discussion of its possible application is left for a
future work. Namely, the logic C'P Lq,, may be useful to analyze the
relationship between the conditional probabilities and the notion of
implication since the former notion is a natural generalization of the
later one [1, 8, 18, 19, 25, 24].

The rest of the paper is organized as follows: in Section 2 we
present syntax and semantics of CPLq,; Section 3 presents ax-
ioms and inference rules of CPLq,; in Section 4 we prove the
corresponding soundness and completeness theorems; in Section 5
we discuss decidability of C P Lq,,; concluding remarks are given in
Section 6.
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2 Syntax and semantics

Let p be a fixed prime number. We define the function | - |, : Q —
{p"|n € Z} U {0} in the following way:

e If n € N, then n can be represented as a product of prime num-

bers, n = 223% . p'r ... s's. We define |n|, = p~ ', putting
0], = 0.

e Ifn € Z,n < 0then|n|, =|—nlp.

e Finally,if 2 € Q, m # 0, we put | 2|, = “Z“’;.

The field Q, of p-adic numbers can be constructed as a completion
of the field of rational numbers Q with respect to p-adic norm. For a
more detailed insight into the p-adic numbers we suggest [3].

We introduce the following set:

1. R={p"|n € Z} U {0}

Suppose that Var = {p1,...,pn} is a finite set of propositional
letters. By Florc; we will denote the set of all propositional formulas
over Var. Propositional formulas will be denoted by «, 8 and ~,
indexed if necessary. The set F'orcp of all probabilistic formulas is
defined as the least set satisfying the following conditions:

o Ifa, 8 € Forci,r € Q, p € Rthen CK, ,, (3 is a probabilistic
formula;

e If o, ¢ are probabilistic formulas then (—¢p), (¢ A @) are proba-
bilistic formulas.

Probabilistic formulas will be denoted by ¢, ¢ and 6, indexed if nec-
essary. The set For of all CPLQp—formulas is the union of Forc;
and Forcp. Formulas will be denoted by A, B and C, indexed if
necessary. The other classical connectives (V, =, <) can be defined
as usual. We denote both aA—« and ¢ A—¢ by _L, letting the context
to determine the meaning. Also, we use T for o V —~avand ¢ V —p.

Definition 1 A C P Lq,-model is a structure M = (W, H, i, v)
where:

o W is a nonempty set of elements called worlds;

o [ is an algebra of subsets of W;

o v : H — Qg is a measure (additive function) such that
(W) = 1;

e v : W x Var — {true, false} is a valuation which asso-
ciated with every world w € W a truth assignment v(w, -) on
propositional letters; the valuation v(w, -) is extended to classi-
cal propositional formulas as usual.

If M is a CPLq,-model, by [a]n we will denote the set of
all worlds w such that v(w,«) = true. We will omit M from
the subscript whenever the context is clear. An C'PLq,-model
M = (W, H, p,v) is measurable if [a]y € H for every formula
a € Forc;. In this paper we focus on the class of all measurable
CPLq,-models. Thus, when we write ”"C'P Lq_-model” we mean
“measurable C'P Lq,-model”.

In terms of sets [«], the boundedness condition can be formulated
as:

sup{|n([B])l» : [B] € H, [B] C [a]} < oo

If the set Var of propositional letters if finite, then, for every
propositional formula o over Var, there exist finitely many logical
inequivalent formulas (3, such that 8 = « is tautology, ie. such that
[8] C [a]. Thus, if we allowed p([8]) to be arbitrary p-adic number,
then in the above boundedness condition, we compute supremum of

finitely many numbers of the form p”, n € Z, which is again a finite
number.

Definition 2 Ler M = (W, H, i, v) be a CPLz,-model. The
satisfiability relation is inductively defined as follows:

e Ifa € Forg then M = a iff v(w, a) = true for every w € W.
e Ifa,B € Forgithen M |= CK, pa, B iff:

— u(8) = Oand|r 1|, < por

e([anB])
= w([B]) # 0 and | = 755> —rlp < p.
e Ifp € Forcp, then M |= —y iff it is not M |= .
e Ifp,) € Forcpthen M = o AN iff M = p and M = 1.

According to Definition 2, ;(W') = 1. Therefore, from Definition
2 we obtain M = CK, ,a, T iff |@ —7lp < pieiff |u([a]) —
r|p < p. In the sequel, we will denote C K, ,a, T by K, pcu.

Note that for arbitrary p € R, r € Q1, M = CK, ,a, f means
that the quotient £ UorB)) \which represents conditional probability of
a given 3, belongs to the p-adic ball with the center r and the radius
p. Particularly, M = K. ,«a means that u[a] belongs to the p-adic
ball with the center r and the radius p. If p = 0, then we obtain that
the (conditional) probability is equal to 7.

3 Axiomatization

The axiom system AXcpy, ,  of the logic CPLz, contains the fol-
lowing axioms and inference rules:

Axioms

Al. Substitutional instances of tautologies;

A2, Kry py@NKry 0y SAK00(aAB) = Ky 4y maz(pr,00) (@ VB);

A3. CK, ,a,8 = CK, ya,, whenever p’ > p;

Ad. CKyp 0, B = =CKpy pya, B, if |11 — 12]p > maz(p1, p2);

AS5. CKy, pa, 8= CKry pa, B, if |11 — r2|p < p;

A6. Kriry,p, (O‘/\ﬁ)/\KszPzB = CKrl’mﬂrm{ﬂlbl‘m\p'ﬂz} a, B,r2 #

T21p

0, ‘r2lp > p2

A7. CK,pa,BAKr p B = Kr»rl,maz{\rl\p»p,lrlp-pl}a/\ﬂv ifry #
0, [rilp > p1:

AS. Ko,oﬁ A Kr,p(a JAN 6) = CKl,oa,ﬁ;

Inference rules

R1. From A and A = B infer B. Here A and B are either both propo-
sitional, or both probabilistic formulas;

From a infer K pa;

If n € Z, from ¢ = =K, ,na forevery r € Q, infer ¢ =1;
From o =1, infer Ko oa;

If r € Q, from v = CK,pra,pf for every n € Z, infer v =
CKoa, f;

From (a < B) infer (K, ,a < K, ,0);

R2.
R3.
R4.
RS.

R6.

Axiom A2 corresponds to the additivity of measures and it also re-
flects property of p-adic norm (strong triangle inequality). Axiom A3
corresponds to the obvious property of p-adic balls: a ball of smaller
radius is contained in a ball of larger radius provided the balls are not
disjoint. Axiom A4 provides that the conditional probability (corre-
sponding quotient of measures) cannot belong to two disjoint balls.
Axiom Ab says that any point of a p-adic ball can be it’s center. Ax-
ioms A6 -A8 express the definition of the conditional probability. In
the axioms A6 and A7 we estimate the conditional probability of «
given S using the ball with the appropriate center, precisely with the
center that is obtained as quotient /7 where p([a A 3]) belongs to
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the ball with the center r and 1 ([/3]) belongs to the ball with the cen-
ter 7. Precisely, since p([ae A 8]) belongs to the ball with the center

r1 - r2 and u([8]) belongs to the ball with the center 72, we have to
plenB])
w([8])

erties of | - |, we obtain the radius W (for details see the
P

restrict | — r1|p with the appropriate radius. Using the prop-

proof of the Theorem 4). In the case of Axiom A7, we apply similar
considerations.

Rule R2 can be considered as the rule of necessitation in modal
logic. Rule R3 provides that for every classical formula o and every
radius p there must be some » € Q such that the measure of o be-
longs to the ball K[r, p]. Rule R4 guaranties that a contradiction has
the measure 0. Rule 5 express the next property: if the quotient of
measures, /([a A §]) and p([S]),(which corresponds to the condi-
tional probability ) is arbitrary close to some rational number r, then
this quotient is equal to r. Finally, Rule R6 says that equivalent clas-
sical formulas have the same measures. Note that the rules R3 and
R5 are infinitary.

A formula A is deducible from the set T' of formulas (denoted
T + A) if there is a sequence (called a proof) of formulas Ay, Aq
..., A such that every A; is either an instance of some axiom, or it
is a formula from the set 7, or it can be derived from the preceding
formulas by some inference rule. The length of a proof is a successor
ordinal. A formula A is a theorem (- A) iff it is deducible from
the empty set. A set of formulas 7" is consistent if there are o €
Forcy and ¢ € Forcp such that neither 7' - o or T' = ¢ holds. A
consistent set 7" of formulas is said to be maximal consistent if it has
the following properties:

e Forevery a € Forcy, it T F «, then both o and K oo are in T7
e Forevery ¢ € Forcp eitherp € T or~p € T.

A set of formulas 7" is deductively closed if for every A € For, if
THAthenAeT.

4 Soundness and completeness

Theorem 1 (Soundness) The axiomatic system AXcpr P is sound
with respect to the class of C P L z,-models.

Proof We will show that every instance of an axiom schemata
holds in every world of every CPLz,-model, while the inference
rules preserve validity. For instance, we present validity of axiom A6
and rule R3.

Axiom AG6. Suppose that for some model M = Ky, .ry o (@ A
B) A KrypaB, 12 # 0.and [raly > pa. Then |u(fa A B]) — 1 -

ralp < p1. Therefore,|7“gag]§]) —rilp = |—“([QA[5‘]}([—B‘]L>(W)‘” l, =

aAB])—ry1-ro+r1-ro—p([B])-r . .
lis(xB]) lmz([m;‘pz wlBDrile  Since M = Koy, p, 3 it follows

that |p([B]) — r2lp < p2 and therefore |u([B])|p, = |n([B]) — r2 +
ralp = max{|u([B])—ralp, [r2lp} = [r2|p because |u([B]) —r2lp <
p2 < |r2lp. Now, |u([a A B]) =712 + 7112 — p([B]) - mlp
< maz{|p(fa A B) — r1- ralp, [rilp - |r2 — p((B])]p} < max
{p1,|r1lp - p2}. Therefore \“L[?[gﬁl) —rilp < %‘T:")M}, ie.
M CK

maa{p1,lr1lp-pa} O B
’ ‘7‘2‘1)

Note that j1([8]) # 0, because from p([3]) = 0 and Definition
2 it follows that M = Ko oB. Therefore, since M = Ky, 5,0,
according to axiom A4 we have |ra — 0] < maz{0, p2}, which is
inconsistent with the requirement \7”2| > po.

Rule R3. Let M be arbitrary model and let M = ¢ =
—K,pna for every v € Q. Suppose that p([a]) = c_pp™® +
Coppip ¥t eap T Feimp T e =cp T+
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Cohp1p T iconp " then v € Q and p(la]) — 7
Cont1p” " conpap™ "2 4 L. Therefore |u([a]) — r|p <
p"t < p"so M |= Ky pna. Since M = ¢ = =K, pna it follows
that M = — and therefore M |= ¢ = 1.

Theorem 2 (Deduction theorem) Let T be a set of formulas and A
and B both classical or both propositional formulas. Then, T, A+ B
impliesT + A = B.

Proof We use transfinite induction on the length of the proof of
B form T'U { A}. For instance, we consider Rule R5. Assume that
B = (¢ = CK,oq, ) is obtained using rule R5. Then:

T,AF o = CK,pna,B foreveryn € Z TH A= (p =
CK, prna, B) for every n € Z, by the induction hypothesis,

TH(AN@) = CKypna, 8 foreveryn € Z,

T+ (AN¢) = CK,oa, S by Rule RS

THA= (p=CKroa,pB).

Theorem 3 Every consistent set can be extended to a maximal
consistent set.

Proof

Let T be a consistent theory (set of formulas), T the set of all clas-
sical formulas that are consequences of I, ao, 1, ...an enumera-
tion of all formulas from Forci, and o, 1, ...an enumeration of
all formulas from Forcp. Let f : N — Z x N be any bijection
(i.e., f is of the form f(i) = (mw1(2), m2(4))). We define a sequence
of theories T; in the following way:

1. Tp = TUTU {Kl,oa\a S T},

2. Foreveryi > 0,
(@) If To; U {p;} is consistent then Ta;11 = To; U {p;};
(b) Otherwise, if To; U {;} is inconsistent then:

@) Ifpi = (v = CKyoa, B) then Toi11 = Toy U {—pi, Y =
-CKrpra, 6}f0r some n € Z such that T»;1 is consistent,

(ii) Otherwise Ta;y1 = To; U {—¢;};

3. Foreveryi > 0, Toiyo = Toiy1 U {Knp,rl(i)aw(i)}for some
r € Q such that Ts; 2 is consistent.

We show that for every 1, T; is consistent. The set Ty is consistent
since it contains consequences of a consistent set. The sets obtained
by the steps 2a are obviously consistent. The step 2b (ii) produces
consistent sets, too. Really, if T»i, p; F_L, by Deduction Theorem we
have Ta; &= —;, and, since T is consistent, the same holds for
Toi U {~epi}

Let us consider the step 2b(i). Suppose that ¢; = (Y =
CKroa, ), Tas U{p;} is inconsistent and that for every n € Z,
To; U{~(¢ = CK, o, B),Y = ~CK, pna, S} is inconsistent.
Then:

Tai,— (¢ = CKrpoa, B), Y = ~CK,pna, B L foreveryn €
Z

Toi,~ (¢ = CKroa,B8) b =(¢v = ~CK,prna, ) for every
n € Z, by Deduction theorem

Toi, (v = CKroa, B) b = CKypna, B for every n € Z,
by the classical tautology (o = =) = (a = )

Toi,~(v = CK,oa,B) b = CK,oa, 3 by Rule RS

Ty b =(¢ = CKrpoa, ) = (¢ = CK, o, ) by Deduction
theorem To; -9 = CK,pa, S.
Since Ta; U {¢p = CK, o, B} is not consistent, from To; = ¢ =
CK,oa, f it follows that Ta; is not consistent, a contradiction.

Next, consider the step 3. Suppose that for every r € Q the
set Toip1 U {K, =) Qry(a) } is inconsistent. Let Toitn = To U

T+

i1, Where TQJ?-H is set of all formulas from Forcp which
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were added to Ty in the previous steps of the construction. Then:
T07T2'*;Jr17 K, jr1() Oy i) L for everyr € Q

To, Tyt 1 oK
theorem

T() '_ (/\‘PET;;+1
Deduction theorem

Tot (A, .+ ©) =L byRuleR3.

PETY; 11

Therefore T;4+1 1, a contradiction.

Let T = Ui<w T;. It remains to show that T* is maximal and
consistent. The steps 1 and 2 of the above construction guarantees
that T* is maximal. We continue by showing that T™ is deductively
closed set which does not contain all formulas, and, as a conse-
quence, that T™ is consistent.

First we show that T™ does not contain all formulas. Let o €
Forci. According to the construction of To, o and —« cannot be
simultaneously in Ty. Suppose that ¢ € Forcp. Then for some 1, j,
@ = ;i and ~p = ;. Since Tax(2i,25)+1 IS consistent, T* cannot
contain both @ and —.

Next we show that T™ is deductively closed. If o € Forci and
T* + « then by the construction of To, o € T™ and K1 o € T™.
Let ¢ € Forcp. Notice that if o = p; and T; \= @, it must be p €
T* because Tmax(i,2j)+1 I8 consistent. Suppose that the sequence
©1, P2, - - - @ forms the proof of @ from T*. If the sequence is finite,
there must be a set T; such that T; & . Then, similarly as above,
@ € T*. Thus suppose that the sequence is countably infinite. We
can show that for every 1, if p; is obtained by an application of an
inference rule, and all premises belong to T™, then there must be
@i € T™. If the rule is a finitary one, then there must be a set T}
which contains all premises and T; & ;. Reasoning as above, we
conclude that p; € T™. So, let us now consider the infinitary rules.
For instance, we consider rule R3, while rule RS follows similarly.
Suppose that p; = (¢ = 1) is obtained from the set of premises
{pr = (Y = ~K,pna)|r € Q}, by Rule R3 and for some o €
Forci,n € Z. By the induction hypothesis ¢, € T for every
r € Q. By the step 3 of the construction there must be some v’ and
some 1 such that ¢ = K,/ ,no belongs to Ty. Since all premises
belong to T, for some k, 1 = =K,/ yna € Ti. If m = max(l, k)
then

1 (8 Og (3) for every r € Q, by Deduction

©) = 2K, x ) Qny (i) for every T € Q, by

P = —‘K,«/ypnaﬂ/) = Kr/mna € Tm

Thus Trn = = Ky pnavand Ty Y = =K pnacso Ty B
¥ = L. Then, in the same way as above, we have ¢ =1€ T™.

Let 7™ be a maximal consistent set obtained from a consistent set
T by the construction from Theorem 4. According to the step (3),
T™ has the next property: For every formula a € Fore; and every
m € N there is at least one 7 € Q such that K. ,—ma € T™.

Since T is deductively closed, using axiom A5, we can obtain
countably many rational numbers ' € Q such that K., p-ma €T
Now, for each formula o € Forc; we make a sequence of rational
numbers 7, in the following way:

e For every m € N we arbitrarily chose any number r such that
K, ,—ma € T" and this r will be the m-th number of the se-
quence, i.e., 1y, = 7.

In this way we obtain the sequence r(a) = 7o, 71, ..., Where
Krj,p*ja eT*.

Notice that it is possible that r,,, = 7, for some m # k.

Lemma 1 Ler r(«) be defined as above. Then, r(«) is a Cauchy
sequence with respect to the p-adic norm. It can be proved that the
limes of () does not depend on the choice of 74 ’s.

Next we define a canonical model. Let My« = (W, H, 1, v),
where:

o W= {wwET} contains all classical propositional interpreta-
tions that satisty the set 1" of all classical consequences of the set
T,

o H={[a]:a € Forg}

o u:H —Zy Letr(a) =

<[a]>—{ S

e for every world w and every propositional letter p € Var,
v(w, p) = true iff w = p.

(rn)nen. Then

if Koo €T
otherwise

First note that z4([at]) is well defined: by Axiom A4 it cannot hap-
pen that K, oo, Ky 00, € T*, 11 # 72,

Theorem 4 Let M~ = (W, H, u,v) be defined as above. Then
for every a, B € Forc the following holds:

- if [a] = [B] then p([e]) = p([B));
- if[a] N [B] = 0 then p([a m)—uﬂﬂ)+MGM)
w(W) = 1 and therefore u(0) =

u([=al) =1 = p([ad).

Proof For instance, we will prove property (1). Other cases fol-
low similarly. Let |« [8]: Then {wl|v(w,a) = true}
{w|v(w, B) = true}. Therefore, for every world w, v(w, a < ) =
truesoa < B €T, ie.a < B €T ThenT* - a < B. Let

w(la]) =r.

(a) Suppose that K, o« € T™. Then:
T + KT,()OZ
T"Fasp
T F Kyoa & K,of by Rule R6 T + K,oa = K, of
T* + K00 by Rule R1.
Therefore K, o8 € T" so u([8]) =r.

(b) Suppose that Kroa ¢ T*. Then limf_ . r, = 7, where
(rn)nen = r(a). Then, reasoning as above, for every element
of this sequence, fromT* F a < Band T - K, —na we
obtainT* - K, ,—np.

ENE

n,P

Therefore, for every n, K, ,-nf € T and using Lemma 4,

u((8]) = lim?_ o = 7.

Tn P

Theorem 5[Strong completeness] A set of formulas 7" is consistent
iff it has an CPL z,-model.
The proof can be found in the Appendix.

5 Decidability

In this section we prove decidability of the satisfiability problem
for CPLz,-formulas. Since there is a procedure for deciding sat-
isfiability of classical propositional formulas, we will consider only
Forc p-formulas.

Let ¢ € Forcp. If p1,...,py, are all propositional letters ap-
pearing in ¢, then an atom of a formula ¢ is a formula of the form
+p1 A ... A £pn, Where £p; is either p; or —p;. It can be shown,
using classical propositional reasoning, that ¢ is equivalent to a for-
mula of the form DN F () =

V(A £K,. .,

i=1,m j=1,k;

”7}052]

NN ECK,,, riccin, Bi))

1=1,s;

20
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where :I:K”_’j nig Qg (:tCKmJ’p"i,lOéi,hBi,l) denotes either

or

P

i Qi gy (CKL | privau, B or

T4,5:P Ti,jP
—CK,, i, Bi1)- @ is satisfiable iff at least one disjunct from

DNF(yp) is satisfiable.
Let

Di=( \ #K,  risei) A\ £CK, | oo, Bi)

J=1,k; I=1,s;

be a disjunct from DN F(p). Every propositional formula « is
equivalent to the full disjunctive normal form, denoted F' DN F'(«).

If = (o < (), then according to Rule R6, for every model M
andeveryr € Q,p € R, M = K, ,aiff M = K, ,(. Similarly,
ifE (a0 y)and = (8 < §), then = (e AB) < (yAJ) so
w(fa A B]) = p([y A d]) and p([B]) = w([0]). Therefore, for every
model M andevery r € Q, M |= CK, o, Biff M |= CK, ,7,6.
Thus, D; is satisfiable iff formula

( N\ £K,,, i FDNF(ai;))
J=1,k;
A

( )\ *CK, i FDNF(ai), FDNF(Bi))

1=1,s;

is satisfiable. Since for different atoms a; and aj, [a;] N [a;] = 0,
wlai V aj] = plai] + pla;]. Hence, D; is satisfiable iff the following
system .S is satisfiable:

.
=
t=1

— UaN
| Zatéai,l Yt Tllp <p
if K pra iy = Ky pra iy

J1
_ 71
|Zat€ai,1 Ye Tllp >p
if :l:Ky-l’pnl Q4,1 = —|Kr1 ,p"1 Qi1

— Mk,
| Z“teai‘ki Yt — Tk, |P <p'ti
if iKTk i Qiky = K

ng. O L
P TkiP o

Jr
o ng.
| Zateai,ki Yt rki |P > p

if ﬂ:KT‘ki ki ik = _‘K,'.ki’p"ki Qi gy

Yt
| Zatéai,lﬁﬁi,l
ZatEBiJ vt

if£CK i, Bin =CK o, Bin
r1,p 1 ri,p 1

Yt
Z"’teﬁ‘i,l vt

if+CK o1, Pin=—-CK o, Bin
r,p 1 r,p 1

- T1|p < pn/l

Ly

—7ilp > pnll

21

Yt

2y asn;
g Yt
at€hi s,

if +tCK n! Ol sy Bi,si =CK
Ts;p i
‘Z“te‘—“i,simﬁi,si vt
Zateﬁi,si vt

if+CK . iy, Bis; = 2CK o sy, Bigs;

rsgp i rsgp i

’
nl
— T lp < ple

nl Qs s ﬁi,si

Ts;p i

’
nl
_Tsilp>p i

where a; € «;,; denote that the atom a; appears in FDNF (o ;),
while a; € ay; N Bi; denote that the atom a¢ appears in
FDNF(ai,;)andin FDNF(B;,;), and y, ([ae])-

In order to check satisfiability of the previous system we will con-
sider the above inequalities. Let

F=r_gp P AT T g T T L

In the sequel, we will also use the short p-adic representation

r=r—g"—k4+1..- - T"—n—-1"—n"—n41...

1Y el <p"

at€Ea

The inequality

means that Zat co Yt and 7 have a common initial piece. More pre-
cisely, if p® > p" then

Y =l <p”

at€Ea
iff
(Zyt)fk = r,kand
atEa
(Zyt)*kJrl = r_g+1and
at€ea
(Zyt)—n—l = T—n-1

at€Ea

and (Zaf@ yt)—; = 0 for j < —k. In the case that p* < p™ then

1> vl <p"

at€Ea

iff (3, cq Yt)—5 = 0for j < —n.

For inequalities of the form |y —al, > p™ we use following result:

Lemma2leta € Q,j € Z,a = a_pp * + a_pyrp "+
...and n = maz{k,j + 1}. Then inequality |y — a|, > p’ has a
solution iff it has a solution y such that |y|, = p".

Proof Let |y — alp > p’. Then, for some m > j+ 1,y —a =
ComP ™ e T e p T

1. Suppose that 7 +1 > k,ie.n = j+ 1. Theny = c_pmp "+
covejap T L (eok +a_k)p "+ ... (or eventually y =
Comp” "+ (i1 + a—g)p 77 + (c—j +a—;)p 7. Let
Y =c_jo1p T +(c,;?+a,k)p_k+ vy =(c—jo1+
a—g)p 4+ (c_x +a—;)p i+ ...). Thus, anyhow |y; —al, =
P> pl
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2. k>j+1,n=k.

@k < m.Thus, ¥ = c_mp ™+ ...4+(c_ + a_p)p "+
vt (e—jo1 4+ aj1)p 7T 4 (c—j +a—;)p I+ .... Then,
for yy = (c— + a—i)p™ "+ .4 (cjo1 +aj1)p T
s lyp —alp = p* > pP™ > p?. Particularly, if £ = m,
y = (cem +a p)p " + (cehr1 + a_py1)p " +...and
Yyr =Y.

(b) £ > m. In that case y a gk P H(eem +
)P ™. A (c—j14+a—j—1)p I +.... Then, fory; =
Yo lyg —alp = p" >’ > p.

The other direction is obvious. Thus, if we want to find y such that
|y — alp > p’ itis enough to find y of the form y = y_,,p™™
for any m > n.
n n—1
Replacing 2 with 1 — Zle ¥ in the system \S; we obtain that
( is satisfiable iff the following system S is satisfiable:

|2, vt — il <p™
T

J1 = [0)
| Zt yi — lp > p™
|Ztyf *T;c/|p >p'k
Jk = or
|Ztyf —rilp > p"*
B o
| = rilp <p
izt Yy, +1*
Ly = or
+ T ’
R >
+ Yt
+ sl 1*
|i§ty%11* —relp < P
Yt
Ly = or
+ 51+1*
ELl )y s

Where £, y¢ + 1" denotes 1 — Y,y or Y, yr'. Now, r; are
arbitrary rational numbers and n; (from p"7) are from Z.

Let n1, ..., n, appearing in inequalities with < p™*, while
mi, ..., my are from inequalities with > p™J. Suppose that
r,r € {r{,...,7h,7m1,...,7s} and that T have maximal p-adic
norm (among all r;), while  have minimal p-adic norm. Let 7 =
p"r = p°, D = maz{0,k,n1...nq,m1 + 1,...mp + 1},
M = min{0, s,n1...nq,m1,...mp}. We put 0 in these estima-
tions because 1 appears in inequalities.

Since each (y:)r € {0,1,...,p — 1}, there are
pP =M+ possibilities for each representation of the form
Y = Y-DY-D+1...Y—Mm—1Y—nm (it is assumed that y; = 0
forj < —D).

The system .S has at most 2" — 1 variables yj- so there are at most

p(Dfl\/I+1)(2“'—1)

ways to chose representations of the form

Y =Y-DY-D+1---Y-M-1Y—M

22

for all variables appearing in the system. We enumerate these rep-
resentations (potential solutions) by Ri,Rs ..
More precisely:

'Rp(D—J\/I+1)(2"—1)'

e the representation R; is denoted by
000...0,000...0,...000...0

which means that (y;)k = 0forall¢,j,k,
e the representation Ry is denoted by

100...0,000...0,...000...0

which means that (y{)—p = 1, while all the others (y}) are
equal to 0, etc.

Thus, we assign the potential solution R; to the variables and check
whether the system is satisfiable. If R; does not satisfy the system,
we can try with R and so on. Finally, after a finite number of steps,
we will find a representation which satisfies the system, or we can
conclude that no representation satisfies the system S. Note that each
R; that satisfies the system is a “finite part” of infinitely many solu-
tions, thus it is actually particular solution.

Remark If |z|, = p* and z = ¢ where |z[, = P lyl, = p™
then i:if/ =z |p™xl|p, [p™ylp < p®. Thus, if we want to obtain z
which p-adic representation begins with position —k it is enough to
x and y such that their representations begin with any j < —k. We
use this fact when we check satisfiability of inequalities that include
fractions.

6 Conclusion

In this paper we have defined several p-adic valued conditional prob-
abilistic logics (one for each set of propositional letters). The corre-
sponding strongly complete axiomatizations have been given. Decid-
ability of the logics have been proven.

One of the possible applications of the presented logics concerns
interesting connections with the various systems developed for mod-
elling reasoning with uncertainty, especially non-monotonic reason-
ing. The standard approach to modelling uncertainty is probability
theory. As mentioned in the introduction, researchers have intro-
duced a number of generalizations and alternatives to probabilities. A
very general approach has been presented in the paper [9] where the
authors has introduced so-called plausibility measures and showed
that almost all approaches for dealing with uncertainty can be viewed
as plausibility measures. Drawing on this work, one can see that the
monotonicity is an essential property in reasoning with uncertainty.
A plausibility space is a tuple (W, H, Pl), where H is an algebra of
subsets of W, and P! is a plausibility measure on W, i.e., a function
Pl : H — D that maps sets in H to elements in some partially or-
dered set (D, <p), and satisfies the only one condition: if A C B,
then PI(A) <p PI(B). Some special types of C'PLz_-models can
be viewed as plausibility spaces and, therefore, be used in appropriate
context. Although there are several possibilities to restore a plausi-
bility space from a special p-adic probability space, we mention only
one. A p-adic probability measure p : H — Z,, is | - |p-monotone if
A C B implies |u(A)|p < |(B)|p- A CPLz,-model is monotone
if its measure is | - |,-monotone. More detailed considerations of this
and the other possible applications are left for a companion paper
which will follow.
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8 Appendix

We give the proof of Theorem 5.

(<=) This direction follows from the soundness of the above ax-
iomatic system (Theorem 4).

(=) In order to prove this direction we construct M=
(W, H, pi, v) as above, and show, by induction on complexity of for-
mulas, that for every formula A, M- = Aiff A € T™.

eletA=qa € Forei. If a € T, then « € T and for every
w e W,w = a,ie, Mr= = a. Conversely, if M7+ = a then
by the completeness of classical propositional logic, o« € T, and
aeT™.

e For technical reasons we especially consider formulas of the form
Ko Let A= K, ,aforsomer € Q,p € Rand o € Forc;.
Suppose that K, ,oc € T™*. First we assume that p > 0 and p =
p~" for some ¢ € N. Choose () such that 7: = r. Let r(a) =
(rn)nen~ and p([a]) = lim?,_,  r,,. Thus

(Ve)(Bno)(Vn)(n = no — |rn — p([ad)]p < €).

Lete = p ' If t > ng then |ry — u([a])|, < p~* and therefore
Mr+ E K,, ,~ta,ie., Mr+ = K, ,—«a. Suppose that t < ng
and consider some & > ng. Then K,, —ra € T* and |ry —
p(la])]p < p~*. Thus:

T"+FK

e p—tQ
T"F K, ,-ra
"+ K, ,-ra= K, ,+abyAxiom A3 since pt>pF
T"F K, ,-t«
T+ KTmp_ta N mep—toz.
If [ry — rg| > p~' then by Axiom A4, T* + K, ,-ta =

—K,, ,—ta and therefore T + =K, -+, which contradicts
the consistency of T*. Thus |r; — rx| < p~ ¢ and

re = p(la))lp = |(re = 72) + (re — p([a]))]p <

max{|re = rk[p, Ire — p(fa])|p} < p~°

so Mrp+ = K, o

If p = p',t > 0,ie, K, ra € T, then, for some ry,
K,, ,—ta € T*. Therefore, according to A3 K, o € T7,
and also by A4, |r — 74|, < p°. Based on what we just showed,
M = K,, ,—ta, and since p* > p~*, M = K,, ,to. Thus,
|([e]) = r¢|p < p* and therefore, using |r — 4|, < p* we obtain
n(la]) = rly < Pty ie. M E K, pia

Furthermore, suppose that p = 0, that is K, oo € T™. Then,
according to the definition of x in the model M = (W, Prob, v),
we have u([a]) = r. Therefore |p([a]) — 7], = 0 so M= =
Kr,oa.

For the converse implication, suppose that Mr+ = K, ,« and
r(a) = (rm)men. Notice that for every m € N, K., —ma €
T*. Assume that p p' for some t € Z. In that case
lu([a]) — 7|, < p* where p([a]) = limy,—o00 7. Let € = p'.
Then (Imo)(Ym)(m > mo — |rm — p([e])lp < €). Let
m > max{—t,mo}. Thus p~™ < p’ and |y, — u([a])|, < p'.
Since |u1([a]) — 7|, < p* we have

[rm = rlp = |(rm — p([a]) + (u([a]) = 7)]p <
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max{|rm — p([a])lp, [p([a]) = rlp} < p".
Hence:
T - K, . -ma
T"+F K, ,ma= K, ,a byAxiomA3,sincep’ >p ™
T - K, ,tabyRuleR1
T*+ K, o= K, q,by Axiom A5, since |rm — 7, < p’
T F K, ,ta by Rule R1

and since T is deductively closed, K. ,ta € T™.

If p = 0 then My~ = Ky oq, that is |u([a]) — r|, = 0. Letn
be an arbitrary nonnegative integer. Then |u([a]) — 7], < p™"
and hence Mr+ |= K, ,—nc. Therefore, according to the above
considerations for every n € N, K. ,—na € T™. Then, according
toRule R5, T* F K, o, i.e. Koo € T™.

Let A= CK,  ,a,Bforsomer € Q,p € Rand o, B € Forc;.

Suppose that CK,. ,a, 3 € T*. Let pu([8]) = b and r(8) =
(bn)nen (b = limh_, b, and K, ,-»f € T for every n €
N). First assume that b # 0 and under this assumption consider
the following cases:

i, [blp} and choose ng
such that for n > ng |b — by, < e. Then, = |(bn —
b) + bl = ma:r{|b = by, ‘b‘p} = |b|p7 since |b =0l <
"’ £ |blp} and let
no = maz{ng, ng }. For every n > ny the followmg holds:
T+ CKypa, BAK, ,—n B, Where |by, |, # 0, and therefore,
by axiom AT, T" & K.y max{|bn|p-p.rl,-p—7} (A B). Since
p "< % it follows that |r|, - p~™ < |bn|p - p. There-
fore, maz{|bnlp - p,|7lp - P~} = p - |bn|p and hence T +
Ky 0 lbn 1, (@AB). Thus, [u([aAB]) =7 -bn|p < p-|bnlp and
therefore |p([a A B]) — - p([B])]p = [(u([a@ AB]) —7-bn) +
(T'bn—r'u([ﬂ]))\p < maz{p-[balp, rlp - bn — p([B])]p} =

- |bnlp because [bn — p([B)lp, < e < p‘lrﬂ Hence,

| (la A Bl) =7 u(B)ly < p- Ibaly 50 |20 — 7, < p,
ie. Mr« = CKr pa, .

- r = 0. In this case we conclude as above with the dlfference
that we choose € and ng such that & < |b|, and ng p0 <
|b| . Further, using previous considerations we obtain

T Kooy maz bty lrlpp=y (@ A B)
that is, 7" F Ko ,.p,],(a A B) because |r|, = 0 and
p~" < |bnlp. Thus |p([a A B])|p < p - |bn|p and therefore
|1de2 D, < pie. My« f= CKo,pa, B,

PG
-r # 0ip = 0. Since T* + CK, o, [, using axiom A3,
we conclude that for every n € N, T* = CK,. ,-na, .
Therefore, using what we just Froved for every n € N,
(

Mr+ |= CK, ,-na, (3 thatis \“M([gﬁ]) —rl|, < p~ " forevery

n € N. Thus, there is no n € Z such that |“L[‘(l[gﬁ]) —7r|p =
p" so accordmg to definition of p-adic norm, it follows that
ullanB) _ |, = 0. Hence, Mp- = CK, oa, B.

w([8])
0, ie. [u([BDl, =

-r#0andp # 0. Lete < min{lb";”,

€ < |blp. Select ng such p~ "< mm{ B

Now, suppose that b = 0. Then
My~ F Koo and therefore, according to Axiom A8, T™ +
CKi,0a, 3, so by axiom A4, it must hold |r — 1], < p.
Therefore, according to definition 2, we conclude that M7+ |=
CK,,a,p.

In the opposite direction, assume that M7+ = CK, ,a, (. Let

- p# 0,7 #0.Letr(aAB) = (an)nen and 7(8) = (bn)nen.
If a # 0, choose ¢ and ny such that ¢ < min{|alp,|b|p -

bl,,-
P ‘b‘lh ||L1‘7pp

€. Then for n > ng we have |an|p = [(an — a) + alp =
maz{|an — alp, |alp} = |alp, because |an — alp, < e < |alp.

} and for n > ng, |an — alp < € and by, — b, <

In the same way we conclude that |b,,| = [b]p.
Further, for such n: [§2 — [, = |%|p
— |lanboab)eboby ) (an-b—a-b)+(a-b—bn-a)l,
- by b r - ‘b‘z

maz{|an—alp-|blp,|bn—blp-lalp} maz{e-|blp,e-lalp}
= 12 = 12

e-lal

< maa (g5, e} < p.
If a = 0 choose € < min{|b|, - p, |blp} and ng such that for
n > ng, |an|p < €and |b, —bl, < e. Again |b,|, = |b|, and
an an
=3l =10 <p
Thus, in both cases:
152 =l = 152 = 5) + (§ = lp < maz{|§> —
&1, 1% —r|p} < p. Let ng be such that p"0 < min{|bl, -
0, |blp, I‘blr"’:} and let no > max{ng,ng }. Then, for n > no,

|an — by - 7|p < |bn|p - p and therefore

la—brn - 7]p < maz{|la—an|p,|an—bn-7|p} < maz{e, |bn|p-
p} = |bulp - p, which means that Mz« |= Kp, . j,,],-p(c A
B) and therefore T = Ky, . jb,1,.0(a A ). Thus T* =
Kbn'hlbn\p'ﬂ(a A ﬂ) A Kb”,p*
™ < |bn|p using Axiom A6 and Rule RI,

n

and since p~

we obtain T* + CK maetibulpp. Iripp—3 O B 1€ T +
[onlp
CK,,a,p.
— If r = 0 proof is different insofar as we choose ng such

that p~™0 < min{|bn|p - p, |bn|p}. Applying Axiom A6,
under the same hypotheses as before, we obtain 7%

CKo, M thatis T* - C Ko pa, B.

- Let p = 0. Since M7= = CK,pa, S, |“([a/\ﬁ) —7rlp =0

w((B])
and hence |24 (D‘[g]ﬁ —r|, < p " forevery n € N, that is

Mr+ | CK, ,-na,f for every n € N. Based on what we
have just shown, T = CK, ,—na, 3 for every n € N and
hence, using Rule R5, we obtain 7" + C K, o, 3.

Finally, suppose that b = 0. Then, according to Definition 2,
|r — 1|, < p. On the other hand, from p([5]) = 0, it follows
that 7" + Koo and therefore using Axiom A8, we obtain
T* F CKi1,0a, . Since p > 0, according to Axiom A3, T F
CKi pa, 8. Finally, from |r — 1|, < p, applying Axiom A5
we obtain T - CK, ,«, .

e Let A=-B, B € For.Then M~ |= —Biffitisnot M7+ = B
iff B¢ T"iff-BeT".

e Let A =
Mrp+ = Band Mr~ = Ciff Be€ T*and C € T* iff (BAC) €
T*(the last conclusion is an elementary consequence of Al and
the fact that 7™ is deductively closed).

(BAC), B,C € For. Then Mp~ = (B A C) iff

w(la A B]) = a, p([8]) = b. Let b # 0. We distinguish the
following cases.

24



ECAI-2012 Workshop WL4AI

Combination of Dependent Evidential Bodies Sharing
Common Knowledge

Takehiko Nakama' and Enrique Ruspini 2

Abstract. In this study, we examine how to combine dependent
evidential bodies that share common knowledge. For a given set on
which evidence is to be established, it is assumed that each of multi-
ple evidential bodies is formed not on the whole set but on its subset
and that there is an overlap among the subsets. Common knowledge
is formed on the overlapping subset, and it introduces dependen-
cies among the evidential bodies. We derive a formula for combining
the dependent evidential bodies assuming their conditional indepen-
dence given the shared knowledge. We extend Ruspini’s epistemic
logic formulation of the calculus of evidence to establish the combi-
nation formula. The resulting formula extends the Dempster-Shafer
combination formula to evidence fusion of dependent evidential bod-
ies in a mathematically rigorous manner, without resorting to heuris-
tics or to unclear assumptions.

1 Introduction and Summary

In the classical Dempster-Shafer theory (Shafer [13]), it is assumed
that evidential bodies that are to be combined are independent, but
clearly there are many cases in which it is inadequate to make the in-
dependence assumption. To our knowledge, the process of evidence
fusion in those cases has not been formulated in a mathematically
satisfactory manner. In this study, we examine how to combine evi-
dential bodies that are dependent due to shared common knowledge.
For a given set on which evidence is to be established, it is assumed
that each of multiple evidential bodies is formed not on the whole
set but on its subset and that there is an overlap among the subsets.
As described in Section 2, this assumption should be made in ad-
dressing many real-world problems; if multiple agents are available
to form evidential bodies on a set that is too large for any one agent
to process, then each of them will be designated to form evidence
on a subset of the entire set. Thus, we describe the evidential bodies
that are to be combined as partial evidential bodies. It is also reason-
able to assume in many practical situations that there is some overlap
among the assigned subsets. We assume that the evidence established
on the overlapping subset is shared by all the partial evidential bod-
ies. The shared evidence on the overlap will be described as common
knowledge. This shared common knowledge introduces dependen-
cies among partial evidential bodies. Roughly speaking, our combi-
nation formula shows how to combine such dependent partial eviden-
tial bodies when they are conditionally independent given the com-
mon knowledge. See Section 2 for more details. Conditional inde-
pendence has been assumed in solving a variety of real-world prob-
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lems (see, for instance, Feller [4,5], Sutton and Barto [14], Ross [10],
Thrun et al. [15]).

We derive our combination formula by extending Ruspini’s (
[11,12]) epistemic logic framework of the calculus of evidence. Rus-
pini [11] established a probability-theoretic formulation of logical
foundations of evidential reasoning. His methodology is based on the
logical foundations of probability developed by Carnap [2]. In these
frameworks, knowledge is characterized probabilistically. In his for-
mulation, Ruspini fully utilizes epistemic logics, which were intro-
duced by Hintikka [6] and have been developed to effectively deal
with not only the state of the real world but also the state of knowl-
edge about it. Epistemic logics have been successfully applied to ar-
tificial intelligence (e.g., Moore [7], Rosenschein and Kaelbling [9]).
Ruspini’s approach led to several important theoretical results. For
instance, it established connections between the interval probability
bounds derived from the Dempster-Shafer theory (Shafer [13]) and
the classical (probability-theoretic) notions of upper and lower prob-
abilities.

In this study, we extend Ruspini’s formulation of evidential rea-
soning to the process of combining dependent partial evidential bod-
ies sharing common knowledge. His formulation offers two main ad-
vantages in analytically investigating evidence fusion. One of them
is that the epistemic logics incorporated in his approach allow us to
properly formulate or characterize essential concepts in evidential
reasoning, such as the state of a real system, the state of knowledge
possessed by rational agents, and effects of information about the
knowledge. As described by Ruspini [11, 12], the acquisition of ev-
idence does not alter the actual state of the world itself but changes
the state of knowledge about it, and his epistemic formulation prop-
erly models both states. The other main advantage is that his ap-
proach allows us to establish a mathematically rigorous formulation
of evidence fusion based on probability theory. In Ruspini’s frame-
work, evidential bodies are represented by probability spaces that re-
flect their epistemic states and uncertainties. Our formula extends the
Dempster-Shafer combination formula to evidence fusion of depen-
dent evidential bodies in a mathematically rigorous manner, without
resorting to heuristics or to unclear assumptions.

The remainder of this paper is organized as follows. In Section 2,
we provide an overview of our framework and formulation. In Sec-
tion 3, we review basic concepts in epistemic logics and in Ruspini’s
formulation of evidential reasoning. In Section 4, we establish prob-
ability spaces that represent evidential bodies. Using the representa-
tions, we formulate the process of combining dependent partial ev-
idential bodies sharing common knowledge based on conditioning
in Section 5. We provide a simple example that illuminates various
aspects of our combination formula in Section 6. In Section 7, we
examine several issues associated with the evidence fusion described
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in Section 5.

2 Overview

We will use Figure 1 to provide an overview of our framework
and formulation. As described in Section 1, evidence is considered

Total evidence

(2, 0(Q), P)

Partial evidential body 1

(O, a(), P))

Partial evidential body 2
(%, 0(), P)

Combined evidence

(U ® W ® Ve, (U RO, P

Figure 1. Formulation overview. In the process of establishing evidence on
the sample space (2 = 1 X Q2 X (¢, two partial evidential bodies are
created. Partial evidential body 1 contains no evidential knowledge about 22
whereas partial evidential body 2 contains no evidential knowledge about
1. The evidence on €2, (called common knowledge) is assumed to be
shared by the partial evidential bodies, and it introduces dependencies
among them. We formulate a procedure for combing the dependent partial
evidential bodies by assuming their conditional independence given the
common knowledge so that the resulting combined evidence faithfully
reflects the total evidence, which represents the most refined evidence on 2.

probabilistic knowledge in our framework (see Carnap [2], Rus-
pini [11,12]), and each evidential body is represented by a probability
space. Our probability-theoretic formulation of epistemic evidential
bodies is described in Sections 3—4. This approach allows us to estab-
lish a mathematically rigorous formulation of evidence fusion based
on probability theory.

Consider establishing evidence or knowledge on a sample space
Q. In our formulation, we express €2 as a direct product 2; x 2 X
-+ X 2y, x Q.. Note that there is no loss of generality in expressing
a sample space as a direct product; even if the original sample space
is not a direct product, we can imbed one in it (see, for instance,
Billingsley [1] and Chung [3]). It will become clear that the direct-
product representation allows us to clearly see important elements
associated with our evidence fusion formula based on conditioning.
Our results are valid for any n, but, for concreteness, we consider
n = 2; thus Q = Q; X Q2 x Q.. See Figure 1.

The probability space (2, o(£2), P), which is described as total
evidence in Figure 1, represents the most refined evidence that can be
established regarding the whole sample space 2. Here o(2) denotes
a o-field in Q2. Thus the whole sample space (and any information
associated with it) must be available in forming the total evidence.

To intuitively explain the process of establishing evidential bodies,
we consider rational agents creating them. Suppose that two agents,
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agents 1 and 2, form partial evidential bodies regarding 2 and that
agent 1 is provided with only € x €. whereas agent 2 is provided
with only Q2 X €. Thus agent 1 does not form any evidence on (22
whereas agent 2 does not form any evidence on €2;. This depicts a
rather realistic situation in forming evidence by employing multiple
agents; in practice, a sample space can be too large for any one agent
to process, and when multiple agents are available, each of them will
be responsible for gaining knowledge on a portion of the entire set.
It is also reasonable to assume in many practical situations that there
is some overlap among the assigned portions.

Let (1,0(Q1), P1) and (Q%, 0(Q5), P2) denote the resulting ev-
idential bodies developed by agents 1 and 2, respectively. They will
be described as partial evidential bodies 1 and 2, as shown in Fig-
ure 1. Partial evidential body 1 contains no evidential knowledge
about (22, whereas partial evidential body 2 contains no evidential
knowledge about 2. (Hence these evidential bodies are considered
partial.) The evidence formed on 2. (i.e., the marginal probability
distribution on €2.) is assumed to be shared by the two agents, and
it introduces dependencies among the partial evidential bodies. We
will describe this shared evidence as common knowledge.

How can we combine these dependent partial evidential bodies
in order to establish evidence on the whole sample space 2? The
resulting combined evidence, which is shown at the bottom of Fig-
ure 1, is considered ideal if it faithfully reflects the total evidence
(22,0(82), P). (See Section 4 for details.) Notice that the sample
space €. is part of both partial evidential bodies. Due to the shared
common knowledge, the independence between the two evidential
bodies cannot be assumed, so it is not appropriate to combine them
using the classical Dempster-Shafer formula, which assumes the in-
dependence. In this study, we formulate a mathematically rigorous
procedure for combining the dependent partial evidential bodies by
assuming their conditional independence given the common knowl-
edge so that the resulting combined evidence faithfully reflects the
total evidence.

3 Preliminaries

As described in Section 1, we closely follow and extend the epistemic
framework and formulation established by Ruspini [11, 12]. In this
section, we describe basic concepts that are essential in our study.

3.1 Epistemic Logic

Let A denote a finite alphabet. Its elements are called symbols. We
define sentences as follows:

(S1) Each symbol is a sentence.

(S2) If £ and F are sentences, then so are E A F and £ V F.
(S3) If £ is a sentence, then so is —&.

(S4) If £ is a sentence, then so is KE.

(S5) If £ and F are sentences, then & — F is a sentence.

If £ is a sentence that does not include the unary operator K, then it
is called an objective sentence. We denote the set of all well-formed
sentences by S and call it a sentence space. Each sentence is assigned
a truth value, which is either T (true) or F (false). We assume that .S
contains a symbol, denote it by ©, that is always true and that it also
contains a symbol, denote it by ¢, that is always false.
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3.2 Epistemic Worlds

Let Ve denote the truth value of £ € S. Then an interpretation W of
S is defined by

W= {(£,Ve) | € € S}.

Hence W can be considered a mapping from S to {T, F}. We say that
a sentence & is true in WV if and only if W maps £ to T; otherwise it
is false in W.

An interpretation W is called a possible epistemic world (or sim-
ply a possible world) of S if the following axioms are satisfied in
W:

(M1) The axioms of ordinary propositional logic hold.
(M2) If K€ is true, then & is true.

(M3) If KK is true, then K€ is true.

(M4) If K(€ — F) is true, then KE — KF is true.
(M5) If £ is an axiom, then K& is true.

(M6) If —K& is true, then K—KE is true.

The set of axiom schemata used here is an enhancement (by addition
of (M6)) of that originally developed by Moore [7], and the resulting
logical system is equivalent to the modal logic system SS5. As de-
scribed by Ruspini [11, 12], this system allows rigorous probability-
theoretic derivations of lower and upper probabilities (belief and
plausibility) based on epistemic logics. See Ruspini [11, 12] for de-
tails.

3.3 Implication

A sentence & is said to imply a sentence F if F is shown to be true
whenever £ is true on the basis of (M1)-(M6) and by the rules of
deduction, regardless of the truth values of the other sentences that
could be possibly true or false (i.e., not necessarily true or false).
We denote the implication by £ = F. Therefore, if £ = F, then
£ — F in every possible world, and the converse also holds. Hence
it follows from (M5) that if £ = F, then K(£ — F) is true in every
possible world. Two sentences £ and F are said to be equivalent if
£ = F and F = £. The equivalence will be denoted by £ < F.

3.4 Epistemic Equivalence

Two possible worlds W, and W, for S are said to be epistemically
equivalent if for any £ € S, the sentence K& is true if and only if it
is also true in W,. We denote the equivalence by Wi ~ W,. This
relation is indeed an equivalence relation.

3.5 Spaces

We let U(S) denote the quotient space of the set of all possible
worlds for S resulting from the equivalence relation ~ described in
Section 3.4. This quotient space will be called the epistemic space
of S, and each element of /(S) will be called an epistemic state.
The quotient space of the set of objective sentences that results from
the equivalence relation < will be denoted by ®(S) and called the
frame of discernment of .S. To facilitate our exposition, we describe
each element in ®(S) as an objective sentence.

We define a mapping e : ®(S) — 24(5) (2409 denotes the power
set of U(S)) such that for each £ € ®(.5), e(£) is the set of epistemic
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states where the most specific objective sentence known to be true is
E:Foreach £ € ®(5),

e(&) = {W e U(S) | KEis true in W, and

if KF is true, then £ = F}. (1)
This mapping is essential in establishing probability spaces for ev-
idential bodies. We call it the epistemic mapping associated with
o(9).

As in the framework of Ruspini [11, 12], we represent each ev-
idential body by a probability space. Its sample space is U(.S) for
some sentence set .S, and we consider a o-field whose generating
class can be expressed as Gs := {e(&) | £ € ®(5)}. We let 0(Gs)
denote the o-field generated by Gs; hence o(Gs) is the intersection
of all the o-fields containing Gs (see, for instance, Billingsley [1]
and Chung [3]). Thus the probability space is of the form

U(S),0(gs), P), @
where P is a probability measure on o(Gs). In our framework, ev-
idence is considered probabilistic knowledge on o(Gs) (see Car-
nap [2], Ruspini [11, 12]).

4 Evidential Bodies

We establish a probability-theoretic formulation of the process of ob-
taining combined evidence from partial evidential bodies that are
dependent due to shared common knowledge, as described in Sec-
tion 2. We provide details for combining two partial evidential bod-
ies, which will be referred to as PEB 1 and PEB 2. The formulation
can be easily extended to more than two partial evidential bodies. To
explain the process intuitively, we consider two rational agents cre-
ating the two partial evidential bodies; agents 1 and 2 create PEB 1
and PEB 2, respectively.

In addition to the two evidential bodies, we consider two other
bodies of evidence in our formulation: total evidence and combined
evidence. Total evidence represents knowledge about all the possi-
ble worlds presented to agents 1 and 2, and it specifies a probabilistic
structure that must be taken into account when the two partial eviden-
tial bodies are combined. On the other hand, combined evidence is
formed by integrating the two partial evidential bodies based on the
total evidence. Typically, it is ensured that the resulting combined
evidence does not contain any contradiction.

In Section 4.1, we describe the sentence spaces and the epistemic
spaces associated with the four evidential bodies. In Section 4.2, we
describe the probability spaces that represent them.

4.1 Spaces for Evidential Bodies

Let 51, S2, and S. denote three sentence spaces, and let K;, Ko, and
K. denote the unary operators of S, Sz, and S., respectively. We de-
note the alphabets of S, S2, and Sc by A1, A2, and A., respectively.
Also we let e1, ez, and e. denote the epistemic mappings associated
with ®(S1), ®(S2), and ®(S.), respectively (see (1)). Total evidence
will be formed from U (S1) x U(S2) X U(S.), and the two evidential
bodies PEB 1 and PEB 2 will be derived from U/(S1) x U(S.) and
U(S2) x U(S.), respectively. Notice that I/ (S.) is part of both PEB
1 and PEB 2. As described in Sections 1-2, shared common knowl-
edge will be formed on U(S.), and it will introduce dependencies
between the two partial evidential bodies. Also note that 2/(.S1) will
not be a part of PEB 2 whereas U/(S2) will not be a part of PEB 1.



ECAI-2012 Workshop WL4AI

After describing the evidential bodies, we will explain why we use
the direct products.

We consider the following sentence space, S1 ® Sz ® S¢, which
will be used to represent combined evidence.

e (TS1) The alphabet of S7 ® S2 ® S is A1 U Az U A..
e (TS2) The axioms (S1)—(S5) in Section 3.1 hold for S7 ® S2 ® Se.

We will refer to S1 ® S2 ® S, as the combined sentence space. Each
possible world W of S1 ® S2 ® S, is a mapping from the combined
sentence space to {T, F} satisfying the following properties:

e (TUI1) If £ is an objective sentence in S1 ® Sz ® S, then £ is true
if and only if there exist sentences &1 € ®(S1), E2 € P(S2) and
E:. € ®(S.) such that £, &2 and &, are each true in WV and that
ExNENE=E.

e (TU2) Foreach £ € S1 ® S2 ® S¢, KE is true if and only if there
exist sentences &1 € S1, &2 € Sy and £, € S. such that K&,
K¢&; and K&, are each true in VW and that 1 A Ea A E: = £.

e (TU3) The axioms (M1)—(M6) in Section 3.2 hold.

The following mapping, which will be denoted by I' : &(S1®52®
S.) — 2251 x8(S2)x2(Se) apq called the compatibility relation of
P(S1 ® S2 ® S¢), is important in establishing connections among
total evidence, two partial evidential bodies, and combined evidence.
For each £ € ®(S1 ® S2 ® S¢), we define

F(g) = {(51752759) | &€ @(Sl), & € (I:'(Sz), & € @(Sc),
E1 N Ea /\gc<:>(€inUS1®S2®Sc}.

Let e(£) denote the set of epistemic states in U(S1 ® S2 ® Sc)
whose most specific objective sentence known to be true is £ (see
(1)). Also, let & (1), €2(&2), and é.(&.) denote the sets of epistemic
states in U (S1 ® S2 ® S.) whose most specific objective sentences
in ®(S1), ®(S2), and ®(S.) that are known to be true are &1, &2,
and &, respectively. Then, by extending the basic combination the-
orem established by Ruspini [11, 12], it is easy to show that for each
Ee€D(S1®5:®S.),

U

(£1,€2,Ec)€ET(E)

e(&) &1(£1) Néx(E) Nec(Ee). 3)

4.2 Representations of Evidential Bodies

As described in Section 3.5, each evidential body will be represented
by a probability space of the form (2). First we establish a probability
space for total evidence. Its sample space is U (S1) X U (S2) xU(S.).
The generating class of its o-field is of the form

Gsyx5yx5. =1{(e1(E1),e2(E2),ec(Ee)) |
£1 € B(S1), &2 € B(Ss), E. € B(S.)}

As mentioned in Section 3.5, we let o(G) denote a o-field whose
generating class is denoted by G. Thus total evidence is represented
by
%(tot) —
(U(S1) x U(S2) x U(Se),0(Fs1x 52 x5. ), Psrxsaxs. )
where Ps, xs,xs. is a measure representing knowledge about
0(Gs, xS2x 80 )-

Next we establish probability spaces that represent the two par-
tial evidential bodies, PEB 1 and PEB 2. When agents 1 and 2
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form their partial evidential bodies, they are not provided with all
of U(S1) x U(S2) x U(S:)—agents 1 and 2 are provided with
U(S1) X U(Se) and U(S2) x U(S.), respectively. Thus agent 1 re-
mains completely ignorant about /(S>), and agent 2 remains com-
pletely ignorant about U/ (.S1). As described in Section 2, this for-
mulation applies to realistic situations; in many real-world problems,
the set of all possible worlds is too large for any one agent to process,
and multiple agents, who each gain knowledge only on a manageable
portion of the entire set, must be employed. It is also reasonable to
assume in many practical situations that there is some overlap among
the assigned portions. Define

{(e1(&1),ec(Ec)) | €1 € (Sh), E: € (Se)},
{(e2(&2),ec(E:)) | E2 € D(S2), Ec € P(Se)}.

Gs, x5, =

GsyxS, 1=
Then we can express the probability space that represents PEB 1 as
BY = (U(S1) x U(S.),0(Gsy x5, ), Psyxs.),
where for any & € ®(S51), & € D(S.), we have
Psyxs.(€1(&1),ec(Ec)) = Psyxsyxs.(€1(€1), U(52), ec(Ee)),

and, similarly, we can express the probability space that represents
PEB 2 as

B = U(S2) x U(S.),0(Gssx5.), Pszxs.);
where for any &> € ®(S2), & € P(S.), we have
Ps,xs.(€2(E2),ec(Ec)) = Psyxs,xs. (U(S1), €2(E2), ec(Ee)).

While 2 and #® properly represent PEB 1 and PEB 2, re-
spectively, we cannot use Ps, xs. and Ps,x s, in establishing the
knowledge Ps, gs,s. of combined evidence if we want to ensure
that the resulting combined evidence does not contain any contradic-
tion. In order to guarantee this contradiction-free property, we must
restrict 2 and ™ to the subset of U(S1) x U(S2) x U(S.)
that does not contain any contradiction between the two partial evi-
dential bodies. We will describe the subset as the contradiction-free
set. Define T'; to be the set of all & € ®(S1) such that there exist
Er € B(S2),E € D(S.),and £ € P(S1®52®S:)\{p} satisfying
E & E1NEINE.. Also define I'; and I analogously; I'> denotes the
setof all &2 € ®(.S2) such that there exist &1 € ®(S1), & € P(S.),
and £ € P(51 ® S2 ® Sc)\{¢} satisfying £ < & A & A &,
and T'. denotes the set of all £, € ®(Sc) such that there exist
& € @(51), & € @(Sz), and £ € @(51 ® S ® SC)\{QO} sat-
isfying £ < &1 A €2 A Ec. Then the contradiction-free set can be
expressed as

Q;:( U 61(51)7 U 62(52), U eC(SC)>'
£1€l

Ez€ls Ec€le

Note that 2 is 0(Gs, x5, x S, )-measurable.

The portion of 2! that does not lead to any contradiction be-
tween the two partial evidential bodies can be obtained by restricting
2°Y o 2. Thus the portions of PEB 1 and PEB 2 that are actually
used to establish combined evidence can be derived from Ps, x 5, x 5,
conditioned on Q. For all &1 € ®(S51), &2 € ®(S2), E: € D(Se), let

Po(ei(£1),e2(&2),ec(Ee))

= Psyxsyxs.((€1(61), €2(E2), ec(Ee)) Q). (4)
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Then the portions of PEB 1 and PEB 2 that are actually used to create
combined evidence can be represented by

B =U(S1) x U(Se),0(Gs, x5.), PS), )
B =U(S2) x U(Sc),0(Gsyxs.)s PE), ©6)
where for each &; € ®(51), &2 € ®(52), Ec € D(S.),
P (e1(&1), ec(Ec)) :=Pale1(&1),U(S2),ec(E)), (D)
P (e1(E2), ec(Ec)) :=Pa(U(S1), e2(E2), ec(Ec)).  (8)

Finally we establish a probability space for combined evidence. Its
sample space is U(S1 ® S2 ® S.). The generating class of its o-field
is of the form

Gsi@8:0s, = {€(€) | € € (51 ® 52 ® Sc)}-
Notice that by Theorem 3, we have

Gsi@8:@s. ={€1(&1) Neé2(E2) Néc(Ee) |
(E1,E2,E) €T(E), E€P(S1®S52®8:)}.

The knowledge (i.e., the probability measure) of combined evi-
dence must result from the portion of 2 (S1) x U (S2) x U (S.) where
the knowledge of agent 1 does not contradict that of agent 2. Thus
it must be based on %’g Y Let Ps, 95,95, denote the probability
measure of combined evidence. Then it is linked to P by

Ps, 95,05, (€1(E1) Nea(E2) Nec(Ee))
= PQ(€(51),€(€2)7e(gc)) )

for each &1 € ®(S51),E2 € P(52),E € P(S.). Thus the combined
evidence is represented by

PBeom = (U(S1® S2®S.),0(Fs, 0805, ), Ps1@5:0s.). (10)

Before we use these probability spaces to describe our formula-
tion of the process of combining partial evidential bodies based on
conditioning, we explain why we use the direct products (£(S1) X
U(S2) X U(Se), U(S1) x U(S:), U(S2) x U(S.), and their traces
on () in these representations. As described in Section 2, there is no
loss of generality in using a direct product as a sample space. The di-
rect products described in this section allow us to clearly see several
important elements associated with evidence fusion based on condi-
tioning. As described earlier, U/(S.) is part of both PEB 1 and PEB
2. Thus, regarding U(S.), the two partial evidential bodies use the
same unary operator (K.) as well as the same frame of discernment
(®(S:)). Hence the marginal probability distribution on ¢/ (.S.) rep-
resents the common knowledge shared by the two partial evidential
bodies. This common knowledge introduces dependencies among the
partial evidential bodies. On the other hand, only PEB 1 provides
knowledge about I/(S1), whereas only PEB 2 provides knowledge
about U/(S2). By combining the two partial evidential bodies, we
gain knowledge about both 2/(S1) and U/(S2) that do not contain
contradictions between the two partial evidential bodies. The direct
products are effective in clearly expressing these elements that are es-
sential for characterizing the process of combining dependent partial
evidential bodies sharing common knowledge.

5 Combination Formula Based on Conditioning

Using the probability spaces defined in Section 4, we derive a for-
mula for combining two dependent partial evidential bodies, PEB
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1 and PEB 2, by assuming their conditional independence given
the common knowledge. We follow the terminology of Shafer [13]
and define probability assignments of evidential bodies. Let m :
P(S1 ® S2 ® Se) — [0,1], mq : ®(S1) x ®(S.) — [0,1], and
mao @ P(S2) X ®(S:) — [0, 1] denote the probability assignments
associated with combined evidence (%com ), PEB 1 (%8) ), and PEB
2( 33&()2)), respectively. In Ruspini’s epistemic framework [11,12], m
is defined by

m(“:) = PSI®S2®SC (e(g)) 11
for each £ € ®(S1 ® S2 ® Se). Similarly, m1 and my are defined
by

mi(€1,€0) =PG (e(€1), e(£e)),

ma(Ea, ) =P (e(&2), e(E.)),

for each &1 € ®(51), E2 € P(52), and & € D(S,).

We also define a probability assignment m. : ®(S.) — [0, 1] for
the shared common knowledge. First we define a probability space
for it. Its sample space is U (S.). The generating class of its o-field
is of the form

(12)
13)

Ge:={ec(E) | Ec € (Se)}-

As described in Section 4.2, we form combined evidence using not
Ps, «s, and Ps, x s, but Pg(zl) and Pg(f) so that the resulting evidence
does not contain any contradictory knowledge. Hence the probability
measure that underlies m. must also be derived from Pq defined at
(4). Thus, if we let Péc) denote the probability measure, then for each
E. € B(S.),

P (Ee)

Po(U(S1),U(S2),E.), (14)

and the probability space for the common knowlege is expressed as

BY) = (U(S.),0(Ge), PY). (15)

Note that Ps(ﬁ can be derived from either PEB 1 or PEB 2 because
for each &. € ®(S.),

P (e(E) = PO U(S1), e(E)) = PP U(S2), e(Ec)).  (16)

Thus, if we let m. : ®(S.) — [0, 1] denote the probability assign-

ment associated with %S(;), then it is defined by

me(E:) = P (e(£.)) (17)

for each &, € ®(S.).
In order to characterize the conditional independence of the two
partial evidential bodies, we consider three sub-o-fields of o (Gq) in

,%’g °)_First we define the following three generating classes:

G5 ={(e1(£1),U(S2),U(S:)) N Q| &1 € ®(S1)},  (18)
G ={U(S1),e2(E2),U(S)) N Q| & € B(S5)}, (19)
G5 ={U(S1),U(S2), ec(£) N Q| Ec € D(Se)}. (20)

Then the three o-fields a(gg)), U(Q}?), and a(gg)) are sub-o-
fields of o(Gq). Note that knowledge about o ( é”) (i.g., the proba-
bility measure on a(gg) )) can be obtained from %8) since for each

&1 € B(51),

Pa(er(&1),U(S2),U(Se)) = P§ (e (&1),U(Se)).
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However, the knowledge about cr(gs(;)) cannot be obtained from
339. Similarly, knowledge about a(g§f>) can be obtained from
935(]2) but not from %S). Knowledge about o ( ézc)) can be obtained
from either 3{?8) or %g) since for each &. € ®(S.),

Po(U(51),U(52), ec(€e)) = Pi” U(S1), e (£2))
= PS7(U(S2), ecl£e))-
The conditional independence of o( S)) and o 5(22)) given

a(géf’) is defined as follows (see, for instance, Pollard [8]).

Definition a(gg)) and a(gg(f)) are said to be conditionally inde-
()Y if for each C € o(GY”) such that Po(C) # 0,

Pq(A|C)Pa(B|C)

pendent given o (

Po(AB|C) = 21

forall A € o(G), B € 0(G2).

If the two sub-o-fields o ( (1)) and U(Qﬂ ) are conditionally in-

dependent given o(g};>), then we can obtain the probability assign-
ment m defined at (11) from PEB 1 and PEB 2 using the following
theorem:

Theorem 1 Suppose that o(gé”) and U(Qg)) are conditionally in-
g)). Then for each € € ®(S1® S2® Se)\{p}.

mi (51 s gc) ma (527 Sc)
me(Ee) '

dependent given o (G

m(E) (22)

(£1,€2,Ec)€ET(E)

Proof Foreach & € (S ® Sz ® S¢)\{¢}, we have

m(g) =Ps, 05,05, (e(f))
= > Ps, 5,05, (€1(€1) Neéz(E2) Neéc(Ee))
(E1,€2,EC)€ET(E)
= Po(e(&r),e(&2),e(Ee)), (23)

(£1,€2,EC)ET(E)

where the first, second, and third equalities follow from (11), (3), and
(9), respectively. Let

A(&1) :=(e(&1),U(S2),U(Se)),
B(&) :=(U(S1), e(€2),U(Se)),
C(&e) :=(U(51),U(S2), e(Ee))-

Note that A(&) € o(GY), B(&) € o(GY). and C(E.) €
a(gg)). Suppose that a(gs(]l)) and a(géf’) are conditionally inde-
pendent given o/(G). Then
Po(e(£1),e(&2), e(Ec))
= Po(A(&1)B(&2)C(E))
= Po(A(&1)B(&2)|C(E)) Pa
= Po(A(&1)|C(E:))Pa(B(&2)|C(

where the last equality follows from the conditional independence.
Here, from (14) (or from (16)), we have

Pa(C(Ec)) = Po(U(S1),U(S2), e(E))
Also, from (7), we have
PQ(A(gl)C(gc)) = PSZ(e(gl)yu(SZ)ve(gc))
= Py (e(60), e(£0)),

(C(E))
E))Pa(C(E)), (24)

= P (e(6). (29
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whence we have

_ PalAE)C(E) P (e(&),e(EL)
PAGICED =T eE) )
(26)
Similarly, we have
P (e(£2), e(E.))
Pa(B(&)[C(E,)) = 2~ 20ze)) 7
(B(&2)|C(Ee)) PO e(0)
Thus, it follows from (24)—(27) that
Pa(e(&1), e(&2), e(Ee))
P (e(&2),e(E)) P (e(E2), e(Ee))
O T
_ P (e(82), e(E0)) P (e(E). e(£e)) %)

P (e(Ec)
Using (12)—(13) and (17), we reexpress the right-hand side of (28)

and obtain
&1, & &, Ec
Pofe(s: ) = Bt galEntd

Therefore, it follows from (23) and (29) that

mi 51,56 ma 82,50
T (€1,E) ma(&s, Ee)

me(Ee)
(£1,€2,Ec)€ET(E)

)76(52),6(

29

m(€) =

as desired.
Notice that if m. is given by

me(€) = 1 ifE&=U(S.),
¢ o otherwise,

(i.e., the two agents are ignorant about /(S.)), then (22) becomes

the Dempster-Shafer combination formula.

6 Example

In this section, we provide a simple example that illuminates various
aspects of our combination formula. Define

Qx = {w1, 22}, Qy = {y1,92}, Q¢ = {e1, 2},
Q::QXnych,

and consider a probability space Z°Y = (Q,c(Q), P), where
o(€2) denotes the power set of 2. This probability space represents
the total evidence. Three sub-o-fields of o(€2) are considered. Their
generating classes are

Gx = {({z},Q,Qc) |z € Qx}, (30)
Gy :{(Qxa{y}’QC)‘yGQY}a 31
Yo = {(Ox,Qv,{c})|c € Qc}. 32)

Let 0(¥9x), 0(% ), and 0(¥9c) denote the sub-o-fields of o(Q2) gen-
erated by ¥x, %, and Y, respectively.

Since the sample space in 2V is discrete, we characterize P
using its probability mass function, which we denote by fxy¢. Thus
forallz € Qx,y € Qy,c € Qc,

Pxyc({=}, {y}. {c}).

fXYC(1'7y,C) =
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Let fc denote the marginal probability mass function on Q¢ de-
rived from P. We assume fc(c) # 0 for each ¢ € Q. For all
x € Qx, y€Qy, ce e, let

Fxvie(@ yle) = %&M (33)
S yeay Sxvo(,y'so)

Fxio(ale) = =2 f;((ycf LG4
Zm’ Xf (xl7yac)

Fric(yle) = =<2 fj(ycf (35)

We examine cases where (33)—(35) satisfy the following condition:

fxyic(z,yle) =fx|c(zlc) fyic(ylc)
VreQx,yeQy, cee. (36)

Tables 1-2 show the conditional probabilities fxy|c(z,y|c) for
z € Qx, y € Qv, ¢ € Q¢ when we set fx|c(x1]c1) = ax,
fric(yiler) = ay, fxjc(z1]c2) = bx, fyjc(y1]|cz) = by under
condition (36).

Table 1. Values of fxy|c(z,ylc1) when fx|c(z1]c1) = ax,
Tyic(yiler) = ay.

Yy
Y1 Y2
S axay ax(1—ay)
z2 | (I—ax)ay | I—ax)(I—ay)

Table 2. Values of fxy|c(x,ylc2) when fx|c(z1]c2) = bx,
fyic(yile2) = by.

Yy
Y1 Y2
2 T bxby bX(]-*bY)
z2 | I-bxJay [ O—-bx)(A—by)
From these conditional probabilities, we can

compute fxyc(x,y,c) using (33). See Table 3. Thus these prob-

Table 3. Resulting values of fxyc(z,y,c)

[z [y [ c] fxvo(z,y,c) l
T Y1 C1 aXanC(C1)
z2 | y1 [ a (1 —ax)ay fc(e1)
z1 | y2 | a ax(1—ay)fc(er)

x2 Y2 C1

z1 |y | 2 bx by fc(c2)
z2 |41 | 2 (1 —bx)by fo(c2)
z1 | y2 [ c2 bx (1 —by)fc(c2)

2 | y2 [ c2 [ (1—-bx)(A—by)fc(c2)

abilities collectively represent total knowledge on 2. Regarding the
three sub-o-fields of o (2) generated by the classes (30)—(32), notice
that o(¥x ) and o(%y ) are conditionally independent given o(¥4¢)
in this case.

Two partial evidential bodies are represented by probability spaces
2V and 2 defined by

2M .= Q2x x Qc,0(Qx x Qc), Pxc),
{55(2) = (Qy X Qc,o’(QY X Qc),Pyc),

where Pxc and Py ¢ denote the marginal probability measures on
Qx x Q¢ and Qy x Q¢, respectively, resulting from P. Hence, for
all Ex - Qx, Ey - Qy,Ec - Qc,

Pxc(Ex,FEc) = P(Ex,Qy, Ec),
Pye(By, Ec) = P(Qx, By, Ec).

Thus 21 contains no knowledge on 2y whereas 2® contains no
knowledge on €2 x, and we combine these partial evidential bodies to
establish knowledge on 2 := Qx X Qy x Q¢ that faithfully reflects
BV Let fxc and fyc denote probability mass functions derived
from Pxc and Py ¢, respectively. The probability assignments 11
and m; associated with 2 and B2, respectively, are defined by

mq(61) = {PXC(Gl)

if 01 = {a1} for some a1 € Nx x Qc,
0 otherwise,

ma(02) = {PYC(QQ)

if 2 = {az} for some az € Qy X Q¢

0 otherwise.
Note that knowledge on 2¢ is shared by the two partial evidential

bodies, and the marginal probability mass function fc on Q¢ can be
obtained from either Z* or ): For each ¢ € Qc¢,

fee)= > fxe(z,e)= Y frelyo).
z€Qx yeEQy

The probability assignment m¢ associated with the marginal proba-
bility space (Qc¢, 0(Q¢), Pc) (Pc is the marginal probability mea-
sure on ()¢ derived from P) is defined by

mc (9) = {PC (®)

0 otherwise.

if 9 = {c} for some c € Q¢,

Let Beom = (Q,0(82), Peom) denote the probability space that
represents the combined evidence resulting from ") and ? . The
probability assignment m associated with %o, is defined by

0 P.om () if @ = {a} for some a € ,
m =
0 otherwise.

Therefore, our goal is to achieve
m(0) = P(0) (= fxve(z,y,0)) (37)

for each singleton subset 8 = {(z,y,¢)} of Q (z € Qx,y € Qy,
c € Qo).

Since o(¥x) and o(% ) are conditionally independent given
0(%c), we can use Theorem 1 to derive m from 2" and 2B?:
Foreachx € Qx, y € Qy, c € Qc¢,

mifeohmne)) g

m({(z,y,¢)}) =

We have
ma({(z, 0)})m2({(y, )})
me({c})
_ fxo(z, o) fve(y, o)
fele)
= fX\C(€U|C)fY|C(y|C)fC(C)
= fxvic(z,yle)fe(e) (39
= fxvc(z,y,c), (40)
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where the equality in (39) follows from (36). Thus it follows from
(38) and (40) that

m({(:my,c)}) = fXYC(x7y7 C)

forallxz € Qx,y € Qy, ¢ € Qc. Hence, as desired, (37) is satisfied.
For instance, we have

mi({(z1,c1)P)m2({(y1,e1)})
mc({e1})
ax fo(er) X ay fo(er)

fe({er})

which equals the value of fxyc(x1,y1,c1) in Table 3. Using (38),
we can obtain all the values in the table.

If the combined evidence were formed by the classical Dempster-
Shafer formula, then its probability assignment m’ would be ob-
tained by

m' ({(z,y,0)}) = mi({(z, ) Phm2({(y, 0)})

forallz € Qx,y € Qy, c € Qc. However, the resulting combined
evidence does not reflect the total evidence unless we have

Ixc(z,c)fyve(y,c) = fxc(z,c) fyc(y,c) fe(c),

forallz € Qx,y € Qv, ¢ € Qc. Since fo(c1) and fo(cz) are
both nonzero, it follows that (41) cannot be satisfied for all x € Qx,
y € Qy, ¢ € Qc¢. Therefore, the total evidence cannot be obtained
from the combined evidence that results from the classical Dempster-
Shafer formula.

Another strategy to obtain combined evidence using the classical
combination formula might be as follows. First derive the marginal
probability mass function fx on Qx from %) and the marginal
probability mass function fy on Qy from £ (and fc from either
2N or ?)). Then obtain a probability assignment m” by

m" ({(z,y,¢)}) = fx (@) fr (y) fe(c)

forall z € Qx,y € Qy, ¢ € Qc¢. In order for this combined
evidence to precisely reflect the total evidence, the three sub-o-fields
o(9x), 0(%y), and o(¥c) must be independent: We must have

fxve(r,y,c) = fx(x)fv(y) folc)

forallxz € Qx,y € Qy, ¢ € Q¢. This condition is rather restrictive.
For instance, to satisfy fxyc(z1,y1,¢1) = fx(x1) fy (y1) fe(c1),
we must have

m({(xbyhcl)})

= axay fc(c1),

(41)

lax fc(c1) + bx fo(e2)][ay fe(er) + by fo(c2)] = axay.

7 Conclusion

To our knowledge, our study is the first to rigorously formulate
the process of combining dependent partial evidential bodies that
share common knowledge by assuming their conditional indepen-
dence given the common knowledge. As described in Section 1, our
assumptions regarding the dependent partial evidential bodies are
rather realistic, and conditional independence has been assumed and
used in solving a variety of real-world problems (see, for instance,
Feller [4,5], Sutton and Barto [14], Ross [10], Thrun et al. [15]). Rus-
pini’s formulation of evidential reasoning allows us to fully incor-
porate the probability-theoretic concept of conditioning in evidence
fusion.
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Regarding the combination formula described in Section 5, note
that we only need the two partial evidential bodies, nothing else, to
compute the right-hand side of (22); m; and mo are obtained from
PEB 1 and PEB 2, respectively [see (12) and (13)], and m. can be
obtained from either partial evidential bodiy [see (17)], as described
in Section 5. Also, to use the formula of Theorem 1, common knowl-
edge about conditioning events [95’&C> in (15)] must be established;
it is clear from (21) in Definition 5 or from (22) in Theorem 1 that
the conditioning events and knowledge about them must be shared
by the two partial evidential bodies.
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Logics for belief functions on MV-algebras

Tommaso Flaminio and Lluis Godo and Enrico Marchioni!

Abstract. In this paper we introduce a fuzzy modal logic to formal-
ize reasoning with belief functions on many-valued events. We prove,
among other results, that several different notions of belief functions
can be characterized in a quite uniform way, just by slightly modify-
ing the complete axiomatization of one of the modal logics involved
in the definition of our formalism.

1 Introduction and motivation

Dempster-Shafer theory of evidence [7, 30] is a generalization of
Bayesian probability theory in which degrees of uncertainty are eval-
uated by belief functions, rather than by probability measures. Belief
functions [30, 31] can be regarded as a special class of measures of
uncertainty on Boolean algebras of events representing an agent’s
degree of confidence in the occurrence of some event by taking into
account different bodies of evidence that support that belief [30].

In the literature several attempts to extend belief functions on
fuzzy events can be found. The first extension of Dempster-Shafer
theory to the general framework of fuzzy set theory was proposed
by Zadeh in the context of information granularity and possibility
theory [34] in the form of an expected conditional necessity. Af-
ter Zadeh, several further generalizations were proposed depend-
ing on the way a measure of inclusion among fuzzy sets is used
to define the belief functions of fuzzy events based on fuzzy evi-
dence. Indeed, given a mass assignment m for the bodies of evidence
{A1, As,...}, and a measure (A C B) of inclusion among fuzzy
sets, the belief of a fuzzy set B can be defined in general by the value:
Bel(B) =, I(A; € B) - m(A;). We refer the reader to [20, 32]
for exhaustive surveys, and [1] for another approach through fuzzy
subsethood. Different definitions were also introduced by Dubois and
Prade [10] and by Denceux [8, 9] to deal with belief functions ranging
over intervals or fuzzy numbers.

Recently, in [23, 24] and in [14], the authors introduce a treatment
of belief functions on fuzzy sets within the algebraic framework of
MV-algebras. We will recall the main ideas of these approaches in
Section 4, but it is worth pointing out that the choice of MV-algebras
as a setting for that investigation will play a notable role in the de-
velopment of the present work. In fact here we will focus our atten-
tion on the introduction of a multimodal logic for belief functions
on fuzzy sets, and, since MV-algebras are the equivalent algebraic
semantics for Lukasiewicz calculus, the latter can be used both as
ground logic to treat fuzzy events and as setting to axiomatize belief
functions over them as well.

The idea of formalising a logical system to reason with belief func-
tions within the framework of Lukasiewicz logic is not new. In fact, a
logic to reason with classical belief functions over Lukasiewicz logic
was defined in [16] as a fuzzy probabilistic extension of the classical
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S5 modal logic. The approach is based on exploiting the fact that a
belief function on classical logic formulas ¢ can be interpreted as
a probability on modal formulas O, and hence, in that setting, a
formula of the kind PO, where P is a fuzzy modality for probabil-
ity, can be read as ¢ is believable and its semantics given by belief
functions.

The treatment we propose here can be considered as an exten-
sion and a generalization of [16]. In particular we will focus on rep-
resenting belief functions defined over fuzzy sets of finite range,
that is, fuzzy sets on a finite set X and with membership values
on a finite subset S, = {0,1/k,...,(k — 1)/k,1} of the real
unit interval [0, 1]. As we will recall later, every finite MV-algebra
can be easily represented as a subalgebra of fuzzy sets of the form
(SK)* = {f | f: X — Sk}, for some natural k. Then, a proba-
bilistic modality P will be introduced into a suitable modal logic A
over the (k + 1)-valued Lukasiewicz logic L, and we will define
the belief degree of a fuzzy event modeled by a L., formula 1) as the
probability of 0%, i.e. as the truth degree of POq.

It is worth noticing that there is not a unique way to generalize be-
lief functions on MV-algebras. In fact, we can distinguish at least the
cases in which the belief functions are such that their focal elements
are (1) crisp sets, (2) fuzzy sets, and (3) normalized fuzzy sets. Re-
markably, all these cases can be uniformly treated in our multimodal
setting only by distinguishing among several axiomatic extensions of
the intermediate modal logic A. We will discuss these topics in the
subsections 6.1 and 6.2.

This paper is organized as follows. In Section 2 we will recall the
basic notions about classical belief functions, while Section 3 is de-
voted to preliminaries on finitely and infinitely-valued Lukasiewicz
logics, MV-algebras and states. Then in Section 4 we will introduce
belief functions on MV-algebras and we will prove some basic prop-
erties. In Section 5 we consider another equivalent approach to de-
fine belief functions on MV-algebras based on a generalization of
Dempster’s spaces. Section 6 will be devoted to the modal expansion
Ay of L3, the (k + 1)-valued Lukasiewicz logic £, with truth con-
stants, proving results concerning local finiteness and completeness.
Moreover, in Subsections 6.1 and 6.2, we will introduce two relevant
axiomatic extensions of Ay that will be used to characterize distin-
guished classes of belief functions. In Section 7 we finally introduce
the probabilistic logic over A, F'P(A, L), a class of probabilistic-
based models, and we prove completeness. Subsection 7.1 will focus
on completeness of the logic F'P(Ay,£°) with respect to the seman-
tics defined by belief function-based models, while in Subsection 7.2
we will introduce an extension of F'P (A, L) to deal with normal-
ized belief functions. We end with Section 8, where we discuss our
future work.
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2 Preliminaries on Belief functions on Boolean
algebras

Consider a finite set X whose elements can be regarded as mutually
exclusive (and exhaustive) propositions of interest, and whose pow-
erset 2 represents all such propositions. The set X is usually called
the frame of discernment, and every element x € X represents the
lowest level of discernible information we can deal with.

A mapm : 25 — [0, 1] is said to be a basic belief assignment, or
a mass assignment whenever

m(0) =0and Y m(A)=1.
Ae2X

Given such a mass assignment m on 2%, for every A € 2%, the
belief of A is defined as

b (A) =Y m(B).

BCA

)

Every mass assignment 1 on 2% is in fact a probability distribution
on 2% that naturally induces a probability measure Py, on 92" Con-
sequently, the belief function b,,, defined from m can be equivalently
described as follows: for every A € 2%,

bm(A) = P,({Be2X:BC A}). 2)

Therefore, identifying the set { B € 2% : B C A} with its charac-
teristic function on 22" defined by

1 ifBCA
0  otherwise,

Ba:Be2¥ { 3)
it is easy to see that, for every A € 2%, and for every mass assign-
ment m : 25 — [0,1], we have b, (A) = P,.(B4). This easy
characterization will be important when we discuss the extensions of
belief functions on MV-algebras. The following is a trivial observa-
tion about the map 4 that can be useful to understand our general-
ization: for every A € 2%, B84 can be regarded as a map evaluating
the (strict) inclusion of B into A, for every subset B of X.

A subset A of X such that m(A) > 0is said to be a focal element.
Every belief function is characterized by the value that m takes over
its focal elements, and therefore, the focal elements of a belief func-
tion b,, contain the pieces of evidence that characterize b, itself.

3 Preliminaries on Lukasiewicz logic, MV-algebras
and states

The logical setting in which we frame our study is that of (infinitely-
valued) Lukasiewicz logic L, and its finitely-valued schematic ex-
tensions L. Formulas of (any finitely-valued) Lukasiewicz logic are
inductively defined from a countable set V' = {p1,p2,...} of vari-
ables, along with the binary connective — and the unary connective
—. We will denote by §(V) the class of formulas defined from the set
of variables V.
Further connectives are definable from — and — as follows:

P@Yis ~p — Y pOYPis ~(mp@—p) eVYis (p = P) = P
PAYis (= V) o & Pis (o = P) A — p)

The truth constant T is ¢ — ¢ and the truth constant L is =T, and
we will henceforth use the following abbreviations: for every n € N
and for every ¢ € F(V), np will stand for ¢ @ ... ® ¢ (n-times),
and " will stand for ¢ © ... ® @ (n-times).

The propositional Lukasiewicz logic (L in symbols) is defined as
the following Hilbert style system of axioms and rules (cf. [19]):
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For every k € N, the (k + 1)-valued Lukasiewicz logic Ly, is
the axiomatic extension of L defined by the following axioms (cf.
[17, 19]):

(E5) (k= 1)p <> ke,
(16) (Ip'™1)* < k¢!, forevery | = 2,...,k — 2 that does not
divide k£ — 1.

The notion of deduction and proof are the usual ones (see [19]). A
theory is any subset of §(V'), and for every theory I" and for every
formula ¢ we will write I' F ¢ if ¢ can be proved from I in the logic
L.

The algebraic counterpart of (finitely-valued) Lukasiewicz calcu-
lus is the class of (finitely-valued) MV-algebras. An MV-algebra (cf.
[6, 19, 27]) is a system M = (M, ®,—,0™) of type (2, 1,0) such
that the reduct (M, @, oM ) is a commutative monoid, and the fol-
lowing equations hold:

(MV1) z @ -0M = -0,
(MV2) ==z =z,
MV3) ~(z@y) Dy =(-ydz) H 2.

For every k € N, an MV;-algebra is any MV-algebra that also satis-
fies:

(MVA4) kz = (k — 1)z,
(MV5) (lz'=)* = ka', forevery I = 2, ...,k — 2 that does not
divide k£ — 1,

where, in (MV4) and (MV5), 1 stands for -0, and for every
neNnr=z®&...0z (ntimes),and z" = 2O ... Oz (n-
times). As in the case of the logical language, here other operations
can also be defined, among them z — yis "~z @y and x © y is

In every MV-algebra M we can define an order relation by the
following stipulation: for every x,y € M,

z<lyiff -z py=1.

An MV-algebra is said to be linearly ordered, or an MV-chain, pro-
vided that the order < is linear.

An evaluation e of formulas of (V') into an MV-algebra (MV-
algebra) M isany map e : V' — M that extends to compound formu-
las by truth functionality using the operations in M. We say that e is
amodel of (or satisfies) a formula ¢ € F(V) when e(p) = 1. The
class of MV-algebras constitutes a variety (i.e. an equational class
[3]), and MV-algebras are the equivalent algebraic semantics for L.u-
kasiewicz logic. Similarly, for every k, MV -algebras form a variety
that is the equivalent algebraic semantics for L. Therefore Lukasie-
wicz logic is complete with respect to the class of MV-algebras, and
L, is complete with respect to class of MV -algebras.

Example 1 (Standard Algebras) (1) Equip the real unit interval
[0, 1] with the operations of

- truncated sum: for all x,y € [0,1], x ® y = min(1,z + y),
- standard negation: for all x € [0,1], -z = 1 — x.
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Then the algebra [0,1lmv = ([0,1],®,—,0) is an MV-algebra
called the standard M V-algebra. The variety of MV-algebras is gener-
ated, as a variety and as a quasi-variety, by [0, 1|mv (cf. [4, 6]). This
means that, in order to show that a given equality, or quasi-equality,
written in the algebraic language of MV-algebras, holds in every MV-
algebra, it is sufficient to check whether it holds in [0, 1]amv.

(2) Forevery k € Nlet S, = {0,1/k, ..., (k —1)/k,1}. Equip Sk
with the restrictions to Sy, of the above defined truncated sum and
standard negation. We will henceforth denote by Sy, the obtained
structure, that is usually called the standard MV -algebra. The va-
riety of MV -algebras is generated by Sy, (cf. [6]).

Clearly, the above examples (and the results cited therein) show a
stronger version of completeness for L. and L, that we are going to
make clear as follows.

Theorem 1 (1) Lukasiewicz logic £ has the finite strong real com-
pleteness (FSRC for short), i.e.: for every finite theory I' C F(V),
and for every formula o, I' &= ¢ in L iff every evaluation into the
MV-algebra [0, 1\mv that satisfies T, satisfies o as well.

(2) For every k € N, Ly, has the strong real completeness (SRC
for short), i.e.: for every theory T' C F(V), and for every formula
o, I' b @ in Ly iff every evaluation into the MV,-algebra Sy, that
satisfies I, satisfies © as well.

Every MV-algebra M contains a largest Boolean algebra B(M)
called the Boolean skeleton of M, which is constituted by all the
idempotent elements of M. Indeed, the universe of B(M) coincides
withtheset {x € M : z © x = x}.

Remark 2 [t is worth noticing that every finite MV-algebra M can
be represented as a finite direct product of finite MV-chains. In other
words, for every finite MV-algebra M, there exists a finite MV-chain
Sk, and a finite index set X such that M embeds into the direct
product S k)X . This means that every finite MV-algebra can be seen
as a MV-subalgebra of functions from X into Sk, i.e. as a MV-algebra
of Si-valued fuzzy sets of X. Therefore, without loss of generality, we
will henceforth concentrate on finite MV-algebras of fuzzy sets of this
form.

3.1 Expanding Lukasiewicz logic with rational
truth constants

Let £ denote either £ or £, and let Q(L) denote the set of all the
rational numbers included into the standard algebra of £ (recall Ex-
ample 1). Therefore, if £ stands for £ then Q(L) stands for [0, 1]NQ,
while if £ stands for any (k + 1)-valued Lukasiewicz logic Ly, then
clearly Q(ky) = Sk.

The logic L€ is obtained by expanding the language of F.ukasiew-
icz logic by means of symbols 7 for each € Q(£),” and adding the
following bookkeeping axiom schemes:

QD) (71 — 72) > min{1, 1 —ry + 12}
(Q2) 7 <> 1T —r.

The algebraic counterpart of £°, are structures (M, {7™},con))
where M is an MV-algebra, the 7 ’s are nullary operations in M,
and for every r, 71,72 € Q(L) the following hold:

HJW — E]W
M

- M

min(1,1 —r1 + r2)
M

1—r

-7

2 We will henceforth denote by F(V)® the class of formulas obtained from
this expanded language.
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We will henceforth omit the superscript » whenever it will be super-
fluous.

The standard ES-chain is the structure [0, 1]
([0,1]amv, {r}req), ie. the standard MV-chain together with
the rational truth constants 7 interpreted as themselves. For every
k € N, Lf-algebras and the standard Lj-chain are defined in
analogous way.

The notion of evaluation of F(V')°-formulas into expanded MV-
structures with truth constants is defined in the natural way. In partic-
ular, an £°-evaluation on the standard £°-chain is such that e(7) = r
forevery r € Q(L).

Analogous completenss results as those of Theorem 1 hold for the
logics £ and £.5.

3.2 States on MV-algebras

The notion of state on an MV-algebra generalizes that of a finitely
additive probability on a Boolean algebra. More specifically, by a
state on an MV-algebra M (cf. [26]) we mean a map from M into
the real unit interval [0, 1], s : M — [0, 1], satisfying:

(S1)s(1™) =1,
(S2) s(z @ y) = s(z) + s(y), whenever z © y = 0, .

It can be easily shown that every state s on M satisfies s(—z) =
1 — s(x), and hence in particular s(0*) = 0.

Remark 3 The notion of state easily extends to expanded MV-
algebras with truth constants, just by requiring the same two prop-
erties (S1) and (S2). Namely, if M¢ = (M, {T},co(r)) is any L°-
algebra, then (S1) and (S2) enforce every state s on M€ to satisfy
s(T) = r for every rational r € Q(L), and hence states on MV-
algebras with truth constants are homogeneous. Therefore, this en-
ables us to concentrate on states on MV-algebras, regardless of the
fact that the languages are enriched by rational truth constants.

A state s on M is said to be faithful provided that s(z) = 0,
implies = 0™ . In other words, a state of M is faithful if the unique
element of M sent to O is the bottom element of M.

Example 2 Consider any MV-algebra M. Then, every homomor-
phism h : M — [0,1]mv is a state. In addition, since the class
St(M) of all the states of M is a convex subset of [0, 1] (cf. [26]),
the homomorphisms of M into [O, 1]Mv coincide with the extremal
points of St(M).

Given a state s : M — [0, 1], we denote by Supp(s) its support,
ie. Supp(s) = {x € M : s(z) > 0}. The following theorem is an
immediate consequence of [22, Corollary 29].

Theorem 4 Let M = (Sy)~ be a finite MV-algebra. Then for ev-
ery state s : M — [0, 1] there exists a finitely additive probability
measure P on B(M) = 2% such that for every f € M,

s(f) = Xsex f(@) - P({z}).

4 Belief functions on MV-algebras

In [23, 24], Kroupa provides a generalization of belief functions that
can be easily adapted to the framework of finite MV-algebras. Re-
calling Remark 2, we can assume that the finite MV-algebra we are
going to work with is M = (Sk)X for a suitable MV-chain Sy, and
a finite set X. Denote by 2% the powerset of X, and consider, for
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every a : X — Sk the map pq : 25 — Sy defined as follows: for
every B C X,

pa(B) = min{a(z) : x € B}. “4)
Definition 5 We call a map b : (Sx)* — [0,1] a Kroupa belief
function whenever there exists a state § : (Sk)*" — [0, 1] such that
forevery a € M, b(a) = §(pa).

The state § needed in the definition of b is called the state assign-
ment in [23]. Although b has been directly introduced as a combi-
nation of p with the state assignment §, a notion of mass assignment
can also be introduced even for this generalized case. Indeed, since
X is finite, it turns out that one can equivalently define

S 6u(B)-3(B).

BCX

b(a)

In particular, since 1 = b(X) = 3 5 §(B), the restriction of the
state § to 2% (call it /1) is a classical mass assignment. Therefore, the
focal elements of b as those elements in 2 that the mass assignment
7 maps into a non-zero value. In this sense, b is defined from crisp,
and not fuzzy, pieces of evidence.

The definition that we introduce below generalizes Kroupa’s defi-
nition by introducing, for every a € M, a map p, assigning to every
fuzzy set b € M its degree of inclusion into a (cf. [1]). To be more
precise, let M = (Si)~, and consider, for every a € M a map
Pa : M — [0, 1] defined as follows: for every b € M,

pa(b) = min{b(z) = a(z) : z € X} %)

where = denotes the Lukasiewicz implication function (z = y =
min(1,1 — z +y)).°

Remark 6 In a sense, for every a € M, p. can be identified as the
membership function of the fuzzy set of elements of M (and hence
the fuzzy subsets of X ) that are included in a. In particular one has
pa(b) = 1 whenever b < a (for each point). Also notice that the
Boolean skeleton B(M) of any finite MV-algebra M = (Si)* co-
incides with 2% and hence, as also shown by the following result, for
every a € M the map pq extends pq in the domain.

Proposition 7 For all a,a’ € M, poner = min{pa, pa}, and
Pava’ > maX{Pa,Pa/}-

Now we introduce our definition of belief functions on MV-
algebras of fuzzy sets.

Definition 8 Ler X be finite, and let M = (Sk)X be the finite MV-
algebra of fuzzy sets of X with values in Sx. Amap b : M — [0, 1]
is called a belief function if there exists a state s : (Sx)™ — [0,1]
such that for every a € M,

b(a) = s(pa).

We denote the class of all belief functions over M by Bel(M).

©)

Notice that if a € M = (Sy,)™ then p, € (Sx)™ and hence
s(pa) is defined for every a € (Si)~.

It is clear from the definition that Bel(M) is a convex set, since
states are closed by convex combinations (recall Example 2).

3 Here the choice of = is due to the MV-algebraic setting, but other choices
could be made in other algebraic frameworks (see e.g. [1]).
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Proposition 9 For every finite MV-algebra M, and for every b €
Bel(M), b is totally monotone, i.e. b is monotone, and it satisfies:
forallai,...,an € M,

ai) >

On Boolean algebras, total monotonicity is a property that fully char-
acterizes belief functions. It is an open problem whether the same
holds for belief functions on MV-algebras, even in our restricted set-
ting.

For every belief function b : M — [0, 1] defined by a state s on
the finite MV -algebra (Sx)* we know from Theorem 4 that there
exists a unique finitely additive probability measure P on 2, the
Boolean skeleton of (Sy )™, such that, for every a € (S)™

> alf)-PASD).

fe(sp)X

b<\"/

i=1

>

OAIC{1,...,n}

(-l p </\ ak> .

kel

s(a) (7

Let mp : (Sk)* — [0,1] be the probability distribution associ-
ated to the probability measure P of (7), i.e. defined as mp(f)
P({f}),forevery f € (Sx)™. In this case we get, for every f € M,

®

b(a) =s(pa) = Y palf) - mu(f).

fe(sp)X

Then, for obvious reasons, we call my, the mass assignment associ-
ated to b.

Given a belief function b on M, in analogy with the classical
case, an element f € M is said to be a focal element, provided that
mp(f) > 0. Notice that the focal elements, are elements of the MV-
algebra M = (Si)”, and hence they are not crisp sets in general.
This supports the interpretation that the belief functions defined as in
(6) differ from Kroupa’s definition by offering a more general setting
for evidence theory.

Let us denote by L the bottom element of M, i.e. the function
1 : X — Sgsuchthat L(z) = 0 for all z € X. However, in
general, p; does not coincide with the bottom element of (Sk)M .In
fact, if a € M is a function such that forno z € X, f(x) = 1, then it
immediately follows that p, (f) > 0. Therefore, b(_L) = 0 does not
hold in general (and in particular, whenever s is a faithful state). We
call a belief function b on M normalized provided that all the focal
elements of b are normalized fuzzy sets, i.e. for every focal element
f € M for b there exists a € X such that f(z) = 1.

For every 7 € Sk, let7 : X — Si be the function constantly
equal to r. Then for every normalized fuzzy set f € M, p=(f) =
inf{f(z) = r : « € X} = r. Hence, if b is a normalized belief
function, b(7) = 3~ ;¢ (s, )x p(f) - m(f) = r. In other words the
following holds.

Proposition 10 Let b € Bel(M) be a normalized belief function.
Then b is homogeneous, i.e. for every r € Sy, b(T) = r.

5 An alternative definition of belief functions based
on Dempster spaces

The definition of a belief function on a MV-algebra functions M =
(Sk)™ we have proposed in Definition 8 cannot be done by only
working inside the MV-algebra M where the belief function is de-
fined. In fact the definition also involves a state on the bigger algebra
( Sk ) M .
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A possibility to overcome this, so to say, peculiar situation is to
resort to the original Dempster model of defining a belief function as
a lower probability induced by a multivalued mapping [7]. Indeed,
given a probability u on the power set of a finite set £ and a multi-
valued mapping ' : E — 2%, one can consider an induced lower
probability on 2% defined as bel(A) = u({v € E | I'(v) C A}),
for every A C X. This is in fact a belief function, and moreover,
every belief function on X comes defined in this way. The 4-tuple
D = (W, E,T, u) is called a Dempster space.

In this section we show how to define belief functions on MV-
algebras of functions M = (S,)* based on a natural generalization
of Dempster spaces and we will show, as in the classical case, that
both approaches turn out to be equivalent. The approach based on
generalized Dempster spaces will have some advantages regarding
the logical approach to belief functions developed in Section 7.

Definition 11 (Generalized Dempster space) A
Demptser space is a 4-tuple D = (W, E,T", 1) where

generalized

o W and E are non-empty sets
o u:(SK)F — [0,1] is a state
o T': E — (Sk)W is afuzzy set-valued mapping

For simplicity, generalized Dempster spaces will be simply called
Dempster spaces from now on. For each f € (Si)" define o; :
E — Sk by o5 (v) = infuwew I'(v)(w) = f(w).

Definition 12 (Belief function given by a Dempster space) Given
a Dempster space D = (W, E, T, u), the induced belief function
belp : (Sk)W — [0,1] is defined as

belp(f) = nley)-

In order to distinguish the two notions of belief functions that we
have introduced so far (namely those from Definition § that we will
denote by b, and the ones introduced above in Definition 12 that
we will denote by belp), we will henceforth call Dempster belief
funcions those induced by a Dempster space as in Definition 12.

Lemma 13 For any Dempster space D = (W, E,T', u), the Demp-
ster belief function bel p can be expresed as

belp(f) = e syw p1(9) - m(g).
where m(g) = p({v € E | T(v) = g}).

Finally, as it happens in the classical case, one can show that the
two notions of belief functions given in Definitions 8 and 12 are
equivalent.

Proposition 14 Let W be finite. A mapping b : (S)" — [0,1] is
a belief function in the sense of Definition 8 iff there is a Dempster
space D = (W, E,T', u) such that b = belp.

6 The minimal modal extension of L} without
nested modalities

In [16] the authors introduce a probabilistic fuzzy modal logic de-
fined over the classical modal logic S5 to axiomatize reasoning with
classical belief functions. Roughly speaking, the intuition behind that
approach is that the two modalities P for probably, and the classical
modality O of S5, can be used to define a modality B by the combi-
nation PO, which behaves as a belief function over classical events.
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Although there are no particular requirements for choosing S5, this
modal logic has the advantage of being locally finite. This require-
ment is crucial to prove completeness of the resulting probabilistic
logic with respect to a Kripke style semantics.

As mentioned in the introduction, in this paper we introduce a
similar approach for belief functions on fuzzy sets of (Sy)*~ and,
following the definition we introduced in Section 4, we will define
a probabilistic logic over a suitable fuzzy modal logic A. In fact,
in order to keep the defined logic sufficiently expressive and locally
finite, we will take A as the non-nested fragment of A(Fr, L), the
minimal modal logic over the standard MV-chain Sj, defined and
studied in [2]. We will devote this section to describe these modal
logics and to show completeness of Aj.

The language of A(Fr,L7) is obtained by enlarging the language
of L3, by a unary modality O, and defining well formed formulas in
the usual inductive manner: (1) every formula of £, is a formula; (2)
if ¢ and ¢ are formulas, then O¢p, ¢ ® 1, and ¢ — 1, are formulas.

A L§-Kripke frame is a tuple (W, R) where W is a non-empty
set of possible worlds and R : W x W — S} is an many-valued
accessibility relation. We denote by Fr the class of all £j,-Kripke
frames. A L§-Kripke model is a triple (W, e, R) where (W, R) is a
L} -Kripke frame, and for every possible world w, e(-, w) is a truth
evaluation of £3,-formulas into Sy.

Given a formula ¢, and a £7-Kripke model K = (W, e, R), for
every w € W, we define the truth value of ¢ in w, ||¢||., as follows:

- If ¢ is a formula of L3, then ||¢|| x, = e(¢, w),

- I = O, then [|09%] ko = Ay (Rlw, ') = [ 5c.0)-

- If ¢ is a compound formula, its truth value is computed truth func-
tionally by means of £, truth functions.

The truth value of a formula ¢ in K is then defined as ||¢|| x
inf{||¢|lx,w | w € W}. As usual, the notion of (local) logical
consequence in Fr is defined as follows: given a set of formulas
' U {¢}, ¢ follows from I, written I |=ry ¢, iff for every Kripke
model K = (W, e, R) such that (W, R) € Fr and every w € W, if
||| k,0 = 1 for every ¢ € T, then |||k, = 1 as well.

The axioms of A(Fr, L) are the following:

- All the axioms for £,

- (01) o1

- (02) (Op A OY) — O(p A1)

- (03)0O(F — ¢) « (T — Og), foreach r € Sk,

The rules of A(Fr,L},) are Modus Ponens (from ¢ and ¢ — 1) infer
1)) and Monotonicity for O (from ¢ — 1) infer Op — O).

The notion of proof in A(Fr,L{), denoted 5 (g, re), is defined
as usual from the above axioms and rules. In [2] the authors show
that A(Fr, L}) is sound and complete with respect to the class Fr of
£5-Kripke frames: for every set of formulas I' U {¢}, I' =rr ¢ iff
I'Farris) @

Remark 15 In [5] it is shown that the classical modal logic K is
not locally finite. This means that the Lindenbaum-Tarski algebra of
K generated by any finite set of propositional variables is infinite
in general. In particular there is an infinite class of modal formulas
@1, P2, . .. such that for every i # j, ¢ <> ¢; is not valid in some
Kripke frame. Since every Kripke frame for K belongs to Fr as well,
this means that A(Fr, L) is not locally finite either.

Now we define Ay as the fragment of A(Fr,L}) obtained by
restricting the language to formulas without nested modalities.
Namely, the set §(V)° of formulas of Ay, is defined as follows:
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(1) formulas of £.§ are formulas of Ay, ie. §(V)° C F(V)7;
(2) for every formula ¢ € F(V), Op € F(V)";
(3) F(V)7 is taken closed under the connectives of L.§.

Notice that, in this restricted case, nested modalities are not allowed,
and hence, if for instance ¢ and 1) are non-modal formulas, then
(Op) ®4 is a formula of F(V)7, but O(Dp @ 1) is not. In particular
notice that the above axioms (01)-(03) are formulas in F(V)".

The axioms of the logic Ay are those of A(Fr,Lf), and its infer-
ence rules are Modus Ponens, and the Monotonicity rule for O, the
latter being restricted in the premises to formulas in §(V)°. We will
denote by F-4, the provability relation in Ag.

Lemma 16 The logic Ay, is locally finite.

Theorem 17 The logic Ay is strongly complete with respect to the
class Fr of L3 -Kripke frames.

6.1 The case of L} -frames with crisp accessibility
relations

In the same paper [2], the authors also study the subclass CFr of
L3 -Kripke frames (W, R) where the accessibility relation R is crisp
(two-valued). The corresponding logic, A(CFr, L), is shown to be
axiomatizable by extending A(Fr, L) with the well-known axiom
K:

(K) O(p — ) — (Op — Oy).

In a similar way to what we have shown in the above section, one can
consider the logic C'A, defined as the nested modality-free fragment
of A(CFr,Lf). The same techniques used in the above section show
that C' Ay is locally finite, and using [2, Lemma 4.20], one can also
prove strong completeness of C'Aj, with respect to the class CFr of
crisp L -Kripke frames.

6.2 The case of L} -frames with reflexive
accessibility relations

Consider the logics A}, and C'A}, obtained by adding the axiom
(T) Be—=¢

to Ay and C'Ay, respectively. We will show that these logics are also
complete with respect to the corresponding subclasses of L3 -frames
(W, R) where R is reflexive fuzzy relation, i.e. that for all w € W,
R(w,w) = 1 holds. This case is not considered in [2] so, for the
sake of to be self contained, we provide a simple proof.

Theorem 18 The logic A}, (resp. CA},) is sound and strongly com-
plete with respect to the subclass of L3.-Kripke frames (W, R) from
Fr (resp. CFr) where the relation R is reflexive.

7 Logics for belief functions on fuzzy events

In this section we are going to introduce a probabilistic modal
extension (cf. [13, 15, 18, 19]) of Ay (and its extensions CAg,
A}, and CA}) that we will denote F'P(Ag,L°) (FP(CAx,L°),
FP(A}, L), FP(CA},1°) respectively), to deal with the two defi-
nitions of belief functions on MV-algebras of fuzzy sets we discussed
in Section 4, namely Kroupa belief functions and the new equivalent
definitions we have introduced there and in Section 5, together with
their normalized versions.

As already mentioned before, we extend to fuzzy events the fuzzy
modal approach of [16] to define a logic to reason about uncertainty
on classical events modeled by belief functions. Namely, the ap-
proach is based on:

e to consider fuzzy events modeled as propositions of (finitely-
valued) Lukasiewicz logic together with modality B, for belief,
in such a way that, informally speaking, the truth degree of By
corresponds to the belief degree (in the sense of belief functions)
of .

e to get a complete axiomatization of the modality B by relying
on the fact that any belief function on Lukasiewicz formulas* ¢
can be obtained as a probability (or state) on formulas Oy of the
minimal modal extension of f.ukasiewicz logic Ak, and hence by
defining B¢ as the combination of two other modalities PO,
where P is a probabilistic modality like in [13].

The language of the logic F'P(A,L°) is obtained by expanding
the language of Ay, by a unary modality P. The class §(V)* of for-
mulas is defined as follows:

M (V)" S 3V
(ii) for every v € F(V)°, P4 is an atomic P-formula, for every
rational number r € [0, 1], 7 is an atomic P-formula as well, and
they belong to §(V)”; and
(iii) (V)T is obtained by closing the class of atomic P-formulas un-
der the connectives of Lukasiewicz logic L.

Formulas of F(V)¥ which are not from F(V)" (i.e. propositional
combinations of formulas P) will be called P-formulas. For every
» € F(V)°, we henceforth use the abbreviation B(y) for P(Oyp).
These formulas will be formally introduced in the next section.

Notice that in F'P(Ag, L) we are allowing neither formulas that
contain nested occurrences of P nor compound formulas mixing for-
mulas from F(V)" and F(V)*.

Axioms and rules of F'P(Ag, L) are as follows:

e Axioms and rules of Ay, for formulas of (V)"
Axioms and rules of £.° for formulas in F(V)"
The following probabilistic axioms for P-formulas (cf. [13]):

(PAX0) P7 <> 7, forr € Sk

(PAX1) P(—p) <> Py

(PAX2) P(p — ¢) — (Pp — Pv)

(PAX3) P(p @) < [(Py = P(y © ¢)) = Pi]
The rule of necessitation for P: from ¢ derive P(¢p), for ¢ €
S(V)°
We will henceforth denote by Frp the provability relation of
FP(Ag,L°).

In the above definition, we could consider adding to Aj the ax-
ioms O(¢p — ) — (Op — Ot) and Op — ¢ (one or both) as

we did in Sections 6.1 and 6.2. This would result in similar logics
FP(CAg,L®), FP(AL,L°) and FP(CAL,L°).

Remark 19 It is worth noticing that both FP(A,L°) and
FP(CAg,£%) do not prove B(T) <> T forr € Sk \ {0}. In fact,
although P(T) <> T holds (it is an instance of the axiom (PAXO0)),
Ay t/ OF < T, indeed Ay, only proves one direction, 7 — OF. Then,
it is clear that the extension A}, which contains the reflexivity ax-
iom Op — ¢, does prove the equivalence T <> O7F, and hence both
FP(A},L£%) and FP(CA},, L) prove B(T) + T.

4 According to the notions of belief functions introduced in Sections 4 and 5.
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The following example shows that F'P(Ag,E°) is sufficiently
strong to prove the property of total monotonicity for the modality
B.

Example 3 (Total Monotonicity) We first observe that the formula
Op VvV Oy — O(p V) is a theorem of Ay. In fact,

Fa, Op — O(p V 9), and Fa, Oy — O(p V ), so that
Fa, OV Oy = O(p V).

Now, applying the rule of necessitation for P, we get -pp P(Qp V
Oy — O(p V v)), and hence together with axiom (P AX2) instan-
tiated as P(OpV Oy — O(pVY)) — (P(OpVDOy) — P(O(pV
¥))), and a step of modus ponens, we get Fpp P(Op VvV Ov) —
P(O(p V1)), ie.

Frp P(Op Vv Oy) — B(e V). )

Now, one can check that for every v1 and 2, brp P(y1 V ’}/2) >
P(v1) ® (P(v2) © P(v1 A 7y2)). Indeed, letting ® denote this last
formula, by cases we have:

(i) since y1 — 72 Frp (71 \ 'yg) < Y2, and 1 — Y2 Frp
(71 Ay2) <> 1, we have

71 =72 Frp @ < [Py2 <+ (P11 @ (Py2© Pm))] (10

But vi — v2 Frp Py1 — P2, and hence 1 — v2 Frp
[Py1 @ (P2 © Py1)] < (P2 < Py2), and from (10) we have
that Y1 — Y2 I—Fp CI);

(ii) analogously, one can prove that v — y1 Frp D.

Finally, by substituting in (9) P(Qp V Ov) by the equivalent modal
Sformula P(Op) @ (P(OY) © P(Op A Ov)), we obtain Frp
P(Op) @ (P(Oy) © P(Op A OY)) — B(p V ), and hence
Frp P(Op) & (P(OY) & P(O(p Av))) = B(p V), that is

Frp B(p) ® (B(¥) © Bl A)) — B(p V).

This theorem is indeed the syntactical counterpart of the property of
total monotonicity for the case of two formulas. A similar argument
can be used, together with the associativity of V, to describe total
monotonicity for n formulas in the language of F P(Ag, £°).

The first kind of semantics we introduce for F/P(Ay,£°) and
FP(CAg, L) is given by the classes of probabilistic L5,-Kripke
models, and probabilistic crisp Kripke models respectively.

Definition 20 A probabilistic L3 -Kripke model is a system
M = (W,e,R,s)

such that (W, e, R) is a L5-Kripke model, and s : §y; — [0,1]
is a state on the MV-algebra of functions §yy = { ffp\/[ | ¢ €
S, 31 W = S, with £ (w) = ||| arw}-

If M is such that (W, R) is a classical Kripke frame, then M is

called a probabilistic classical £§ -Kripke model.

Let M (W, e, R,s) be a probabilistic (classical) £§-Kripke
model. For every ® € F(V)¥, and for every w € W, we define
the truth value of ® in M at w inductively as follows:

o If ® € F(V)", then its truth value ||®| s, is evaluated in
(W, e, R) as defined in the previous section.
o If & = P, then || Py ar,w = s(f))).
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e If ® is a compound formula, its truth value is computed by truth
functionality.

Given a finite probabilistic L.5-Kripke model M = (W, e, R, s),
an equivalent probabilistic model can be introduced where the state
s is replaced by a probability distribution m on the set of possible
worlds:

M = (W,e,R,m)

that is, m : W — [0,1] is defined as m(w) = s({w}), where
§: (Sk)™W — [0,1] is an extension of s : F3; — [0, 1]. Such an ex-
tension always exist by [21, Theorem 6] since F5; is MV-subalgebra
of (Sx)" . In such a model, according to (8) the evaluation of proba-
bilistic formulas reduces to the following expression: & = P, then

1PYllarw = Y pew fi (w) - m(w).

Theorem 21 (Probabilistic completeness) (1) The logic
FP(Ax,L%) is sound and finitely strong complete with respect
to the class of probabilistic 1.5, -Kripke models.

(2) The logic FP(C Ay, L°) is sound and finitely strong complete
with respect to the class of probabilistic classical .3,-Kripke models.

Now we can further consider the probabilistic logics F'P(Aj;,£°)
and FP(CAj,, L) built over the modal logics A}, and C'A}, we have
introduced in Section 6.2. Adapting the proof of the above Theorem
21, it is fairly easy to see that these logics are sound and finitely
strongly complete with respect to the classes of probabilistic £.%-
Kripke models (W, e, R,s) in which R is a reflexive relation and
the class in which R is a crisp reflexive relation respectively. In the
next section we will show the importance of these logics to deal with
normalized belief functions.

7.1 Belief function semantics for belief formulas

Now, we introduce a class of models that are more closely related to
belief functions on M V-algebras as we discussed in Section 4. As we
have already observed in Proposition 7 (ii), Kroupa belief functions
are particular cases of those we introduced in Definition 8. We will
then focus on this latter generalization.

As for the formulas in F(V) P that well behave with respect to this
semantics, let us consider the following class.

Definition 22 The set of belief formulas (or B-formulas) is the sub-
class of § (V)P defined as follows: atomic belief formulas are those
of the form P(0v) (where of course 1 is a formula in L), that will
be henceforth denoted by B(1); compound belief formulas are de-
fined from atomic ones using the connectives of £°. The set of belief
formulas will be denoted by F(V)".

The class of models that we are about to introduce are based on
belief functions rather than states. The idea is to use an extension of
Dempster spaces that allows to evaluate formulas of F(V)°.

An evaluated Dempster space is a pair (D, e) where D is a Demp-
ster space (Definition 11) and e is a L. -evaluation.

Definition 23 Given an evaluated Dempster space (D, e), the in-
duced belief function on formulas of §(V')€ is defined as

belp,(p) = belp(fe) (= nler,))

where f, € (Sk)" is the mapping defined by f,(w) = e(w, ¢).
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Definition 24 (Belief function on formulas) A mapping bel
F(V)® — [0,1] is a belief function on formulas if there is an evalu-
ated Dempster-space (D, e) such that bel = belp ..

Consider a probabilistic £5-Kripke model K = (W, R,e,s),
and define the evaluated Dempster space (Dx,e), where Dg =
(W,W,T, ) where T : W — (Sg)V is defined as I'(w) =
R(w,-), and x = s. Therefore, following Definition 23, we can say
that every probabilistic Kripke model induces (or defines) a belief

function as follows:

Definition 25 Given K = (W, R, e, ), the induced belief function
on formulas of §(V)¢ is defined as

belk (p) = belpy ().

Lemma 26 belx (p) = p(foy,), where fo, : W — Sy is defined
as fou(w) = e(w, D).

Therefore, the truth evaluation of belief formulas given by each
probabilistic £5-Kripke model defines a belief function on non-
modal formulas. The next theorem provides the converse direction,
and hence both semantics are proved to be equivalent for belief for-
mulas.

Theorem 27 Every belief function on formulas defined by an eval-
uated Dempster space (D, e) is given by a probabilistic L5 -Kripke
model L.5,-Kripke model K = (W', R, €', s) where:

o W ={(fw)|fe (S, weW}

e forevery (f,w), (ngl) ew’, R((f,w), (ngl)) = f(w/)
o & ((f,w),¢) = e(w, @), for each € F(V)°

e sisastate on (Sy)"' such that for every f € (Si)",

> wew sU(f,w)}) = m(f).

Therefore, alternatively to the probabilistic £.7,-Kripke model se-
mantics for belief formulas, we can simply define a semantics based
on belief functions on formulas. This is formally done in the next two
definitions.

Definition 28 Let ® a belief formula and let bel a belief function on
Sormulas of F(V)€. The truth evaluation of ® by bel is defined by

induction as follows:

e if & is an atomic belief formulas POy, then ||®||ser = bel(p);
o || - ||bet is then extended to compound belief formulas using L.,
connectives.

If ||®]lbet = 1 we say that bel is a model of ¥. Moreover, we say
bel is a model of a set of belief formulas (belief theory) T if bel is a
model of each formula of T.

Definition 29 Let T" be a belief theory and let © be belief formula.
T Er @ iff for every belief function bel on formulas of F(V)€,
U |[ber = 1 for every U € T implies ||P||per = 1 as well.

Analogously, one can define logical consequence relations
|:BFKTMW, Egr, and ':BFK'I'U'u.pa,n corresponding to the
classes of Kroupa belief functions, normalized belief functions and
normalized Kroupa belief functions, respectively.

Due to Theorem 27, T =pr P can be equivalently given by prob-
abilistic £.5 -Kripke models.
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Lemma 30 T Egr O iff for every probabilistic L5,-Kripke model
K= (W,R,e,p), ||¥||x = 1forevery ¥ € T implies || ®||x = 1.

Finally we can formulate the following completeness result.

Theorem 31 (Completeness) Let T be a finite belief theory and let
D be belief formula. Then it holds that

Trppagee) ® iff T Epr @,

i.e. @ is derivable from T in the logic FP(A,L°) if, and only if,
every belief function on formulas that is a model of T' also is a model
of ®.

As a direct corollary we have the following completeness result
for Kroupa belief functions.

Corollary 32 For any finite belief theory R and belief formula ®, it
holds that T -ppca, ko) @ iff T EBFgroupa P-

7.2 Dealing with normalized belief functions

In Section 4 we called normalized those belief functions b
(Sk)* — [0,1] whose focal elements are normalized fuzzy sets.
A belief model (2, m) hence is said to be normalized provided that
every focal element f € (Sk)® (ie. every f € (Sk)® such that
m(f) > 0) is a normalized fuzzy set.

Consider a probabilistic £7,-Kripke model K = (W, e, R, s) for
FP(A},L°). In other words, let K = (W, e, R, s) be a probabilis-
tic £.%-Kripke model, whose accessibility relation R is reflexive, and
define from K the evaluated Dempster space Dx = (W, W, T, i)
defined as in the previous section. Recall that I'(w) = R(w, -), and
hence the mass assignment associated to bel x defined as in Lemma
13 induces focal elements g € (Sx)" such that for some w’ € W,
g = I'(w') = R(w',-). Therefore, if g = T'(w’) is a focal element
of belk, g(w') = T(w')(w') = R(w',w") = 1, and hence g is
normalized.

Proposition 33 For every probabilistic 1.5 -Kripke model K
(W, e, R,s) with R reflexive, there exists a normalized belief func-
tion on formulas bel such that, for every belief formula ®, | ®||x =

1@ lber-

Conversely, let (D,e) = (W, E,T,u,e) be an evaluated Demp-
ster space inducing a normalized belief function on formulas bel =
belp.e, and let

o W' ={(f,w): fisnormalized, and f(w) = 1},

e Rand e'(-) = || - ||(f.w) are defined as in the proof of Theorem
27,

e sisastate on (Sk)wl such that for every f € (Sk)",

E’LUEW:f(’LU):I S({(f, ’U))}) = m(f)a
where m is the mass associated to bel through Lemma 13.

Then M = (W', €', R,s) is a probabilistic £§-Kripke model with
R reflexive. In fact for every (f,w) € W', R((f,w),(f,w)) =
f(w) = max,rew f(w') = 1 because f is a focal element for m,
and bel is normalized. Moreover, since for every wo € W, the map
g : W — S such that g(w) = 1if w = wop, and g(w) = 0
otherwise is a normalized fuzzy subset of W, it follows that

W ={weW: (g,w) e W}
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Therefore, taking this into account, if % is non-modal then, following
the lines of the proof of Theorem 27, we have ||| (¢,w) = pjjw| (f)-
If @ is any belief formula, then ||®||se; = ||P||as, in other words the
following holds.

Proposition 34 For each normalized belief function on formulas bel
there exists a probabilistic L.5-Kripke M = (W, e, R, s) with R re-
flexive, such that, for every belief formula ®, ||®||apr = || P||ver-

From Proposition 33 and Proposition 34 we immediately get

Theorem 35 The logic FP(A},,L) is sound and finitely strong
complete with respect to normalized belief functions on formulas.

The following result is a direct consequence of Theorem 35 and
Proposition 10. It clarifies what we discussed in Remark 19, i.e. that
FP(AL,L°) proves that the belief modality B is homogeneous.

Corollary 36 For every k € N, and for every r € Sy, FP(AL, L)
proves B(T) <> T.

Corollary 37 For any finite belief theory T' and belief formula ®, it
holds that T'+ppcay ko)  iff T EBFrroupan P

8 Conclusion

In this paper we presented a logical approach to belief functions on
MV-algebras. We have followed the idea developed in [16] where the
authors defined a logic for belief functions on Boolean algebras by
combining a probabilistic modality P with the classical S5 modality
0. In [16], the choice of S5 as the modal logic for events is moti-
vated by the need of a locally finite logical system (remember also
our proof of Theorem 21 where locally finiteness is a crucial require-
ment for the logic of events), and in fact S5 is the weaker classical
modal logic that fulfills that requirement (see [5]). In this paper we
started from a non-locally finite modal logic as logic for events, and
we recovered local finiteness by working on the syntactical level of
modal formulas, and specifically not allowing a nested use of O. In
fact, the same results the authors proved in [16] can be equivalently
obtained considering, as logic for events, a variant of the weaker clas-
sical modal logic K, without nested modalities. Indeed a nested use
of O is useless when we define belief formulas as we did in Section
7.1, and as they are defined in [16, §4].

Acknowlegdments The authors acknowledge partial support from
the Spanish projects TASSAT (TIN2010- 20967-C04-01), Agreement
Technologies (CONSOLIDER CSD2007-0022, INGENIO 2010) and
ARINF (TIN2009-14704-C03-03), and by the Marie Curie IRSES
Project MaToMuVI (FP7-PEOPLE-2009). Flaminio acknowledges
partial support from the Juan de la Cierva Program of the Spanish
MICINN.

REFERENCES

[1] L. Biacino. Fuzzy subsethood and belief functions of fuzzy events.
Fuzzy Sets and Systems 158(1), 3849, 2007.

F. Bou, F. Esteva, L. Godo, R. Rodriguez. On the Minimum Many-
Valued Modal Logic over a Finite Residuated Lattice. Journal of Logic
and Computation, vol. 21, issue 5, pp. 739-790, 2011.

S. Burris and H.P. Sankappanavar, A course in Universal Algebra,
Graduate texts in Mathematics, Springer Veralg 1981.

C. C. Chang. Algebraic Analysis of Many-valued Logics. Trans. Am.
Math. Soc. 88, 467-490, 1958.

B. FE Chellas. Modal Logic: An Introduction. Cambridge University
Press, 1980.

(2]

(3]
(4]
[5]

41

(6]
(71
(8]
(91
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]
[20]
[21]
[22]

[23]

[24]
[25]
[26]
[27]

(28]

[29]
[30]

[31]

[32]
[33]

[34]

R. Cignoli, LM.L. D’Ottaviano, D. Mundici. Algebraic Foundations of
Many-valued Reasoning. Kluwer, Dordrecht, 2000.

A. P. Dempster. Upper and lower probabilities induced by a multivalued
mapping. The Annals of Mathematical Statistics 38 (2): 325-339, 1967.
T. Denceux. Reasoning with imprecise belief structures. Int. J. Approx.
Reasoning 20(1): 79-111, 1999.

T. Denceux. Modeling vague beliefs using fuzzy-valued belief struc-
tures. Fuzzy Sets and Systems 116(2): 167-199, 2000.

D. Dubois, H. Prade. Evidence Measures Based on Fuzzy Information.
Automatica 21(5), 547-562, 1985.

D. Dubois, H. Prade. A Set-Theoretic View of Belief Functions: Logical
Operations and Approximations by Fuzzy Sets. In Classical works of
the Dempster-Shafer theory of belief functions. Studies in Fuzziness
and Soft Computing, 2008, Volume 219/2008, 375-410.

F. Esteva, L. Godo, E. Marchioni. Fuzzy Logics with Enriched Lan-
guage, in Handbook of Mathematical Fuzzy Logic - P. Cintula, P.
Hajek, C. Noguera (eds), Studies in Logic, vol. 38, College Publica-
tions, Londres, 2011.

T. Flaminio, L. Godo. A logic for reasoning about the probability of
fuzzy events. Fuzzy Sets and Systems 158(6): 625-638, 2007.

T. Flaminio, L. Godo, E. Marchioni. Belief Functions on MV-Algebras
of Fuzzy Events Based on Fuzzy Evidence. In Proceedings of EC-
SQARU 2011, Lecture Notes in Artificial Intelligence 6717, Weiru Liu
(Ed.), pp. 628-639, 2011.

T. Flaminio, L. Godo, E. Marchioni. Reasoning about uncertainty of
fuzzy events: an overview. in Understanding Vagueness - Logical,
Philosophical, and Linguistic Perspectives, P. Cintula et al. (Eds.), Col-
lege Publications, to appear, 2011.

L. Godo, P. Hijek, F. Esteva. A Fuzzy Modal Logic for Belief Func-
tions. Fundamenta Informaticae 57(2-4), 2003.

R. Grigolia, Algebraic analysis of Lukasiewicz-Tarski n-valued logical
systems, in: R. Wdjcicki, G. Malinowski (Eds.), Selected Papers on
Lukasiewicz Sentencial Calculi, Wroctaw, Polish Academy of Science,
Ossolineum, pp. 81-91, 1977.

P. Hdjek, L. Godo, F. Esteva. Probability and Fuzzy Logic. In Proc. of
Uncertainty in Artificial Intelligence UAI'95, P. Besnard and S. Hanks
(Eds.), Morgan Kaufmann. San Francisco, 237-244 (1995).

P. Hijek. Metamathematics of fuzzy logics. Kluwer, Dordrecht, 1998.
C. Hwang, M. Yang. Generalization of Belief and Plausibility Functions
to Fuzzy Sets Based on the Sugeno Integral. International Journal of
Intelligent Systems 22, pp. 1215-1228, 2007.

T. Kroupa, Representation and extension of states on MV-algebras.
Archive for Mathematical Logic, 45 (4):381-392. 2006.

T. Kroupa. Every state on semisimple MV-algebra is integral. Fuzzy
Sets and Systems 157(20): 2771-2782, 2006.

T. Kroupa. From Probabilities to Belief Functions on MV-Algebras. In
Combining Soft Computing and Statistical Methods in Data Analysis,
C. Borgelt et al. (Eds.), AISC 77, Springer, pp 387-394, 2010.

T. Kroupa. Extension of Belief Functions to Infinite-valued Events. Soft
Computing, to appear.

R. McNaughton. A Theorem about Infinite-valued Sentential Logic. J.
Symb. Log. 16, 1-13, 1951.

D. Mundici. Averaging truth values in Lukasiewicz logic. em Studia
Logica 55 (1) pp. 113-127, 1995.

D. Mundici. Advanced Lukasiewicz calculus and MV-algebras, Trends
in Logic 35, Springer 2011.

J. B. Paris. A note on the Dutch Book method, Revised version of a
paper of the same title which appeared in The Proceedings of the Sec-
ond Internat. Symp. on Imprecise Probabilities and their Applications,
ISIPTAO1, Ithaca, New York, 2001.

S. Parsons. Some qualitative approaches to apply the Dempster-Shafer
theory. Information and Decision Technologies 19, 321-337, 1994.

G. Shafer. A Mathematical Theory of Evidence. Princeton University
Press, Princeton 1976.

P. Smets. Belief Functions. In Nonstandard Logics for Automated Rea-
soning, P. Smets et al. (eds.), Academic Press, London, pp. 253-277,
1988.

J. Yen. Computing Generalized Belief Functions for Continuous Fuzzy
Sets. Int. J. Approx. Reasoning 6: 1-31, 1992.

L. A. Zadeh. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets
and Systems 1, 3-28, 1978.

L. A. Zadeh. Fuzzy sets and information granularity. In Advances in
Fuzzy Sets Theory and Applications, (M. Gupta et al. eds), North Hol-
land, 3-18, 1979.



ECAI-2012 Workshop WL4AI

42



ECAI-2012 Workshop WL4AI

NP-completeness of fuzzy answer set programming under
F.ukasiewicz semantics

Marjon Blondeel ' and Steven Schockaert > and Martine De Cock ® and Dirk Vermeir

Abstract. Fuzzy answer set programming (FASP) is a generaliza-
tion of answer set programming (ASP) in which propositions are al-
lowed to be graded. Little is known about the computational com-
plexity of FASP and almost no techniques are available to compute
the answer sets of a FASP program. In this paper, we first present
an overview of previous results on the computational complexity
of FASP under Lukasiewicz semantics, after which we show NP-
completeness for normal and disjunctive FASP programs. Moreover,
for this type of FASP programs we will show a reduction to bilevel
linear programming, thus opening the door to practical applications.

1 INTRODUCTION

Answer set programming (ASP) [1] is a form of declarative pro-
gramming that can be used to model combinatorial search problems.
Specifically, a search problem is translated into a disjunctive ASP
program, i.e. a set of rules of the form

r:a1V...Vap < bi A...ANby Anotci A ... Anotcg,

with a;, bj, ¢; literals (atoms or negated atoms) or constants (“true”
or “false”) and “not” the negation-as-failure operator. Thus, in ASP
there are two types of negation: classical or strong negation “—" and
negation-as-failure “not”. The intuitive difference is that —a is true
when —a can be derived, whereas not a is true if a cannot be derived.
Rule r indicates that whenever the body b1 A ... A b, Anoter A
... A not cx holds, that the head a1 V ...V a., should hold as well.
For example, consider the following ASP program P.

light
power

T1 :
T2 @

< power, not broken
— 1

Rule r; informally means that we can conclude that the light is on
if there is no reason to think that the lamp is broken and if we can
establish that the power is on. A rule such as r is called a fact; the
head is unconditionally true; the power is on. Given such a program,
the idea is to find a minimal set of literals that can be derived from the
program. These “answer sets” then correspond to the solutions of the
original search problem. For example, {light, power} is an answer

1 Vrije Universiteit Brussel, Department of Computer Science, Pleinlaan 2,
1050 Brussel, Belgium, email: mblondee @ vub.ac.be, Funded by a joint Re-
search Foundation-Flanders (FWO) project

2 Cardiff University, School of Computer Science and Informatics, 5 The
Parade, Cardiff, CF24 3AA, UK, email: s.schockaert@cs.cardiff.ac.uk

3 Ghent University, Department of Applied Mathematics and Com-
puter Science, Krijgslaan 281, 9000 Gent, Belgium, email: mar-
tine.decock @ugent.be

4 Vrije Universiteit Brussel, Department of Computer Science, Pleinlaan 2,
1050 Brussel, Belgium, email: dvermeir @ vub.ac.be

43

4

set of P. Note that “power” should be an element of each answer set
of P.

If the head of each rule consists of exactly one literal, the program
is called normal. If, in addition, a normal program does not contain
“not” nor “—7”, it is called simple.

Given a disjunctive ASP program P and a literal [, we are inter-
ested in the following three decision problems.

1. Existence: Does P have an answer set?

2. Set-membership: Does there exist an answer set I of P such that
lel?

3. Set-entailment: Does [ € I hold for each answer set I of P?

A summary of the complexity for these decision problems is given
in Table 1.

Table 1. Complexity of inference in ASP [1, 15]
| existence set-membership  set-entailment
simple inP in P inP
normal NP-complete NP-complete coNP-complete

disjunctive 25 -complete 25 -complete H§ -complete

Recall that [TY = coXf, where ©F -membership means that the
problem can be solved in polynomial time on a non-deterministic
machine using an NP oracle.

Although ASP allows us to model combinatorial optimization
problems in a concise and declarative manner, it is not directly suit-
able for expressing problems with continuous domains. Fuzzy an-
swer set programming (FASP) (e.g. [19, 32]) is a generalization of
ASP based on fuzzy logics [18] that is capable of modeling contin-
uous systems by using an infinite number of truth values that corre-
spond to intensities of properties. A (general) FASP program is a set

of rules of the form

r:g(ai,...,an) < f(b1,...,bm,notecy,...,notcy),

with a;, bj, ¢; literals (atoms or negated atoms) or constants ¢ (with
¢ € [0,1]NQ) and “not” the negation-as-failure operator, and where
f and g correspond to applications of fuzzy logical disjunctions and
conjunctions. Rule 7 now intuitively means that the truth value of the
head must be greater or equal than the truth value of the body. For
example, consider the following program P:

< notclosed
< notopen

71
T2l

open
closed

The properties “open” and “closed” can be given a value in [0, 1]
depending on the extent, e.g. the angle, to which a door is opened
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resp. closed. The rule r; intuitively means that the door is open to
a degree greater or equal than the extent to which the door is not
closed. Rule r2 implies the opposite property.

In recent years, a variety of approaches to FASP have been pro-
posed (e.g. [12, 20, 22, 25, 28, 29, 30]). The main differences are
the type of connectives that are allowed, the truth lattices that are
used, the definition of a model of a program and the way that partial
satisfaction of rules is handled. Note that FASP is not used to deal
with uncertainty, but with partial truth. See [14] for a discussion on
the difference between these two concepts. To deal with uncertainty,
ASP can be extended with possibility theory (e.g. [6]) or with proba-
bility theory (e.g. [2]). Still, FASP is sometimes useful as a vehicle to
simulate probabilistic or possibilistic extensions of ASP, as its abil-
ity to model continuity can be used to manipulate certainty degrees
[6, 13].

In particular, in this paper we are interested in disjunctive FASP
programs, i.e. FASP programs with rules of the form

AD.. P+ b1 ®...0...bp, ®notc1 ® ... ®not ¢,

where @ and ® are respectively the Lukasiewicz disjunction and
the Lukasiewicz conjunction and where < is interpreted by the
Lukasiewicz implicator (see Section 2.2). Other types of programs
of interest are normal FASP programs, i.e. disjunctive FASP pro-
grams in which each rule has exactly one literal in the head, and
simple FASP programs, i.e. normal FASP programs that do not con-
tain “not” nor “=".

Lukasiewicz logic is often used in applications because it pre-
serves many desirable properties from classical logic. It is closely
related to mixed integer programming, as was first shown by Mc-
Naughton [23] in a non-constructive way. Later, Hahnle [17] gave a
concrete, semantics-preserving, translation from a set of formulas in
Lukasiewicz logic into a mixed integer program. Checking the satis-
fiability of a Lukasiewicz logic formula thus essentially corresponds
to checking the feasibility of a mixed integer program.

By construction, FASP relates to Lukasiewicz logic as ASP does
to classical logic. For Lukasiewicz logic, satisfiability is an NP-
complete problem [24]. Since satisfiability has the same complex-
ity for classical logic, one would expect ASP and FASP to have the
same complexity as well. In the case of probabilistic ASP, the com-
plexity of the existence problem has been shown to be 3£ -complete
[21]. On the other hand, it does not necessarily need to hold that
the computational complexity remains the same, for instance in the
case of description logics. There are fuzzy description logics that,
unlike the classical case, do not have the finite model property under
Lukasiewicz logic or under product logic [8] and there are descrip-
tion logics that are undecidable under Lukasiewicz logic [10]. In a
previous paper [7] we showed %1 -completeness for general FASP
programs under Lukasiewicz semantics for the set-membership prob-
lem “Given a program P, a value A € [0,1] N Q and a literal [. Is
there an answer set I of P such that I(I) > A?”. However, for dis-
junctive FASP programs we were able to show NP-membership; a
lower complexity than for the corresponding class of ASP programs.
In this paper, we will extend the results from [7] by showing NP-
completeness for normal and disjunctive FASP programs. Moreover,
we will provide an implementation into bilevel linear programming.
This result can be used as a basis to built solvers for FASP.

Intuitively, in a bilevel linear programming problem there are two
agents: the leader and the follower. The leader goes first and attempts
to optimize his/her objective function. The follower observes this and
makes his/her decision. Since it caught the attention in the 1970s,
there have been many algorithms proposed for solving bilevel linear
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programming problems (e.g. [4, 9, 27]). A popular way to solve such
a problem, e.g. in [4], is to translate the bilevel linear programming
problem into a nonlinear programming problem using Kuhn-Tucker
constraints. This new program is a standard mathematical program
and relatively easy to solve because all but one constraint is linear.
In a later study [5], an implicit approach to satisfying the nonlinear
complementary constraint was proposed, which proved to be more
efficient than the known strategies.

The paper is structured as follows. In Section 2 we provide the
necessary background on ASP, Lukasiewicz logic and FASP. In Sec-
tion 3 we will discuss previous results about the computational com-
plexity of FASP. In Sections 4 and 5 we will derive new complexity
results for disjunctive FASP programs, and in Section 6 we provide
an implementation using bilevel linear programming for this class of
programs. Finally, we present some conluding remarks in Section 7.

2 BACKGROUND
2.1 Answer set programming (ASP)

A disjunctive ASP program is a finite set of rules of the form
r:a1V...Vap <+ bi A...ANby Anote; A ... Anotcg,

with a;, bj, ¢; literals (atoms a or negated atoms —a) and/or the con-
stants 1 (true) or 0 (false) withi € {1,...,n},j € {1,...,m} and
1 € {1,...,k}. The operator “not” is the negation-as-failure oper-
ator. Intuitively, the expression not a is true if there is no proof that
supports a. On the other hand, —a is essentially seen as a new literal,
which has no connection to a, except for the fact that answer sets
containing both a and —a will be designated as inconsistent. If [ is a
literal, then we define =l := —a if | = a with @ an atom and —[ := a
if | = —a with a an atom.

We refer to the rule by its label r. The expression a1 V ...V a, is
called the head r;, of r and by A...Ab,, Anotci A...Anot ck is the
body 1 of r. In ASP, a rule of the form “0 < a”, i.e. a constraint, is
usually written as “4— a” and a rule of the form “a < 17, i.e. a fact,
as “a <.

Different classes of ASP programs are often considered, depend-
ing on the type of rules they contain. If P does not contain rules with
negation-as-failure, it is called a positive (disjunctive) ASP program.
If each rule in P has exactly one literal in the head, it is called a
normal ASP program. If P is a normal ASP program that is posi-
tive, it is called a definite ASP program. A definite ASP program not
containing strong negation is called a simple ASP program.

An interpretation I of P is any consistent set of literals I C Lp
with

Lp ={l]lliteral in P} U {=l | [ literal in P}
and where we say that [ is consistent if for no literal [ in Lp we
have that I € [ and -/ € I. The set of interpretations I C Lp will
be denoted by P(Lp). A literal [ is true w.rt. I, denoted as I = 1,
if Il € I. An interpretation / € P(Lp) can be extended to rules as
follows:

I=T1,1¥0,

I EnotliffI ¥,

I (aAB)iffI =aand] =B,
ITE(avp)iff I Eaorl =B,
= (a« B)iff] = aorl¥B.

with [ a literal and « and /3 relevant expressions.
An interpretation I € P(Lp) is called a model of a disjunctive
ASP program P if I |= r for each rule »r € P. A model I of P is
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minimal if there exists no model J of P suchthat J C I,i.e. J C [
and J # I. An interpretation I € P(Lp) is called an answer set of
a positive disjunctive ASP program P if it is a minimal model of P.
Note that a simple ASP program P has exactly one answer set.

To define the semantics for disjunctive ASP programs P that are
not positive, one starts from a candidate answer set [ € P(Lp) and
computes the Gelfond-Lifschitz reduct P! [16] by removing all rules
in P that contain expressions of the form not ! with [ € I and re-
moving all expressions of the form not / in the remaining rules. An
interpretation I € P(Lp) is called an answer set of P if it is an
answer set of the positive program P’.

Example 1. Consider the normal ASP program P

not a
not b

b «
a <+

with a and b atoms. For an interpretation I = {a}, we have that
P s equal to

a <

Since 11 is a minimal model ofPIl, we conclude that 11 is an answer
set of P. Similar, I, = {b} is also an answer set of P. One can easily
check that these are the only answer sets.

Remark 1. Note that an interpretation I € P(Lp) can be seen as
amapping I : Lp — {0,1} where I(l) = 1ifl € T and I(l) =0 if
1¢1.

Remark 2. A disjunctive ASP program P with strong negation can
be translated to a disjunctive ASP program P’ without strong nega-
tion, by replacing each literal of the form —a with a new atom a' and
adding the constraint < a A a'. An interpretation I € P(Lp) is an
answer set of P iff there exists an answer set I' € P(Lp:) of P’
such that I(c) = I'(c) and I(~c) = I' (c') for each atom c € Lp.

2.2 Lukasiewicz logic

Fuzzy logics [18] form a class of logics whose semantics are based
on truth degrees taken from the unit interval [0, 1]. Lukasiewicz logic
is a particular type of fuzzy logic that is often used in applications
since it preserves many properties from classical logic.

In this paper, we will consider formulas built from a set of atoms
A, constants ¢ for each element ¢ € [0,1] N Q and the connectives
conjunction ®, disjunction &, negation ~ and implication —. The
semantics of this logic are defined as follows. A fuzzy interpretation
is a mapping I : A — [0, 1] that can be extended to arbitrary formu-
las as follows;

[elr =ec

[a® Blr = max([a]r + [B]r — 1,0),

[a ® Blr = min([a]; + [8]1, 1),

{a — Blr = min(1 — [&]r 4+ [8]1,1) and

for a constant ¢ and « and 3 formulas. The set of all fuzzy interpre-
tations C' — [0, 1] with C' an arbitrary set will be written as F(C).
We say that I € F(A) is a fuzzy model of a set of formulas B if
[a];r = 1 foreach o € B.For I1, I, € F(A) we write [y < I if
I(a) < I(a) for each a € A. A fuzzy model I of a set of formu-
las B is called a minimal fuzzy model if there does not exist a fuzzy
model J of B suchthat J < [,i.e. J < Tand J # I.

45

2.3 Fuzzy answer set programming (FASP)

We now recall a fuzzy version of ASP based on [19], combining ASP
(Section 2.1) and Lukasiewicz logic (Section 2.2).

A general FASP program (under Lukasiewicz semantics) is a finite
set of rules of the form

r:g(ay,...,an) < f(b1,...,bm,no0tcy,...,notcy),

with a;, bj, ¢; literals (atoms a or negated atoms —a) and/or the con-
stants ¢ (where ¢ € [0,1]NQ) withi € {1,...,n},j € {1,...,m}
and ! € {1,...,k} and “not” the negation-as-failure operator. The
connectives f and g are compositions of the Lukasiewicz connectives
® and . As for ASP, —a is essentially seen as a new literal, which
has no connection to a, except for the fact that answer sets containing
both a and —a “to a sufficiently high degree” will be designated as
inconsistent. If [ is a literal, then we define =l := —a if | = a with a
an atom and —[ := a if [ = —a with a an atom.

We refer to the rule by its label r and g(aa,...,an) is called
the head ry, of  and f(b1,...,bm,n0t c1,...,n0t cx) is called the
body 1y of r. Rules of the form ¢ <— « with ¢ a constant are called
constraints. As for ASP, we will consider several classes of FASP
programs. FASP programs without negation-as-failure are called
positive FASP programs. FASP programs only containing rules of
the form

G D.. Pan+—bi®...0b, @noter ® ... Rnotcg

are called disjunctive FASP programs. If a disjunctive FASP has ex-
actly one literal in the head of each rule, it is called normal and if a
normal FASP program is positive and does not contain strong nega-
tion, it is called simple.

A consistent fuzzy interpretation I of a FASP program P is any
element of (L p) such that I(l) + I(—l) < 1 foreach! € Lp with

Lp = {l]lliteral in P} U {—l | { literal in P}.
A fuzzy interpretation I € F(Lp) is extended to rules as follows:

o [dr=c

e notl]; =1-1I(l)

o [f(a,B)]r = £([a]1, [B]r) where f is a prefix notation for & or B
and £ is the corresponding function defined on [0, 1] (see Section
2.2)

e [o« Blr = min(1 — [a]s + [B]1,1)

with ¢ a constant, [ a literal and o and 3 relevant expressions.

A fuzzy interpretation I € F(Lp) is a fuzzy model of a FASP
program P if [r]; = 1 for eachrule r € P. For I, I, € F(Lp) we
write [; < I iff I; (1) < Ix(l) foreach | € Lp. A fuzzy model I of
P is a minimal fuzzy model if there exists no model J of P such that
J < I,ie. J < ITandJ # I. A fuzzy interpretation I € F(Lp)
is called an answer set of a positive FASP program P if it is a min-
imal fuzzy model of P. Remark that a positive FASP program can
have none, one or several answer sets [31]. However, similar as for
ASP, a simple FASP program has exactly one answer set which coin-
cides with the least fixpoint of the immediate consequence operator
IIp [12]. This operator maps fuzzy interpretations to fuzzy interpre-
tations and is defined as

p(I)(a) = sup{[rs]1 | (a <= 1) € P},

for an atom a € Lp and I € F(Lp). For programs that are not
positive, a generalization of the Gelfond-Lifschitz reduct [19] is used.
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In particular, for a program P and a fuzzy interpretation I € F(Lp)
the reduct P! of P w.r.t. I is obtained by replacing in eachrule r € P
all expressions of the form not! by the interpretation [not!];; we
denote the resulting rule by . This new program P! = {r | r €
P} is a positive FASP program and [ is called an answer set of P if
I is an answer set of P’.

Example 2. Consider the normal FASP program P

not a
not b

b <+
a

with a and b atoms. We show that for each x € [0,1], M, with
My(a) = x and M5(b) = 1 — x is an answer set of P. We first
compute the reduct PM= :

1—=x
x

b <«
a <+

The minimal model of P™= is then exactly M,. Note that there are
infinitely many answer sets.

Remark 3. Note that [0 + a®a’]; = 1iff I(a)+1(a’) < 1. Hence,
a FASP program P with strong negation can be translated to a FASP
program P’ without strong negation by replacing each literal of the
form —a by a new atom o' and adding the constraint 0 < a® a’. An
interpretation I € F(Lp) is an answer set of a FASP program P iff
there exists an answer set I' € F(Lp:) of P’ such that I(c) = I'(c)
and I(—~c) = I'(c') for each atom c € Lp.

The following lemma is easily shown from the above definitions.

Lemma 1. Let P be a FASP program such that P = Py U C where
C'is a set of constraints in P and I € F(Lp). It holds that I is an
answer set of P iff I is an answer set of Py and I is a fuzzy model of

C.

Remark 4. In Lemma 1, an interpretation I : Lp — [0,1] is a
model of Py C P if [r]; = 1 foreachr € P.

3 Complexity of FASP

In this section, we will recall some existing results about the com-
putational complexity of FASP. In particular, we will consider the
following decision problem. Given a general FASP program P, a lit-
eral | € Lp and a value \; € [0,1] N Q, is there an answer set I of
P such that (1) > X\;? We will refer to this decision problem as the
set-membership problem.

For the computational complexity of the set-membership problem
for general FASP programs, i.e. programs containing rules of the
form

r:glar,...,an) < f(b1,...,bm,notecy,...,notcy),

where f and g are arbitrary compositions of the Lukasiewicz con-
nectives ® and @, one can show %1 -completeness. Indeed, from the
complexity of fuzzy equilibrium logic [26], it follows that the set-
membership problem for general FASP programs under Lukasiewicz
semantics is in $5". To show hardness, disjunctive ASP, which is $% -
hard [15] can be reduced to general FASP by replacing the classical
connectives by the corresponding Lukasiewicz connectives and by
adding for each literal [ in P the rule [ <— [ @ [ to ensure that the
truth value of [ is either O or 1. In [7], for programs with exactly one
atom in the head of each rule and no “—” or “not* we could only

=
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show coNP-membership. However, for some subclasses of this type
of programs we could show P-membership. For example for pro-
grams having only disjunctions in the bodies of rules. We refer to [7]
for an extensive overview.

Some previous results for the complexity of the set-membership
problem for disjunctive FASP can be found in Table 2. In the next
section we will extend these results by showing NP-completeness
for normal and disjunctive FASP programs under several conditions
w.r.t. constraints and strong negation and in particular the case where
constraints and strong negation are not allowed. We will also present
results for other decision problems.

Table 2. Complexity of the set-membership problem for disjunctive FASP
[7]

| set-membership

simple (even with strong negation) inP
normal (without constraints and with strong negation) in NP
disjunctive (with constraints and strong negation) in NP

4 NP-completeness of disjunctive FASP

In this section we will investigate the complexity of important deci-
sion problems for disjunctive FASP, i.e. the class of FASP programs
that are sets of rules of the form

a1 D.. Pan+bi®...0b,, @noter ® ... R notcg

with a;, bj, ¢; literals (atoms a or negated atoms —a) and/or the con-
stants ¢ (where ¢ € [0,1]NQ) withs € {1,...,n},j € {1,...,m}
and! € {1,...,k}. Given a (disjunctive) FASP program P, a literal
l € Lpandavalue \; € [0,1]NQ, we are interested in the following
decision problems.

1. Existence: Does there exist an answer set I of P?

2. Set-membership: Does there exist an answer set I of P such that
() > N2

3. Set-entailment: Is I(I) > \; for each answer set I of P?

Remark that these decision problems are generalizations of the
ones for ASP for which the complexity is given in Table 1. As we
have already pointed out in the introduction, one would expect ASP
and FASP to have the same computational complexity since FASP
relates to Lukasiewicz logic as ASP does to classical logic and the
complexity of all the main reasoning tasks in Lukasiewicz logic is
as in classical propositional logic. However, as will be proved in this
section, the computational complexity for disjunctive FASP turns out
to be lower than the one for disjunctive ASP.

We will first show that set-membership for disjunctive FASP is
NP-complete. We will do this by showing NP-membership in Propo-
sition 1 and by showing in Proposition 2 that it is already NP-hard
for a subclass of disjunctive FASP. Next, in Propositions 3 and 4, we
derive resp. NP-completeness and coNP-completeness for resp. the
existence and the set-entailment problem for this particular subclass.
The proofs of these propositions can then be used to show resp. NP-
completeness and coNP-completeness for resp. the existence and the
set-entailment problem for disjunctive FASP.

Proposition 1. Set-membership for disjunctive FASP is in NP.

Proof. From the analysis of the geometrical structure underlying
fuzzy equilibrium models [26], it follows that a FASP program P



ECAI-2012 Workshop WL4AI

has an answer set I such that I(l) > ); iff there is such an answer
set that can be encoded using a polynomial number of bits.

Given a disjunctive program P and an answer set /; we check in
polynomial time that I is an answer set of P. Note that checking if
I(l) > X\ for aliteral [ can be done in constant time. By definition,
we need to check that I is a minimal fuzzy model of P’ and that for
each | € Lp we have I(I) + I(—l) < 1. The latter is straightfor-
ward. To check whether I is a fuzzy model of P!, one can use linear
programming. Indeed foraruler : a1 & ... P an < 01 ®... Qbp
in P’ seen as a Lukasiewicz formula, we have that

b1 ®...0bm a1 ®...0an]r =1
S[(~h)P..P(~bn)Par®...Ban]r =1
SI(~bi)+ ...+ I(~by) +1(a) +...+1(an) > 1
S1—Ib1)+...+1=I(bm)+I(a1)+...+I(an) > 1

Hence, to check whether I is a fuzzy model of P! we use the
following linear program M. The function to be minimized is the
sum acpl @ of all literals in P’ and the constraints in M are the
following. For each literal @ € Lpr we have 0 < ¢ < 1 and a <
I(a) and for each rule

ra1®... 0a, b ®...0b,
in P” we have
1<1-b1+...+41—-bpm+a1+...+an
or equivalently
1-m<-by—...—bp+ar+...+an.

If M has as solution I (a) for each literal a, then [ is a minimal fuzzy
model. -

Next, to obtain NP-completeness for the set-membership problem,
we prove that it is NP-hard by showing a reduction from 3S AT, which
is NP-complete [11], to disjunctive FASP. 3SAT is a decision prob-
lem whose instances are Boolean expressions written in conjunctive
normal form with 3 variables in each clause, i.e. expressions of the
form

(a11 V aigs V a13) A (agl V az2 V a23) Ao A (anl V ana V ang),

where each a;; is an atom or a negated atom, i.e. a literal. The prob-
lem consists of deciding whether there is a consistent assignment of
“true” and “false” to the literals such that the whole expression eval-
uates to “true”.

Proposition 2. Set-membership for normal FASP is NP-hard if con-
straints are allowed.

Proof. Consider an arbitrary instance
(a11 Vaie V CL13) A\ (CL21 V a2 V a23) TANAAN (an1 V an2 V ang)

of 3SAT. We will refer to this expression by . We translate each
clause a;1 V a;2 V a;3 to the rule

0 + —a:1 ® ~ae ® —ai3 (H
and for each literal « in o we add the rules
—x < notzx 2)
z < not(—zx) 3)
o “)
-z Q)
0 + not () ©)
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where 7’ is a fresh atom not used in . We denote the resulting FASP
program by P.

1. First suppose that I is an answer set of P. By Lemma 1 we know
that I is an answer set of P; and a fuzzy model of C' where P; is
the set of all rules in P of the form (2)-(5) and C is the set of all
constraints of the form (1) and (6).

Since [ is a minimal fuzzy model of (P;)’ we know that for each
literal z it holds that I(z) = 1 — I(—z) by rules (2) and (3) and
I(z") = max(I(z), I(—x)) by rules (4) and (5). Since I must be a
fuzzy model of the constraints in C, it follows that 1 — I(z') = 0
by rule (6). If I(z') = I(z), then I(z) = 1 and I(-z) = 0.
Otherwise, if I(z') = I(—x), then I(—z) = 1 and I(z) = 0.
Hence, I is a consistent Boolean interpretation.

Let us define the assignment G as follows. For each literal  in
a we have G(z) = “true” if I(z) = 1 and G(z) = “false” if
I(xz) = 0. We check that this assignment evaluates « to “true”.
This follows easily by the following equations:

[~ai1 ® —aiz ® —aiz — 0]y =1

=2 @EB ~ (mai1 ® 7ai2 ® ~as)|r =1

S (0B ~ (mai1)® ~ (mai2)® ~ (—ai3)]r =1
S041 —I(—\ail) +1 —I(—\aiz) +1 —I(—\aig) >1

Since for I it holds that I(z) = 1 — I(—x) for each literal z, we
obtain that

[-ai1 ® maie ® —aiz — 0] =1
< I(ain) + I(a2) + I(aiz) > 1

Because [ is a Boolean interpretation, it must hold that I (a;;) = 1
for at least one literal a;; in each clause. Hence, GG is an assign-
ment that evaluates each clause a;1 V a;2 V a;3, and thus the whole
expression a, to “true”.

2. Now suppose that PP has no answer set. We need to show that there

is no assignment of the literals such that expression « evaluates to
“true”. We will show this by contraposition.

Consider an assignment G such that each clause ai1 V a2 V a;3
evaluates to “true”. We define a fuzzy interpretation in F(Lp)
by I(z) = 1if G(x) “true”, I(z) = 0if G(z) = “false”,
I(-z) = 1 — I(x) and I(z") = max(I(x), I(—z)). We show
that I is an answer set of P, or by Lemma 1 that it is a minimal
fuzzy model of (P1)’ and a fuzzy model of C. It is clear that I is a
fuzzy model of (P1)”. Now suppose there exists a fuzzy model .J
of (P1)! such that J < I. Since T is such that I (—z) + I(z) = 1,
by the rules

notx
not(—x)

-
x

—
—

in P; it follows that

J(—z) > notz]; =1 — I(x)

I(~z) = J(-x)

and
J(z) > [not(—z)]r =1—I(—z) = I(z) > J(x).

Hence we have for each literal z that J(x) = I(x) and J(—x)
I(=z). Since J < I, there must exist a literal x such that J(z")
I(z") which implies by the rules

<

T
T

— =z
'
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in P; that
I(z') > J(z') > I(z) and I(z') > J(z') > I(—zx).

This is impossible since either I(z) = 1 or I(—z) = 1 and then
I(z") > 1.

It remains to be shown that I is a fuzzy model of C. Since
I(z") = max(I(z),I(—z)) = 1 we have that I models the rule
0 « not(x’) for each literal x. As before, we obtain

[0+ —(ai1) ® ~(ai2) @ =(ai3)]r =1
< I(ain) + I(as2) + I(asz) > 1

Since each clause a1 V a;2 V a;3 is satisfied by G, we know that
for least one a;; it must hold that I(a;;) = 1. Hence I(a;1) +
I(as2) + I(a;3) > 1.

O

Corollary 1. Set-membership for normal FASP, if constraints are
allowed, is NP-complete.
Corollary 2. Set-membership for disjunctive FASP is NP-complete.

Proof. Follows by the reduction in the proof of Proposition 2. O

Proposition 3. Existence for normal FASP, if constraints are al-
lowed, is NP-complete.

Proof. The same proof as for Proposition 1 can be used to show NP-
membership and the proof for NP-hardness is entirely analogue to

the proof for Proposition 2. O
Corollary 3. Existence for disjunctive FASP is NP-complete
Proof. Follows by the proof of Proposition 3. O

In the proof of the following proposition we will use the notation
f| to denote the function that is the restriction of f : B — C'to the
domain A C B.

Proposition 4. Set-entailment for normal FASP, if constraints are
allowed, is coNP-complete.

Proof. Let us denote normal FASP for which constraits are allowed
by the term “extended normal FASP”.

1. One can show that the complementary decision problem, i.e.
“Given an extended normal FASP program P, a literal | € Lp
and a value \; € [0,1] N Q; is there an answer set I of P such
that (1) < X\;?” is in NP by adjusting the proof of Proposition 1;
it now has to be checked whether I(1) < \; instead of I(1) > ;.
This shows coNP-membership.

2. To show coNP-hardness, we reduce the NP-hard problem “exis-
tence” to the complement of the set-entailment problem. Consider
an extended normal FASP program P. Define P’ = PU{a <+ a}
with a a fresh atom. We show that P has an answer set iff it is not
the case that all answer sets I’ of P’ are such that I'(a) > 0.5.
First suppose that P has an answer set /. Then there exists an
answer set I’ of P’ with I'(a) < 0.5. Indeed, define I'(a) = 0
and I'(x) = I(x) otherwise. Next, suppose that there exists an
answer set I’ of P’ such that I'(a) < 0.5. Then I = I|,, is an
answer set of P.

O

Corollary 4. Set-entailment for disjunctive FASP is coNP-complete.
Proof. Follows by the proof of Proposition 4. O

A summary of these results can be found in Table 3.
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5 COMPLEXITY OF DISJUNCTIVE FASP
PROGRAMS WITHOUT STRONG
NEGATION OR CONSTRAINTS

In this section we will investigate the complexity of the set-
membership for disjunctive FASP if strong negation and constraints
are not allowed and show that it remains NP-complete. Moreover,
we will prove that for normal FASP, even if strong negation is not
allowed, it is also NP-complete.

First, we provide a lemma that enables us to simulate constraints
of a FASP program.

Lemma 2. Consider a FASP program P = P; U C where Py is a
FASP program and C'is a set of constraints of the form 0 < «. Let
P’ = PLUC"U{z < noty} where z and y are fresh atoms and
C'={y+al(0+a) e’}

A fuzzy interpretation I € F(Lp) is an answer set of P iff there
exists an answer set I' € F(Lpr) such that I|,,, = I and I'(z) >
1.

Proof. 1. Suppose that I € F(Lp) is an answer set of P. Define
I'e F(Lp)asI'(a) =1I(a)ifa € Lp,I'(z) =1and I'(y) =
0. We show that I” is an answer set of P’.

First, we prove that I’ is a fuzzy model of P’ and thus of (P')" .
Clearly, I’ is a fuzzy model of P; and it models the rule z <+
noty. If y < «is a rule in C’, then by assumption we have that
I = Ij;, models the rule 0 < «. Thus [0 < a];» = 1 and
[a];r = 0 = I'(y). Hence I' models y <+ a.

Next, we show that I’ is a minimal fuzzy model of (P')". Sup-
pose there exists a fuzzy model J' € F(Lp/) of (P') such
that J' < I'. We show that J = J|,, is a fuzzy model of P’
Clearly, J is a fuzzy model of (P)’. Since J' < I’ we have
that J'(y) < I'(y) = O, thus givenarule 7 : 0 < «ain C
we have that for the corresponding rule y <+ « in C” it holds
that 0 = J'(y) > [a’]s, with o the reduct of the expression a
w.rt. I. Hence [r']; = 1. Because I is a minimal fuzzy model
of P!, it follows that I = J. As mentioned before, we have
J'(y) = I'(y) and since [z < [noty]r];» = 1, we also have
J'(z) > 1—-1TI'(y) = I'(z) > J'(2). Hence I' = J', which
shows that I’ is a minimal fuzzy model of (P')"".

2. Suppose that I’ € F(Lps) is an answer set of P’ such that

I'(z) = 1. We show that I = I, is an answer set of P. By
Lemma 1 it is sufficient to show that I is an answer set of P; and
a fuzzy model of C'.
First, we show that [ is a fuzzy model of C. Since I’ is a minimal
fuzzy model of (P')"", it must hold that I’(z) = 1 — I'(y) and
thus that I'(y) = 0. Given arule 7 : 0 < « in C we have that
for the corresponding rule y < « in C” it holds that 0 = I'(y) >
[@] 1/, and thus [r]; = 1.
Next, note that I is a fuzzy model of (Py)’ since I’ is a fuzzy
model of (Py;)’ ". Now suppose there exists a fuzzy model J €
F(Lp,) of (P1)! such that J < I. Define J' € F(Lp:) as fol-
lows: J'(a) = J(a) ifa € Lp, J'(y) = 0and J'(z) = 1. We
show that J’ is a fuzzy model of (P')"". By assumption, .J’ is
a fuzzy model of (P1)"". For the rule  : z < noty in P’ we
have J'(z) = 1 = I'(z) > [noty]y, hence J’ models . Fi-
nally, given arule r : y < « in C’ we have for the corresponding
rule 0  ovin C that J'(y) = 0 > [o!'] ;. Hence J' models
! Since J' < I’ and I' is a minimal fuzzy model of (P')"" it
follows that J' = I’ and thus J = I.

O
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Table 3. Complexity of inference in disjunctive FASP

existence

set-membership  set-entailment

disjunctive FASP
normal FASP, if constraints are allowed

We use this lemma to show a variation of the reduction proposed
in the proof of Proposition 2.

Proposition 5. Set-membership for normal FASP is NP-hard.
Proof. Consider an arbitrary instance
(a11 Vaie V ll13) A (a21 V a2 V a23) FANAAN (an1 V an2 V ang)

of 3SAT. We will refer to this expression by a.. As shown in the proof
op Proposition 2, « is satisfied by an assigment G iff the propo-
sitional interpretation I, with I(z) = 1 if G(z) = “true” and
I(z) = 0if G(z) = “false” is an answer set of P with P the
program obtained by translating each clause a;1 V a;2 V a;3 (see the
proof of Proposition 2).

By Remark 3 it follows that P can be rewritten to a disjunctive
FASP P’ without strong negation and in which the head contains
exactly one atom or the constant 0 such that there is a one-on-one
correspondence between the answer sets. By Lemma 2, it follows that
we can define a normal FASP program P’ without constraints and
without strong negation such that the answer sets of P’ correspond
to the answer sets of P for which a certain atom has at least truth
value 1. O

Corollary 5. Set-membership for normal FASP is NP-complete, even
is strong negation is not allowed.

Proof. Follows by the reduction in the proof of Proposition 5. O

Corollary 6. Set-membership for disjunctive FASP programs is NP-
complete, even if constraints and strong negation are not allowed.

Proof. Follows by the reduction in the proof of Proposition 5. O

A summary of these results can be found in Table 4.

6 Reduction to bilevel linear programming

In this section, we will show that we can translate disjunctive FASP
programs into bilevel linear programs such that all solutions of the
bilevel linear program are answer sets and if there are no solutions,
then there are no answer sets. Bilevel linear programming problems
are optimization problems in which the set of all variables is divided
into two sets X = {z1,...,zn,} and Y = {y1,...,ym}. Each
possibility of assignments to the variables will be denoted by the
vector x = (x1,...,%n) for X and by the vectory = (y1,...,Yn)
forY.

Intuitively, there are two agents, a leader who is responsible for
the variables in X and a follower responsible for the variables in Y.
Each vector y has to be chosen by the follower in function of the
choice by the leader x as an optimal solution of the so-called lower
level problem or the follower’s problem. Knowing this reaction, the
leader then wants to optimize his objective function in the so-called
upper level problem or the leader’s problem.

NP-complete
NP-complete

NP-complete
NP-complete

coNP-complete
coNP-complete

In a bilevel linear program all objective functions and constraints
are linear. In particular, the type of bilevel linear programming prob-
lem in which we are interested is given by Bard [3]:

argmin, c1x + di1y

s.t. A1x + By < b1
arg miny cox + d2y
s.t. Aox + Boy < b2

where c1,C2 € Rn, d1,d2 € Rm, b, € Rp, by € Rq, A € Rpxn’
By € Rpxm, As € R2*™ and By € RI*™,

Now consider a disjunctive FASP program P. We will translate P
to a bilevel linear program (Q such that the solutions of () correspond
to the answer sets of P. By definition [ is an answer set of P iff
I is an answer set of P, Informally, a guess I needs to be made
first and then it has to be checked whether this guess corresponds to
an answer set of P. If Lp = {a1,...,an}, then we will define the
vector a = (ai,...,a,) and the vector a’ = (a,...,a,) where
each a; intuitively corresponds to a guess for a;. For each such guess
I, I(a;) = aj, we want to check if it is a minimal fuzzy model of
P! Note that P! is a positive FASP program in which each rule is
of the form

rli®.. . Pl 21Q...0 Tm, @)

with l;, x; literals and/or constants. Similar to a previous calculation
in Proposition 2, if a fuzzy interpretation J € F(Lp) is a model of
r, then it must hold that

J)+...+J(ln) > J(@1)+ ...+ J(zm) — (m —1).

Thus for each rule r € P’ we have a constraint £1 + ... + Tm —
m+1<1li+...+ 1.

Hence, for each guess a’, i.e. an interpretation I, we check if there
is a minimal model J of P’ such that J(a;) < I(a;) = a} by
minimizing all elements in the vector a subject to the constraints
arising from PZ. This is the follower’s problem. Finally, the guess is
chosen such that the differences between J(a;) and a; are as small
as possible. This can be done by minimizing the function Y ;- (a} —
a;). If this sum is equal to 0, we have found a answer set. If this sum
is not equal to O, there cannot be an answer set.

More structured, we have

arg min,, X0, (a! — )
st.0<a; <1
argming > 0 | a;
st.a; +-a; <1,a; <al,0<a; <1and
(i) —m+1 <375 Ui for each rule (7)
with m, n € N in the reduct w.r.t. a’

Example 3. Reconsider the normal FASP program P from Example
2. The corresponding bilevel linear program is

argmin,, ,/(a’ —a) + (b' —b)
s.0<a,b <1
argmin, , a + b
s.0<a,b<l,a<d,b<¥
l—d <bl-b<a
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Table 4. Complexity of the set-membership problem for disjunctive FASP

| set-membership

normal FASP, even if strong negation is not allowed
disjunctive FASP, even if constraints and strong negation are not allowed

The only assignments to the variables such that the objective func-
tion of the leader is equal to 0 are the ones with a’ = a, b’ = b and
a=1-V.

Remark 5. A similar construction can be used if ASP is combined
with other fuzzy logics, e.g. product logic, but the resulting bilevel
program will not necessarily be linear.

7 CONCLUSIONS

We have analyzed the computational complexity of FASP under
Lukasiewicz semantics. In particular, when restricting to disjunc-
tions in the head of rules and conjunctions in the bodies of rules,
i.e. disjunctive FASP programs, NP-completeness was shown, which
stands in contrast with the fact that disjunctive ASP is ©% -complete.
This results even holds when restricting to disjunctive FASP with-
out strong negation and with exactly one literal in the head of each
rule. Hence, allowing disjunctions in the head has no influence on the
computational complexity. Given that we have not been able to show
NP-membership for normal FASP programs in which both conjunc-
tion and disjunction are allowed in the bodies of rules, it is tempting
to speculate that, unlike in the classical case, allowing disjunction in
the body affects the computational complexity, whereas allowing it
in the head does not. Finally, we have proposed an implementation
of disjunctive FASP using bilevel linear programming which opens
the door to practical applications.
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Undecidability of Fuzzy Description Logics
with GCIs under Lukasiewicz Semantics

Marco Cerami! and Umberto Straccia

Abstract.

Recently there have been some unexpected results concerning
Fuzzy Description Logics (FDLs) with General Concept Inclusions
(GCIs). They show that, unlike the classical case, the DL ALC with
GClIs does not have the finite model property under Lukasiewicz
Logic or Product Logic, the previously proposed reasoning algo-
rithms are neither correct nor complete and, specifically, knowledge
base satisfiability is an undecidable problem for Product Logic. We
complete here the analysis by showing that knowledge base satisfia-
bility is also an undecidable problem for Lukasiewicz Logic.

1 Introduction

Description Logics (DLs) [1] play a key role in the design of Ontolo-
gies. Indeed, DLs are important as they are essentially the theoretical
counterpart of the Web Ontology Language OWL 2 [19]], the standard
language to represent ontologies.

It is very natural to extend DLs to the fuzzy case and several fuzzy
extensions of DLs can be found in the literature. For a recent survey
on the advances in the field of fuzzy DLs, we refer the reader to [18].
Besides the generalization of DLs to the fuzzy framework, one of the
challenges of the research in this community is the fact that different
families of fuzzy operators (or fuzzy logics) lead to fuzzy DLs with
different computational properties.

Decidability of fuzzy DLs is often shown by adapting crisp DL
tableau-based algorithms to the fuzzy DL case [8} 21,122, [23|125]126],
by a reduction to classical DLs [5. 16} [7, 9} 24]], or by relying on some
Mathematical Fuzzy Logic [13] based procedures [11} 12} 14, |15].

However, recently there have been some unexpected results [2}
3| 4]]. Indeed, unlike the classical case, for the DL .ALC with GCls
(i) [4] shows that it does not have the finite model property under
Lukasiewicz Logic or Product Logic, illustrates that some algorithms
are neither complete nor correct, and shows some interesting condi-
tions under which decidability is still guaranteed; and (ii) [2} 3] show
that knowledge base satisfiability is an undecidable problem under
Product Logic. Also worth mentioning is [[10], which illustrates the
undecidability of knowledge base satisfiability if one replaces the
truth set [0, 1] with complete De Morgan lattices equipped with a
t-norm operator.

In this paper, we complete the analysis by showing that knowledge
base satisfiability is an undecidable problem for the DL ALC with
GClIs under [0, 1]-valued Lukasiewicz Logic as well. We prove our
results following conceptually the methods devised in [2} 3L [10].

L IIIA-CSIC, Spain, email: cerami@iiia.csic.es
2 ISTI-CNR, Italy, email: umberto.straccia@isti.cnr.it
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2

2 The FDL L-ALC

In this section we are going to introduce the general definitions of
L-ALC based on Lukasiewicz t-norm.

Syntax. Let A be aset of concept names, R be a set of role names.
Concept names denote unary predicates, while role names denote bi-
nary predicates. The set of £~ ALC concepts are built from concept
names A (also called atomic concepts) using connectives and quan-
tification constructs over roles Rﬂas described by the following syn-
tactic rules:

c - T | A |

1 | CincCy |

C,UC, | ~C | 3RC | VRC.

An assertion axiom is an expression of the form (a:C,n) (concept
assertion, a is an instance of concept C to degree at least n) [ﬂ or of
the form ((a1,a2):R, n) (role assertion, (a1, az) is an instance of
role R to degree at least n), where a, a1, a2 are individual names, C'
is a concept, R is a role name and n € (0, 1] is a rational (a truth
value). An ABox A consists of a finite set of assertion axioms.

A General Concept Inclusion (GCI) axiom is of the form
(C1 C C2,n) (C4 is a sub-concept of C5 to degree at least n), where
C; is a concept and n € (0, 1] is a rational. A concept hierarchy T,
also called TBox, is a finite set of GCIs. In what follows we will use
the following shorthands:

o (1 — Cs for=C1 UCsy;
e (1 < () for (Cl — CQ) [l (02 — Cl);

e min{C,C2} for C; N (Cy — C3), and min{C1,...,C,} for
min{...min{C4, C2},...};
] max{C1, Cz} for (01 — Cz) — CQ and HlaX{C1, ey Cn} for

max{...max{Ci,Cs2},...};

e n - C for the n-ary disjunction CU ... U C;

e C1 C C; for (Cy C Ca,1) and a:C for {(a:C, 1);

e (1 = () for the two axioms Cy C C2 and Cy C 4 (or, equiva-
lently for axiom T C C1 < C5).

Finally, a knowledge base K = (T, A) consists of a TBox T
and an ABox A. With sub(KC) we denote the set of (sub)concept
expressions occurring in /C.

3 Each symbol may have super- and/or subscripts.

4 Often, in fuzzy DLs one may encounter concept assertions of the form
(a:C > n) and (a:C' < n) instead. Note that the latter is equivalent to
(a:=C,1 —n).
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Semantics. From a semantics point of view, an axiom («, n) con-
strains the truth degree of the expression « to be at least n. In
the following, we use ®,®,© and = to denote Lukasiewicz t-
norm, ¢-conorm, negation function, and implication function, respec-
tively [[17]. They are defined as operations in [0, 1] by means of the
following functions:

a®b = max{0,a+b—1}
a®b = min{l,a+b}

©a = l-a
a=b = min{l,1—-a+0b},

where a and b are arbitrary elements in [0, 1]. As in the classical
framework, the implication can be defined in terms of disjunction
(whose semantics is the ¢-conorm) and negation in the usual way:
a = b = 6a @ b. Note also that for any implication that, like
Lukasiewicz implication, is defined as the residuum of a continuous
t-norm ®, i.e.,

r=y=sup{z|z®z <y},
we have that the following condition hold:

y>zziff(x=y) > 2. e))

We will use a < b as shorthand for (a = b) ® (b = a). Moreover,
the usual rules for dropping parenthesis will be used.

A fuzzy interpretation is a pair T = (AZ, ~I) consisting of a
nonempty (crisp) set AT (the domain) and of a fuzzy interpretation
function T that assigns:

1. to each atomic concept A a function AZ: AT — [0, 1],

2. to each role R a function R : AT x AT — [0, 1],

3. to each individual @ an element a® € AT such that a® # b*
if a # b (Unique Name Assumption, different individuals denote
different objects of the domain).

The fuzzy interpretation function is extended to complex con-
cepts as specified in Table E] (where z,y € AT are elements of
the domain). Hence, for every complex concept C' we get a func-
tion C* : AT — [0, 1]. The satisfiability of axioms is then defined
by the following conditions:

1. T satisfies an axiom {(a:C,n) if CZ(a%) > n,
2. T satisfies an axiom {(a, b):R, n) if RZ (a®,b%) > n,
3. Z satisfies an axiom (C C D, n) if (C C D)I > n where

(C C D) = inf {C%(z) = D" (x)} .

zeAT
It is interesting to point out that the satisfaction of a GCI of the form
(C C D,1) is exactly the requirement that Vo € A% C%(z) <
D* (z) (i.e.,, Zadeh’s set inclusion); hence, in this particular case
for satisfaction only the partial order matters and not the exact value
of the implication =.

As usual we will say that a fuzzy interpretation Z satisfies (is a
model of) a KB I in case that it satisfies all axioms in K. And it is
said that a fuzzy KB K is satisfiable (has a model) iff there exists a
fuzzy interpretation Z satisfying every axiom in /C. A fuzzy KB KC
entails an axiom (a, n) (denoted K = (a,n)) iff any model of K
also satisfies (o, n). Note that the problem of determining whether
K = ((a,b):R, n) can easily be determined by checking if there is
((a,b):R,m) € Awithm > n.
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An important note is that in this paper, we mainly focus on wit-
nessed models. This notion (see [14]) corresponds to the restriction
to the DL language of the notion of witnessed model introduced, in
the context of the first-order language, by Hajek in [14,116]. Specifi-
cally, a fuzzy interpretation Z is said to be witnessed iff it holds that
for every complex concept C, every role R, and every & € AT there
is some

1. y € AT such that (3R.C)E (z) = RE (z,y) ® CT(y).
2. y € AT such that (VR.C)* (z) = R*(x,y) = C*(y).

If 7 satisfies conditions 1. and 2. then Z is said to be witnessed. If
T satisfies only condition 1. then Z is said to be weakly witnessed.
Note that for Lukasiewicz logic, condition 1. and 2. are equivalent,
so Z is weakly witnessed iff Z is witnessed. Throughout the paper we
will rely on the notion of witnessed interpretation only, but keep in
mind that the results apply, thus, to weakly witnessed interpretations
as well. Note also that it is obvious that in all finite fuzzy interpreta-
tions (this means that A7 is a finite set) every supremum is a max-
imum (and the same holds for infima and minima) and, therefore,
finite fuzzy interpretations are indeed witnessed but the opposite is
not true.

Sometimes (see, e.g.,, [3]), the notion of witnessed interpretations
is strengthened to so-called strongly witnessed interpretations by im-
posing that additionally that for every complex concepts C, D, there
is some

e y € AT suchthat (C C D)* = C*(y) = D*(y)

has to hold.

Notice, however, that Lukasiewicz first order logic is complete
with respect to witnessed models, both under the general and the
standard semantics (see [14]). For this reason, from the undecidabil-
ity of KB satisfiability with respect to witnessed interpretations that
we prove in this paper, can be easily obtained undecidability of KB
satisfiability with respect to interpretations that are not necessarily
witnessed.

3 Undecidability of £.- ALC with GCls

Our proof consists of a reduction of the reverse of the Post Corre-
spondence Problem (PCP) and follows conceptually the one in [2} 13}
10]. PCP is well-known to be undecidable [20], so is the reverse PCP,
as shown next.

Definition 1 (PCP). Let vi,...,vp, and wi,...,wp, be two finite
lists of words over an alphabet > = {1,...,s}. The Post Corre-
spondence Problem (PCP) asks whether there is a non-empty se-
quence 11,12, . ..,1g, with 1 < i; < p such that vi;vi, ...V, =
Wiy Wiy - . . Wiy, Such a sequence, if it exists, is called a solution of
the problem instance.

For the sake of our purpose, we will rely on a variant of the PCP,
which we call Reverse PCP (RPCP). Essentially, words are concate-
nated from right to left rather than from left to right. In what follows,
as usual, we will denote by {1,...,p}" the set of words over alpha-

bet {1,...,p}and by {1,...,p}" the set of non-empty words over
alphabet {1,...,p}.

Definition 2 (RPCP). Let vi,...,vp, and wx,...,wp be two fi-
nite lists of words over an alphabet ¥ = {1,...,s}. The Re-

verse Post Correspondence Problem (RPCP) asks whether there is
a non-empty sequence ii,1z,...,4, with 1 < i; < p such that
VipVig_q + - Viy = Wi, Wiy, ... Wiy. Such a sequence, if it exists,
is called a solution of the problem instance.
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15x) = 0
THz) = 1
(CnD)(z) = C*x)® D*(x)
(CuD)i(z) = C*x)e D*(x)
(-C)(z) = oC*(z)
(VR.C) (z) = infyeAz{RI(x,y) = CT(y)}
(BR.CO)*(x) = supyeaz{R*(z,y) ® C*(y)}
Table 1. Semantics for £.-ALC.

For a word 1 = i1i2...1 € {1,...,p}" we will use v, w, to
denote the words v;, vi,, , ...vi; and wy, w;,,_, ... w;, . We denote
the empty string as € and define v, as €. The alphabet ¥ consists of
the first s positive integers. We can thus view every word in X as a
natural number represented in base s + 1 in which 0 never occurs.
Using this intuition, we will use the number O to encode the empty
word.

Now we show that the reduction from PCP to RPCP is a very sim-
ple matter and it can be done through the transformation of the in-
stance lists to the lists of their palindromes defined as follows: let
¥ ={1,...,s} be an alphabet and v = t1t2 ..., a word over ¥,
with t; € X, for 1 < ¢ < |v], then the function pal: ¥* — X" is
defined as pal(v) = t|y|t|y|—1 - .- t1. We will say that pal(v) is the
palindrome of v.

Lemma3. Letvi,...,v, and wi, ..., wp be two finite lists of words
over an alphabet ¥ = {1,...,s}. For every non-empty sequence

11,192, ..., %, with 1 < i; < pit holds that

Vi1 Vig U»Lk = Wi Wig ...wik
iff
pal(vi, )pal(vi, ;) .. .pal(vi,) =
pal(w;, )pal(ws, ) ...pal(wi,) .
(Proof) First we prove by induction on k, that, for every sequence
vV = iV, ...v; of words over X, it holds that pal(v)
pal (v, )pal(viy, ) ... pal(vi,).

e The case k = 1 is straightforward.

o let w = Vi, Viy ... Vi, and suppose, by in-
ductive  hypothesis,  that  pal(vi; viy ... V5, _,)
pal(vi,_,)pal(vi, ,)...pal(vs;). It follows that pal(v)
pal(viy Viy - . . Viy, 4,05, ) = pal(viy, )pal(vi,_,) - .. pal(vs,

Since the palindrome of a word is unique, we have that, i
Vi Vig ... Vi = Wi Wiy ... Wi, then pal(vi, vi, ... vi,)
pal(ws, wi, ... w;,, ) and, thus, pal(vi, )pal(vs, ) ...pal(vs,
= pal(w;, ) pal(ws,_,). .. pal(wi,).
Corollary 4. RPCP is undecidable.

(Proof) The proof is based on the reduction of PCP to RPCP. For
every instance ¢ = (vi,w1),..., (vp, wp) of PCP, let f be the
function

f(p) = (pal(v1), pal(w1)), ..., (pal(vy), pal (wp)) -

Clearly f is a computable function. Moreover, ¢ € PCP if
and only if there exists a non-empty sequence %1, ¢2, . . . , i%, With
1 <¢; < psuchthat vy, vi, ... V5, = Wi Wiy - . . Wy, that is, by
Lemmal[3]

= ol

o<

pal (v, )pal(viy, ) . ..pal(vi;) =

pal(w;, )pal(ws,_, ) ... pal(w;,)
ie., f(¢) € RPCP. Therefore, ¢ € PCP if and only if f(yp) €
RPCP. O
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Undecidability of general KB satisfiability We show the un-
decidability by a reduction of RPCP to KB satisfiability problems.
Specifically, given an instance ¢ of RPCP, we will construct a
Knowledge Base O, that is satisfiable iff (o has no solution.

In order to do this we will encode words v over the alphabet ¥ as
rational numbers 0.v in [0, 1] in base s + 1; the empty word will be
encoded by the number 0.

So, let us define the following TBoxes:

T ={ V=ViuV,, W=WuW, }

andfor1 <i<p
T2 ={ TLC3R.T,
VT (s+ 1" .VR.W,
(s+ 1) . 3R, Vi C Y,
W C (s+ 1) . vR,.Wy,
(s+ )™l . 3w Cw

<T E VRZ'.‘/Q,O.U7;>,

<T E VR»L'._\VQ, 1-— 0.vi>,
(T CVR; W2, 0.w;),

(T CVR;.~Wa,1 — 0.w;),
AC (s+ 1)max{\vi\,\wl'\} VR;.A

(s + 1ymextiviblwill 3R, AT A ).

Now, let
P
T.=TulJT:.
i=1

Further we define the ABox A as follows:

A = {a:-V,a: =W, {a: A,0.01),
(a:—A,0.99)} .
Finally, we define
OW = <7:P7-A> .

Intuitively, O, is built in such a way that, as we will see later on,
every interpretation Z satisfying it has to contain a search tree for .
We now define the interpretation

Iw = (AIV” .Zw)
as follows:

o ATe ={1,...,p}*
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] aIS":

o VIe(e) = WEe(e) = 0, AT¢(e) = 0.01,and for 1 < i < 2,
V' (e) = W/ () = 0
o forall yu,p/ € AT¢ and1<i<p

I , 1, ifp = pi
R (u, i) =
) {O, otherwise
o forevery u € A%e, where = i1z ... 1 # €

= VT () = 0. WP (1) = O

_ AI*D( ) =0.01- (S + 1)*21-5{1'1,1'2 ..... iy max{lvgls|w;l}

-V @( ) = 0wa - (s + 1)l Wi () = 0w - (s +
1) lwirl where i = i14z...ik—1 (last index ij is dropped
from p, and we assume that 0.€ is 0),

Z Z
= V37 (p) = 005, Wy (1) = 0w,

It is easy to see that Z,, is a witnessed model of O, (note that
I,/ .
e.8. (VR:.Vi)™* () = Vi (ui)). ]
Moreover, as in [2] it is possible to prove that, for every witnessed
model 7 of O, there is a mapping ¢ from Z, to Z.

Lemma 5. Let I be a witnessed model of O,. Then there exists a
function g : AT¢ — AT such that, for every p € ATe, CTe (1)
C%(g(w)) holds for every concept name C and RZ'“’ (14, p17)
RE(g(1), g(11d)) holds for every i, with 1 < i < p.

(Proof) LetZ be a witnessed model of O,,. We will build the func-
tion g inductively on the length of p.

(e) Since 7 is a model of Oy, then there is an element § € AT
such that o = 6. Since Z is a model of A, setting g(¢) = &,
we have that VZ¢(¢) = 0 = VZ(g(e)) and the same holds
for concept W. Moreover, since Z is a model of 7, we have
that VZ(6) = (Vi U V)% (6) and, therefore Vlz“’ () =0 =
Vi (g(€)) and the same holds for V», Wi and Wa. On the other
hand, we have that A%¢ (¢) = 0.01 = A%(g(¢)), as well. So,
g(e) = ¢ satisfies the condition of the lemma.

Let now p be such that g(u) has already been defined. Now,
since Z is a witnessed model and satisfies axiom T C 3R;. T
then for all 4, with 1 < ¢ < p, there exists a v € AT
such that R (g(u),v) = 1. So, setting g(ui) = ~ we get
1= Rf‘” (p, i) = RE(g(p), g(pi)). Furthermore, by induc-
tion hypothesis, we can assume that VZ(g(1)) = 0.v, and
W (g(n) = 0.wj.

Since Z satisfies axiom 1)Vl . VR,.Vi, then
Ovu = VFH(g(p) < - (YR Vi) (g(n) =
(s+ 1)1 inf e pz {RF (9(u),7) = Vi (M)} < (s+ 1)1
RY(g(p), pi) = Vit (ui) = (s + ) Vi (g(ad)).
Since Z satisfies axiom (s + 1)'”” - dR;.Vi C V, then
O = VEg(w) = (s + D! BRI (9(w)
(s + 1l Sup’yEAI{R (9(u), ) @ VIE(M)} = (s + 1)l
RE(g(p), pi) ® Vit (pi) = (s + Dl Vi (g(pi)). There-
fore, (s + 1)Vl - V& (g(ui)) = 0.v, and Vi (g(ui))

(p2)

Vl:(s—i—
(s +1)

[vil

0.0, - (s+1)7Ivil = Ve (u2).
Similarly, it can be shown that Wi (g(ui)) = 0.w, - (s +
7= W (i),

5 However, Z, is not a strongly witnessed model of O,,.
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Since Z satisfies axioms (T CVR;.V2,0.v;) and
(T CVYR;.~Va, 1 — 0.1;), it follows that (VR;. V)% (g(u)) >
0.v; and (VR;.—V2)%(g(p)) > 1 — 0.v;. Therefore,
for Rf(g(n), g(p)) 1 we have Vi (g(ui))
0.vs VQI"’ (pg).  Similarly,
W3 (i) = 0.w; = W (g(pi)).
Now, since T satisfies axiom V' = Vi U Va, then, VZ (g(ui)) =
Vi (g(ui)) + V5 (g(ui)) = 0.0 - (s + )71 4+ 0 =
0.vv, = Ve ().

Finally, by inductive hypothesis, assume that

it can be shown that

AT (g(p) = A% () =
0.01 - (s 4 1)~ Zietivsig,ip) maxdlvghlwsl}

where 1 = i1%2 . . . k.
Since T satisfies axioms A C (s 4 1)max{lvillwill .yR; A we
have that

A (g(w) <
< (s+ 1)max{|”i|7|wi|} . AI(g(,ui)) .

Likewise, since 7 satisfies axioms (s 4 1)mex{lvil:lwil} .
JR;.A C A, we have that

A% (g(n) >
> (5o 1D A7 g )

(S n 1)1naX{|U1\7\wi|} . (VRZA)I(Q(M))

(s + Dymextlvillusy . gR. A (g(u))

and, thus,

AT (g(p)) =

Therefore,

(s + 1ymextivebleaty s A% (g(ui)) .

A% (g(pi))
(s+1)~ max{|v;|,|w; |} AI( (1)
(s+1)~ max{|v;|,|w; |} AILP( )
(s+1)" max{|v;|,lwil} g g1
.(S+1)7Zi€{i1 ----- iy maxtlvgllwsl}

0.01 - (5 + 1)*<max{|vi\y\wil}+

2je{in,. iy max{lvjlilw;l})
0.01 - (s 4 1)~ Zsedin, iy maxdlvgllwyl}
AT (i)

which completes the proof. O

From the last Lemma it follows that if the RPCP instance ¢ has
a solution 1, for some p € {1,...,p}", then v, = w, and, thus,
0.v, = 0.w,,. Therefore, every witnessed model Z of O, contains an
element § = g(y) such that VZ(§) = VZ¢(u) = 0.v, = 0w, =
WZe (n) = WZ(6). Conversely, from the definition of Z,,, if ¢ has
no solution, then there is no x such that 0.v, = 0.w,, i.e., there is
no  such that V%o (1) = Wke ().

However, as O, is always satisfiable, it does not yet help us to
decide the RPCP. We next extend O, to O, in such a way that an
instance ¢ of the RPCP has a solution iff the ontology O, is not wit-
nessed satisfiable and, thus, establish that the KB satisfiability prob-
lem is undecidable. To this end, consider

= <7;7-A>7
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where

To=ToU |J AT CVR.(~(V < W)LU-A)}.

1<i<p

The intuition here is the following. If there is a solution for RPCP

then, by the observation before, there is a point  in which the value
of V and W coincide under Z. That is, the value of =(V « W)
is 0 and, thus, the one of =(V > W) Ll = A is less than 1. So, Z
cannot satisfy the new GCI in 7, and, thus, Oy, is not satisfiable. On
the other hand, if there is no solution to the RPCP then in Z, there
is no point in which V and W coincide and, thus, =(V <> W) > 0.
Moreover, we will show that the value of =(V <> W) in all points is
strictly greater than A and, as ALI-Ais 1, soalso ~(V < W)U —-A
will be 1 in any point. Hence, Z, is a model of the aditional axiom in
75, i.e., O is satisfiable.

Proposition 6. The instance ¢ of the RPCP has a solution iff the
ontology O; is not witnessed satisfiable.

(Proof) Assume first that ¢ has a solution pt = 41 ... and let 7

be a witnessed model of O,. Let i = d1i2...7x—1 (last index
ix is dropped from p). Then by Lemma [3] it follows that there
are nodes 6,6’ € AT such that § = g(u), & = g(@), with
VE(@S) = Ve (u) = Whe(u) = WH(5) and R}, (8',6) = 1.
Then (V + W)Z(§) = 1. Since (=A)%(8) < 1, then (=(V <+
W) U -~A)E(5) < 1. Hence there is 4, with 1 < i < p,
such that (VR;.(~(V « W) U =A))T(8’) < 1. So, axiom
T C VR;.(~(V « W) U —A) is not satisfied and, therefore,
O, is not satisfiable.
For the converse, assume that ¢ has no solution. On the one hand
we know that Z,, is a model of O,. On the other hand, since ¢
has no solution, then there is no pt = 41 ... % such that v, = w,
(i.e.,, 0.v, = 0.wy,) and, therefore, there is no p € AZ¢ such
that VZ¢ () = WZe (). Consider p € AT¢ and i, with 1 <
i < p and assume, without loss of generality, that V7 (ui) <
WZe (ui). Then

WP (i) = VT (i)

® (W (ui) = V7 (ui))

= WP (ui) = VT (i)

= 1= W% (i) + VT (i)

= 1= (W (ui) = V' (i)

1 — (0.wus — 0.v4)

1—0.01 - (s + 1)~ maxtlvuillwail}

1—0.01- (s 4 1)7 Zietinia,ip iy maxtivgllwgl}

(~A)%* (i)

Therefore, (=(V < W))%e (ui) > AZe(ui). As A%e (ui) @
(~A)Ee (ui) = 1, it follows that for every p € A%¢ and 4, with
1 < i < p, it holds that (VR;.(~(V < W) U—-A)Te(u) = 1
and, therefore, Z, is a witnessed model of Oy, . O

(

= (VF(ui) = W (ui)) ®
(
1

INIA

By Proposition[] we have a reduction of a RPCP to a KB satisfi-
ability problem. Note that all roles are crisp. Therefore,

Proposition 7. The knowledge base satisfiability problem is unde-
cidable for £- ALC with GClIs. The result holds also if crisp roles are
assumed.
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Undecidability of KB satisfiability w.r.t. finite models In this
section we address a subproblem of the previous one, that is, deciding
whether a KB has a finite model.

As in [3]], given an instance ¢ of RPCP, we provide an ontology
@w and prove that it has a finite model iff ¢ has a solution. We now
define a TBox 7~ as follows:

72 ::{ V=ViuVe, W=W;UWs,
=(V < W) C max{Ch,...,Cp} },

and TBoxes 7?2 as follows:

T2 ={ Ci=3R.T,
T E max{Ci,ﬂCi},

(Ci = V) E (s+ 1) . vR,.W,

(s+ 1) 3R,.Vi C (Ci = V),

(Ci = W) C (s+ D)™l .vR, W7,
(s+ D™l 3R Wy E(Ci = W),
VR;.Va,0.0;),

VR;. =V, 1 —0.v;),

VYR Wa,0.w;),

VR, ~Ws,1—0.w;) }

I

Now, let

<
C

C-
o

Further we define the ABox ./L;, as follows:

A, = {a-V,a:=W,amax{Ch,...,Cp} }.
Finally,
Op = (T, Agp) -
Proposition 8. The instance o of the RPCP has a solution iff the

ontology O, has a finite model.

(Proof) (=) Let u = i1...14x be a solution of ¢ and let suf(u)
be the set of all suffixes of pﬂ We build the finite interpretation
I as follows:

o ALe = suf(p),

. ai*" =€,

o Vie(e) = Woe(e) = 0, and for 1 < i < 2, V2%(e) =
W (e) =0

o forally € Ale Ve (v) =0.v,, wle (v) = 0w,

o forallv, v € AZe and 1 <i<p

- e
e (') = 1, ifv _vw
0, otherwise

6 A suffix of a string t1ta ... tp isastring tn—m41...tn (0 < m < n),
which is the empty string € for m = 0.
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o forally € AZe and 1 < i < p,

C’.i“"(u) _ {1, ifiv € suf(u)

0, otherwise

o forally € A%¢ and 1 < i < psuch that iv € suf(u)
- Vlz“o (iv) = 0wy - (s + 1)_|'Ui" lew (iv) = 0.w, - (5 +
1)*|wi\’
- VQIV) (iv) = 0.vi, WQI“’ (iv) = 0.w;.

We show now that Z,, is a model O,,. Since V¢ (¢) = 0.v, =
0 and W%# (¢) = 0.w. = 0, then the first two axioms in A,
are satisfied. Sinpe there is 1 < ¢ < p such that te = ¢ €
suf(u), then CiI“” (e) = 1 and, therefore, the third axiom in
fLO is satisfied.

We now show that the axioms in 7 and each 7’;, with1 <7 <
p are satisfied for every v € suf(u). So,letv € suf(u)\{u}.
Then there is 1 < ¢ < p such that iv € suf(u) and, therefore,

by the definition of Z,,, C;*(v) = 1 and R;* (v,iv) = 1.

7

Therefore, (C; — V~)I*" (v) = vie (v) from which it follows
that every axiom in 7 is satisfied by Z,, (the proof is the same
as for Z,, satisfying 7). E.g., note that vZe (v) = 0w, =
(s+1)lvl. VIZ“" (4v) and, thus, both (C; — V) C (s +1)vil.
VR;.Vi and (s + 1)IVil . 3R,. Vi C (C; — V) are satisfied.
Moreover, for every j # 4 and v/ € suf(u), it holds that
CJ.I“’ (v) = 0 and Rf“’ (v,v') = 0 and, therefore every axiom
in ’7~fg is satisfied as well (note that e.g., (ij.Vl)iv (v) =1).
This last argument holds for w4 as well.

Finally, consider 7~fp. Itis easy to check that the first two axioms
are satisfied in every v € suf(u). For the third axiom, if v €
suf(p) \ {p}, then there is 1 < 4 < p such that C’Z.I*’ v)=1
and, then, the axiom is trivially satisfied. Otherwise, if v = p,
since p is a solution for ¢, then (=(V W))i“’ (1) = 0 and,
then, the axiom is trivially satisfied as well.

(<) For the converse, suppose that ¢ has no solution and let 7

be a model of (7)<P. By absurd, let us assume that Z is finite and,
thus, witnessed.

Now, since 7 is a model of axioms a:—V and a:—WW, then there
isanode a* = § € AT, such that VZ(§) = WZ(8) = 0.
Moreover, since Z is amodel of axioms V = Vi UVo and W =
Wi L Wa, then ViE(8) = V5F(8) = WE(8) = WF(5) = 0as
well.

Next, we prove by induction that for every n € N there is an
element §;,, € AT such that:

L] VI((Sin) = O.Uin )
L] WI((Sin) = O.win ce Wi,

and [{9,0;,,...,di, }| = n+ 1 (all elements are distinct). As
a consequence, AZ cannot be finite, contrary to the assumption
that 7 is finite.

Casen = 1. Since 7 is a witnessed model, it satisfies axiom
a:max{C1,...,Cp}. So, there is 4, such that CZ(§) = 1.
Let 41 = 4. Since Z satisfies axiom C;;, = 3JR;,.T, then
there is &' € AT such that RY, (5,6') = 1. Let §;, = ¢
Since 7 satisfies axiom (s + 1)/ . 3R, .Vi C (Cyy, — V),
then 0 = (1 = 0) = (Cy, (6) = V)*(8) > (s + 1)Vl
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SuPé’eAI{Rizl (67 6/) ® VII((S/)} > Rzzl (67 51'1 ) ® Vlz((sll) =
1® ViE(8:,) = ViE(84,). Hence, ViE(8;,) = 0. In the same
way it can be proved that W7 (6;,) = 0.

Since Z satisfies axiom (T C VR;,.V2,0.v;, ), we have that
O'Uil < (Rzll (5v 6"51) = ‘/21(51'1)) = (1 = ‘/21(51'1)) =
VQI(éil )

Since Z satisfies axiom (T C VR;,.=V2,1 — 0.v;,), it fol-
lows that 1 — 0.v;, < (R, (6,68:,) = —V5 (63,)) = (1 =
Vi (6:,)) = —V&(6:,) = 1 — V&(6;,) and therefore,
V& (8:,) < 0.vi,. So, VE(8i,) = 0.vi,. In the same way
it can be proved that W& (6;,) = 0.w;, .

Finally, since Z satisfies axiom V' = V3 UVz, then VZ(§;,) =
ViE(8:,) @ VE(8i,) = 0@ 0.v;; = 0.v;,. In the same way
it can be proved that W% (8;,) = 0.w;,. Moreover, since
VE(©) = 0 # 0w, = VE(S;,), then § # §;, and, thus,
I{9, i, }| = 2, which completes the case.

Induction step n + 1. Let n > 1 and suppose, by inductive
hypothesis, that, for every j < n, the above conditions hold.
Since ¢ has no solution, then v;,, ... vy, # Wi, ...Ws,
and, therefore, by inductive hypothesis, VZ(§;,) =
0.vi, ...vi; # 0awi, ...w;; = Wz(éin). Hence (V «
W)E(8:,,) < 1 and, therefore, =(V + W)%(8;,) > 0. So,
since Z satisfies axiom =(V < W) C max{Ch,...,Cp},
(max{C1,...,Cp})*(8;,) > O follows and, thus, there is
i such that CZ(8;,) > 0. Therefore, as T satisfies axiom
T C max{C;,~C;}, we have that C7(5;,) = 1. Now, let
I—

Since Z satisfies axiom C;, , = 3R;, . T, then there is
&' € AT such that RY _ (i,,8') = 1.So, let 6;, ., =&

Tn41
Since Z satisfies axiom (Ci, ., — V) E (s +
. Viy = (1 =

1/Vinn!l VR, VA, then 0., ..

Owip, ...viy) = (Ci, = V)(6:,)) < (s +
Dl infyar{RE L (60, 8) = VEO)} <
(R:iz:n+1(6i”75in+1) = VII((Sin+1)) = VII((Sin+1)' On

the other hand, since Z satisfies axiom (s + 1)"“n+1‘ .
AR, ., Vi E (Cs — V), then 0.v;, ...v;;

in

n+1

1 = 0w, ...vy) = (C; = V)I((Si ) >
(8 + 1)|W"+1| . sup(s/eAI{RiInJA (51'”76/) ® Vlz(él)} >
(s + DMl (R Bi6i00) © V(i)

(s + DIVnnr!l VIS, ). So, Oy vy, = (s +
1)lVintal Vit (8i,,,) and, thus, Vi¥(d;,.,) = (s +
1) il 0, ... v;,. In the same way it can be

proved that Wi (8, ,) = 0.wi,, ... wi, - (s + 1)7‘wiﬂ+1 3
Since Z satisfies axiom (T CVR;, ,.V2,0.v;, ), we get
< Ri1n+1 (6ina 5in+1) = ‘/21(5%4-1) =1=
Vs (8i,4y) = V5 (8i,,,). Similarly, since T satisfies ax-
iom (T CVR;,,,.~V2,1 = 0.0, ), wegetl —0.v;, , <
Rzl;,,_H (6in75in+l) = j‘/Y2I(57«'n+1) =1= ﬁ‘/V2I(57«'77,+1) =
V5 (8i,,,) = 1 — V5 (8;,,,) and therefore, V5" (6;,,,,) <
0.vi, ;- So, V5" (8i,,,) = 0.v;,,,. In the same way it can
be proved that W5 (6;,, ;) = O.wi,, ., ,.

Finally, since Z satisfies axiom V = Vi U V3, then
VE(Biy1) = VE(B0) © VE (Bina) = (54 1) oot
0.vi,, ... vy ) D00, = 0.v;,,, ...0.v;. In the same way
it can be proved that W7 (68, ,) = 0.wi, ., ... 0.wi,.
Moreover, since, by inductive hypothesis, for every j <
n, VI((SzJ) = O.vij <o U4y ;é O‘Uin+1 e Uij Vi =

O.Uin_*_1
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V*(5i,.,). then &;, # &i,,,. Furthermore, as V*(6)
0 # V*(i,,,), then § # 4 ., and, thus,
{0, 8iy, ..+, 0i,1 }| = n + 2, which completes the case.

So, O, has no finite model.
O

By Proposition[8] we have a reduction of a RPCP to a finite satisfia-
bility problem. Again, note that all roles are crisp. Therefore,

Proposition 9. The knowledge base finite satisfiability problem is
undecidable for £- ALC with GClIs. The result holds also if crisp roles
are assumed.

We conclude by pointing out that, as K = (a:L, 1) iff K is not
satisfiable iff /C = (T C L, 1), both the entailment problem of de-
termining whether K |= (a:C, n) and the problem of determining
whether C |= (C C D, n) are undecidable, and, thus, as well are un-
decidable the problems of determining bed(/C, a:C') and bsd(KC, C)
(w.r.t. arbitrary witnessed or finite models).

Corollary 10. For £-ALC with GCls, with respect to arbitrary wit-
nessed or finite models, (i) the best entailment degree problem for
concept assertions and GCls is undecidable; and (ii) the best satisfi-
ability degree problem is undecidable. These results hold also if crisp
roles are assumed.

4 Conclusions

In this paper we have proved that KB satisfiability problem with
GCls is undecidable under infinite-valued Lukasiewicz semantics.
Despite the fact that we have mainly considered the notion of sat-
isfiability with respect to witnessed interpretations, the completeness
of first order Lukasiewicz logic with respect to witnessed models,
proved also for the case of standard semantics in [[13] and [[14] allows
to apply the present result to the case of unrestricted interpretations
as well. Under the logical point of view this is an important result,
because helps to trace the limits of decidability for the fragments of
Lukasiewicz first order logic. As a related topic, it is known (see [4])
that KB satisfiability become a decidable problem when the KB is
acyclic or the TBox is empty.
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Postulates for logic-based argumentation systems

Leila Amgoud !

Abstract. This paper studies abstract logic-based argumentation
systems. It proposes three key rationality postulates that such sys-
tems should satisfy: consistency, closure under sub-arguments and
closure under the consequence operator of the underlying logic. It
then investigates the links between these postulates, and explores the
conditions under which they are guaranteed or violated.

1 Introduction

An argumentation system for reasoning with inconsistent informa-
tion consists of a set of arguments, attacks among them, and a seman-
tics for evaluating the arguments and computing thus, acceptable sets
of arguments, called extensions. Arguments are built from a knowl-
edge base using an underlying logic. A logic contains two parts: a
language in which the formulas of the knowledge base are encoded,
and a consequence operator which is used for defining arguments
and attacks. In the ASPIC argumentation system [4], for instance,
the language of its logic is made of two types of rules: strict rules
which encode certain knowledge and defeasible rules which encode
uncertain ones. The consequence operator shows how these rules can
be chained. We will refer to such a logic as rule-based logic and to
systems grounded on it as rule-based systems.

The first work on rationality postulates in argumentation was done
by Caminada and Amgoud [11]. The authors focused only on rule-
based systems, and proposed the following postulates that such sys-
tems should satisfy:

Closure: The idea is that if a system concludes x and there is a strict
rule x — y, then the system should also conclude y.

Direct consistency: the set of conclusions of arguments of each ex-
tension should be consistent.

Indirect consistency: the closure of the set of conclusions of argu-
ments of each extension should be consistent.

As obvious as they may appear, these postulates are violated by
most rule-based systems (like [19]). Besides, they are tailored for
rule-based logics. Their counterparts for any other logic do not
exist. Later, Amgoud and Besnard made in [3] a first attempt on
generalizing the two postulates on consistency to a wider class of
logics. They considered the abstract monotonic logics of Tarski
[21]. They defined a new postulate for direct consistency which is
stronger than the original one. It imposes that the set of formulas
that are used in the supports of arguments of each extension should
be consistent. The authors justified this choice by the fact that an
extension represents a coherent position/point of view, thus it should
only involve a consistent set of formulas. They have then shown that
indirect consistency follows naturally from the new postulate, thus
indirect consistency does not deserve to be a postulate per se.

As in [3], in this paper we consider argumentation systems that are
grounded on Tarski’s logics. We generalize the postulates that are
proposed in [11] to these logics, and introduce a new postulate.
This postulate says that if an extension contains an argument, then
all its sub-arguments should belong to the extension as well. We
show that the strong version of direct consistency that is proposed in
[3] follows naturally from the new postulate on sub-arguments and
the extended version of the initial definition of direct consistency.
Thus, strong consistency does not deserve to be a separate postulate.
To sum up, there are three basic postulates: 1) Closure under the
consequence operator of the logic; 2) Closure under sub-arguments;
3) Direct consistency, i.e., the version defined in [11]. Indirect
consistency and strong consistency follow from these postulates.
We show that the three postulates are independent and compatible,
i.e., they can be satisfied all together by an argumentation system. A
second contribution of this paper consists of studying under which
conditions the postulates are satisfied or violated. The satisfac-
tion/violation of a postulate depends mainly on the attack relation.
We characterize some attack relations that lead to the satisfaction
of the three postulates, and some other relations that lead to the
violation of consistency.

The paper is organized as follows: Section 2 defines the logic-based
argumentation systems we are interested in. Section 3 introduces the
three basic postulates, and studies the links between them. Section 4
investigates the conditions under which the postulate on consistency
is violated. The conditions under which the three postulates are sat-
isfied are studied in Section 5. Section 6 discusses the importance of
our postulates in case of weighted argumentation systems.

2 Logic-based Argumentation Systems

It is well known that a structured argumentation system is built on
an underlying monotonic logic. In this paper, we do not focus on a
particular logic (like rule-based logic, propositional logic, .. .), but
we consider an abstract monotonic logic. Such abstraction makes
our study general and our results hold under any instantiation of the
abstract logic. We consider Tarski’s logics (£, CN) where L is a set
of well-formed formulas. Note that there is no particular requirement
on the kind of connectors that may be used. CN is a consequence
operator. It is a function from 2% to 2° which returns the set of
formulas that are logical consequences of another set of formulas
according to the logic in question. It should satisfy the following
basic properties:

1. X CCN(X) (Expansion)
2. CN(CN(X)) = CN(X) (Idempotence)
3. CN(X) = Uyc,x CN(Y)? (Finiteness)
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ECAI-2012 Workshop WL4AI

4. CN({z}) = Lforsome z € L
5. CN(0) # £

(Absurdity)
(Coherence)

Any logic whose CN satisfies the above properties is monotonic. The
associated notion of consistency is defined as follows:

Definition 1 (Consistency) A ser X C L is consistent wrt a logic
(L£,CN) iff CN(X) # L. It is inconsistent otherwise.

Arguments are built from a finite knowledge base > C L as follows:

Definition 2 (Argument) Let Y be a knowledge base. An argument
is a pair (X,z) s.t. X C %, X is consistent, and x € CN(X)*. An
argument (X, ) is a sub-argument of another argument (X', ') iff
X CXx'.

Notations: Supp and Conc denote respectively the support X
and the conclusion z of an argument (X,z). For all S C X,
Arg(S) denotes the set of all arguments that can be built from S
by means of Definition 2. Sub is a function that returns all the
sub-arguments of a given argument. For all £ C Arg(X), Concs(E)
= {Conc(a) | a € £} and Base(£) = J,, . Supp(a). Let Cx; denote
the set of all minimal conflicts* of X.

An argumentation system is defined as follows.

Definition 3 (Argumentation system) An argumentation system
(AS) over a knowledge base X is a pair (Arg(X), R) where R C
Arg(Y) x Arg(X) is an attack relation. For a,b € Arg(X), (a,b) €
R (or aRb) means that a attacks b.

The attack relation is left unspecified in order to keep the system
very general. It is also worth mentioning that the set Arg(3) may
be infinite even when the base X is finite. This would mean that the
argumentation system may be infinite’.

Arguments are evaluated using any semantics which is based on
the notion of admissibility [13]. Note that any result that holds under
admissible semantics holds also under any semantics based on it. We
thus need to recall admissible semantics but also stable one since
some results are shown only under this particular semantics.

Definition 4 (Semantics) Ler (Arg(X),R) be an AS and € C
Arg(X) and a € Arg(X).

o & is conflict-free iff B a,b € £ s.t. aRb.

€ defends a iff Vb € Arg(X) s.t. bRa, 3c € € s.t. ¢Rb.

& is an admissible extension iff £ is conflict-free and € defends
any bs.t. b € £.

& is a stable extension iff € is conflict-free and for all b € Arg(X)\
E, dc € &€ s.t. ¢Rb.

Let Ext(7) denote the set of all extensions of 7 under a given
semantics that is based on admissibility, for instance grounded,
stable, preferred, etc (see [13] for definitions).

Let us now characterize the conclusions that may be drawn from
> by an argumentation system. The idea is to infer  from X iff it is
the conclusion of an argument in each extension.

3 Generally, the support X is minimal (for set C). In this paper, we do not
need to make this assumption.

4 A set C C X is a minimal conflict of ¥ iff i) C' is inconsistent, and ii)
Vz € C, C \ {x} is consistent.

5 An AS is finite iff each argument is attacked by a finite number of argu-
ments. It is infinite otherwise.
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Definition 5 (Output) Let 7 = (Arg(X),R) be an AS over a
knowledge base ¥. For v € L, Y| x iff VE € Ext(T), Ja € &
s.t. Conc(a) = x. Output(7) ={z € L| vz}

It is easy to check that the set of outputs coincides with the set of
common conclusions of the extensions.

Property 1 Let T = (Arg(X), R) be an AS over a knowledge base
Y. It holds that Output(7T) = () Concs(&;) with & € Ext(T).

It is also obvious that the outputs of an AS are consequences of
under CN.

Property 2 Let T = (Arg(X), R) be an AS over a knowledge base
5. It holds that Output(T) C CN(X).

It is worth mentioning that an argumentation system starts with a
monotonic logic (£, CN) and defines a non monotonic logic (L, |~).
The non monotonicity of |~ is obviously due to the status of argu-
ments. An argument may be accepted under a given semantics and
becomes rejected when new arguments are received.

3 Postulates for Argumentation Systems

The first rationality postulate that an argumentation system should
satisfy concerns the closure of its output. The basic idea is that the
conclusions of a formalism should be “complete”. A user should not
perform on her own some extra reasoning to derive statements that
the formalism apparently “forgot” to entail. In [11], closure is defined
for rule-based argumentation systems. In what follows, we extend
this postulate to systems that are grounded on any Tarskian logic.
The idea is to define closure using the consequence operator CN.

Postulate 1 (Closure under CN) Ler 7 = (Arg(X), R) be an AS
over a knowledge base . T satisfies closure iff for all € € Ext(T),
Concs(€) = CN(Concs(E)).

In [11], closure is imposed both on the extensions of an AS and on
its output set. The next result shows that the closure of the output set
does not deserve to be a separate postulate since it follows immedi-
ately from the closure of extensions.

Proposition 1 Ler T = (Arg(X), R) be an argumentation system
over a knowledge base . If T satisfies closure, then Output(7T) =
CN(Output(7)).

The second rationality postulate concerns sub-arguments. An argu-
ment may have one or several sub-arguments, reflecting the different
premises on which it is based. Thus, the acceptance of an argument
should imply also the acceptance of all its sub-parts. Let us illustrate
the importance of this postulate on the following example.

Example 1 Assume an AS T built on a propositional knowledge
base. Assume also that Ext(T) = {&} such that € = {({p,p —
—f},—f)}, where p stands for penguin and f for fly. This means
that the two arguments ({p},p) and ({p — —f},p — —f) are
rejected (since they do not belong to £). Thus, the unique accepted
argument is grounded on two formulas which are both rejected. It
seems counter-intuitive to accept such argument.

Postulate 2 (Closure under sub-arguments) Let 7 = (Args(X),
R) be an AS over a knowledge base 3. T is closed under sub-
arguments iff for all £ € Ext(T), if a € £, then Sub(a) C E£.
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It is easy to check that closure under sub-arguments is equivalent
to closure under super-arguments. The latter means that if an argu-
ment is excluded from an extension, then all arguments built on it (its
super-arguments) should also be excluded from that extension.

Property 3 Let 7T = (Args(X), R) be an AS over a knowledge base
Y. T is closed under sub-arguments iff VE € Ext(T) if a ¢ &, then
Vb € Args(X) s.t. a € Sub(b), b € £.

Another interesting property of this postulate is the following.

Property 4 Let T = (Args(X), R) be an AS over a knowledge base
Y s.t. T is closed under sub-arguments. YE € Ext(T), it holds that:

e Forall x € Base(€), ({z},z) € &
e Base(&) C Concs(€)

The next result characterizes the extensions of argumentation sys-
tems that are closed under both CN and sub-arguments.

Property 5 Let T = (Args(X), R) be an AS over a knowledge base
3. If T is closed under sub-arguments and under CN, then for all
& € Ext(T), Concs(€) = CN(Base(E)).

The third rationality postulate concerns the consistency of the results.
This is the minimum that can be required from a reasoning system.
The following postulate generalizes the ‘direct consistency postulate’
which was proposed for rule-based argumentation systems in [11].
Indeed, we define its counterpart under Tarskian logics.

Postulate 3 (Consistency) Let T = (Arg(X), R) be an AS over a
knowledge base 3. T satisfies consistency iff for all £ € Ext(T),
Concs(€&) is consistent.

As obvious as it may appear, this postulate is violated by some ex-
isting argumentation systems like the ASPIC+ system [18]. Let us
consider the following example:

Example 2 Assume that R = {= z,= -z V y,= -y}, and that
all the other bases defined in [18] are empty. Only three arguments
can be built: Ay : ({= z},z), Ao : ({= -z Vy},~zVy), As :
({= -y}, ). It can be checked that the three arguments are not
attacking each other using the attack relation defined in [18]. Thus,
the set { A1, Az, As} is an admissible extension. Consequently, the
inconsistent set {x, —x V y, ~y} is the output of the system!

As for closure, in [11] a postulate imposing the consistency of the
output is defined. We show next that such postulate is not necessary
since an AS that satisfies Postulate 3, has a consistent output.

Proposition 2 If 7 = (Arg(X), R) satisfies consistency, then the
set Output(T) is consistent.

In [11], it was shown that some rule-based argumentation systems,
like [19], violate the postulate of indirect consistency. Recall that in-
direct consistency means that the closure (under strict rules) of the
conclusions of each extension is consistent. When this postulate is
violated, undesirable conclusions may be inferred. We show next that
in the case of Tarski’s logics, (direct) consistency coincides with in-
direct consistency. Thus, this latter does not deserve to be a postulate
per se.

Proposition3 Ler T = (Arg(X),R) be an AS over a knowl-
edge base 3. T satisfies consistency iff for all € € Ext(T),
CN(Concs(€)) is consistent.
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Until now, we revisited and extended the postulates proposed by
Caminada and Amgoud [11]. We showed that three of them (the clo-
sure of the output set, the consistency of the output set and indirect
consistency) might not be considered as postulates since they follow
naturally from more fundamental ones. The question now is: what
about the strong version of consistency that is proposed by Amgoud
and Besnard [3]? Should it be considered as a postulate or not? Re-
call that this postulate ensures that for each extension £ of an AS,
Base(&) should be consistent.

Strong Consistency: Let T (Arg(X),R) be an AS over a
knowledge base X.. T satisfies strong consistency iff for all £ €

Ext(7), Base(&) is consistent.
This postulate is certainly stronger than Postulate 3.

Proposition 4 [f an AS satisfies strong consistency, then it also sat-
isfies consistency.

We show next that strong consistency does not deserve to be a postu-
late per se as it follows from the basic ones, namely consistency and
closure under sub-arguments. It is worth mentioning that this result
is very general as it holds under any semantics, any attack relation
and any Tarskian logic.

Proposition 5 [f an AS satisfies consistency and closure under sub-
arguments, then it also satisfies strong consistency.

An axiomatic approach should obey two important features: i) the
postulates should be independent, ii) the postulates should be com-
patible, i.e., they may be satisfied together. Hopefully, our three pos-
tulates are independent. Indeed, the consistency postulate is clearly
independent from the two others. The following example shows that
the two postulates on closure are independent as well.

Example 3 Assume that (L,CN) is propositional logic, T is an
AS with a unique extension & = {a,b}, Sub(a) = {a}, and
Sub(b) = {a,b}. Thus, T is closed under sub-arguments. Assume
that Concs(E) = {z, y}, then T violates closure under CN. Assume
another AS T' with a unique extension £ = {a,a1,as, ...} where
Conc(a) = x and VYa;, Conc(a;) = x; with x; € CN({x}). Thus,
T’ satisfies closure under CN. Assume that Sub(a) = {a,b}, then
T violates closure under sub-arguments.

The three postulates are also compatible as witnessed by the argu-
mentation system studied in [12]. This system is grounded on propo-
sitional logic (an instance of Tarski’s logics) and uses the assumption
attack relation defined in [14]. It was shown that the system satis-
fies strong consistency under stable semantics. Thus, consistency is
also ensured. Besides, each stable extension is closed in terms of
arguments (£ = Arg(Base(£))), so the system is closed under sub-
arguments. Finally, it is easy to check that in this particular system,
closure under the consequence operator follows from consistency
and closure under sub-arguments.

4 On the Violation of Consistency Postulate

This section studies three properties of attack relations that may lead
to the violation of the consistency postulate. The first one concerns
the origin of the relation. We show that an attack relation should be
grounded on inconsistency.
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Definition 6 (Conflict-dependent) An attack relation R is conflict-
dependent iff Va,b € Arg(X), if aRb then Supp(a) U Supp(b) is
inconsistent.

Note that all the attack relations that are used in existing structured
argumentation systems are conflict-dependent (see [16] for a sum-
mary of those relations). It is very natural that inconsistency would
be the origin of the attack relation.

Example 4 Let T = (Arg(X), R) be an AS built over the propo-
sitional knowledge base ¥ = {b,p} where b stands for “Tweety
is a bird” and p for “Tweety is a penguin”. Assume that R
{(z,y) | Supp(z) # Supp(y)}. Note that R is not conflict-
dependent. It is easy to check that b,p ¢ Qutput(T). This outcome
is certainly not intuitive.

In [3], it was shown that strong consistency is violated by argumenta-
tion systems that use a symmetric attack relation. One may think that
this result is true only when considering the strong version of consis-
tency. Unfortunately, it is even true for the weaker version. Indeed,
we show that when the attack relation is symmetric, Postulate 3 is
violated. Before presenting the result, let us first show some interme-
diary results. The first one shows that when the knowledge base is a
minimal conflict with more than two formulas, then it is possible to
build a conflict-free set of arguments.

Lemmal Let ¥ = {x1,...,z,} where n > 2 and Cs = {¥}.
Let ai,...,an, € Arg(X) s.t. Supp(a;) = {zi}. If R is conflict-
dependent, then the set € = {au, ..., an} is conflict-free.

The previous conflict-free set of arguments defends even its elements
when the attack relation is symmetric.

Lemma2 Let ¥ = {z1,...,2,} wheren > 2 and Cs = {X}. Let
ai,...,an € Arg(X) s.t. Supp(a;) = {zi}.

If R is conflict-dependent and symmetric, then the set &
{a1,...,an} defends its elements.

From the two lemmas, it follows that the set {a1, . ..
missible extension.

,an} is an ad-

Proposition 6 Let ¥ = {z1,...,zn} wheren > 2 and Cs = {£}.
Let ai,...,an, € Arg(X) s.t. Supp(a;) = {zi}. If R is conflict-
dependent and symmetric, then the set £ = {aa,...,an} is an ad-
missible extension.

The next result shows that the argumentation framework built from
the knowledge base ¥ = {z1,...,2,} wheren > 2 and Cs; = {X}
violates consistency.

Proposition 7 Let ¥ = {z1,...,zn} wheren > 2 and Cs = {£}.
Let T = (Arg(X), R) be an argumentation system over X s.t. R is
conflict-dependent and symmetric. T violates consistency.

Finally, this result is generalized to any knowledge base containing a
ternary or n-ary (with n > 2) minimal conflict.

Proposition 8 Let Cs; s.t. 3C € Cx and |C| > 2. If R is conflict-
dependent and symmetric, then the system (Arg(X), R) violates con-
sistency.
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This result shows a broad class of attack relations that cannot be
used in argumentation: the symmetric ones. Thus, relations like
rebut or a combination of rebut and any other attack relation would
lead to the violation of consistency. Note that this result is condi-
tioned by the existence of n-ary (n > 2) minimal conflicts in the
knowledge base. The idea is that, due to the binary character of the
attack relation, this latter is unable to capture n-ary minimal conflicts.

Another mandatory property that an attack relation should fulfill is
that it captures a// the minimal conflicts of the knowledge base, i.e.,
each minimal conflict should be captured by at least one attack in R.

Definition 7 (Conflict-exhaustive) An attack relation R is conflict-
exhaustive iff VC € Cx s.t. |C| > 1, 3X C C s.t. Ja,b € Arg(X)
and Supp(a) = X, Supp(b) = C' \ X and either aRb or bRa.

Note that an attack relation that is conflict-dependent is not neces-
sarily conflict-exhaustive and vise versa. We show that argumenta-
tion systems whose attack relations are not conflict-exhaustive vio-
late consistency. We show progressively this result.

Lemma3 Ler ¥ {z1,...,2n} where n > 1 and Cs
{Z}. Let ai,...,an € Arg(X) s.t. Supp(a;) = {xz:}. If R is
conflict-dependent and not conflict-exhaustive, then the set £
{a1,...,an} is conflict-free.

Note that symmetric relations are problematic only in presence of
ternary or more minimal conflicts, that is a conflict C s.t. |C| > 2.
However, non conflict-exhaustiveness is fatal even with only binary
conflicts. The previous conflict-free set of arguments defends its ele-
ments when the attack relation is not conflict-exhaustive.

Lemmad4 Let ¥ {z1,...,2n} where n. > 1 and Cx

{Z}. Let ai1,...,an € Arg(X) s.t. Supp(a;) = {zi}. If R
conflict-dependent and not conflict-exhaustive, then the set £

{ai1,...,an} defends its elements.

From the two lemmas, it follows that the set {a1, ...
missible extension.

is

,an} is an ad-

Proposition9 Let ¥ = {x1,...,2,} where n > 1 and Cs
{Z}. Let a1,...,an € Arg(X) s.t. Supp(a;) = {xi}. If R
conflict-dependent and not conflict-exhaustive, then the set £
{a1,...,an} is an admissible extension.

The next result shows that the argumentation framework built from
the knowledge base ¥ = {x1,...,zn} wheren > 1 and Cx = {X}
violates consistency.

Proposition 10 Let ¥ = {x1,...,z,} where n > 1 and Cs =
{Z}. Let T = (Arg(X), R) be an argumentation system over ¥
s.t. R is conflict-dependent and not conflict-exhaustive. T violates
consistency.

Finally, this result is generalized to any knowledge base containing a
binary or more minimal conflict.

Proposition 11 Let Cx s.t. 3C € Cxs and |C| > 1. If R is conflict-
dependent and not conflict-exhaustive, then the system (Arg(X), R)
violates consistency.

Let us summarize: in order to satisfy consistency, an argumentation
system built over a knowledge base under a Tarskian logic should use
an attack relation that is conflict-dependent, conflict-exhaustive but
not symmetric in case the base contains n-ary (with n > 2) minimal
conflicts.
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5 When are the Postulates Satisfied?

In a previous section, we defined three rationality postulates that any
argumentation system should satisfy. An important question now is:
are there argumentation systems that may satisfy those postulates? If
yes, what are the characteristics of those systems? These questions
are very ambitious since an argumentation system has three main
parameters: the underlying monotonic logic (£, CN), the attack re-
lation R and the semantics. In this paper, the three parameters are
left unspecified. Thus, getting a complete answer is a real challenge.
In this section, we identify one family of argumentation systems that
satisfy closure under the consequence operator, three broad families
of ASs that satisfy closure under sub-arguments, a broad family of
systems that satisfy consistency. The results are general in the sense
that they hold under any Tarskian logic, any acceptability seman-
tics, and any attack relation that fulfills the mandatory properties dis-
cussed in the previous section.

5.1 Satisfaction of the Closure Postulate

In this section, we identify a class of argumentation systems that sat-
isfy closure under the consequence operator of the underlying logic
(£, CN). We show that an argumentation system that uses an attack
relation which captures all the minimal conflicts of the knowledge
base, and whose extensions contain all the arguments that may be
built from the set of formulas appearing in their arguments satisfies
closure under CN.

Proposition 12 Let T = (Arg(X), R) be an AS over a knowledge
base ¥ such that R is conflict-exhaustive. If VE € Ext(T), €
Arg(Base(€)), then T is closed under CN.

It is worth mentioning that the above result holds under any ac-
ceptability semantics that is based on the notion of conflict-freeness.
Thus, it is true for semantics that are not based on admissibility like
the ones proposed in [7].

5.2 Satisfaction of the Sub-Arguments Postulate

The satisfaction of Postulate 2 by an argumentation system depends
broadly on the properties of its attack relation. We show that when
this relation satisfies both rules Ry and R> (see Definition 8), then
the system is closed under sub-arguments using admissible semantics
(and consequently, under any semantics based on admissibility).

Definition 8 An attack relation R satisfies Ry (resp. R2) iff Va, b €
Arg(X) s.t. Supp(a) C Supp(b) and Ve € Arg(X), it holds aRc =
bRec (resp. cRa = cRb).

The rule R; says that if an argument a attacks another argument c,
then all the super-arguments of a should also attack c. The second
rule says that if an argument a is attacked by an argument c, then all
the super-arguments of a should also be attacked by c.

Proposition 13 Let 7 = (Args(X), R) be an AS. If R satisfies Ry
and Rz, then T satisfies closure under sub-arguments under admis-
sible semantics.

The next result shows that closure under sub-arguments is less de-
manding under stable semantics. Indeed, in this case only property
Ry is required for the attack relation.
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Proposition 14 Let 7 = (Args(X), R) be an AS. If R satisfies Ra,
then T satisfies closure under sub-arguments under stable semantics.

The reverse is not necessarily true as shown next.

Example 5 Let Arg(X) = {a,b,c,d} be an argumentation system
such that Sub(b) = {a, b}, Sub(a) = {a}, Sub(c) = {c}, Sub(d) =
{d}. Assume also that ¢cRa and dRb. It is clear that Ry is violated
since ¢ does not attack b. However, the stable extension {c,d} is
closed wrt sub-arguments.

The second family of AS that satisfy closure under sub-arguments
uses attack relations that are based on and sensible for inconsistency.

Definition 9 (Conflict-sensitive) An attack relation R is conflict-
sensitive iff Va,b € Arg(X), if Supp(a) U Supp(b) is inconsistent,
then either aRb or bRa.

When the attack relation is conflict-dependent and sensitive, closure
under sub-arguments is satisfied.

Proposition 15 Let T = (Args(X), R) be an AS. If R is conflict-
dependent and conflict-sensitive, then T satisfies closure under sub-
arguments under admissible semantics.

Notice that the attack relations in the first family of AS are not nec-
essarily based on inconsistency. Finally, we show that argumentation
systems whose extensions are closed in terms of arguments enjoy
closure under sub-arguments.

Proposition 16 Let T = (Arg(X), R) be an AS over a knowledge
base ¥. If VE € Ext(T), & = Arg(Base(E)), then T is closed
under sub-arguments.

This result is true under any acceptability semantics. Indeed, no re-
quirement is needed on the semantics.

5.3 Satisfaction of the Consistency Postulate

In this section, we identify a class of argumentation systems that sat-
isfy consistency. As for closure under sub-arguments, the result de-
pends of the properties of the attack relations. Before that, we start
by a result showing a case where consistency coincides with strong
consistency.

Proposition 17 Let T = (Arg(X), R) be an argumentation system.
IfVvE € Ext(T), & = Arg(Base(&)), then T satisfies consistency
implies T satisfies strong consistency.

We now show that a system that uses an attack relation which cap-
tures all the minimal conflicts of the knowledge base and whose ex-
tensions contain all the arguments that may be built from the set of
formulas appearing in their arguments, satisfies consistency.

Proposition 18 Ler 7 = (Arg(X),R) be an AS over a knowl-
edge base ¥ s.t. R is conflict-exhaustive. If VE € Ext(T), £
Arg(Base(&)), then T satisfies consistency.

This result is true under any acceptability semantics provided that it
is based on the notion of conflict-freeness. Due to Proposition 17,
this class of argumentation systems satisfies also strong consistency.

Property 6 Let T = (Arg(X), R) be an AS over a knowledge base
¥ s.t. R is conflict-exhaustive. IfVE € Ext(T), £ = Arg(Base(E)),
then T satisfies strong consistency.

This result is very general since, as we already said, the requirement
on the attack relation is very natural and even satisfied by all the
existing attack relations (see [16] for a review of those relations).
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6 Postulates for Weighted Argumentation Systems

Since early nineties, before even the acceptability semantics of
Dung [13], arguments were assumed to have different strengths.
To the best of my knowledge, the first work on preference-based
argumentation systems is the one by Simari and Loui [20]. In that
paper, arguments are built from a propositional knowledge base, and
the ones that are based on specific information are assumed stronger
than those built from general rules. In [9], arguments are built from
a possibilistic knowledge base, and are compared following the
weakest link principle. The idea is that an argument is better than
another one if the weakest formula used in the former is more certain
than the weakest formula in the latter. Besides, there is a consensus
in the literature on the fact that the strengths of arguments should be
taken into account in the evaluation of arguments (e.g. [5, 8, 20]).

The first abstract preference-based argumentation framework was
proposed in [5]. It takes as input a set of arguments, an attack
relation, and a preference relation between arguments which is
abstract and can be instantiated in different ways. This proposal
was refined in [8] and generalized in [17] in order to reason even
about preferences. Thus, arguments may support preferences about
arguments. The basic idea behind these frameworks is to ignore
an attack if the attacked argument is stronger than its attacker.
Dung’s semantics are applied on the remaining attacks. In [6], it
was shown that these frameworks do not guarantee conflict-free
extensions. As a consequence, their instantiations may violate the
rationality postulate on consistency. Assume an argumentation
system with £ = {a, b} as its admissible extension and such that
aRb. Since the attack relation should be conflict-dependent, thus
Supp(a) U Supp(b) is certainly inconsistent. From Property 4,
if the argumentation system is closed under sub-arguments, then
Supp(a) USupp(b) C Concs(E) meaning that the set of conclusions
of £ is inconsistent.

A new approach for preference-based argumentation was proposed
in [6]. It takes into account preferences at the semantics level rather
than the attack level. The idea is to extend existing acceptability
semantics with preferences. In case preferences are not available or
do not conflict with the attacks, the extensions of the new semantics
coincide with those of the basic ones. This approach computes
extensions which are conflict-free. Instantiations of the abstract
framework proposed in [6] should satisfy the rationality postulates
discussed in the present paper.

In [1], a rule-based argumentation system that satisfies the pos-
tulate on consistency was proposed. It extends and repairs the Delp
system proposed in [15] and which violates the same postulate.

7 Conclusion

In this paper we tackled the important problem of defining rational
logic-based argumentation systems. We focused on defining postu-
lates that such systems should verify. For that purpose, we revisited
and extended the two existing works on the topic [3, 11]. Our contri-
butions are the following:

1) We discussed the existing postulates in the literature, and showed
that some of them do not deserve to be postulates per se since they
follow from more fundamental ones. This is particularly the case for:
strong consistency postulate proposed in [3], output consistency, out-
put closure and indirect consistency that are proposed in [11].
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2) We defined three independent and compatible postulates under any
Tarskian logic: closure under consequence operator, closure under
sub-arguments, and consistency. Recall that two of these postulates
were only defined under rule-based logics.

3) We provided two families of AS that satisfy closure under sub-
arguments, one family of AS that satisfy consistency, and finally two
broad families of AS that violate consistency. The results are very
general since they hold under any Tarskian logic, any semantics and
any attack relation which satisfies some mandatory properties.

4) We discussed the importance of the proposed postulates in
preference-based argumentation frameworks.

This work provides guidelines for instantiating Dung’s framework
as well as its extensions with preferences. It defines the properties
that should be ensured. It can also be used for evaluating existing
systems. For instance, instantiating Dung’s system with canonical
undercut [10] as attack relation is certainly a bad choice since the
resulting system will violate consistency. Similarly, the ASPIC+
system proposed in [18] violate both consistency and closure
under CN (see [2]). In [16] some examples of systems that satisfy
consistency are provided. Those systems are built on propositional
logic and use specified attack relations.

A lot of work still needs to be done. Our aim is to have a represen-
tation theorem that characterizes all the systems that satisfy the three
postulates. However, since a system has too many parameters (un-
derlying logic, attack relation, semantics), this objective seems not
reachable. Consequently, we will investigate more classes of systems
that satisfy the postulates. Another future work consists of investigat-
ing more rationality postulates.
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Appendix

Lemma5 Let C € Cx. Forall X C C, if X # 0, then 3z, €
CN(X) and 3z2 € CN(C'\ X) such that the set {x1,x2} is incon-
sistent.

Proof Let C' be a minimal conflict. Consider X C C such that
X # (). We prove the property by induction, after we first take care to
show that X is finite. By Tarski’s requirements, there exists g € £
s.t. CN({zo}) = L. Since C'is a conflict, CN(C) = CN({z0}). Asa
consequence, g € CN(C). However, CN(C') = UC’gfc CN(C)
by Tarski’s requirements. Thus, zo € CN(C') means that there ex-
ists C' Cy C s.t. kg € CN(C"). This says that C’ is a conflict.
Since C' is a minimal conflict, C = C’ and it follows that C' is
finite. Of course, so is X: Let us write X = {z1,...,2,}. Base
step: n = 1. Taking x to be x1 is enough. Induction step: Assume
the lemma is true up to rank n — 1. As CN is a closure operator,

CN({z1,...,zn}) = CN(CN({z1,...,zn-1}) U {zs}). The in-
duction hypothesis entails 3z € £ s.t. CN(CN({z1,...,2n-1}) U
{zn}) = CN(CN({z}) U {zn}). Then, CN({z1,...,zn}) =

CN({z,zn}). As CN({z,zn}) # CN({z»}) and CN({z, zn}) #
CN({z}) (otherwise C' cannot be minimal), there exists y € L

s.t. CN({z, zn}) = CN({y}) because (L, CN) is adjunctive. Since

CN({z1,...,zn}) = CN({z, z,}) was just proved, it follows that
CN({y}) = CN({z1, ..., zn}).
Take X1 = X and X2 = C'\ X;. Since X is a non-empty proper

subset of C, so are both X; and X5. Then, the first bullet of this
property can be applied to X; and X5. As a result, 3z € L s.t.
CN({Il}) = CN(Xl) and dzs € Ls.t. CN({CCQ}) = CN(XQ) The
expansion axiom gives {z1} C CN({z1}) and {z2} C CN({z2}).
Thus, z1 € CN(X1) and z2 € CN(X3). Using the expansion
axiom again, X1 C CN(X;) and X2 C CN(X2). Thus, X; U
X2 C CN(X1) U CN(X3) CN({z1}) U CN({z2}). It fol-
lows that C C CN({z1}) U CN({z2}). Using Property 1 in [3],
CN({z1}) UCN({z2}) € CN({z1,z2}), thus C C CN({z1, z2}).
Since C is inconsistent, Property 2 in [3] gives that CN({z1,z2}) is
inconsistent as well. By the definition of inconsistency, it follows
that CN(CN({z1,z2})) = L. Applying the idempotence axiom,
CN({z1,z2}) = L, thus the set {1, z2} is inconsistent. ]

Proof of Property 1. Let 7 = (Arg(X), R) be an argumentation
system over a knowledge base 3.
1) Let € Output(7). Thus, for all £ € Ext(7), Ja € & s.t.
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Conc(a) = x. It follows that z € Concs(&;), VE; € Ext(T) and
hence © € NConcs(&;).

2) Assume that x € NConcs(&;) with & € Ext(T). Thus, V&;,
Ja; € &; s.t. Conc(a;) = . Consequently, € Output (7). [ |

Proof of Property 2. Let 7 = (Arg(X),R) be an argumentation
system over a knowledge base 3. Assume that z € Output(7).
Thus, from Definition 5, 3a € Arg(X) such that Conc(a) =
z. Since a € Arg(X), then from Definition 2, Supp(a) C X
and z € CN(Supp(a)). By monotonicity of CN, it follows that
CN(Supp(a)) € CN(X). Consequently, z € CN(X). ]

Proof of Property 3. Let 7 = (Args(X), R) be an argumentation
system. Let £ be one of its extensions under a given semantics. As-
sume that 7 is closed under sub-arguments and that b € Args(X)
butb ¢ £. Assume ¢ € Args(3) s.t. b € Sub(c) and ¢ € £. Since T
is closed under sub-arguments, then b would be in £. Contradiction.

Assume now that if a ¢ &, then Vb € Args(X) s.t. a € Sub(b),
b ¢ E. Leta € & and assume that b € Sub(a) and b ¢ £. From the
previous property, a should not be in £. |

Proof of Property 4. Let 7 = (Args(X), R) be an argumentation
system that is closed under sub-arguments. Let £ be one of its exten-
sions under a given semantics and « € Base(&). Thus, Ja € £ such
that z € Supp(a). Since Supp(a) is consistent (by definition of an ar-
gument), then the set {«} is consistent (from Property 2 in [3]). Thus,
the pair ({z},z) is an argument. Moreover, ({z},z) € Sub(a).
Since T is closed under sub-arguments, then ({z},z) € £. ]

Proof of Property 5. Assume that 7 = (Args(X), R) is closed un-
der sub-arguments and under CN. From Property 4, since 7 is closed
under sub-arguments, then it follows that Base(£) C Concs(E). By
monotonicity of CN, we get CN(Base(€)) C CN(Concs(E)). Since
T is closed under CN, then CN(Base(&)) C Concs(€).

Besides, by definition of Concs(£), Concs(E) C
U CN(Supp(a;)) with a; € £. From Property 1 in [3], it follows that
Concs (&) C CN(J Supp(a;)), thus Concs(E) C CN(Base(£)). B

Proof of Proposition 1 Let 7 = (Arg(X),R) be an AS over a
knowledge base . Assume that T satisfies closure. From Expan-
sion axiom, it follows that Output(7) C CN(Output(7)). As-
sume now that x € CN(Output(7)). Since CN satisfies finite-
ness, then there exists a finite number of formulas z1,...,x, € L
such that z1,...,z, € Output(7) and x € CN({z1,...,zn}).
From Property 1, z1,...,z, € NConcs(&;) where & € Ext(T).
From monotonicity of CN, it holds that CN({z1,...,zn})

CN(NConcs(&;)). It holds also that z € CN(Concs(&1)) N ...
CN(Concs(&y)). Since T satisfies closure, then for each &; it holds
that CN(Concs(&;)) = Concs(&;). Thus, z € Concs(E1) N ... N
Concs(&y). From Property 1, it holds that = € Output (7). ]

<
N

Proof of Proposition 2. Let 7 = (Arg(X), R) be an AS based on a
knowledge base X. Assume that 7 satisfies consistency. Thus, VE; €
Ext(T), Concs(&;) is consistent. Let £ be a given extension in
the set Ext(7). Since NConcs(&;) C Concs(&), then NConcs(&;)
is consistent as well. Besides, from Property 1, Output(7) =
NConcs(&;). It follows that Output(7T) is consistent. ]
Proof of Proposition 3 Let 7 = (Arg(X), R) be an AS based on a
knowledge base X.. Assume that 7 satisfies consistency. Thus, for all
& € Ext(T), Concs(&) is consistent. Thus, from Property 2 in [3],
CN(Concs(€&)) is consistent.
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Assume now that for all £ € Ext(7), CN(Concs(&)) is consis-
tent. Since by Expansion axiom Concs(£) C CN(Concs(&)) then
Concs(€) is consistent. ]
Proof of Proposition 4. Let 7 = (Args(X),R) be an AS
that satisfies strong consistency. Thus, for all £ € Ext(7),
Base(€) is consistent. Consequently, |J,, .. Supp(a;) is con-
sistent and CN(UJ,, ¢ Supp(a:)) is consistent as well (since
if X is consistent, then CN(X) is consistent as well). Be-
sides, for each a; € &, Conc(a;) € CN(Supp(a;)). Thus,
Concs(€) C UCN(Supp(a;)). It follows that Concs(€) C
CN(U,, e Supp(ai)). Since CN(U,, ¢ Supp(ai)) is consistent,
then its subset Concs(&) is consistent. ]

Proof of Proposition 5 Let 7 = (Arg(X),R) be an AS over a
knowledge base ¥. Assume that 7 satisfies consistency and closure
under sub-arguments. From closure under sub-arguments, it follows
that for all £ € Ext(7 ), Base(€) C Concs(E) (Property 4). Since
T satisfies consistency, then the set Concs(€) is consistent. From
Property 2 in [3], it follows that Base () is consistent. ]

Proof of Lemma 1 Let X {z1,...,2n} where n > 2 and
Cs = {X}, and let (Arg(X), R) be an AS such that R is conflict-
dependent. Let ai,...,a, € Arg(X) be such that Supp(a;) =
{z;}. Assume that the set & = {a1,...,an} is not conflict-free.
Thus, Ja;,a; € & such that a;Ra;. Since R is conflict-dependent,
then Supp(a;) U Supp(a;) is inconsistent. This is impossible since
|Supp(a;) U Supp(a;)| < m and thus, from the definition of a mini-
mal conflict, Supp(a;) U Supp(a;) should be consistent. ]

Proof of Lemma 2 Let ¥ = {z1,...,x,} where n > 2 and
Cs = {X}, and let (Arg(X),R) be an AS such that R is conflict-
dependent. Letay, . .., an € Arg(X) be such that Supp(a;) = {z;}.
Assume that the set £ = {a1, ..., an } does not defend its elements.
Thus, Ja; € &£ such that 3 € Arg(X) and bRa; and &€ does not
defend a;. This is impossible since R is symmetric thus, a;Rb. N

Proof of Proposition 6 Let ¥ = {z1,...,2,} where n > 2 and
Cs = {X}, and let (Arg(X),R) be an AS such that R is conflict-
dependent. Letay, . .., an € Arg(X) be such that Supp(a;) = {z;}.
From Lemma 1, the set £ = {a1,...,an} is conflict-free and from
Lemma 2 it defends its elements. Thus, £ = {ai1,...,a,} is an
admissible set. u
Proof of Proposition 7 Let ¥ = {x1,...,z,} where n > 2
and Cx = {X}, and let T = (Arg(X),R) be an AS such that
R is conflict-dependent. Let a1,...,a, € Arg(X) be such that
Supp(a;) = {z:} and Conc(a;) = x;. From Proposition 6, the
set £ = {ai1,...,an} is an admissible set. Besides, Concs(&)
{z1,...,xn}, thus T violates consistency.

Proof of Proposition 8 Let 7 = (Arg(X), R) be an AS over a base
3 s.t. R is both conflict-dependent and symmetric. Consider C' =
{z1,...,xn} where n > 2 and assume that C' € Cs. It follows
from Proposition 6 that the set £ = {au, ..., a,}, with Supp(a;)
{x;} and Conc(a;) = ;, is an admissible extension of 7. Moreover,
Concs(€&) is inconsistent. Thus, 7 violates consistency. ]

Proof of Lemma 3 Let ¥ = {z1,...,2,} wheren > 1 and Cx, =
{X}, and let (Arg(X), R) be an AS such that R is conflict-dependent
and not conflict-exhaustive. Let a1, ...,a, € Arg(X) be such that
Supp(a;) = {x;}. Assume that the set £ = {ai,...,a,} is not
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conflict-free. Thus, da;, a; € £ such that a;Ra;. Since R is conflict-
dependent, then Supp(a;) U Supp(a;) is inconsistent. If n = 2, then
this is impossible since R is not conflict-exhaustive. If n > 2 this is
again impossible since [Supp(a;) U Supp(a;)| < n and thus, from
the definition of a minimal conflict, Supp(a;) U Supp(a;) should be
consistent. u

Proof of Lemma 4 Let ¥ = {z1,...,z,} wheren > 1 and Cs =
{X}, andlet (Arg(X), R) be an AS such that R is conflict-dependent
and not conflict-exhaustive. Let a1, ...,a, € Arg(X) be such that
Supp(a;) = {x;}. Assume that the set £ = {a1,...,an} does not
defend its elements. Thus, Ja; € & such that 3b € Arg(X) and
bRa; and £ does not defend a;. Since R is conflict-dependent, then
Supp(a;) U Supp(d) is inconsistent. Thus, Supp(a;) U Supp(b) = X.
Consequently, Supp(b) = X \ Supp(a;). This is impossible since R
is not conflict-exhaustive. |

Proof of Proposition 9 Let ¥ = {z1,...,x,} where n > 1 and
Cs = {X}, and let (Arg(X), R) be an AS such that R is conflict-
dependent and not conflict-exhaustive. Let ai,...,a, € Arg(¥)
be such that Supp(a;) = {x;}. From Lemma 3, the set £ =
{a1,...,an} is conflict-free and from Lemma 4 it defends its ele-
ments. Thus, £ = {a1,...,a,} is an admissible set. [ |

Proof of Proposition 10 Let {z1,...,zn} where n > 1
and Cx = {X}, and let 7 = (Arg(X), R) be an AS such that R
is conflict-dependent and not conflict-exhaustive. Let a1,...,a, €
Arg(Y) be such that Supp(a;) = {z;} and Conc(a;) = z;. From
Proposition 9, the set £ = {a1,...,an} is an admissible set. Be-
sides, Concs(€) = {x1,...,zn}, thus T violates consistency. M

Proof of Proposition 11 Let 7 = (Arg(X), R) be an AS over a
base X s.t. R is conflict-dependent but not conflict-exhaustive. Thus,
there exists C = {z1,...,x,} such that C is not captured by R.
It follows from Proposition 6 that the set £ = {a1,...,an}, with
Supp(a;) = {x:} and Conc(a;) = z;, is an admissible extension of
T. Moreover, from Proposition 10, £ violates consistency. Thus, 7
violates extension consistency. |

Proof of Proposition 12 Let 7 = (Arg(X), R) be an AS s.t. R is
conflict-exhaustive and VE € Ext(T), £ = Arg(Base(£)).
Let £ be an admissible extension and z € CN(Concs(£)). Thus,

Hzi,...,zn} C Concs(€) st. ¢ € CN({zi,...,zn}).
Besides, Va;, Ja; € & st xz; € CN(Supp(a;)). Thus,
{z1,...,zn} < U,_,, CN(Supp(ai)). From Property 1

in (3], U1, CN(Supp(a:))

€ CN(U,-,, Supp(ai)).
Then, {z1,...,2zn} -

C NWU,_,, Supp(a) and
€ CN(U;-,, Supp(a;)). From Property 6, Base(&)
is consistent. Since |J,_, ,Supp(a;i) C Base(£), then
U;—1.,, Supp(as) is consistent (see Property 2 in [3]). Con-
sequently, the pair (U,_,,Supp(ai),x) is an argument.
Hence, (U,_,, Supp(a:),z) € Arg(Base(£)) and thus,
Uizt Supp(ai),z) € &. It follows that # € Concs(&).
|

x

Proof of Proposition 13 Let 7 = (Args(X),R) be an AS such
that R satisfies R, and R2. Let £ be an admissible extension of 7T .
Assume that £ is not closed under sub-arguments. Thus, Ja € &
such that Sub(a) € €. This means that 3a’ € Sub(a) and a’ ¢ £.
Two possibilities hold:

1. £U{a’} is conflicting. Thus, 3b € & such that either a’Rb or bRa’
hold. Assume that a’Rb. Since a’ € Sub(a) and R verifies Ry,
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then aRb. This contradicts the fact that £ is admissible. Assume
now that bRa’. Since R satisfies R, then bRa, contradiction.

2. & does not defend a’. Thus, 3b ¢ & such that bRa’ and fic € £
such that ¢Rb. Since bRa’ and R satisfies Ro, then bRa. Since
a € £ and £ is admissible, this means that 3¢ € £ such that ¢Rb.
Contradiction. |

Proof of Proposition 14 Let 7 = (Args(X), R) be an AS such that
‘R satisfies R2. Let £ be a stable extension of 7 which is not closed
under sub-arguments. Thus, Ja € & such that Sub(a) Z £. This
means that Ja’ € Sub(a) and a’ ¢ €. Then, 3b € £ such that bRa’
(according to the definition of a stable extension). Since R satisfies
R, then bRa. This contradicts the fact that £ is conflict-free. |

Proof of Proposition 15 Let £ be an admissible extension of an AS
T = (Args(X), R). Assume that R is conflict-dependent and sensi-
tive. Assume also that £ is not closed under sub-arguments. That is,
Jda,a’ € Arg(¥) s.t.a’ € Sub(a),a € £ and @’ ¢ £. Two situations
are possible:

1. £ U {a'} is conflicting meaning that 3b € & s.t. either a’Rb or
bRa’'. Since R is conflict-dependent, then Supp(a’) U Supp(b)
is inconsistent. Besides, a’ € Sub(a) thus Supp(a’) C Sub(a).
From Property 2 in [3], Supp(a) USupp(d) is inconsistent as well.
Since R is conflict-sensitive, then either a/Rb or bRa. This con-
tradicts the fact £ is conflict-free.

2. & does not defend a'. Thus, 3b € Arg(X) s.t. bRa'. Since R
is conflict-dependent, then Supp(a’) U Supp(b) is inconsistent.
Besides, a’ € Sub(a) then Supp(a’) C Sub(a). Thus, Supp(a) U
Supp(b) is inconsistent as well. Since R is conflict-sensitive, then
either aRb or bRa. Assume that aRb, thus a defends a’ which
contradicts the fact that £ does not defend a’. Assume now that
bRa. Since £ is admissible and a € &, then de € & s.t. ¢Rb.
Thus, c defends even a’, this contradicts again the fact that £ does
not defend a’. u

Proof of Proposition 16 Let 7 = (Arg(X), R) be an AS over a
knowledge base ¥. Assume that VE € Ext(7), £ = Arg(Base(E)).
Let£ € Ext(T)and a € £. Since a € &, then Supp(a) C Base(&).
Let b € Sub(a), thus Supp(b) C Supp(a) and Supp(b) C Base(E).
It follows that b € Arg(Base(&)). Consequently, b € €. Then, T is
closed under sub-arguments. |

Proof of Proposition 17 Let 7 = (Arg(X),R) be an AS such
that V€ € Ext(T), & = Arg(Base(&)). Assume that 7 violates
strong consistency. Thus, there exists an extension £ of 7 (under a
given semantics) such that Base(&) is inconsistent. Thus, 3C' € Cx,
such that C' C Base(€). Since Base(£) = U, ¢ Supp(ai) and
Supp(a;) is consistent, then |C| > 2. Thus, 3X C C such that X
and C'\ X are consistent. From Proposition 1 (in [3]), there exist two
arguments a and b where Supp(a) = X and Supp(b) = C'\ X. From
Lemma 5, 321 € CN(X) and 3z2 € CN(C' \ X) such that the set
{x1,x2} in inconsistent. Let Conc(a) z1 and Conc(b) = z2.
Since a,b € Arg(Base(£)) and that £ = Arg(Base(£)), then
a,b € . Thus, Concs(€) is inconsistent. [ |

Proof of Proposition 18 Let 7 = (Arg(X), R) be an AS over a
knowledge base X s.t. R is conflict-exhaustive and for each £ €
Ext(7), £ = Arg(Base(£)). Note that in this case, consistency co-
incides with strong consistency (from Proposition 17).

Let £ be an admissible extension of 7 s.t. Base(&) is inconsistent.
Thus, 3C' € Cx s.t. C C Base(€). Since Base(€) = |J Supp(as)
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(a; € &) and Supp(a;) is consistent (by definition of an argument),
then |C| > 2. Since R is conflict-exhaustive, then 3X C C s.t.
Ja,b € Arg(X) and Supp(a) = X, Supp(b) = C \ X and ei-
ther aRb or bRa. Besides, Supp(a) C Base(E) (resp. Supp(b) C
Base(&)), then a,b € Arg(Base(£)). Since £ = Arg(Base(£)),
then a, b € £. This means that the extension £ is conflicting. Contra-
diction. |
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Abstract. We start the investigation of a new class of
semantic-oriented instantiations of abstract argumentation
frameworks with default conditionals based on the ranking-
construction paradigm for default reasoning. This allows us
to specify a new ranking extension semantics with nice prop-
erties.

1 Introduction

The past years have seen a tremendous development of ab-
stract argumentation theory, which started with the seminal
work of Dung [Dun 95]. Some authors have also begun to
investigate extensions of Dung’s original attack frameworks,
adding for instance support relations, preferences, joint at-
tacks, or attacks on attacks. This multiplication of abstract
frameworks and corresponding semantics have raised the need
for a rational evaluation and comparison of these approaches.
A major question is whether an abstract account accurately
reflects concrete argumentative reasoning in the context of a
sufficiently expressive classical or — more realistically — defea-
sible logic. Consequently, the instantiation of abstract frame-
works by actual argument configurations, relevant for jus-
tifying/criticising abstract extension semantics, has become
a major research topic. But most of this work is based on
traditional defeasible formalisms, like logic programming, or
Reiter’s default logic. While these are closer to the spirit of
Dung’s theory, they also fail to verify central desiderata for
default reasoning encoded in benchmark examples and ratio-
nality postulates. The goal of this paper is therefore to sup-
plement existing efforts with an innovative semantic instantia-
tion model which interprets arguments and attacks as default
conditional knowledge bases and exploits well-behaved rank-
ing construction semantics for plausible reasoning [Wey 03] to
specify for attack frameworks a new evaluation/applicability
semantics with interesting properties.

The paper is organized as follows. First, we give an in-
troduction to plausibilistic default reasoning and the rank-
ing construction paradigm. After a short introduction into
generalized argumentation theory, we discuss syntactic and
semantic instantiations of argumentation frameworks in the
context of default reasoning. Here we focus on the shallow
semantics, which interprets abstract arguments and the at-
tacks linking them by default conditionals. We then specify
a ranking-based extension semantics focusing on generic in-
stantiations. To conclude we present several examples and list
important principles validated by this semantics.

1 University of Luxembourg, Luxembourg — emil.weydert@uni.lu
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2 Plausibilistic default reasoning

In the following, we assume a background language L closed
under the usual propositional connectives T, F, =, A\, V, —, <>,
interpreted by a classical satisfaction relation =, which in-
duces the associated monotonic entailment relation . Its
model sets are denoted by [¢] = {m | m | ¢}, resp. [Z] =
Negexfe] for ¥ C L. Let Br be the corresponding proposi-
tional boolean algebra with domain Bz, = {[¢] | ¢ € L}.

Default inference is an important instance of nonmonotonic
reasoning. It is concerned with drawing reasonable but po-
tentially defeasible conclusions from usually finite knowledge
bases X U A, where ¥ is a set of assumptions or facts, e.g. de-
scribing a specific state of affairs in some domain language,
and A is a collection of defaults encoding exception-tolerant
implicational information and guiding the defeasible inference
process. Here we assume that ¥ C L is a finite belief base over
our background logic (L,F), whereas A is a finite subset of
the flat conditional language

L(—»,~)={o—>¢|ppe L}U{p~1]|p¢ecL}

on top of L. The strict implication ¢ — 1) states that ¢ nec-
essarily implies v, forcing us to accept ¥ given ¢. The default
implication ¢ ~» 9 tells us that ¢ normally/plausibly/by de-
fault implies ¥. That is, if ¢ is believed and there is no con-
flicting information questioning 1, it suggests/permits us to
accept ¥ as well. The actual impact of a default § of course
depends on its context ¥ U A and the chosen nonmonotonic
inference notion .

Examples are Reiter’s normal default rules ¢ : 1/, or plau-
sible implications ¢ ~» ¢ based on a preferential/valuational
possible worlds semantics. Note that these represent two dif-
ferent types of default reasoning: on one side the autoepis-
temic, consistency- or context-based philosophy, on the other
side the plausibilistic, quasi-probabilistic perspective. The for-
mer one includes, e.g., Reiter’s default logic and logic pro-
gramming. The second one is exemplified, e.g., by semantic-
based preferential formalisms like system Z [Pea 90], or
maximum-entropy-based approaches [GMP 93]. For mainly
historical reasons, approches of the first kind have received
most attention. However, the second variant has a much bet-
ter record w.r.t. handling benchmark examples and satisfying
common rationality postulates. This makes it a natural alter-
native search space for instantiating abstract argumentation.

We start with some general considerations. First, we have
to understand that the central concept in default reasoning is
not some monotonic conditional logic for L(—,~»), but a non-
monotonic meta-level inference relation |~ specifying which
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conclusions ¥ € L can be plausibly inferred from a finite
knowledge base X U A with ¥ C L and A C L(—,~). If we
set X jva ¢ iff SUA |~ 4, we obtain a defeasible consequence
relation pva on L. Let CIAN(E) ={¢ | X poa ¢}

The large number of competing proposals in nonmonotonic
reasoning has pushed the search for rationality postulates al-
lowing their classification and evaluation [KLM 90, Mak 94].
But this work mostly considers consequence relations over
L, like jva, i.e. it ignores the inferential impact of specific
defaults. So, much less is known about the properties and
desiderata for A — jva (see [Wey 03]). This scarcity of gen-
eral inferential guidelines can however be met by focusing on
the semantic base of plausible reasoning, which may actually
be more promising to begin with.

A central concept here is that of a linear plausibility val-
uation Pl : B, — V. These are maps from propositions to
plausibility values in a linearly ordered structure with end-
points V = (V, T, L, <) which are required to be monotonic
w.r.t. C and < [FH 01]. If we intend L to mark impossibility,
we also must have that PI(A) = L implies PI(BUA) = PI(B).
Each such valuation concept specifies a plausibility semantics
for strict/default conditionals based on the following truth
conditions (writing sloppily Pl(¢) = Pl([¢]).

o PllE=y o~ iff Pl A=) < Pl(p Ap) or Pl(p) = L.
e Pl p—> ¢ it Pllph—) = L.

The resulting model set concept [.Jpi for A C L(—,~) is
defined by [A]p, = {Pl: By — V| Pl =y A} Let b be the
associated monotonic consequence relation on L(—»,~) given
by A b 0 iff [A]p C [0]pi- If we adopt this semantics, we
may drop — because ¢ — 9 is then semantically equivalent
to @ A )~ F.

The most general semantic framework for plausibilistic de-
fault reasoning, as we understand it, is based on plausibility
choice operators Z mapping each pair (3,A), with 3, A as
above, to a set (2, A) C [@],: of plausibility valuations. We
may interpret the elements of Z(X, A) as modeling the pre-
ferred belief states induced by % and A. A default inference
notion % can then be specified by

YA g iff T(8,A) = AS ~ 1.

In the following, we will focus on context-independent Z,
i.e. verifying Z(3,A) = Z(0,A) (= Z(A)). For instance, if
we set V = (NU {00}, 0, 00, >) and compare valuations point-
wisely, then Z(A) = {Min<[A] i} essentially specifies system
Z [Pea 90].

3 Preferred ranking constructions

We will consider a semantics for default conditionals based on
the simplest plausibility valuation concept which reasonably
handles independence and conditionalization, namely rank-
ing measures [Wey 95]. These are semi-qualitative, quasi-
probabilistic valuations expressing the degree of surprise
of propositions. The notion goes back to, and generalizes,
Spohn’s integer-valued natural conditional functions, known
as k-functions, which he introduced to model the iterated re-
vision of graded plain belief [Spo 88, 90]. They have become
popular in epistemic modeling and knowledge representation
because they bridge preference-based and probabilistic rea-
soning. For default reasoning in finite contexts, it is usually
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sufficient to consider rational-valued ranking measures (e.g.,
integers are not enough to fully implement minimal infor-
mation inference methods). The most general ranking value
space is the (saturated) ordered additive structure of posi-
tive nonstandard reals (with infinitesimals, infinite numbers)
extended by oo.

Definition 3.1 (Ranking measures)

A map R : Br — ([0,00],0,00,4,>) is called a ranking
measure iff for all A,B € Br R(T) = 0, R(F) = oo, and
R(AU B) = min<{R(A), R(B)}. R(.|.) is the associated con-
ditional ranking measure on By, x By, defined by

R(BJ|A) = R(ANB) — R(A) if R(A) # oo, else R(B|A) = co.

Note that lower values indicate less surprise and more plausi-
bility. Ro is the uniform ranking measure, i.e. Ro(A4) = 0 for
A # (. The classical order-of-magnitude interpretation reads
R(A)=r>0as P(A) ~¢", where P is a nonstandard prob-
ability measure over By and ¢ an infinitesimal. This useful
correspondence allows the exploration of probabilistic infer-
ence techniques at the ranking level.

In the ranking context, we use [k, [.Jrk,Frk to denote
Epi, [pt, Fpi- Fre then validates the rules of rational con-
ditional logic [KLM 90]. For the purpose of minimization, it
is useful to consider threshold-based truth conditions for de-
faults, stipulating specific default strengths. For r €]0, co], we
set

REL o~ iff RloAY)+r < R(pA—y).

Because every pair of r,7" €]0,00[ can be exchanged by an
automorphism of the additive value structure (z — 7' /r x ),
all the r €]0, oco[ are structurally equivalent w.r.t. + and <.
Hence, w.l.o.g., we may focus on r = 1.

Our next task is to specify the nonmonotonic semantics
for default conditionals. This amounts to find an appropri-
ate ranking choice function Z. Our starting point is the con-
struction paradigm for default reasoning introduced in [Wey
95,96], which inspired several well-behaved default inference
notions [Wey 98, 03]. The initial idea here was that a default
does not only specify a constraint over plausibility measures,
but may also indicate specific valuation transformations of
Ro to realize this constraint. For instance, we may consider
only those ranking models of a default base A which are con-
structible from Ry through particular revision steps deter-
mined by the defaults in A. Here we can exploit Spohn’s
parametrized revision concept [Spo 88], which implements
Jeffrey-conditionalization for ranking measures and is backed
by the minimal information philosophy. For instance, a default
 ~» 1) is meant to allow revision/expansion with the material
implication ¢ — 1, which in our variant of Spohn’s approach
corresponds to uniformly shifting upwards the (worlds in the)
proposition [ A =] until ¢ — 1 is believed.

Definition 3.2 (Expansion constructibility)

Let A = {¢; ~ v; | i <n} C L(~). A ranking measure R’ is
said to be (expansion-)constructible from R over A, written
R’ € Constr(A, R), iff there are ranking values 7o, ...,Tn €

[0, 00] s.t., if (R+7[p])(x) = min{R(x A p) + 7, R(X A\ =p)},

R = R+ Si<nrilps A —bi].
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The power of ranking-construction-based default entailment
is illustrated by the fact that we can obtain a robust, well-
behaved default inference relation, called system J [Wey 96],
just by setting

Z;(A) = Constr(A, Ro) N [A] k.

Note that for system J, on the inferential level, it doesn’t
make a difference whether we use the standard or a finite
threshold semantics for the defaults. However, the stronger
and more differentiated threshold interpretation simplifies the
specification of canonical preferred ranking models.

A desirable feature inspired by the minimal shifting phi-
losophy is what we have called justifiable constructibility
[Wey 96]. It seeks minimal shifting in the sense that the tar-
geted ranking constraints interpreting defaults should not be
over-satisfied. Note that the definition below requires truth-
conditions with thresholds, or well-ordered ranking values.

Definition 3.3 (Justifiable constructibility)

Let A = {¢i ~ v¢; | © < n}. Then a ranking construction
model R* = R+ Xi<nai[pi A ;] Erie A is called justifiably
constructible w.r.t. A, written R* € Z;;(A), iff proper shifting
of lp; A =], i.e. aj > 0, implies the existence of an i < n
with [pi A =pi] = [p; A ;] such that the corresponding
constraint becomes an equality constraint R*(p; A1) + 1 =
R* (i A —1;).

This definition takes into account the possibility that there
could be several defaults with identical exceptional parts
[ A —¢], but not all of them being realized as equality con-
straints. If A f., F, we have Z;;(A) # 0. For minimal core
default sets [GMP 93], the corresponding well-behaved default
inference notion 77 then offers the same results as maximum-
entropy-based approaches?. In fact, the direct translation of
entropy maximization (ME) to the ranking level [Wey 95b,
03] always produces a unique justifiably constructible model

N Le. Ime(A) = {RR°}.

In general, Z;;(A) may fail to be a singleton, but it can
be strengthened into a more sophisticated intuitive ranking
construction in the tradition of system Z which generates for
every consistent default base A a canonical justifiably con-
structible model, like the JZ-model [Wey 98, 03]. It does so
through a hierarchical construction process aimed at avoiding
longer shifts. 77 is then not only backed by its natural, well-
justified ranking construction procedure, but it also satisfies
most of the major desiderata formulated in the literature. Be-
cause it is not affected by the ambiguities and the arbitrariness
of the passage between ranking and probability constraints,
k7% may actually constitute a conceptually more appealing
implementation of the minimal information philosophy for
ranking measures than |"°. However, for the restricted ap-
plications in our present paper, justifiable constructibility is
actually enough to characterize a unique ranking model so
that we do not have to worry about these distinctions. But
they become relevant in more expressive contexts.

4 Abstract argumentation

An abstract argumentation framework in the sense of Dung
[Dung 95] is a structure of the form A = (A,), where A

2 For different constructibility-flavoured or ME-based accounts, see
e.g. [GMP 93, BSS 00, KI 01, BP 03].
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is a typically finite collection of abstract entities representing
arguments, and > is a binary attack relation modeling pos-
sibly asymmetric conflicts between arguments. To grasp the
sophistication of real-world argumentation, a number of au-
thors have extended this basic framework concept to include,
e.g., support relations, preferences, valuations, joint attacks,
or attacks on attacks. Most of these generalizations can be
formalized by first-order hyperframeworks [Wey 11].

Definition 4.1 (Hyperframeworks) A first-order hyper-
framework (HF) is a structure A = (A, (Pi)icr, (Rj)jer),
where A # () is a set of possible arguments, and the P;, R;
are ni, mj-ary relations over A. The R; are called the basic
conflictual relations of A. B C A is said to be conflict-free
w.r.t. A iff no conflictual R; is satisfiable over B.

A HF is meant to express on an abstract level specific inferen-
tial or epistemic relationships between logical entities whose
internal structure is ignored. The conflictual relations deter-
mine when a set of arguments is to be considered inconsistent
or inacceptable. Dung’s attack frameworks are instances of
HFs with |I| = 0, |J| = 1, and mo = 2. The attack relation
> is conflictual. Preference and support are examples of non-
conflictual binary relations. Set attacks can be modeled by
introducing an attack relation for each cardinality.

The basic inferential task in abstract argumentation con-
sists in evaluating A so as to determine at the macro-level
the acceptable attitudes of an agent w.r.t. the arguments. In
the simplest scenario, argumentative positions correspond to
particular conflict-free collections of arguments E C A called
extensions. But we may also consider more fine-grained as-
sessments of arguments, like labelings or prioritizations. More
generally, the role of an evaluational argumentation semantics
is to associate with any HF A of a suitable type a possibly
empty set of distinguished evaluation structures over its do-
main A which interpret at least a unary predicate In charac-
terizing the accepted arguments.

Definition 4.2 (Hyperframework semantics) A seman-
tics for HFs is an evaluation map & which associates with
each HF A € dom(&) a set E(A) of evaluation structures
B = (A,In®,..) over its domain A, called the hyperexten-
sions of A, such that isomorphic A induce isomorphic £(A),
and that the set of accepted arguments In® is conflict-free
w.r.t. A.

For instance, Dung’s preferred semantics can be modeled by
a map &pr associating with each framework (A, >) the set of
structures {(A, F) | F is a maximal admissible extension of
(A,>)}. Note that the above requirements are of course not
the only ones one might wish to impose upon £.

5 Arguments and instantiations

To evaluate and actually apply these semantics, the abstract
frameworks have to be instantiated in the sense of being linked
to concrete logical entities and their inferential/epistemic re-
lations and properties. In particular, we may want to identify
for each argument a € A a sentence v, expressing the explicit
claim of a. For instance, in ASPIC and its derivates [Pra 10]
the arguments are mapped to suitable rule-trees built from
strict and defeasible rules, topped by ., and attacks like
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rebuttal or undercut are interpreted by specific syntactic re-
lationships between tree components.

Loosely in line with [CW 11], the general strategy in ar-
gumentation may be as follows. First, we construct from a
given knowledge base over some reference logic a meta-logical
system which is composed of subbases, or proof-trees (to be
abstractly modeled by the a € A), and which encodes all the
relevant connections (to be abstractly modeled by the P;, R;)
between these. Secondly, we pass to the resulting abstract hy-
perframework and compute its hyperextensions. Thirdly, we
instantiate the hyperextensions. Last but not least, we extract
conclusions from their instantiations. An interesting question
is then whether and to what extent the inferential expecta-
tions for the input knowledge base, e.g. specified by a non-
monotonic reference logic, are met by the inferences actually
generated with the help of abstraction, evaluation, instantia-
tion, and consequence extraction.

On one hand, an instantiation constitutes a reality check for
the coarse-grained abstract approaches, clarifying their po-
tential as well as their limitations. Those not validated by an
instantiation may still indicate ways for improvement, be it by
pointing to better semantics, or by suggesting richer abstract
frameworks. Of course, passing from a concrete to an abstract
level is necessarily accompanied by a loss of information. Thus
we cannot expect more than approximating a complex non-
monotonic or paraconsistent inferential reality, while possibly
gaining additional computational or conceptual accessibility.

On the other hand, the abstract perspective offers a tool
for analyzing, criticizing, and revising complex fine-grained
nonmonotonic formalisms by illuminating specific inferential
relationships (e.g. the structure of asymmetric conflicts). In
fact, different levels may suggest different intuitions, princi-
ples, and properties. Instantiations can therefore provide in-
sights and benefits for both sides, especially in the realm of
richer hyperframeworks.

In real life, arguments are commonly based on defeasible
inference steps exploiting defaults. More formally, a concrete
argument a picks up a finite base ¥, of domain assertions
from a collection of initial assumptions or accepted facts ¥ C
L, exploits a finite subset A, of strict/plausible implications
from a collection of conditionals A C L(—»,~»), and uses this
to justify a conclusion ¥, € L. To specify what justification
means, we need a suitable defeasible inference relation |~ on
top of L and L(—,~). An argument a may then be called
inferentially correct w.r.t. |~ iff ¢, can be inferred from 3,
and A,.

e Inferential correctness: Y, U Ag |~ 9.

We call the triple (Zq, Aq,¥a) the inferential profile of a. We
do not a priori assume that the profile characterizes a. In
classical logic-based argumentation [BH 08], arguments are
represented by pairs of the form (®,1), consisting of a sup-
port set ® C L and a claim ¢ € L, which have to satisfy three
requirements: (1) ® J F (consistency), (2) ® F ¢ (correct-
ness), and (3) for each ® C @, &' } ¢ (minimality). While
these principles may seem decent and reasonable, we must
keep in mind that they have been formulated in the context
of monotonic reasoning. The counterpart to (1) is inferential
consistency: Yo U A, [X F, whereas (2) corresponds to infer-
ential correctness. But in the nonmonotonic realm there can
be situations where minimality fails in the sense that all the
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minimal A C A, validating 3, U A |~ 1, are overridden by
some A C A’ C A, with ¥, UA’ [£ 4,. Because, as we
will see, natural instantiations may well produce inferentially
inconsistent arguments, it seems sensible to be cautious and
just ask for inferential correctness.

In what follows, we are going to explore instantiation from
a semantic perspective and interpret and evaluate abstract
argumentation through ranking-based default formalisms, ig-
noring syntactic and computational issues.

6 Semantic instantiations

As we noticed before, it is important to investigate the re-
lationship between abstract argumentation frameworks and
their concrete instantiations, e.g. with the help of default for-
malisms. For instance, Caminada and his co-workers were able
to show that some common acceptability semantics at the ab-
stract level fail to verify desirable properties formulated at
the instantiation level [CA 07, CW 11]. However, we have to
put this type of results into the right perpective. First, we
may observe that most existing instantiations mostly exploit
consistency-based default formalisms close to Reiter’s default
logic or logic programming, which are known to provide an
incomplete picture of default reasoning. However, if we use
as indicators the main benchmark examples from the litera-
ture, popular postulates for nonmonotonic inference, and the
possibility to link qualitative to quantitative uncertainty, this
approach looks less appealing. While it may be reasonable to
start with instantiation contexts which did inspire Dung’s the-
ory in the first place, in the next step one should also pay at-
tention to nonmonotonic target formalisms more in line with
central desiderata for default reasoning. In the present paper,
we will honour this observation by taking a look at possible
contributions from ranking-based default entailment, e.g. sys-
tem JJ or system JZ.

For reasons of space, we have to restrict ourselves to
interpret standard argumentation structures of the form
A = (A,>) where > is understood as an attack relation
between abstract arguments. Let £ = (L(—,~),Fx, ) be
our reference default formalism.

Instantiating arguments.

We distinguish two main instantiation levels: the syntactic
and the semantic one. At the syntactic level, we instanti-
ate each abstract argument a € A by a system of formu-
las Isyn(a) over L. For instance, Isyn(a) could be a specific
inferential construction, e.g. a proof tree. Because here we
are primarily interested in the semantic analysis, we adopt
a coarse-grained approach where Iy, (a) only indicates the
sets of L-formulas involved as premises, inferential guides
(e.g. rules/conditionals), or conclusions. More precisely, we
consider Isy, which map each argument a € A to its in-
ferential profile (X, Aq,%a), where X, U {tpo} C L and
Ay, C L(—»,~) are assumed to be finite. The first two com-
ponents identify the premise base ¥, U A,, the third one the
conclusion or claim 1,. We call Iy, correct w.r.t. the non-
monotonic logic £ iff Isyn(a) is inferentially correct, i.e. if
Ya UA, v e for all a € A. Because the instantiation of
atomic loops a > a may produce inconsistent bases, we do not
impose premise consistency a priori. Of course, this doesn’t
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mean that all the syntactic instantiations are born equal.

At the semantic level, we introduce semantic instantiation
functions Isem which determine the actual semantic content
of an argument a by providing an interpretation Isem(a) of
Isyn(a). More specifically, we interpret each correct inferential
profile Isyn(a) = (Xa, Aq,¥a) by a semantic structure of the
form

Lem(a) = ([Za], [Aa]29, T (Aa), [CR (Za)]).-

[2.] and [[C‘ga (24)] C [¢a] are classical model sets of (L, ).
[Ad)in® = {[6]s% | 0 € As} specifies the ranking seman-
tic content of the individual conditionals in A,. This refined
structural semantic perspective is necessary to determine the
constructible ranking-models, and more generally, to grasp
implicit independence assumptions within default knowledge.
Last but not least, Z. (A,) is the ranking-model set result-
ing from applying the preferred ranking choice function Z of
the chosen default entailment concept p~ to A. If Iy (a) is
correct, i.e. [[ClANa(Ea)}] C [%a], Isem characterizes what we
may call the deep semantics of arguments by providing a fine-
grained account of the relevant default knowledge.

If we are primarily interested in the semantic modeling of
the classical premises and conclusions, putting the defaults
into a black box, we may also consider simpler semantic units.
But to achieve this, we first have to extract additional infor-
mation from A,. In fact, the hard classical monotonic content
of ¥, UA, is determined not just by ¥4, but also by the the
necessities which A, monotonically entails.

D‘N(AG) = {(p | Aa |_7'k "Zhe cd F}

As before, the nonmonotonic propositional content is fixed
by ﬂClANa(Ea)]. The semantic content of a expressible in L
is then characterized by the pair of propositions ([X.] N
[OM(AL)] [CK (Ba)]). We then call I%,,(a) = ([Sa] N
[BF (AL, [[C‘ANQ (24)]) the shallow semantic instantiation of
the argument a. For reasons of space, we will have to restrict
our discussion to the shallow semantics.

In a finitary context, the shallow semantic units are
pairs of L-propositions ([pa], [¢e]) with [¢o] C [pa],
sloppily denoted by (pa,%a), where @a,1, represent the
monotonic, resp. nonmonotonic content of an argument
a. Because [p ~ Y] = [ ~ © A Y]k, this comes
close to interpreting arguments by conditionals. Each unit
(¢a,te) interprets a minimal inferential profile of the form
Isyn(a’) = ({@a}ﬁ{@a ~ ¢a}7¢a)' Setting I = Isynv let
Y ={ps|a €A} and AT = {p, ~ s | a € A}. ST U AT
constitutes the global knowledge base associated with the
framework A by I. We emphasize that =7 U AT doesn’t have
to be consistent w.r.t. pv. That is, £ U A’ |~ F is possible,
and s0 is {pa} U {pa ~ Yo} |~ F.

Instantiating attacks.

The next step is to interpret the attack links a > b in A by
suitable relations over the corresponding instantiated argu-
ments. In the context of traditional proof-theoretic instan-
tiations, the existence of an attack is read off directly from
the syntactic/logical structure of arguments, be they mod-
eled as trees or knowledge bases. In our approach, we access
concrete arguments through their inferential profiles. Because
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we adopt a semantic perspective, we are only interested in se-
mantically invariant attack specifications. That is, whether at
the syntactic level Isyn(a) attacks Isyn (b) should only depend
on the corresponding shallow/deep semantic interpretations
1§2%(a),[§22n(b). Consequently, we will specify concrete at-
tack relations at the semantic level.

So, how should we reflect an attack a > b at the semantic
level? The idea is to interpret attack configurations as ranking
constraints. That is, in the context of an instantiation func-
tion I, we instantiate > by a suitable set of ranking measures
R =Ry C [[AI}]T;C. For instance, let a,b be two arguments
whose shallow instantiations are characterized by (¢a, %a) and
(b, ¥p). If an attack is meant to indicate an actual conflict be-
tween the nonmonotonic conclusions, then it seems necessary
to impose at least R(1q Athp) = 0o for R € R». Incompatible
monotonic contents can be modeled by R(pa A @) = 0.

If R(pa A wp) # 00 and R(a A ) = 00, we get R(1a A
“Yolpa A b)) = R(talpa A @s) and R(=ta A Pslpa A b)) =
R(vs|pa A pp). These two conditional ranking values state the
degree of surprise, relative to the common context ¢, A @y, of
exclusively concluding ¥, resp. 1. If 1, is here less surprising
than v, we may interpret this as a attacking b, and similarly
for the converse. On the other hand, if these ranks turn out
to be equal, we are in the presence of an equilibrated mutual
attack. From a shallow instantiation I = I%,,, and a reference
class of ranking measures R, we can define a specific attack
relation >F on Ar = {([pa], [¢a]) | @ € A}. Let us abbreviate

(Ie], [¥D) by (9, 4).

Definition 6.1 (Shallow semantic instantiations)

Let A= (A,>) be an AF and I be a shallow semantic instan-
tiation function for A. For (va,%a), (ps,¥s) € Ar, we say
that (pa,¥a) semantically attacks (pp,s) w.r.t. a collection
of ranking models R C [A], written (¢a,%a) > (b, Us),
iff for all R € R, R(¢a A ) = 00 and R(¢a|pa A pp) <
R(tbv|pa A @b). Let AT = (Ar,>F). We call (I, R) a shallow
semantic instantiation of A = (A,>) if I : A — AT is an
isomorphism.

That is, the attacks on the semantic level specified by >7 then
exactly represent those on the abstract level expressed by >.
We observe that each A = (A,>) has many shallow seman-
tic instantiations (I, R), obtained by varying the proposition
pairs associated with the individual abstract arguments, or
the collection of ranking models representing >. For a sin-
gle loop a > a and R € R, we have R(1)q A ¥,) = o0
R(pa Aba) +1 < R(pa A —tha), hence R(pq) = 0.

Let us also take a short look at the classical types of attack
in deductive argumentation, namely rebuttal, undermining,
and undercut. In our shallow semantic context, incompatibil-
ity between propositions is modeled by ranking constraints
expressing necessities w.r.t. @q, Ya, s, ¥y. Rebuttal is char-
acterized by incompatible consequents, whereas undermining
states a conflict between a consequent and an antecedent.
Undercut is meant to break the inferential link between an-
tecedent and consequent, e.g. by rebutting relevant subargu-
ments. It may be understood as an intermediate condition
between undermining and rebuttal.

e Rebuttal: R(¢a A ) = 00, e.g. if o F —y.
e Undermining: R(¢q A @p) = 00, e.g. if g F —pp.
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First we observe that in our semantic reading, rebuttal is the
weakest condition because ¥, - ¢p. There are four qualitative
attack configurations involving two arguments, namely @q App
being compatible with neither, one, or both of ¥4, ¥s. If a
asymmetrically undermines b, we get the constraints R(iq A
wp) = 00 and R(¢p A ¢a), R(¢va N o) # 00. Then R(¢s|pa A
) < R(a|@a A @p) = 00, i.e. b>F a and a BF b under the
shallow attack semantics. It follows that naive undermining
is hard to justify for nonmonotonic arguments whose claim is
stronger than their premise set.

7 Ranking extensions

Semantic instantiations offer new possibilities to identify rea-
sonable argumentative positions and to determine the beliefs
they induce. More specifically, we may seek evaluation se-
mantics more in line with interpreting argumentation frame-
works by default knowledge bases. These may then be com-
pared with traditional acceptability semantics specified and
justified at the abstract level. Suppose we have a frame-
work A = (A, >) with a shallow instantiation (I, R), where
I is characterized by {(¢a,%a) | @ € A} (Yo F ¢a), and
R C [A'],« is a collection of ranking measures representing
>.

An obvious requirement for any acceptable argumentative
position S C A w.r.t. (I, R) is that its joint antecedents @5 =
Aacs@a are not considered epistemically impossible by every
R € R, i.e. there has to be some R € R with R(ps) # co. In
particular, the premises of the instantiated arguments must
be consistent w.r.t. . We call such an S coherent w.r.t. (I, R).
Within S, coherence precludes self-attacks a>a, but not a>b
for a # b.

Definition 7.1 (Coherence)
S C A is coherent w.r.t. (I, R) iff R(¢s) # oo.

Each E C S now specifies a proposition given by

wS,E = @s A /\aEEd)a A /\aGAfE_‘wa«

It describes those worlds within the joint monotonic content
of the a € S which validate exactly the (consequents of the)
arguments in E. Because I(a)>"I(b) implies R(paA)p) = o0,
the presence of conflicts a > b in F makes s g impossible.
Note however that the absence of binary conflicts alone may
be insufficient to prevent R(vs,r) = oo, which could result
from n-ary conflicts, or a biased choice of logically dependent
900«3 1/’a~

Given a shallow instantiation (I,R), what are the most
reasonable coherent environments S C A and extension candi-
dates E C S? First, we may focus on maximal coherent S C A
because premises should not be rejected a priori without good
reasons. Then it seems natural to choose those extensions F
which induce the most plausible 15 r according to R.

Definition 7.2 (Ranking extensions) Let (I,R) be a
shallow instantiation of A = (A,>) and <"'® be a relation
over finite subsets of A such that

o E <I'RE' iff for each mazimal coherent S C A with
E,E'"C S and for all RE R, R(¥s,m) < R(Ys,e)-

E is said to be an (I, R)-ranking-extension of A, or E €
Err(A), iff E is a <" Fomazimum.
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A possible cause of concern are the multiple distinct instan-
tiations I available for any given .A. Consider for instance

A=({p,¢;r},{(p,9);(g;7)}), ie. p> g .

A together with a shallow semantic instantiation I then in-
duces ranking constraints, resulting from I and the represen-
tation of >, which are described by the conditionals in

AA’I:{%/\%MR g AN hr ~ Fy op N g ~ p,
@q/\%"“”¢q7@p“’>wp»‘Pq“’>wq7<Pr“”wr}~

The canonical justifiably constructible ranking model, i.e. the
JZ-model, of A7 then usually takes the form

RiY" = Ro + o0ofthp Athg] + 00[thg Athy] + 1iop A 0g A =ty +
g A @r A =%g] + Lpp A —tp] + Lpg A =g + Lpr Ay

A natural and powerful choice is therefore to set R = {Rﬁ’l}.
But, if we freely choose I, only subjected to the validation of
AN by Rﬁ’17 nothing can prevent us from picking up g, ¥z
so that 1, A 1, A @, - F. The resulting <”®-maxima then
become {p}, {q}, because S = A and R;i’j maps ¥ p} and
Ya,{q) to rank 3, which is minimal in ¢a. Unfortunately, this
violates a hallmark of conflict-based argumentative reason-
ing, namely the necessary activation of unattacked arguments,
which would impose the extension {p,r}. In fact, no defend-
able choice of R would bring us here the intended result. Thus,
we have to restrict or prioritize the choice of argument in-
stantiations to obtain a reasonable ranking-based evaluation
semantics £1,r.

8 Generic instantiations

Our observations above suggest to evaluate the A only
w.r.t. generic semantic instantiations, which are meant to ex-
plore the information available in A but try to stay as un-
committed or unbiased as possible, e.g. by minimizing logical
dependencies.

If abstract arguments are understood as black boxes, only
known through their external connections, we may stipulate
by default the logical independence of their syntactic instanti-
ations. That is, for different a,b € A, the non-logical vocabu-
laries of Isyn(a) = (Za, Aa, ¥a) and Ieyn(b) = (s, Ap, ¥p) are
taken to be disjoint. Genericity furthermore invites to apply
Ockham’s razor and to give priority to the simplest instances
of ¥, Aq, ¥e. This matches the perspective of shallow seman-
tic instantiation. All this amounts to introduce independent
propositional atoms X,, Y, for each a € A and to set

Yo = {X‘l}7 Aq = {Xa ~ Ya,}7 and ’l/}a =Y..

This gives us a minimally informative non-trivial instantia-
tion of a € A. The corresponding generic shallow seman-
tic instantiation is then defined by I*(a) = ([¢d], [¢a]) =
([Xa], [Xa A Ya]). I? is, up to renaming, completely speci-
fied by the cardinality of A. Hence, the specification of the
evaluation semantics will only depend on the choice of R. I
determines a canonical default base A* encoding the ranking
constraints imposed by .A. We have

A* = {pg ~ Yo | a € A} U{pg Ay~ F | a1>b or
b a}tU{pa App~ g | at>b,b b al.
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If, in the indices, we use > to express one-sided, and </t to
express any-sided attacks, because of genericity, the unique
justifiably constructible ranking model of A# is

Rﬁz = Ro + Zaeallpa A o] + Zapsl[pa A b A tha] +
Yaq/m600[a A Pp).

We then set R = Rj. = {Rj\}. Because the sets {¢a,a}
are logically independent, and the defaults expressing the
attacks a > b just concern ¢, A ¢p, only those propo-
sitions ¢, with a > a are made impossible. In fact,
{Ya ~> Ya,Pa A g ~ F} b @q ~ F. Thus, in line with
intuition, (I A Rﬁ) trivializes exactly the self-defeating argu-
ments. The maximal coherent subset of A w.r.t. Rﬁ and I is
therefore {a € A | a ¢ a}. We observe that, by itself, R; does
not characterize A. For instance, A = ({a, b}, {(b,a), (a,a)})
and A" = ({a,b},{(b,a),(a,b),(a,a)}) produce the same
Rﬁ = Rﬁ, Ro + oofwa] + 1lps A —tbp]. Actually, we
can always drop or add links between a self-reflective and
another argument because the details are absorbed by the
impossibility of the joint area. That is, frameworks with
the same set of 1-loops and sharing the same attack struc-
ture for the non-reflective arguments determine the same Rﬁ.

JZ-evaluation semantics: £ = Eu ga .
REL

Alternatively, we may seek a more robust evaluation seman-
tics based on system J. It puts all the constructible models of
A* into the set 723-4.

R7' = {Ro + Zaensapa A Wa] + SapbTap[Pa A @p A —ta] +
Ea<1/>boo[1/}a Al |0 < sa;Tap}

Here, similar remarks apply concerning reflective arguments.

9 Properties and principles

We are now ready to investigate how ranking extension se-
mantics handles some standard examples. For each instance,
we will specify A and the full attack relation >. Assuming
genericity, AT = {a € A | a & a} is the only maximally co-
herent subset and so it is enough to compare RA(wA77 g) for
E C A™. Let us use ¢z,...z, to refer to wAfy{m'

.xp}t

Simple reinstatement: {a,b,c} with a>br> c.

The grounded extension {a, ¢} is the canonical result put for-
ward by any standard evaluation semantics. First, let us con-
sider the robust semantics based on R, which includes all the
ranking constructible R |= A, Suppose s, = sp = 5o = 1,
rap = 1, and 1, = 1. The resulting R is clearly a model of
A* which satisfies R(¥a) = 3, R(¢a.c) = 2, R(¢c) = 4 and
R(¢p) = 3. The other alternatives within ¢s = ¢ get rank
oo. Because R(t)q,c) is minimal, this would therefore support
the usual extension E = {a,c}. But now let’s set 7, . = 3.
Again we get R = A, but also R(.) = 5, R(Ya,.e) =
4, R(¢c) = 6 and R(¢») = 3, which now backs the unwanted
extension E {b}. It follows that R; does not validate
reinstatement. But the JZ-semantics R;. does. In fact, the
first ranking construction R above represents the unique JJ,
i.e. the JZ-model. Because of the role of simple reinstatement
in argumentative inference, we will therefore focus on &;..

3-loop: {a,b,c} witha>br>c>a.
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The admissibility dogm, which ignores implicit global con-
straints, rejects the extensions {a},{b},{c}. On the other
hand, R = Rj. is characterized by the shifting coefficients
SaySbySe = 1, Tab,ThesTe,a = 1, and supports R(tq)
R(yw) R(y.) 4. Because all the other alternatives
are set to oo, we actually get the maximal conflict-free sets
{a}, {b}, {c} as our extensions, i.e., £;, violates admissibility.

Attack on 2-loop: {a,b,c} with a>b>c>b.

Because Saq,85,Sc = 1 and rqp = 1, we get R(¢a) =
2, R(tv) R(¥e) = 3, R(Yap) = R(¢ve) = oo, but
R(%a,c) = 1. Hence &;.(A) = {{a,c}}, which includes the
canonical stable extension.

Attack from 2-loop: {a,b,c} withb>al>b>c.

Because sq, S, Sc = 1 and rp,c = 1, we get R(va) = 3, R(¢s) =
2,R(Yc) = 3, R(Wap) = R(¥pe) = o0, and R(Ya,c) = 2.
Hence &;.(A) = {{b},{a, c}} consists of the stable extensions.

3,1-loop: {a,b,c} witha>b>c>ab a.

Here S = {b,c} is the maximal coherent set and we get
R(¢p) = 1, R(tp,c) = 3 and R(3).) = 2. It follows that &;,(A)
= {{b}}. This extension is not admissible. Note that the stage
extension {c} is also not included.

3,2-1oop: {a,b,c} withb>al>b>cl> a.

We obtain R(%,) = 4, R(¢») = 3, and R(¢p.) = 3, giving us
Eiz(A) = {{b}, {c}}. We observe that the stable extension {b}
is here the only admissible one.

It follows that the ranking-based evaluation semantics &;. di-
verges from the other main proposals found in the literature.

As documented by the previous examples, the well-justified
&;- exhibits a slightly unorthodox behaviour. It is therefore
particularly interesting to see how it handles some common
postulates for extension semantics (see e.g. [BCG 11]). To
reflect our broader logical perspective, we will adapt the no-
tation somewhat.

Isomorphy.
For each isomorphism f: A= A", E(A) = f'E(A).

Conflict-freedom.
If Ee€&(A) and a,b € E, then a }5 b.

Full reinstatement.
If E € £(A), a € A, and for each b>a there is an ¢’ € E with
a’ > b, then a € E.

Non-reflective reinstatement.
If £ € £(A), a € A, for each b > a there is an @’ € E with
a' > b, and there is no @’ € E with a>a’, then a € E.

I-maximality.
If E,E' € £(A) and E C E’, then E = E’, i.e. the extensions
are inclusion-maximal.

Directionality.

Let Ay = (A1,>1), A2 = (A2,>2) be such that Ay N Ay =0,
>o € A; X Az, and A = (A1 U A, > U U Dz). Then
E(A1)={EnNA:i |Ec&(A)}.
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Among the traditional extension semantics, only the
grounded, the preferred, and the ideal semantics satisfy all
these requirements [BG 07]. What about our ranking exten-
sion semantics based on system JJ/JZ??

Theorem 9.1 (Basic properties)

&z = &;; verifies isomorphy, conflict-freedom, non-reflective
reinstatement, and I-mazximality. It falsifies full reinstatement
and directionality.

The violation of reinstatement directly follows from how the
semantics handles 3-loops. The failure of directionality may
reflect the slight contrapositive effects characteristic of quasi-
probabilistic default reasoning. On the other hand, direction-
ality also fails for other prominent approaches, like the semi-
stable semantics, and, as usual, can be enforced by using &;.
as the base function for a SCC-recursive semantics [BGG 05].

To conclude, we take a look at two further properties in-
spired by the cumulativity principle for nonmonotonic infer-
ence. They state that if we drop an argument rejected by
every extension, then this shouldn’t add, resp. erase, skepti-
cal conclusions. A|B here means A restricted to B.

Argumentative cut (Arg-CUT)
If a ¢ UE(A), then NE(AJA — {a}) C NE(A).

Argumentative cautious montony (Arg-CM)

If a ¢ UE(A), then NE(A) C NE(AJA — {a}).

Thus, although argumentative inference relies on semantic
methods which specify default inference notions verifying cu-
mulativity at the factual level, it fails itself to validate cumu-
lativity.

Theorem 9.2 (Non-cumulativity)
&z violates Arg-CUT and Arg-CM.

The counterexample for Arg-CUT is provided by a > b> ¢ >
a > ¢, because {a} € {a} N {b}. The one for Arg-CM is ob-
tained by adding furthermore b > a. Here {b} Z {a} N {b}.
While the preferred semantics also violates Arg-CM, it ver-
ifies Arg-CUT. In fact, for context-based nonmonotonic rea-
soning, CUT without CM is a common scenario. The lesson
we may draw from this, in addition to recognizing the intrinsi-
cally contextual character of argumentative reasoning, is that
the extensions by themselves only partly reflect the inferen-
tial reality, so that dropping seemingly irrelevant parts, like
necessarily rejected arguments, may still have a considerable
effect. Also observe that we interpret arguments by default
conditionals. But in default reasoning, if we add to the de-
fault base individual defeasible conclusions as necessities, we
may arrive at drastically different conclusions. Furthermore,
cumulativity typically fails at the default level. The above re-
sult may therefore just confirm that attack frameworks are
conceptually closer to default sets than to factual evidence.

Another attempt to merge ideas from plausibilistic default
reasoning and argumentation theory has been presented in
[KIS 11]. It combines defeasible logic programming [GS 04]
with a prioritization criterion based on system Z. Although
the goals and the formal details of their account are quite
different from what we have done, this research direction looks
promising also from our perspective.

3 An initial proof of directionality and reinstatement was erroneous.
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We note that the ranking-based mechanisms for condi-
tional prioritization deployed in system JZ/JJ are much more
sophisticated than standard specificity-based strategies for
rule prioritization. This is well-known from default reason-
ing. But even in the limited application context above, a
preference-based argument evaluation which defines attack
using specificity-derived preferences and conflict, often pro-
duces results incompatible with what the ranking extension
semantics suggests, e.g. for variants of loops.

10 Conclusions

In the present paper we have given some first hints on how the
powerful ranking construction paradigm for default reasoning
can be exploited to interpret abstract argumentation frame-
works and to specify corresponding applicability semantics.
To illustrate this, we have focused on the simplest class of se-
mantic instantiations, where arguments are essentially inter-
preted as conditionals or pairs of monotonic and nonmono-
tonic content. While our ranking-based extension semantics
is orthogonal to existing approaches, its behaviour is quite
promising. Our results thus show that there are interesting
alternatives to the traditional instantiation concepts.

This work is of course still rather preliminary, the ex-
ploration of the semantic perspective has just begun. In
addition to a more thorough theoretical investigation of the
basic account, we plan to analyze also more sophisticated
default-based instantiation models, which may bring us closer
to real-world argumentation. Another interesting research
thread will be to consider richer hyperframeworks, which
may profit from powerful semantic foundations.
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A logic for approximate reasoning
with a comparative connective

Thomas Vetterlein!

Abstract. The Logic of Approximate Entailment (LAE), introduced
in R. Rodriguez’s Ph.D. Thesis, uses a graded version of the classical
consequence relation. In LAE, reasoning about facts is possible even
if relationships between them hold only approximately.

Here, we consider a modification of LAE. Namely, we introduce
an additional binary connective * expressing the relative proximity
of a proposition when compared to another one. We propose a proof
system for the new logic and show finite strong completeness. Cer-
tain common problems with the axiomatisation of logics for approx-
imate reasoning are shown to be avoidable in the extended language.

1 Introduction

Approximate reasoning, proposed originally by E. Ruspini in his
seminal paper [9], aims at a formalisation of implicative relation-
ships between facts for the case that these relationships do not nec-
essarily hold strictly. The framework that he proposed is as simple
as convincing. To model the statement that a proposition o implies
another one [ to a possibly non-one degree d, a set of worlds W is
endowed with a similarity relation s; o and 8 being interpreted by

A C W and B C W, respectively, the statement o 4 B is satisfied
if A C Uq4(B). Here, Uq(B) contains all worlds similar to B to the
degree at least d.

Logics for metric spaces have been studied in the past in various
contexts. Among the more recent examples, we may mention the pa-
pers [11, 10]. Here, we follow the lines of research on logics that
are associated with approximate reasoning. For an overview over the
field to which we intend to contribute, we refer to [6]. Among the
proposed formalisms we find, for instance, logics that use a graded
modal operator to express similarity [4, 3]. An alternative possibil-
ity is to use a graded entailment relation; this idea appears in [2, 3]
and was systematically developped in R. Rodriguez Thesis [8]. The
Logic of Approximate Entailment, or LAE for short, is in the centre
of our own interest.

The expressive power of LAE is lower than in case of the modal
logics. Here, we even go one step further and restrict the expressive-
ness of the language once more. Our motivation is the following.
Our ultimate aim is to develop logics for the automatic generation
of arguments as done by expert systems; the medical expert system
CADIAG-2 [1] is an example. System like CADIAG-2 are not based
on probability theory; they are rather designed to produce a chain
of arguments which could originate from a human expert. Here, the
inference relation appears exclusively at the outermost level; implica-
tions do not occur as proper subformulas. In fact, to allow the nesting

1 Johannes Kepler University Linz, Austria, email: Thomas. Vetterlein @jku.at
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of relational implication would significantly complicate the interpre-
tation of automatically generated arguments. In the present work, we
are interested to avoid this complication as well. This is why we deal
only with statements of the form “fact A suggests fact B (to a possi-
bly restricted extent)”.

The completeness proof does not become easier by the restriction
of the language. The typical technical difficulties arise also in the
present framework. Recall that completeness theorems exist for LAE
[8, 5]. For the “pure” version of LAE, however, based on a countable
number of propositions and an arbitrary similarity space, an axioma-
tisation has not yet been found. By now, certain additional condi-
tions have been used, most remarkably finiteness of the language and
of the model. This restriction cannot easily be removed. A conjunc-
tion of all variables, each of which can be negated, has been called
a m.e.c.; in the presence of an infinite number of variables, axioms
containing m.e.c.’s are not usable.

To find an axiomatisation for LAE requires in fact a solution
for two problems. When, in the completeness proof, we construct
a model of a theory of LAE we must (1) ensure the symmetry of
the similarity relation, and (2) achieve that the degree of provability
of one proposition from another one leads to a Hausdorff similarity.
Both problems can be overcome by means of m.e.c.’s.

The present contribution is meant as a step towards an axiomati-
sation of LAE in a more general framework. That is, the two axiom
schemes of the proof system in [8] that contain m.e.c.’s is no longer
used. However, we offer a progress only in case of one of these ax-
iom schemes. The second one is avoided by a simple generalisation
of the model and a more elegant solution would requires surely not
less of an effort than in the present case.

We tackle problem (2). The key idea of the present approach is
to use a new connective, in addition to conjunction, disjunction, and
negation. The connective has a comparative character and is denoted
by *; a proposition « 8 holds in all worlds that are similar to «
at least to the degree to which they are similar to 8. Problem (1), in
contrast, remains unsolved. To overcome it, we simply give up the
requirement of the symmetry of the similarity relation; we work with
a quasisimilarity relation.

A connective of a similar type like * can be found in other areas
of logic as well. A comparative connective is present, for instance, in
logics of preference; see, e.g., von Wright’s monograph [12].

Furthermore, the connective * might be found to have some re-
semblance with the implication connective — in fuzzy logic. How-
ever, this resemblance mainly exists on the formal level; otherwise
the two concepts are not comparable, simply because the settings are
different. Our setting uses a notion of proximity and o * /3 holds
whenever « is closer than 8. In fuzzy logic, « — f is the weakest
proposition implying 3 when combined with . We note that, in par-
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ticular, that the problem of interpreting the implication in fuzzy logic
in an intuitively satisfactory manner is not inherited.

2 The logic LAEC

Our setting for approximate reasoning follows the lines of the papers
[2, 4, 8, 6]. The basic framework consists, first of all, of a non-empty
set W, called the set of possible worlds. Second, W is endowed with
a quasisimilarity relation, which reflects the assumption that a given
world may more or less resemble to another one.

In contrast to earlier papers on the topic, we allow the similarity
to be non-symmetric. In spite of the afore mentioned proof-technical
background, we can say that this choice is in line with applications
where similarity models an agent’s subjective estimations. In this
case, indeed, it is reasonable to have a degree telling how close a
property w is when seen from v, and a second one for the converse
viewpoint.

Definition 2.1. Let W be any non-empty set; let [0, 1] be the real unit
interval; and let ® be the Lukasiewicz t-norm. A function s: W x
W — [0, 1] is called a quasisimilarity relation on s w.r.t. ® if, for
any u,v,w € W,

(S1) s(u,u) = 1 (reflexivity),
(S2) s(u,v) = 1implies u = v (separability),
(S3) s(u,v) @ s(v,w) < s(u,w) (O-transitivity).

In this case, we call (W, s) a quasisimilarity space. The similarity of
aworld w € W withaset A C W of worlds is then defined by

k(w,A) = sup s(w,a).
acA

Finally, for A C W and d € [0, 1] we put
Ui(A) = {weW: k(w,A) > d}.

In what follows, we will use the following well-known notion.
Given a quasisimilarity s: W x W — [0, 1], there is a natural way
to measure the similarity between two subsets of W . The Hausdorff
quasisimilarity induced by s is given by

h(A, B) alIglgk(a,B)

inf sup s(a,b

acA beg ( )

for A, B C W. Note that this measure of the difference between two
sets was also used by Ruspini in his influential paper [9].

Definition 2.2. Let (W, s) be a quasisimilarity space. For any pair
A, B C W, we define

A B

{w e W: k(w, A) > k(w, B)}.

We define the Logic of Approximate Entailment with Comparison,
or LAEC for short, model-theoretically as follows.

Definition 2.3. The propositional formulas of LAEC are built up
from a countable set of variables o, p1, . .. and the constants L, T
by means of the binary operators A, V, and 7, and the unary operator
—. The set of propositional formulas is denoted by F. A conditional
formula of LAEC is a triple consisting of two propositional formulas
a and B as well as a value d € [0, 1], denoted

d
a=f.
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Let (W, s) be a quasisimilarity space. An evaluation for LAEC is
a structure-preserving mapping v from F to (W, s). A conditional

formula o = B is satisfied by an evaluation v if
v(@) € Ua(v(B))-
A theory of LAEC is a set of conditional formulas. We say that a

theory 7 semantically entails a conditional formula a 4 B if all
evaluations satisfying all elements of 7 also satisfy « 4 B.

We present now a calculus for LAEC. Whereas the content of the
rules (at least those that do not involve ") reflects the content of
the axioms used in earlier papers on LAE, the chosen style of the
syntax is inspired by the Gentzen-style proof systems that have been
developped in fuzzy logic during the last years [7].

In what follows, a CPL tautology is meant to be a formula that
arises from a tautology of classical propositional logic by uniform
replacement of its atoms by propositional formulas of LAEC.

We note furthermore that, for ¢ € [0, 1], c® c is abbreviated as ¢?.

Definition 2.4. The rules and axioms of LAEC are, for any o, y, 8 €
F, for any finite set I’ C F, and for any ¢, d € [0, 1], the following:

Ra,ﬂ&’y F&ﬁ
F,a/\B:d>7 F,a:d>5
F,a:d>7 F,B:d>7 r<a

F,a\/ﬂé’y Féa\/ﬁ
r<g  a I'a a=p

rigds T=8/a
asa B a8 B/ Sa

la/ B35 T,(canp) fady
F:d>7

d
I'Sa as~y

r &

0
4 d
Fia,wheredgc F:jj_, where d > 0
'S« I'=s 1
a=1>ﬁ
alp —9=8
aAN-f=1

o= B, where ~a V [ is a CPL tautology

The notion of proof of a conditional formula « 4 B from a theory
T is defined as usual; we write 7 F a =% B if it exists.
A theory 7T is called consistent if T does not prove T =

To illustrate how statements in LAEC read, we consider the fol-
lowing example:

Lemma 1. The following rule is derivable in LAEC:
r4av B
La /P 2La

Proof. We just note that both o /' 3, = aand a ' B,B = o are
provable in LAEC. O

In words, we can express Lemma 1 as follows: If some world w
has a similarity > d to o or 8 and w has a greater similarity to «
than to /3, then w has the similarity > d to a.
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3 Completeness for LAEC

The proof of the completeness theorem requires some preparations.
Lemma 2. The following rules are derivable in LAEC:
a> B 153 X a
1 1
aSy=B v a=y B
r4s a
d2
Na=p

I8/ a%y Ta/ 83y
d
I'=»y

F$a\/6
F,a/‘ﬁéoe

In what follows, [r], where r € R, denotes the smallest natural
number greater than or equal to 7.

Definition 3.1. Let 7 be a theory of LAEC, and let o, 8 be propo-
sitional formulas. We define the provability degree of the pair «,
w.r.t. 7 by

pr(a,B) = sup {t €[0,1]: T F « Y B}

Furthermore, by the density of p7, denoted by density(p7), we
mean the infimum of all differences between distinct elements of the
range of p7.

If the theory 7 is understood, we will write p instead of p7.

We note that, in the following proofs, we consider [0, 1] as a lattice
and write A, V for the minimum and maximum operations, respec-
tively.

Lemma 3. Let T be a consistent finite theory of LAEC such that
T does not prove the conditional formula ¢ = n. Then there is a
consistent theory T' D T such that the following holds:

(E1) T does not prove { = .

(E2) For any sequence (€;)icn in F such that T proves e1 A €o,
€2 =N €1, ... and for any pair a,3 € F such that T proves
aAB= Lande A (aVvp) =1, N, p(ei, a) # N, p(es, B).

(E3) There is anl € [0,1) such that, for any pair o, 8 € F, either
pla, B) =1orp(a, B) <.

Proof. Note first that e > 0. Let & € [0, 1] the largest value < e
such that 7 + ¢ < 7. Such a value exists because T + ( 2 n
and because 7, and consequently the range of pr, is finite. Put ¥ =
(e — e) A density (pr).

Let (s, B5), © < w, be all pairs of formulas « and 8 such that T
proves a A 3 = 1. We will define a sequence of consistent finite
theories

T ="T

T2

T'C...CcT™
T2 C...CT,”

and along with each theory 777, we will define values ¥/ with the

following properties:
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(1) ¥ <

idensity(pﬂjf 1);
@) 0] < 30775
3) P73 (7,6) = prs-1(7,0)| < ¥7~" forany 7,8 € F,

<

where 1 < j < k;.

Let 71 = 70 = 7 and 91 = ¥ = 9. Assume that, for i > 1,
T = T and ¥; = 99 are already defined. Let V; = {v?, ..., vfi}
be the range of p7;, where vE <. < vfi = 1. Let 7;’”“ =T
and 19?"“ =¢;.Forj=1,... ki let

Gl = {e€F:Tren(awVB)= Land
PT; (Evai) =PT; (Evﬁi) = UZ}
and

L
rd

7
lvi

¥ = (WA density (pi-1)).

) . v{.ﬁﬂ )
T =T7'u{e =" aie € Gl

Properties (1) and (2) are obviously fulfilled. Let furthermore v, 6 €
F and consider a proof of v = § from 7, where ¢ = Pi(7,0).

Then there is a proof of v = & from 7T, where ¢ = (c—n9?) V0,
where 0 < n < [ﬁ} Then ¢ is the largest element < c in the

range of pri-1, hence Ic’ =pri1 (v, 9), and (3) follows.
Let 7' = U, 7i. Let vy, € F; then for any 4, j, we have

|p7*ij (’% 5) %ol (’% 5)' < %denSitY(pTiJ‘*l )

In particular, |p7(v,0) — p7+(v,0) < 39|. Claim (El) and (E3)
follow as well as the consistency of 7.

To show (E2), let €9,€1,... and «, B € F be as indicated. Note
that, since all 7; are finite, p7; (¢, ), [ = 0,1,..., is eventually
constant. There are two possibilities:

Case 1. For some ¢ and j and some m > 1, |pr;(e,0) —
pr; (e, 8)] = d > 0foralll > m. Then [py (g1, ) —p7 (1, B)| >
1d forall I > m, and claim (E2) follows.

Case 2. For all i, p7, (g1, &) = pT; (€1, B) eventually. This is then
in particular the case for the ¢ that indexes the pair («, ). Let m
and j be such that pr. (e, ) = pr: (e, 8) = v) forall I > m.
Then &,, € gg' for all m > [. It follows Pri (em,B) = v; and

Dri (Em,a) = Uf - 19{ . But this implies that the difference remains
i

strictly positive for all extensions of 7?; a contradiction. Thus Case
2 never occurs. O

Theorem 3.1. Let T be a consistent finite theory of LAEC. Then T
proves a conditional formula ¢ = 1 if and only if T semantically
entails ¢ = 1.

Proof. 1t is not difficult to check the soundness. To prove the com-
pleteness, assume that 7~ does not prove ¢ = 7. By Lemma 3, we
can assume that 7 fulfills the following conditions instead of the
indicated ones: 7 is consistent, does not prove ¢ = 7, and has prop-
erties (E2) and (E3).

Fora, 8 € F,leta < ﬂifTFa$ﬂ,andleta%ﬂifa<ﬂ
and 8 < «a. Then = is an equivalence relation, and it is not difficult
to see that ~ is compatible with A, V, and —. By Lemma 2, ~ is
also compatible with . Endowed with the induced operations and
the classes of L and T, the quotient ((F); A, V, -, 2, (L), (T)),is
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a Boolean algebra endowed with the additional operation . Note
that F and thus also (F) is countable.
As our first step, we establish some facts about the provability

degree p. Clearly, for any o, 8 € Fand d € [0,1], T F « ]

implies d < pr(a, ), and d < pr(a, B) implies T F « < 3.
It is furthermore easily seen that, for any a1, a2, 8 € F,

plar Vaz, ) = pla, 8) Ap(az, 5).

Furthermore, for any «, 31, 32, there are 1, ae such that o ~ a1 V
ag and

p(a, B1V fa) = ploa, 1) Ap(az, Be).

Indeed, we may choose o A (81 7 B2) for ay and a A (B2 7 B1)
for .

Let W be the set of prime filters of (F). Due to the consistency of
T, W is non-empty. Forw € W and o € F, we write w < « for
(o) € w.Then ¢: (F) — PW, (o) = {w € W: w < a}isan
injective homomorphism of Boolean algebras.

Forw € W and o € F, we put

k(w, a)

= sup p(e, ),

wle

and for v, w € W, put

s(v,w) = iréf&k‘(v,d).

Itis not difficult to check that s: W x W — [0, 1] is reflexive and ®-
transitive. To see that also separability holds for s, that is, to see that
s is actually a quasisimilarity, assume s(v,w) = 1, but v # w, for
some v, w € W. Then k(v, §) = 1 for some w < ¢ such that v 4 4.
Consequently, for any 9 < 1, there is an € such that § A ¢ =~ L and
p(g,8) > 9. But p(g,d) < 1 then, and a contradiction to property
(E3) arises.

Note that p can be viewed as a function on (F) instead of F, and
consequently also as a function on ¢({F)), a Boolean subalgebra of
PW . Adopting the latter view, we claim that p coincides with the
Hausdorff quasisimilarity induced by s. To see this, we first show

k(w,aV p) = k(w,a) V k(w,B)

forany w € W and o, 8 € F. Clearly, k(w,a V 8) > k(w,a) V
k(w, ). Furthermore, by definition k(w, oV 8) = sup,, . p(e, @V
B), hence for any ¢ > 0 there is a particular ¢’ such that w <1 ¢’ and
k(w,a vV B) =9 < p(e’,aV B). Then p(¢’,a V 8) = p(el, @) A
p(e5, B), where €] V €5 ~ ¢’. We assume, w.lo.g., that w < g7,
and we conclude k(w, a V 8) — 9 < p(e, @) < sup,,. p(e, @) =
k(w,a) < k(p,a) V k(w, B), that is, k(w,a V 8) < k(p,a) A
k(w, B).
We next show
k(v,a) = sup s(v,w)
wla

forv € W and o € F. Assume first that &« &~ L. Then k(v,a) =
k(v, L) = sup, . p(e, L) = 0 because ¢ € w for some w € W

~
~

implies e % L, hence 7 ¥ ¢ 2 1 for any d > 0. Furthermore, there
is no prime filter w € W containing (o) = (L); hence the claim
follows.

Assume that o« % L. Then we obviously have k(v,a) >
inf,qs k(v, ) = s(v,w) for all w < a. Now, note that for any x €
F, k(p, o) = k(p, (aAx)V(aA=X)) = k(p, aAx) VE(p, aA-X);
it follows that there is a sequence o = ag = a1 = ... that is a basis
of a filter w <0 « such that k(v, a;) = k(v, @) for all 4, in particular
k(v,a) = s(v,w).
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The last step to show that p is induced by s is the proof of

p(a, B) = inf k(w,B).

wla

~
~

In case that « 1, there is no w € W such that w < «, and
the claim is verified noting that p(L, 3) = 1. Assume that o % L.
Obviously, p(a, 8) < maxwae p(g, 8) = k(w,B) for all w < a.
Similarly as above, we choose a sequence @ = o = a1 = ... that
is a basis of a filter w < « such that p(a, 8) = p(ay, B) for all 4.
Then p(a, 8) = k(w, 8).

Consider now again the Boolean homomorphism ¢. We have to
show that

o B) = {weW: k(w,a) > k(w,B)}.

Indeed, w < o /' 3 implies k(w, @) > k(w, B). Furthermore, from
k(w, ) > k(w, B) it follows w < a 7 . In case that k(w, o) =
k(w, B) = 1, we have seen above that w <1  and w <1 3 and thus
w < a A B. Finally, k(w, o) = k(w, 8) < 1 contradicts condition
(E2) of Lemma 3 above.

The proof is complete that (W, s) provides a model for LAEC.
Furthermore, it is easily verified that all elements of T are satisfied
and that ¢ = 7 is not satisfied. O

4 Conclusion

We have presented a logic for approximate reasoning — LAEC, the
Logic of Approximate Entailment with Comparison. LAEC differs
from LAE, the Logic of Approximate Entailment, in that it contains
a connective that is non-standard in approximate reasoning: the com-
parative connective . A further difference between LAEC and LAE
is that our models are quasisimilarity spaces rather than similarity
spaces. We have presented a Gentzen-type proof system for LAEC
and have proven its completeness for finite theories.

The rules are transparent and allow a straightforward interpreta-
tion, the new ones for * included. Formulas of special syntactical
form are not required.

There is a lot of room for further research. Most desirably, it
should be examined if the possibly non-symmetric similarity spaces,
allowed in the present approach, can be excluded.

In fact, we do not know if the symmetry of the similarity relation
would actually matter. That is, we are not sure if the calculus pre-
sented here is not already complete also for the symmetric case. We
are not able to provide an example to show the difference.

Another topic concerns proof-theory. This is an aspect that, ac-
cording to our impression, has been largely neglected for logics of
the type discussed here. However, if such logics are to be used for
expert systems, the question of an automatic proof search, decidabil-
ity and the like should be examined as well.
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Borderline vs. Unknown: a Comparison Between
Three-Valued Valuations, Partial Models, and

Possibility Distributions

Davide Ciucci 2 and Didier Dubois 2

Abstract.

In this paper we explore connections between several rep-
resentations of vagueness and incomplete information. These
include valuation pairs of Lawry and Gonzalez-Rodriguez,
orthopairs of variable sets, Boolean possibility and neces-
sity measures modelling incomplete Boolean information. We
highlight the difference between these formalisms and study
to what extent operations for merging valuation pairs can be
expressed by means of operations on orthopairs and on un-
derlying possibility distributions.

1 Introduction

Three-valued logics have been used for different purposes,
depending on the meaning of the third truth-value. Among
them, Kleene logic [9] is typically assumed to deal with in-
complete knowledge, with the third truth-value interpreted as
unknown. However, possibility is to interpret the additional
truth-value as borderline, as a means of representing indeter-
minism in vague predicates. It is then tempting to use Kleene
logic as a simple logic of non-Boolean predicates as recently
done by Lawry and Gonzalez-Rodriguez [11]. They introduced
a new formalism to handle three-valued vague predicates in
Kleene logic by means of pairs of Boolean valuations, one be-
ing weaker than the other. Basic connectives of conjunction,
disjunction and negation can be expressed by composing valu-
ation pairs. Moreover they showed that deleting the constraint
between the two Boolean valuations, such connectives recover
Belnap 4-valued logic of conflict. They use another equivalent
representation consisting of pairs of subsets of atomic vari-
ables, that are disjoint when they represent Kleene valuations.
More recently Lawry and Dubois [10] proposed operations for
merging valuation pairs and study their expression in terms of
pairs of subsets of atoms. However, in restricted cases Kleene
logic three-valued valuation pairs coincide with Boolean par-
tial models expressing a form of incomplete information. Or-
thopairs of variable sets then represent the sets of variables
that are known to be true and of those that are known to
be false. The natural generalisation of partial models consist

L First author supported by FP7-Marie Curie Action (IEF)
n.276158

2 IRIT, Université Paul Sabatier, 118 route de Narbonne, 31062
Toulouse cedex 4 (France)

3 Department of Engineering Mathematics, University Of Bris-
tol, Queen’s Building, University Walk, Bristol BS8 1TR, United
Kingdom
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of epistemic states, understood as subsets of interpretations
of a Boolean language, which can be viewed as all-or-nothing
possibility distributions. However, possibility theory, even in
its all-or-nothing form, is much more expressive than Kleene
logic for handing incomplete information [8].

In this paper we explore connections between these rep-
resentation tools and the combination rules that can be ex-
pressed in each setting. The aim of the paper is to lay bare
the differences between Kleene logic as a logic of vagueness
with the same formalism viewed as a logic of incomplete in-
formation, cast in the setting of possibility theory.

2 Boolean epistemic states as disjunctions
of orthopairs of positive literals

Let A be a finite set of propositional variables. Let us consider
a Boolean valuation w : A — {0, 1} and also call Q the set of
all such valuations.

An epistemic state E C € is a subset of valuations. It is a
state of information according to which all that is known is
that the real world is properly described by one of the valua-
tions in F. The set of models of a formula ¢ based on propo-
sitional variables A is denoted by F = [¢]. We can represent
equivalently an epistemic state F by a possibility distribution,
i.e., a mapping of the form

(w) 1 ifw € F (it means possible)
me(w) =
r 0 otherwise (impossible)

Another equivalent way to represent a valuation w is to
consider the partition of the set of propositional variables A =
AT U A" it induces, in the sense that

w = /\a/\/\—'a.

ac€ At acA—

It is often the case that a valuation w is simply represented
by the subset A, = {a € A : w(a) = 1} = AT of positive
literals it satisfies as per the above expression. It lays bare
one-to-one correspondence between € and 2.

Now, let us suppose that an agent expresses knowledge
by means of positive literals, P C 4. We can have two at-
titudes with respect to the other variables in A\P. First,
the open world assumption (OWA). In this case nothing is
assumed about A\P. The corresponding epistemic state is
Ep = [A,cpal It is a Cartesian product in Q with positive
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projections on variables in P. The corresponding possibility
distribution is of the form 7(w) = minsep ma(aw), where mq
is a possibility distribution on {a, —a} and a, = a if w is a
model of a (w(a) = 1) and —a otherwise. In the paper we
write 74 (aw) as mq (w) for short. Note that m—q = 1 — 7,

On the contrary, under the closed world assumption
(CWA), it is supposed that what is not said to be true is
false, thus N = A\ P are the negative facts. This corresponds
to pick-up just a single valuation among all the possible ones
in Ep: wp = /\aeP aA /\aePc =a. In terms of possibility dis-
tributions, it is such that

m(w) = mln(gg}g o (W), min 1 — 7a(w))

that takes value 1 only for w = wp.

More generally, we can assume that an agent is able to ex-
press both positive and negative knowledge, i.e., two sets of
variables (P, N) such that PN N = (. Clearly, A\(PUN) rep-
resents variables for which the agent has no knowledge. (P, N)
is called an orthopair, and it corresponds to a conjunction of
literals in A, i.e., A,cp @A cn a. This is sometimes called
a partial interpretation or partial model [3].

We can define its set of models as the collection of all valu-
ations which satisfy it. The satisfaction of an orthopair (P, N)
by an interpretation w must be defined as follows: w = (P, N)
if A, NN =0 and A, N P = (, or equivalently P C A,, and
N C AS,. Tt corresponds to a special kind of epistemic state
E(p,n) of the form

E(pJ\])Z[/\ a N /\ _\a}:{ngAwyNgAfu}

a€P a€N

where P,N C Aand PN N = (. Then, from E(p n) we can
obtain the possibility distribution 7(p ny as

mp,n) (W) = mm(ggg ma (W), min 1 —7a(w))

The corresponding epistemic state takes the form of a Carte-
sian product, what can be called an hyper-rectangle, by anal-
ogy with the Cartesian product of intervals in the real line
R™. Then, given any other such possibility distribution, their
intersection is still a rectangle, hence representable by an or-
thopair, whereas their union is not.

In the case of possibility distributions over €2, each dimen-
sion is a propositional variable on {0, 1}, thus we have hyper-
rectangles in the space {0,1}". We can project a possibil-
ity distribution on each dimension Proj.(m(p,n)) and obtain
the set of possible values left by m(p vy for the variable i. Of
course, we can have only three cases:

{0} aeN
Proja(mp,ny) = { {1} a€P
{0,1} otherwise

The use of projections will enable us to express operations
combining orthopairs, such as the intersection, in a simple
and effective manner on 2.

Conversely, for any subset of Boolean valuations £ C €2
we can assign a single orthopair RC(FE) (Pe,Ng) by
letting @ € Pg iff w(a) 1,Vw € FE, and a € Ng iff
w(a) 0,Yw € E. The map E +— (Pg,Ng) defines an
equivalence relation on possibility distributions over €2 and
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Epny = W{E : (Pe,Ng) = (P,N)}. RC(E) can be called
the rectangular closure (RC) of E.

From the above discussion, it is clear that the collection
of all orthopairs can be mapped only to a subset of all the
possibility distributions. This implies that not all the possi-
bility distributions are representable as orthopairs. Take for
instance the empty set on Q (it represents contradiction): it
does not correspond to any orthopair. More generally, any
epistemic state £ C € can be represented by a collection of
orthopairs, which encodes a disjunction of partial models. To
see it, consider a Boolean formula ¢ whose set of models is
exactly E. Then, put ¢ in the disjunctive normal form (as a
disjunction of conjunctions of literals). Each such conjunction
can be represented by an orthopair. So any epistemic state can
be represented by a disjunction of orthopairs.

We may even wish to represent E by a set of mutually ex-
clusive orthopairs. This is because it is always possible to put
a disjunction of conjunctions into a disjunction of mutually
exclusive conjuncts.

To do so, we need a notion of consistency between or-
thopairs. Two orthopairs (P, N1), and (P, N2) are consistent
if and only if P N N2 = () and P> N N1 = . It is clear that
E(thl) M E(P27N2) 75 0 if and only if (P17]\/v1)7 and (PQ,NQ)
are consistent. The problem of representing a Boolean for-
mula as a disjunction of mutually exclusive conjuncts is a
matter of computing normal forms (like binary decision dia-
grams). An open problem is to turn a disjunction of ortho-
pairs into an equivalent disjunction of inconsistent ones. For
the case of two orthopairs (Pi, N1), and (P2, N2), we should
find (P;, N;),i =1,...,n, such that (P;, N;) and (P;, N;) are
inconsistent, Vi # j =1...,n, and

Ep Ny U Ep, Ny = Ui=1,. nEp,N,)-

Based on an epistemic state described by a possibility distri-
bution 7 representing an epistemic state I, we can define pos-
sibility and necessity degrees N(¢) and II(¢) [8] by II(¢) =1
if and only if Jw € Q,w = ¢ and 0 otherwise; N(¢) = 1 if
and only if Vw € Q,w = ¢ and 0 otherwise. We can compute
the pair (IV,II) of functions SL — {0,1} from an orthopair
(P, N) as follows :

e N(O)=1if \,cpaA A\,cnyma =0 and 0 otherwise.
o II(0) = 1if A,cpa A N,y —a A0 is consistent, and 0
otherwise.

N is called a necessity measure and II a possibility measure.
N(0) = 1 means that 6 is certainly true, and II(6) = 1 that 0
is possibly true, if the epistemic state is described by (P, N).
In particular, if N(0) = 0 and II(f) = 1 it means that the
truth of 0 is unknown in epistemic state (P, N).

3 Paraconsistent valuations

One may wish to relax the condition P N N = () defining or-
thopairs. The epistemic view of this license is that if a € PNN,
it means that there are reasons to believe the truth of a and
reasons to believe a to be false as well. For instance, there may
be agents claiming the truth of a and other agents claiming its
falsity. This approach corresponds to the semantics of some
paraconsistent logics such as Belnap’s [1] or the quasi-classical
logic of Besnard and Hunter [2]. We call such pairs of atoms
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(F,G) € 2% x 2" with F NG # § paraconsistent. For such
pairs, it is clear that E(p ) = 0. Another semantic is neces-
sary for them.

A pair (F,G) in the paraconsistent case is closely related
to Belnap [1] 4-valued logic, namely

If a € F'\ G then a has Belnap truth-value TRUE
If a € G\ F then a has Belnap truth-value FALSE
If a € FFN G then a has Belnap truth-value BOTH
If a ¢ FFUG then a has Belnap truth-value NONE

While an orthopair (P, N) can be associated a possibility
distribution on interpretations, it is no longer possible for a
paraconsistent orthopair (F, @), as E(p,¢) = . One may then
represent such a paraconsistent orthopair by means of two
standard orthopairs of the form (F, G\ F) and (F'\ G, G) lay-
ing bare the positive and the negative sides of the pieces of
information. They are pairs of orthopairs (Pi, N1), (P2, N2)
with P» - Pl,Nl - Nz,Nl NP = ®7P1 UN1 = P, UN>
letting P = F,N2 = (. The corresponding paraconsis-
tent orthopair is of the form (Pi,N2) but corresponds to
two possibility distributions (two disjoint epistemic states
E; = E(p, n;),% = 1,2). See Dubois, Konieczny and Prade [6],
for the use of paraconsistent orthopairs in the setting of possi-
bilistic logic. More generally we could reconstruct a paracon-
sistent orthopair from any two orthopairs (P1, N1), (P2, N2)
as (F,G) = (P1 U P>, N1 U N») as follows

e If a € P\ N2 UP,\ Ni then a has Belnap truth-value
TRUE

e If a € N1 \ P, UNz \ P then a has Belnap truth-value
FALSE

e If a € (PN N2)U (P2 N N1) then a has Belnap truth-value
BOTH

e If a ¢ PP UN>U P, UN; then a has Belnap truth-value
NONE

Letting (P1,N1) = (F,G\ F) and (P2, N2) = (F'\ G,G), we
do recover (P1 U P>, N1 U N2) = (F,G).

In the following, the notation (P, N') corresponds to genuine
orthopairs, while we use (F,G) in the general case.

4 Ternary valuations vs. partial
interpretations

It is possible to establish a bijection between orthopairs and
three-valued valuations. Let us consider a three-valued valu-
ation on the set of variables 7 : A — 3 with 3 = {0,v,1}.
Then, we can induce an orthopair as: a € P if 7(a) = 1,
a € N if 7(a) = 0. Vice versa, given an orthopair we have the
following three-valued function:

0 ae N
=<{1 a€eP

u  otherwise

7(a)

This bijection indicates that there are as many partial mod-
els as 3-valuations. However, the intended meanings are quite
different

e In the partial model scenario, atoms are Boolean and a par-
tial model represents incomplete information, so this is a
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special case of possibility theory where incomplete informa-
tion is restricted to Cartesian products of marginal pieces
of information about atoms.

e In the three-valued valuation case, atoms are not Boolean,
and each valuation is a complete model whereby some
atoms are neither true nor false but borderline, in the scope
of modeling vagueness. This is the view used by Shapiro [12]
and Lawry & Gonzalez-Rodriguez [11], based on Kleene
three-valued logic.

In the three-valued valuation case, truth-functionality is
thus assumed namely 1 > u > 0 and

e 7(—0) = 1,7(—1) = 0,7(—u) = u, which reads 7(—p) =
1L —7(p).

* 7(pAg) = min(7(p),7(q))

e 7(pVq) = max((p),7(q))

Lawry & Gonzalez-Rodriguez[11] propose to represent ternary
valuations 7 by pairs (v,7) of Boolean valuations on {0, 1},
defined as follows: for atoms a, b. . ., and formulas ¢ built from
atoms and Kleene connectives =, V, A:

if 7(a) =1 then v(a) = v(a) = 1;

if 7(a) = 0 then v(a) = T(a) = 0;

if 7(a) = u then v(a) = 0,7(a) = 1;

v(=¢) =1 -v(¢);

9(¢ A ¢) = min(9(4), 0(4)); v(¢ A ¢) = min(vg), v(¢));
(¢ V) = max(v(¢), 0(¢)); v(¢ V ¥) = max(u(d), v(¥));

In the above v is a lower Boolean valuation, and v is an upper
Boolean valuation. It can be checked that if 7(¢) is computed
by means of Kleene truth tables and the pair (v,7) is com-
puted by the above identities,

o if 7(¢) = 1 then v(¢) = 5(¢) = 1;
o if 7(¢) = 0 then v(¢) = v(¢) = 0;
e if 7(¢) = u then v(¢) = 0,v(¢) = 1;

Clearly the property v < ¥ holds. So, there is also a one-
to-one correspondence between Boolean valuation pairs such
that v < T and orthopairs (P, N) defining P = {a € A :
v(a) = T(a) = 1}, N = {a € A : v(a) = T(a) = 0}, and
v(a) =0,0(a) =1ifa g PUN.

It can be shown by induction that the three-valued valua-
tion 7 can be simply expressed in terms of v, T as

r(g) = LD XU

encoding the third truth-value u as 1/2. So, in the case where
v < U we can represent the relation between three-valued func-
tions, orthopairs and pairs of Boolean functions as in Fig.1.

The above approach to vagueness based on Kleene logic
and orthopairs of propositional variables may be puzzling for
scholars that are following the original intuitions in [9] on the
interpretation of the third truth-value b as unknown instead
of borderline. Indeed, here we are interested in classifying pre-
cisely described objects with respect to vague categories rep-
resented by propositional atoms a € A that share the states
of the world in three parts.

There is a striking similarity between Kleene valuation pairs
(v,7) and necessity-possibility pairs (N,II), namely:
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T E 3"4H (275)

|7

(P,N)

Figure 1. Bijection among three-valued functions 7, orthopairs

(P, N) and pairs of Boolean functions v < v.

e N(—=0) =1—1I(f) and II(=0) =1 — N(6)
e N(0Ap)=min(N(0), N(p))
o I1(0V p) = max(11(0),I1(p))

However there is a difference between them : while v(6 A p) =
min(v(0),v(yp)) and T(0 V ¢) = max(v(0),v(p)), in general
T(0Ap) < min(T1(6), I1()) and N(9V) > max(N(6), N ()
only. In particular, II(§ A—0) = 0 (non-contradiction law) and
NV —0) = 1 (excluded middle law). In fact, (N,II) is a
pair of KD modalities in epistemic logic, which explains why
they are not compositional. A Kleene valuation pair (7,v)
would be trivial in a Boolean context, while in the three-
valued propositional setting accommodating borderline cases,
such deviant modalities (where the lower necessity-like valua-
tion distributes over disjunctions) are not trivial. More general
Kleene algebras are studied in [4].

It is easy to lay bare propositions ¢ for which valuation
pairs (7,v) and possibility-necessity pairs (I, N) differ. For
instance, a Vb and aV (—a Ab) are not equivalent propositions
under Kleene valuation pairs. Indeed, consider the orthopair
(P,N) = ({b},0). Since v(b) = v(b) = 1, it is obvious that
(aVb) =v(aVb) =1 too. However,

7(a) =1 and v(a) = 0 since a ¢ PU N;

7(—a) =1 and v(—a) = 0 likewise;

v(=a A b) = min(v(—a),v(b)) = 1;

v(=a A b) = min(v(-a),v(b)) = 0;

So v(a V (ma A b)) = max(v(a),v(—a A b)) = 1;
So v(a V (ma A b)) = max(v(a),v(—a A b)) = 0;

(@
(v

However, in the Boolean setting the two formulas a Vb and
a V (—a A b) have the same set of models, so N(a V b) =
N(aV (-ma Ab)), and N(aVb) =N(aV (-aAb)).

More generally as it is known that Kleene logic has no tau-
tology: given a tautological boolean formula ¢, there exists a
Kleene valuation pair (7,v) such that v(¢) = 1,v(¢) = 0. In
contrast, for any possibility necessity pair, N(¢) = II(¢) = 1.

5 Generalized valuation pairs

Lawry and Gonzalez-Rodriguez [11] extend Kleene valuation
pairs to cases where v £ ©. Such valuations pairs exactly
correspond to paraconsistent orthopairs (F, G) such that F'N
G # (). In that case, it corresponds to four-valued valuations
in the sense of Belnap. The authors indeed show that truth-
tables corresponding to the inductive definitions of Kleene
valuation pairs over the language become Belnap 4-valued
truth-tables when these inductive definitions are applied to
all valuation pairs (v,v) without the restriction ¥ > v. In this
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case the diagram of Figure 1 should be updated as follows

7€ a4t <— (v,7)

|7

(F,G)

However, the semantics of such inconsistent valuations is
unclear as it introduces a second kind of borderline truth-
value, which plays the same role as the first one with respect
to true and false.

The authors also try to define the semantics of Kleene logic
formulas in terms of sets of pairs of atomic formulas (F, G) €
24 % 24 Let A(¢) = {(v,7),v(¢) = 1} which corresponds to a
set of pairs (F,G) including paraconsistent orthopairs. They
propose the following inductive definitions

A(a) ={(F,G),a € F}

Al Ap) = A(¢) N A(Y)

A¢ V) = A(¢) UA(Y)

A=) ={(G°, F9) : (F,G) € A(¢)}

They prove a number of elementary equivalences from Kleene
logic on this basis and study the dual set of valuation pairs
Z(¢) = (A(—¢))°. Basically they show that if (v,7) corre-
sponds to the pair (F,G) of subsets of atoms, then, for any
Kleene logic formula ®, v(¢) = 1 if and only if (F,G) € A(¢)
and T(¢) = 1 if and only if (F,G) € Z(¢).

It is interesting to notice that this construction is in-
strumental in adding uncertainty to the Kleene-based three-
valued logic of vagueness, by assigning probability masses to
pairs (F,G) of subsets of atoms, enforcing zero probabilities
when F NG # 0.

However, this framework for uncertainty in three-valued
logic relies on the use of paraconsistent orthopairs. Indeed the
very definitions of A(¢) use paraconsistent orthopairs even
if one restricts A(a) to orthopairs. Indeed if (P,N) is an
orthopair, then (N°¢ P¢) is generally a paraconsistent one,
so that the definition of A(—¢) requires the use of para-
consistent orthopairs, even if for atoms, restricting A(a) to
{(P,N),a € P} yields A(-a) = {(P,N),a € N}, namely a
set of orthopairs.

Interestingly, if (¥, G) € A(a), it means that v ¢ (a) = 1,
i.e., a € F' which means that a is TRUE or BOTH in Belnap
terminology. If a is TRUE, it means that a ¢ G, but then
a ¢ F°UG, in other words, the pair (G¢, F°) makes a TRUE as
well. If a is BOTH, it means that a € G, but then a ¢ FCUG®,
in other words, the pair (G°, F°) makes a NONE (1/2). So it
is clear that v p ¢y (a) = 1 is equivalent to U(ge,pe)(a) = 1. In
other words, the set {(G®, F°): (F,G) € Ala)} = {(F,G),a &
G} contains all pairs that make a TRUE or NONE, that is
Z(a), and it means that V(ge pey(a) = 1: if ¢ is TRUE or
BOTH for (F,G), it is TRUE or NONE for (G°, F°).

Likewise it is easy to see that if ¢ is FALSE or BOTH for
(F,G), it is FALSE or NONE for (G°, F°). Indeed if (F,G) €
A(—a), it means that T(p y(a) = 0, i.e., a € G which means
that a is FALSE or BOTH in Belnap terminology. If a is
FALSE, it means that a ¢ F, but then a ¢ F U G°, in other
words, the pair (G, F°) makes a FALSE as well. If a is BOTH,
it means that a« € GNF, and the pair (G, F°) makes « NONE
(1/2) again. So it is clear that T ¢)(a) = 0 is equivalent to
Q(chFC) (a) =0.
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We can prove this for all formulas:

Proposition 5.1. Two implications hold:

o Vo€ L, if Up (@) =1 then Vge rey(¢) = 1.
o Vo € L, if Upc) (@) =0 then vge pey(¢) = 0.

Proof: If ¢ is an atom, see the above paragraph. Assume
the result is true for ¢ and .

o Let vpg) (¢ V1Y) = max(ype) (), 2pe(¥) = 1 If
Ypc) (#) = 1 then by assumption D(ge rey(¢) = 1 and
thus E(Gc’pc)((ﬁ Vv 1/J) =1.

o Let vpg (¢ AY) = min(upe(d),vre ) = 1
Hence vp ) (¢) = v q)(¢) = 1. Since by assumption
Tge,re) (@) = TU(ge,pey(tp) = 1 it is clear that Tge pey(¢ A
6) = L.

e Similar reasoning for conjunction and disjunction and
U(ra)(¢) =0

o Let vpg)(~¢) = 1. Hence Upc)(¢) = 1 — up g (79) =
0. By assumption, it follows that Tge pey(¢) = 0. Hence
V(ge,rey(m¢) = 1. Likewise for D(r q)(—¢) = 0.

This result explains the formula A(—¢) = {(G®, F°) : (F,G) €
A(@)}© : the set {(G°, F°) : (F,G) € A(¢)} contains pairs of
sets of atoms that make ¢ TRUE or NONE; its complement
contains the pairs that make ¢ FALSE or BOTH.

One natural question is the following: if we restrict A(¢) to
genuine orthopairs O(¢) = A(¢)N{(P,N) € 24 x 24, PNN =
(0}, then can we apply Lawry’s recursive definitions of A(¢)
to O(¢)? For conjunction and disjunction it seems to work
but not for negation. Indeed, given a formula ¢ we cannot
apply the recursive definition for negation considering only
orthopairs in O(¢), i.e.,

{(N%, P%) - (P,N) € O(6)} # O(=¢).

Example 5.1. Let A = {a,b} and ¢ = aA—b. Then, we have
A(¢) = {({a}, {0}), ({a, b}, {a,b}) and O(¢) = {({a}, {b})}.
If we desire to compute O(—¢) we have to compute at first
A(=¢) and the consider only the orthopairs. Indeed, on the
contrary, we have {(N°, P¢) : (P,N) € O(¢)} = O(¢) and
so {(N¢,P°): (P,N) € O(¢)}° contains pairs which are not
disjoint such as ({a,b},{a,b}) and even pairs which should
not be in A(=¢) such as (0,0).

Moreover, in general, O(—¢) = {(N,P) : (P,N) € O(¢)}
hold for atoms but not for all formulas. We only have {(N, P) :
(P,N) € O(¢)} € O(=¢).

Example 5.2. Let ¢ = p; A =p;. Then O(¢) = {(P,N) :
pi € P,p; € N}. On the other hand, O(—¢) = O(—p; V p;) =
{(P,N) :pi € N}YU{(P,N) : p; € P}, which is different from
{(N,P): (P,N) € O(pi A —pj)} since, for instance, (0,{pi})
belongs to O(—¢) but not to {(N,P): (P,N) € O(p; A —p;)}.

It seems that a recursion formula using only orthopairs for
computing O(—0) for a negation of a formula does not exist.
The reason seems to be that the negation of the formula cor-
responding to a partial model associated to an orthopair is
not a formula corresponding to an orthopair at all.

So, at present, the only chance is to recover Kleene or-
thopairs semantics from Belnap pair semantics, which in our
opinion is not fully satisfactory.
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6 Order relations and aggregation
operations in Kleene three-valued logic

In [5] and [10] some order relations and operations on or-
thopairs are considered. We give here a complete picture of
these methods to combine orthopairs, and their correspon-
dence with valuation pairs and three-valued functions. In the
case of valuation pairs we consider only valuations of propo-
sitional variables. Indeed, not all the following results apply
when considering more complex formulas. The problem seems
to lie in the formulas containing negations. However, this issue
will need a further in-depth study.

First of all, let us consider the standard order on 3: 0 <
% < 1. Given two three-valued valuations, 71,72, we can let
71 <1 72 mean 7i(a) < 72(a),Va € A. It expresses the idea of
being “not more true than”. On orthopairs it reads

(P1,N1) %1 (P2, N2) iff Py C Po,Ny C Ny (1)

and on pairs of valuations

v =1 v iff Va wvi(a) <wv,(a) Ti(a) < v2(a)

This ordering is known as the truth ordering [1]: “¥ is less
true than ¥>”. It is the canonical extension of the order 0 < 1
to subsets of {0, 1}. It leads to the chain structure 0 < 1/2 < 1

on 3 and to the following join and meet on orthopairs:

(P1,N1) My (P2, N2) := (P1 N P>, N1 U N>)
(Pl,Nl) LIy (PQ,NQ) = (P1 U P, N1 N NQ)

()
®3)

They are the usual join and meet relations considered on or-
thopairs (see for instance [5]). Once considered on pairs of
valuations, we see that they correspond to the conjunction
and disjunction of the lower and upper valuations:

U1 N1 Vo = (yl N Vy, U1 /\52)

U1 V1 U = (yl V v,,01 V U2)
Another natural order relation <2 on orthopairs is:

(P1,N1) =2 (P2, N2) iff P C P,Ni C N, (4)
This relation is known as the knowledge ordering [13] or the
semantic precision [10], which on valuations reads as
U1 X2 U2 i Va v,(a) <wv,(a) T2(a) <Ti(a).
It means ¥ is at least as informative as ;. Once interpreted
on three values, it can be seen that it does not generate a
lattice structure but only the meet-semilattice of figure 2.
The meet with respect to this order is defined (on or-

thopairs) as
(P, Ny) Mo (P, N2) := (P10 Po, Ny 1 N2) (5)

It is pessimistic as it only keeps what both orthopairs retain
as true or false. This is operation ® on valuation pairs [10]:

U1 ® V2 = T(p, Py, N1 (Ng) = (U1 AUy, T1 V Ta)
Clearly, the join can be naturally defined as

(Pl,N1)U2 (PQ,Nz) = (P1UP2,N1UN2) (6)
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I ]

Figure 2. The semilattice structure of order 3.

It does not always exist on orthopairs as the result may be-
come paraconsistent. It is the optimistic combination operator
@® on valuation pairs [10]:

U1 @ U2 = U(p,uP,, N UNy) = (U1 V Uy, U1 AT2).

The cases where it exists then correspond to the situation
where the two orthopairs are consistent, that is: P1 N Ny =
P> N N1 = {). Generalizing both orderings to paraconsistent
orthopairs yields a bilattice structure laid bare by Belnap [1].

Now, by relaxing the requirements of order <3, we can ob-
tain two other orderings, which generate two lattice opera-
tions. In one case we keep the condition on the first compo-
nent and in the other the condition on the second one. That
is, the new order relations on orthopairs are:

(P1, N1) =3 (P2, N2)
(P1, N1) =4 (P2, N2)

iff Bnd> C Bndi, N1 C N> (7)
ifft P C P»,Bnds C Bnds, (8)

with Bnd = N°\P (Bnd stands for boundary following
rough-set terminology) and thus the condition Bnds C Bnd,
can be equivalently expressed as Pt UN1 C P> U Na. It can be
easily seen that order 2 implies orders 3 and 4 but not vice
versa. On pairs of valuations the two orders are translated as:

U1 <z U2 iff —wy(a) AT2(a) < —w;(a) AT1(a)
and T2(a) < T1(a)
B<ite i wy(a) ATH0) < wy(a) AT(a)

and v, (a) < uy(a).
On three values, the orders (7) and (8) correspond to a

different order with respect to the standard one on numbers,
according to the following equations:

iff Vzmi(z) < 7e(z)
iff Vo ri(z) < m(x)

where 0 (9)

1 (10)

71 <3 T2 <1<
<0<

1
0

IS T

71 <4 T2 where

These two orderings give rise to the following meet and join
operations on orthopairs

(P1, N1) Us (P2, No
(Pr, N1) M3 (P2, N2
(P1, N1) Uy (P2, N2
(P1, N1) My (P2, N2

(Py\N> U P,\N1, N1 U N,)
(Py\Bnds U P,\Bndy, Ny N Na)
(Py U Py, N1\ P, U N2\ P)
(Py N P2, N1\ Bnds U N>\ Bnd, )

)
)
)
)

We note that in the probabilistic literature the operations
M3 and Lz are named quasi-conjunction and quasi-disjunction;

they are uninorms on {0, 1/2, 1} used in the three-valued logic
of conditional events [7].
If we consider the consensus operation ® in [10], defined as

(PlaNl) © (P27N2) = (PI\NQ UP2\N1,N1\P2 UNQ\PI)

we can see that it is a mix of Us and Us. Thus we can think to
interpret L3 and Uy as partial consensus where in Liz both the
agents restrict their view on the positive part and in L4 on
the negative part. The corresponding operation on valuation
pairs are:

U3 V3 U2 = ((vy AD2) V (vp AT1), V1 AD2) (11)
Us Va U2 = (U1 V 0y, (U1 V 03) A (D2 V 1)) (12)

On 3 the consensus operator is

1 if 7i(x)=1, 72(z) #0
or 7m(x)=1, 1i(z) #0
if 7(z)=0, 2(x)#1
or m2(x) =0, Ti(x) #1
u  otherwise

(mOm)(r) =40

If we consider the two meet operations M3, My applied to two
orthopairs which are in order relation (<3 or <4) then they
both reduce to My (that is, ®). On the contrary, in the gen-
eral situation, with M3 we reduce the positive region of agent
1 considering only the situations where agent 2 has a certain
opinion, either positive or negative, and dually agent 1 with
respect to agent 2. Similarly for My the negative part is re-
duced considering only the certainty zone of the other agent.
Let us note that we can express the two operations in the
following way:

M3 : ((Pl ﬂPz)U [(Pl ﬂNz)U(PQHNl)},Nl ﬂNQ) (13)

My : (P1ﬂPQ,(NlﬂNQ)U[(]\hﬂPQ)U(NQﬂPl)]) (14)
from which we better understand that we “add” something to
the intersection of positive (resp., negative) parts. The corre-
sponding operations on valuation pairs are:

Az (g Awg) V(g A=02) V(g A —01)), 01 VT2) - (15)

Aa: (g Ay, (U1 VT2) A (01 V —wp) A (D2 V —y)) - (16)

Finally, Figure 4 represents these three orderings on or-
thopairs (U = N°).

Ul

A2 U2

()

Figure 3. Representations of orders <3, <4 and <s.

Thus, orderings 3 and 4 are less demanding from the
“knowledge” point of view than ordering 2, but they have
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the advantage to generate a lattice structure, with the possi-
bility to define intersection and union. Lawry and Dubois [10]
also consider the difference:

U1 © U := (v AT2,701V U,)

(P1, N1) © (P2, N2) := (P1\ N2, N1\ P)
1 m=1,1#0
(memn)(r)=10 nm=0mn#1

u  otherwise

Now, let us considering negations. The standard involutive
negation — defined as =0 = 1, —u = u, =1 = 0, corresponds
on orthopairs to the following operation: —(P, N) := (N, P)
and so on valuation pairs to: —(v,7) (=7, —w). We can
also consider paraconsistent — and intuitionistic ~ negation,
defined on three-values as: —0 =~ 0 = 1, —1 =~ 1 = 0,
—u = 1 and ~ u = 0. On orthopairs they are translated
respectively as

7(P7N)::(PC7P) N(P7N)::(N7Nc)
so, on valuation pairs they read as
_(y,ﬁ) = (_‘y’ _‘Q) ~ (97 5) = (67 ﬁ)

The first three columns of Table 1 summarize the above re-
sults.

3 Orthopairs | Valuation pairs Q
0 0, X) (0,0) wo
u (0.0) 0.1) Q
1 (X> @) (17 1) w1
undef. undef. undef. 0
O<u<l1 <1 < overlap
u<lu<0 =2 <2 2
u<1l<O =<3 <3 overlapa
u<0<1 =4 <4 overlaps
min M1 A
max Ly \Y
ming Mo ® Proj
maxo Lo (&) n
O] © O]
S) S) S]
+ + U
- - - Proj
=) (=)
Table 1. We recall that @ is not always definable.

7 From orthopairs to possibility
distributions

‘We now translate all the above orders and operations in terms
of Boolean possibility distributions, i.e., subsets of 2.

First of all, let us consider constant elements. We have that
(@,.A) and (A, 0) corresponds to a possibility distribution with
just one element, respectively: Va € A, wo(a) = 0 and Va €
A, wi(a) = 1. On the other hand, (@, ) generate the whole
set of valuations Q. The contradiction (emptyset on €2) is not
representable by an orthopair, or we can interpret it as being
generated by all paraconsistent (ortho-)pairs (F,G).
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The order relation <3 is just the subsethood relation of sub-
sets of Q, i.e., E(Plle) jQ E(PQYNz) iff E(PQYNz) g E(Pl,Nl)'
The counterpart of orders <1, <3, <4 is drawn in Figure 4(b),
that is we only have a partial overlap of the two subsets.

M M

M2

(a) (b)

Figure 4. Representations of orders <2 (on the left) and
<1, <3, =4 (on the right) on possibility distributions.

Example 7.1. Let us consider (P1,N1) =<3 (P2, N2). Then,
the valuation w’ such that w'(p) = 1 for all p € P> and
w'(p) = 0 elsewhere belongs to E> but not to Ei since
w'(p) = 0,p € Pi\P2. On the contrary, w"(p) = 0,p € N1
and w"” (p) = 1 elsewhere is such that w' € E1 and w"” & Es.
Both w',w"” are compatible with the fact Bnda C Bnd; and
N1 C Na. A similar example can be given in the case of
=1, %4

Now, let us consider the operations. First of all Mz, that is
®, and Ls. Clearly they are the meet and join (when it exists)
on orthopairs. On the other hand the join and meet with
respect to the subsethood relation are the intersection and
union of sets (possibility distributions). However, My does not
correspond to the union between possibility distributions, i.e.,
E(Pl*,Nl)I_‘Z(P27N2) # E(P17N1) U E(P2,N2)' We can just prove:

Proposition 7.1.
E(PlaNl) U E(Pz,Nz) < E((PlaN1>’—‘2(P27N2))'

The other direction does not hold, indeed, consider the
following valuation w*: w*(p) = 1 if p € Py N P, and
w*(p) = 0if p € (P1 N P2)° then w* € Ep, Ny)ra(Ps,Na)
but w* ¢ Ep, Ny U Ep,,N)-

This behaviour is due to the non-representability of non
rectangular regions by orthopairs. Indeed, we can only rep-
resent the smallest hyper-rectangle which contains E(p n,)
and E(p, n,) (the rectangular closure of their union), which
corresponds indeed to E((p,,n;)ra(Py,No))-

Proposition 7.2. E((Plle)‘—\z(P2,N2)) = Xi(PTOjiE(Pl,Nl) @]
ProjiBp, ny) = RC(E(p,ny) U Epy,Ny)-

On the other hand, the union of two possibility distributions
is generally not representable on orthopairs, but on the pow-
erset of orthopairs, since it corresponds to the collection (not
aggregation) of two orthopairs. We can denote this situation
as (P1, N1)+ (P2, N2) with the meaning that it represents the
set {(P1,N1), (P2, N2)}. From an interpretation standpoint
we can think that we desire to collect all the situations where
at least one of two agents is right, without specifying which
one. It can be easily seen that

E((P17N1)+(P27N2)) = E(PlaNl) U E(szNz)'
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Of course, we cannot express this operation in terms of set
operations on A. The same applies to three-valued functions,
since this operation just corresponds to the set of the two
functions representing the two orthopairs 7(p, n,)+7(p,,ny) =

{T(Pl ,N1)s T(Pa,Na) }
If we consider the case of two consistent orthopairs, then
also the operation Lls is defined and we have:

PI‘OpOSitiOl’l 7.3. E(Plle) ﬂE(pz,NQ) = E(plle)U2(p2’N2) =
E(PlaNl)@(P27N2)'

Let us consider now the case of negation. The negation of
a possibility distribution F is its set complement

(Ep,ny) ={w:3p e Pw(p)=00rdpe Nw(p) =1}

which is clearly different from the possibility distribution we
obtain from the (involutive) negation of (P, N):

E(p,ny) = E(n,p)

The + operation enables also to deal with the negation
of a possibility distribution in terms of orthopairs. Let us
define the unary operations £(P,N) = (+p,er({p:i},0)) +
(+n,,:EN(®7 {nl})), that is, & = {({pl}a®)7(®7 {nl}) T pi €
P,n; € N}. Then:

(Ep,n)" = Ee(-(p,ny)

The operation € on three-valued functions, corresponds to
collect all the following functions:

T =DPi

1
7(z) = .
{ 1/2  otherwise

0 T =n;
m(z) = .
1/2  otherwise
Vice-versa by considering the projections of Ep n
and complementing them we obtain the corresponding of

E(~(p,n)) with the caution not to use the set complement
but the three-valued involutive complement: {0} = {1},

{1} = {0} and {0, 1} = {0, 1}.
PI‘OpOSitiOn 7.4. Xi(PTOjiEP,N)/ = E(ﬁ(P,N))

Finally, the consensus E(p, n,)o(p,,No) contains the inter-
section of the two possibility distribution and is contained in

E(Pl,Nl)”2(P21N2)'
Proposition 7.5.
Epy vy N E(py,ny) € Epy,ny)o PNz € E(pr N2 (P2, N2)-

However, it is incomparable with the union, that is there
exists w € E(p, N,)o (P, No) Such that w & Ep, n,)UE(p, Ny
and vice versa.

Example 7.2. Let us consider the following w1,

wi(p) = {;

it belongs to E(p, N,)o(Ps,N») and not to Ep, Ny U E(p, Ny)-
Vice versa, the following valuation

pE (P1\N2 @] PQ\Nl)
otherwise

pe P
pE N
p € P\Py
otherwise

w2 (p) =

= o O =

belongs to E(p, n,) U E(p,,n,) and not to Ep, N,)o(Ps,Ns)-
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Further, by propositions 7.1 and 7.5 we can derive

Ep, Ny U Ep, Ny U E(P N0 (P2, N2)) € E(Py,N)Ro (P2, Na)-

But not the opposite direction, as can be seen by considering
the valuation w™ above.

If we write (P1, N1)® (P2, N2) in terms of unions among or-
thopairs, we see that (P17 N1) ® (Pz, Nz) = (Pl\]\fz7 Nl\Pz) @]
(P2\N1, N2\ P1) and thus by proposition 7.3, we get

E((p ,N)o(P2.N)) = Ep\Na, N1\ P2) N E(py\Ny N\ Py)-

Table 1 summarizes these translations from one language to
another. The term “Proj” means that the corresponding op-
eration can be characterized in terms of projections. The im-
possibility to express L1 and M; in terms of general subsets
of valuation comes from the fact that they do not consider
positive and negative literals on a pair. Other impossible di-
rect translations come from the fact that the set-union of
hyper-rectangles of interpretations is generally not an hyper-
rectangle, or stated otherwise, that the disjunction of partial
models is not a partial model.
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Handling partially ordered preferences
in possibilistic logic
- A survey discussion -

Didier Dubois and Henri Prade and Faycal Touazi'

Abstract. This paper advocates possibilistic logic with partially or-
dered priority weights as a powerful representation format for han-
dling preferences. An important benefit of such a logical setting is
the ability to check the consistency of the specified preferences. We
recall how Qualitative Choice Logic statements (and related ones),
as well as CP-nets preferences can be represented in this framework.
We investigate how a generalization of CP-nets, namely CP-theories,
can also be handled in a partially ordered possibilistic logic setting.
Finally we suggest how this framework may be used for handling
preference queries.

1 INTRODUCTION

Possibilistic propositional logic is a logic where classical proposi-
tions are associated with priority levels; see [23] for an introduction.
In this setting, inconsistency amounts to having a classically incon-
sistent set of propositions that are all associated with strictly positive
priority levels. In particular, one cannot give priority both to p and to
—p. Possibilistic logic may be used for handling uncertainty, or pref-
erences. In this discussion paper, we survey the use of possibilistic
logic for representing preferences, and compare it with popular rep-
resentation settings for preferences such as CP-nets [14], CP-theories
[36], or Qualitative Choice Logic [15]; see [17] for an introductory
survey on the handling of preferences in artificial intelligence, oper-
ations research, or data bases literature.

After a brief refresher on possibilistic logic, the paper provides
an account of the handling of ordered conjunctions and disjunctions
for preference modeling in possibilistic logic. We then advocate the
use of partially ordered symbolic weights for coping with the need
of leaving room for incomparability, as observed in CP-nets or in
CP-theories settings.

2 POSSIBILISTIC LOGIC

We consider a propositional language where formulas are denoted
by pi, ..., pn, and  is its set of interpretations. Let BY
{(pj,a;) | 7 = 1,...,m} be a possibilistic logic base where p;
is a propositional logic formula and «; € £ C [0,1] is a prior-
ity level [23]. The logical conjunctions and disjunctions are denoted
A and V. Each formula (p;, ;) means that N(p;) > «;, where
N is a necessity measure, i.e., a set function satisfying the property
N(p A q) = min(N(p), N(q)). A necessity measure is associated
to a possibility distribution 7 as follows:
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N(p) = mingg(p)(1 — 7(w)) 1 — II(—p), where II is the
possibility measure associated to N and M (p) is the set of models
induced by the underlying propositional language for which p is true.
The base BY is associated to the possibility distribution

N (W) = minj—1, m T(p;,0;)(w) on the set of interpretations,
where 7, o) (w) = Lifw € M(p;), and 7(p, ;) (w) = 1 — o
ifw ¢ M(p;). An interpretation w is all the more possible as it does
not violate any formula p; having a higher priority level ;. Hence,
this possibility distribution is expressed as a min-max combination:

73 (w) = min max(l — aj, Inr(p;) (W)

Jj=1,....m

where Ips(p;) is the characteristic function of M (p;). So, if w ¢
M(p;), 75 (w) < 1—azand if w € (o, M(=p;). 75 (w) <
minjes(1 — a;). It is a description “from above" of 7% , which is
the least specific possibility distribution in agreement with the knowl-
edge base B™. A possibilistic base B” can be transformed in a base
where the formulas p; are clauses (without altering the distribution
7N). We can still see BY as a conjunction of weighted clauses, i.e.,
as an extension of the conjunctive normal form.

A dual representation of the possibilistic logic is based on guar-
anteed possibility measures. A guaranteed possibility measure is
associated to a possibility distribution 7 as follows: A(p)
min, e pr(py m(w). Hence alogical formula is a pair [g, 3], interpreted
as the constraint A(q) > [, where A is a guaranteed possibility
(anti-)measure characterized by A(p V ¢) = min(A(p), A(g)) and
A(() = 1. In such a context, a base B = {[¢;, 3] |i=1,...,n}
is associated to the distribution

ﬂ—}% (w) = z:Hll,aX,n Tas,8i] (w)
with 7, .1(w) = Bi if w € M(q;) and 7, g,1(w) = O oth-
erwise. If w € M(q), 7g(w) > Bi, and if w € U;c; M(q:).
ﬂé (w) > max;er Bi. So this base is a description “from below"
of 74, which is the most specific possibility distribution in agree-
ment with the knowledge base B*. A dual possibilistic base B* can
always be transformed in a base in which the formulas g; are con-
junctions of literals (cubes) without altering 5.

A possibilistic logic base B2 expressed in terms of guaranteed
possibility measure can always be rewritten equivalently in terms of
standard possibilistic logic BY based on necessity measures [10, 8]
and conversely with the equality 75 = 5. This transformation is
similar to a description from below of 75 .

In case of mutually exclusive propositions, pi,... Pi, ..., Pn, if
N(p1) > a1 > 0, then N(p2) = ... = N(pn) = 0 for the sake
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of consistency. But, the set of requirements A(p1) > (1 > 0, ...,
A(p;) > Bi > 0, ..., A(pn) > Bn > 0 is consistent, and if 31
1>--->p;>---> [, >0, it can be equivalently represented
by N(p1) > a1, N(p1 \/pz) > g, .., N(pl VpaV--- \/pi) > a;,
v N(p1 VP2V Vpn) > an, witha; = 1— 841 and B41 = 0.
What makes the possibilistic logic setting particularly appealing
for the representation of preferences is not only the fact that the lan-
guage incorporates priority levels explicitly, but the existence of dif-
ferent representation formats [9, 21], whose representation power is
equivalent [4, 5], but which are more or less natural or suitable for
expressing preferences. Thus, preferences can be represented

e as prioritized goals, i.e. possibilistic formulas of the form (p;, a;)
meaning that N(p;) > «;, and stating that making p; true has
priority level a;

e in terms of guaranteed satisfaction levels by means of formulas of
the form [g;, 3;] understood as A(g;) > (;, and stating that as
soon as one satisfies g; then one reaches at least satisfaction levels
Bj [6];

e by means of a possibility distribution, where an ordering is explic-
itly stated between the interpretations of the language; the order-
ing is complete as soon as the values of the possibility degrees are
known;

e in terms of conditionals of the form IT(p A gq) > II(p A —¢) (in-
cluding the case where is p is a tautology, i.e., N(q) > N(—q) =
0 & II(g) = 1 > II(—q)) expressing that in the context where
p is true, there is at least one interpretation where g is true which
is preferred to all interpretations where g is false. As pointed out
in [18, 20] and analyzed in details in [33], there are other com-
parative statements of interest, namely A(p A ¢) > I(p A —q),
II(pAq) > A(pA—q),and A(pAq) > A(pA—q). For instance,
the first one of the three is clearly more drastic than the initial one
we considered since it requires that in context p, any interpretation
where ¢ is true is preferred to all interpretations where g is false;

e as Bayesian-like networks, since a possibilistic logic base can be
encoded either as a qualitative or as a quantitative possibilistic
networks and vice-versa. Qualitative and quantitative possibilis-
tic networks are respectively associated with a minimum- and a
product-based definition of conditioning [3].

3 ORDERED CONJUNCTIONS AND
DISJUNCTIONS

In the following, propositional variables refer to properties of items,
to be rank-ordred in terms of preferences, and formulas represent
requests to be satisfied.

Conjunctions. Putting priorities on goals is easy to understand as
a way for specifying preferences, and amounts to express a weighted
conjunction of goals, which may be stated by means of ‘and if possi-
ble’ in statements such as “p; and if possible p»> and if possible p3”
(p1 is more important than p2, which is itself more important than
p3). Such statements have been first considered in [34] in another
setting.
The p;’s may be logically independent or not. For the sake of sim-
plicity, we use here three conditions only, but what follows would
straightforwardly extend to n conditions. We denote by M (p;),
M(pi A pj), the set of items (if any) satisfying condition p;, the
set of items (if any) satisfying p; and p;, and so on. So the query “p1
is required and if possible p> also and if possible ps t00”, has the
following intended meaning (>> reads “is preferred to”)

M (p1 Ap2Ap3) > M(p1Ap2 A—ps) > M(p1A—p2) > M(—p1)

92

i.e., one prefers to have the three conditions satisfied rather
than the two first ones only, which is itself better than having
just the first condition satisfied (which in turn is better than not
having even the first condition satisfied). This is indeed simply
described in possibilistic logic as the conjunction of prioritized goals
C = {(p1,m), (p2,72), (p3,73)} with 1 = 71 > 72 > 73 > 0. It
can be checked that this possibilistic logic base is associated with
the possibility distribution

me(w) = 1ifw € M(p1 A p2 A p3)
1—v3ifw € M(p1 A p2 A —p3)
11—y ifw € M(p1 A —p2)
0ifw € M(—p1).

which fully agrees with the above ordering.

Moreover in a logical encoding, a query such as “find the x’s such
that condition @ is true", i.e., 3z Q(x)? is usually processed by
refutation. Using a small old trick due to Green [27], it amounts to
adding the formula(s) corresponding to —Q(z) V answer(x), ex-
pressing that if item x satisfies condition () it belongs to the answer,
to the logical base describing the content of the database. It enables
theorem-proving by resolution to be applied to question-answering.
This idea extends to preference queries expressed in a possibilistic
logic setting [13]. The expression of the query Q corresponding to
the above set of prioritized goals is then of the form

Q = {(-=p1(z) V =p2(z) V —ps(z) V answer(z), 1),
(=p1(x) V =p2(z) V answer(z), 1 — v3),
(—p1(z) V answer(z),1 —v2)}.

where 1 > 1 — 3 > 1 — ~2. Then, the levels associated with
the possibilistic logic formulas expressing the preference query
are directly associated with the possibility levels of the possibility
distribution 7¢ providing its semantics.

Disjunctions. We may also consider disjunctive queries with pri-
orities, i.e., queries of the form “p; is required with priority, or failing
this po, or still failing this p3”, as discussed in [13]. It has the follow-
ing intended meaning in terms of interpretations:

M(p1) > M(—p1Ap2) > M(—p1A=p2/Ap3) > M(—pi1A—p2A—ps).

As can be checked, it corresponds to the following possibilistic logic
base representing a conjunction of prioritized goals:

Dy = {(pl V p2 V ps, 1), (pl \/p2772)7 (p17’73)}‘
(with 1 > 2 > 73) whose associated possibility distribution is

TI'DN(U)) =1lifwe M(p1)
1—v3ifw € M(=p1 A p2)
11—y ifw € M(—p1 A —p2 A ps3)
0if w € M(—p1 A —p2 A —p3),

which is clearly in agreement with the above ordering. It can be also
equivalently expressed in a question-answering perspective by the
possibilistic logic base:

Q' = {(—p1(z) V answer(z), 1),
(=p2(x) V answer(z),1 — 73),
(—ps(x) V answer(x),1 —y2)}.
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which states that if an item « satisfies p1, then it belongs to the an-
swer to degree 1, and if it satisfies pa (resp. p3), then it belongs to
the answer to a degree at least equal to 1 — 3 (resp 1 — 7y2).

As noticed in [13, 24], there is a perfect duality between conjunc-
tive and disjunctive queries. Indeed the disjunctive query “ps is re-
quired, or better p2, or still better p1” can be also equivalently ex-
pressed under the conjunctive form “p; or p2 or ps is required and
if possible p1 or p2, and if possible p1”. Conversely, the conjunctive
query “pi is required and if possible p2 and if possible p3” can be
equivalently stated as the disjunctive query “p; is required, or better
p1 and pa, or still better p; and p2 and p3”. This can be checked on
their respective possibilistic logic representations.

Let us point out the close relation between the possibilistic repre-
sentation and qualitative choice logic (QCL) [15]. Indeed QCL intro-
duces a new connective denoted X, where p; X p2 means “if possible
p1, but if py is impossible then (at least) p2”. This corresponds to a
disjunctive preference of the above type. Then, the query “p1, or at
least p2, or at least p3”, which, as already explained, corresponds to
stating that p, is fully satisfactory, p» instead is less satisfactory, and
ps instead is still less satisfactory, can be directly represented in the
possibilistic logic based on guaranteed possibility measures [2]. Us-
ing the notation of Section 2, the corresponding weighted base sim-
ply writes Da = {[p1, 1], [p2,1 — 73], [ps, 1 — 2]}, which clearly
echoes Q’. It encodes the same possibility distribution on models as
the necessity-based possibilistic logic base Dy .

Note that in Q’, as in Q, the weights of the possibilistic logic for-
mulas express a priority among the answers « that may be obtained.
They may be also viewed as representing the levels of satisfaction of
the answers obtained.

The linguistic expression of conjunctive queries may suggest that
D1, p2, p3 are logically independent conditions that one would like
to cumulate, as in the query “I am looking for a reasonably priced
hotel, if possible downtown, and if possible not far from the station”,
while in disjunctive queries one may think of ps3 as a relaxation of
pa2, itself a relaxation of p;. In fact there is no implicit limitation on
the type of conditions involved in conjunctive or disjunctive queries.
For instance, a conjunctive query such as “I am looking for a hotel
less than 2 km from the beach, if possible less than 1 km from the
beach, and if possible on the beach”, corresponds to the idea of
approximating a fuzzy requirement, such as “close to the beach” by
three of its level cuts, which are then relaxation or strengthening of
one another.

Hybrid queries. A mutual refinement of the two above types of
queries leads to “full discrimination-based queries” [13]. It amounts
to computing a lexicographic ordering of the different worlds (here
23 = 8 with 3 conditions), under the tacit, default assumption that it
is always better to have a condition fulfilled rather than not, even if
a more important condition is not satisfied. However, it is clear that
sometimes satisfying an auxiliary condition while failing to satisfy
the main condition may be of no interest, as in the example “I would
like a coffee if possible with sugar”, where having sugar or not, if no
coffee is available, makes no difference. There are even situations,
in case of a conditional preference, where it may be worse to have
p2 satisfied than not when p; cannot be satisfied, as in the example
“I would like a Ford car if possible black” (if one prefers any other
color for non Ford cars). Full discrimination-based queries are thus
associated with the following preference ordering:

M (p1 Ap2 Ap3) > M(p1 Ap2 A=ps) > M(p1 A—p2 Aps) >
M(p1 A —p2 A —p3) >
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M(=p1Ap2Aps) > M(=p1Ap2A=p3) > M(=p1 A—p2Aps) >
M (=p1 A —p2 A —p3)

It can be checked that it can be encoded in possibilistic logic under
the form (we only give the question-answering form here):

Q7 = {(—p1(z) V —p2(z) V —p3(z) V answer(z), 1),
(ﬁpl(ﬂﬂ)( \; ﬁl/>)2(1?) VvV answer(z), «),(-pi(z) V -ps(z) V
(=p1(z) VvV c;nsw’er(x), '), (=p2(z) V —ps(x) V answer(z), B),
(—p2(x) V answer(z), B'), (—=ps(z) V answer(zx), v)}

withl>a>a' >a” >8>0 > 1.

Constraints and wishes. A request of the form “A and if possible
B”, where both A and B are prioritized sets of specifications may be
understood in fact in different ways. Either we consider that A and
B are of the same nature, and the request may be reorganized into a
unique set of prioritized goals, or alternatively one may consider that
what is expressed in 5 is not at all compulsory, but are just “wishes”
that should be used for further discrimination between situations
that would be ranked in the same way according to A [22, 24]. We
are going to examine the difference between the two points of view,
in the simple case where both A and B are made of two conditions,
namely

(az,1),(a1,1 —a)} withl >1—a >0, and
1),(b1,1 — )} with1>1—a’ > 0.

We further assume in this example that i) the conditions in A are
nested, as well as the ones in 3, and ii) the conditions in B are re-
finements of those in A, which is necessary for allowing for a “wish”
understanding of 53 [22] in the second view. This means that we as-
sume M(az) 2 M(al) 2 M(bl), M(az) 2 M(bg) 2 M(bl) and
o < a, with M(b2) (| M (az2) # 0.

When both A and B are viewed as constraints, i.e. as sets of
prioritized goals, namely and respectively, the request “A and if
possible B” translates into a unique set G of prioritized goals, where
the goals in B are discounted by 1 — A\, where @ < A so that the
weakest constraint in A has priority over the strongest constraint in

B:

G=
{(az,1), (a1, 1 —a), (b2, min(1,1—X)), (b1, min(1—ca’,1—X))}.

This possibilistic logic base is associated with the possibility
distribution

mg(w)=1lifwe M
Aifwe M
aifwe M
Oifwe M

a1 N\ bl)

al A\ _\bl)

as N\ nap N\ bz)
j(12).

—~ N~ =

Let us now consider the second view where only A is regarded
as a set of prioritized constraints, while B is a set of prioritized
wishes. Now we keep A and B separate. Each interpretation w is the
associated with a pair of values: the first (resp. the second) value is
equal to 1 — 4™ (resp. 1 — §*) where v* (resp. ™) is the priority of
the formula violated by w having the highest priority in A (resp. B).
We obtain, the following vector-valued possibility distribution:
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7'1'(_,475)( ) (1, 1)1fweM(a1/\b1)
(1,) ifw € M(a1 A —b1 A b2)
(1,0)if fw € M (a1 A —b2)
(o, @) ifw € M(az A a1 A ba)
(a,0) if w € M(az A —a1 A —b2)
(0,0) if w € M(—az2).

Note the lexicographic ordering of the evaluation vectors. We now
have 6 layers of interpretations (instead of 4 in the previous view),
which makes it clear that this second view is more refined. However,
in the rest of the paper, all the preferences are viewed as constraints.

4 CP-NETS IN POSSIBILISTIC LOGIC

This section presents a possibilistic logic approach with symbolic
weights that generalizes the representation of preferences reviewed
in Section 3. The proposed method enables the handling of condi-
tional preferences, as well as the representation of prioritized con-
junctions. The approach is both more faithful to user’s preferences
than the CP-net approach as we shall see. Formally, a CP-net [28] IV
over the set of Boolean variables V' = {X1,--- , X, } is a directed
graph over the nodes X1, --- , X,,, and there is a directed edge from
X to X if the preference over the value X; is conditioned on the
value of X;. Each node X; € V is associated with a conditional
preference table C'PT'(X;) that associates a strict (possibly empty)
partial order >cp (u;) with each possible instantiation u; of the par-
ents of X;. A complete preference ordering satisfies a CP-net NV iff it
satisfies each conditional preference expressed in V. In this case, the
preference ordering is said to be consistent with N. Since CP-nets
encode partial orders, while possibilistic logic encodes a complete
preorder (when priorities are given), these two formalisms cannot be
equivalent. The best we can do is to approximate CP-nets in possi-
bilistic logic. A faithful approximation of a CP-net in possibilistic
logic consists in preserving all strict preferences induced by the CP-
net [18, 20]. However, by enforcing appropriate ordering constraints
between symbolic weights, we can obtain an exact representation of
a CP-net in possibilistic logic with symbolic weights [29, 32], as ex-
plained now.

Using an example, we first present the idea of representing con-
ditional preferences by means of possibilistic logic formulas with
symbolic weights. We then introduce a natural preorder between for-
mulas, which may be then completed by further constraints between
symbolic weights. Lastly, a general evaluation procedure is outlined.

4.1 Possibilistic representation of conditional
preferences — An example.

Example 1 taken from [36], is about planning holidays, where one
has the following preferences: one can either go next week (n) or
later in the year (7). One can decide to go either to Oxford (o) or
to Manchester (5), and one can either take a plane (p) or drive and
take a car (p). So, there are three variables X1, X> and X3 where
Xi={n,n}, X2={0, 0} and Xz={p, p}, where X stands for a set of
possible assignments of X. Suppose the person prefers to go next
week than later in the year and prefers to fly than to drive unless he
goes later in the year to Manchester.

Such preferences can be encoded as prioritized goals in possibilis-
tic logic, as explained now. The possibilistic encoding of the condi-
tional preference “in context c, a is preferred to b” is a pair of possi-
bilistic formulas: {(-cV a V b,1), (—c¢V a,a)} with1 > a > 0.
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Namely if ¢ is true, one should have a or b (the choice is only
between a and b), and in context c, it is somewhat imperative to
have a true. This encodes a constraint of the form N(—cV a) > «,
itself equivalent here to a constraint on a conditional necessity
measure N(alc) > « (see, e.g., [23]). This is still equivalent
to II(-alec) < 1 — a, where II is the dual possibility measure
associated with N. It expresses that the possibility of not having
a is upper bounded by «, i. e. —a is all the more impossible
as o is small. Such a modeling has been proposed in [30] for
representing preferences, and approximating CP-nets. It can be
proved that {(—cV aV b, 1), (-cV a,a)} is equivalent to requesting
N(alc) > a > 0 = N(b|c). Note that when b = —a, the first
clause becomes a tautology, and thus does not need to be written.
Strictly speaking, the possibilistic clause (—c V a,a) expresses a
preference for a (over —a) in context c. The clause (—cV a Vb, 1) is
only needed if a V b does not cover all the possible choices. Assume
a Vb = —d (where —d is not a tautology), then it makes sense to
understand the preference for a over b in context c, as the fact that
in context ¢, b is a default choice if a is not available. If one wants
to open the door to remaining choices, it is always possible to use
(meVaVba') with o > a, instead of (-c V a V b, 1). Thus,
the approach easily extends to non binary choices. For instance,
“I prefer Renault () to Chrysler (¢) and Chrysler to Ford (f)" is
encoded as {(r VeV f,1),(r Ve a), (r,a’)}, witha > o

It is worth noticing that the encoding of preferences in this frame-
work also applies to Lacroix and Lavincy’s approach [34], namely,
when one wants to express that “p; A pa is preferred to p1 A —p2"
and p; is mandatory. It is encoded by ((p1 A p2) V (p1 A —p2), 1),
equivalent to (p1, 1), and by (p1 Ap2, 1 — ) equivalent to (p1, 1 — )
and (p2,1 — &), (p1,1 — «) being subsumed by (p1,1). Thus, one
retrieves the encoding (p1,1) and (p2,1 — «), already proposed in
Section 3.

4.2 Preorder induced by formulas with symbolic
priority levels.

When one does not know precisely how imperative the preferences
are, the weights can be handled in a symbolic manner, and then
partially ordered. This means that the weights are replaced by
variables that are assumed to belong to a linearly ordered scale
(the strict order will be denoted by > on this scale), with a top
element (denoted 1) and a bottom element (denoted 0). Thus, 1 — (.)
should be regarded here just as denoting an order-reversing map
on this scale (without having a numerical flavor necessarily), with
1—-(0)=1,and 1 — (1) = 0. On this scale, one has 1 > 1 — ¢, as
soon as a # 0. The weights are different from 1 but are all greater
than 0. We assume that the order-reversing map relates to two scales:
the one graded in terms of necessity degrees, or if we prefer here in
terms of imperativeness, and the one graded in terms of possibility
degrees, i.e. here, in terms of satisfaction levels. Thus, the level of
priority « for satisfying a preference is changed by the involutive
mapping 1 — (-) into a satisfaction level when this preference is
violated.

Example 1: Let N be a CP-net over variables X, X2 and X3,

let I' be a set of constraints, ¢; € I', where o1 = T : n > 7,
w2 =T 10 >0,¢03 =m:p>pP, s =0:p > pand
s = mo : p > p. These constraints do not encode a complete

CP-Net. But it can be completed by making it explicit with the
additional constraints : @g 0:D>P,Yr =nN0:p >D
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and ¢7 = no : p > p. Note that in possibilistic logic, we are not
obliged to explicit all these constraints, indeed it is encoded by the
possibilistic constraints K1 = {¢1 = (n,a),c2 = (0,8),¢c3 =
(AVp,v),ca = (6V p,d),c5 = (nV oV p,e)}. Since the values
of the weights «, 3,+, d, € are unknown, no particular ordering is
assumed between them. Table 1 gives the satisfaction levels for
the possibilistic clauses encoding the five elementary preferences,
and the eight possible choices. The last column gives the global
satisfaction level by minimum combination.

Table 1. Possible alternative choices in Examplel.
C1 C2 c3 C4 [ min

nop 1 1 1 1 1 1
nop 1 1 Iy | 1-0 1 1-v,1-8
nop 1 1-8 1 1 1 1- 8
nop 1 -6 | 1y 1 1 1- 8,1
nop | 1-a 1 1 1 1 I-
nop | l-a 1 1 1-6 1 1- a,1-6
nop 1- 1-8 1 1 1-¢ 1-a, 1- B,1-¢
nop | l-a | 1-3 1 1 1 I-a,1-8

Even if the values of the weights are unknown, as it is the case in
the above example, a partial order between the interpretations (they
are 8 in our example) is naturally induced by a Pareto ordering (de-
noted > pqr) between the corresponding vectors evaluating the satis-
faction levels with respect to the constraints.

Generally speaking, let K = {(a;, ;) } be a set of formulas asso-
ciated with symbolic weights. Let ¢, ¢’ be two interpretations of the
set of formulas {a;|¢ = 1,n)} associated with the vectors of their
evaluations with respect to each formula in K. Then, we have

t >=par tiff 3y C Ty,

where X; (resp. X4/) is the set of formulas in K violated by ¢ (resp.
.

In our example, we have for instance the following Pareto order-
ings between the 5-component vectors

(1-a,1,1,1, 1) > par (1=, 1-5,1,1,1) = par (1—a, 1—-5,1,1,1—¢)

whatever the values of «, 3,e. Thus, we get the following partial
order between interpretations:

nop =par {n0P, nopP, op, NOP, NOP, NOP, NOP }

'ﬁOp >Par ﬁap >Par ﬁaﬁ

nopP >Ppar NOP ; NOP =par NOP

Thus, this partial order amounts to rank-ordering a vector v’ after
a vector v, each time the set of preferences violated in v is strictly in-
cluded in the set of preferences violated in v, since nothing is known
on the relative values of the symbolic levels (except they are strictly
smaller than 1, when different from 1). Then a vector v is greater
than another v’, only when the components of v are equal to 1 for
those components that are different in v and v’.

We could also use the discrimin order denoted by >discrimin
defined in the following way: identical vector components are dis-
carded, and the minima of the remaining components for each vector
are compared. Note that ¢ and ¢’ are comparable only if one of the two
minima returns 1 (which is the only evaluation known to be greater
than any symbolic weight (# 1)). In fact here, the orderings > por
and > giscrimin coincide.
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Order induced by the CP-net

CP-net

n>=n

0>0

.

no:p>p

no:p>p

no:p >p

no:p>p @
Figure 1. CP-net and partial order induced by it

4.3 Introducing preferences between symbolic
weights

The authors of [32] have proposed an encoding of CP-nets by impos-
ing a partial order between the symbolic weights of formulas. The
partial order on symbolic weights is defined as follows. For each pair
of formulas (—u; V z,a;) and (—u; V y, ;) such that X is a fa-
ther of Y where u; is (—u; V —x) or (—u; V ), we put a; > oy
[32, 28]. These constraints between symbolic weights can be ob-
tained by Algorithm 1, which computes the partial order between
symbolic weights from a set of ceteris paribus statements.

Once we have got this partial order over symbolic weights, we
use the leximin order defined below, for refining the > p,, ordering
used before:

Leximin with partially ordered weights: Let ¢ = {1 —
a1, 1—ay, 1} be a set of symbolic possibility degrees , and w, w’
two interpretations € €. Let U(w) = (m;(w) - - - mn(w)), ¥(w')
(mi(w') -+ - mn(w")) be their vectors of evaluation in terms of sym-
bolic weights (with respect to the violated formulas). Then the lex-
imin ordering denoted >, between vectors of values belonging to a
totally ordered set consists in applying the discrimin procedure after
reordering their components in increasing order. The leximin order-
ing can be extended as follows:

e delete all pairs (m; (w), 7, (w’)) where m;(w) = 7;j(w’) so we get
U*(w) and U*(w') where U*(w) N ¥* (') =0

® W ey W ff min(P* (w) U T*(w')) C T*(w)

e w and w are incomparable iff min(¥*(w) U ¥*(w')) € ¥*(w)
and min(¥* (w) U ¥*(w')) € T* ().

Note that this leximin ordering is the same as discrimin and
Pareto orderings, if weights are incomparable. When some weights
are comparable, discrimin and Pareto orderings still coincide due
to the particular nature of the vectors that are compared (i.e., vectors
(w1, ,ui, -+ ,un) such as u; € {1,1 — a;}), but the extended
leximin refines the Pareto ordering.

In Example 1, in the order induced by the Pareto ordering, the
interpretations nop, nop, nop are incomparable. Applying algorithm
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1, we give priority to father nodes, i.e., here, we introduce the fol-
lowing constraints between the symbolic weights o« > maxz(7, 6, €)
and 8 > maxz(7v,d,). Then, the application of leximin ordering
allows us to distinguish between {nop,nop} and 7op. So, the
order induced by the CP-net, or equivalently the one induced by the
possibilistic approach giving priority to father nodes (see Figure 1) is:

nop =iew {NOP, ndp, op},
{nop,nop} =iex N0P, {N0P, NOP} >1czx NOP
{nop, nop} >icx NOP >=iex NOP

Algorithm 1 calculates the relative importance between CP-net pref-
erences statements
Require: C a set of constraints of the form (P;, ;)
T a set of preference statement of the form u : = > z’
IDC=0
for o; = u; : x; > z;inT do
for c; in C do
if c; is of the form (u;, «;) then
for ¢ in C do
if cx is of the form (—u; V z;, ax) then
IDC « IDC + (a; > au)
end if
end for
end if
end for
end for
return IDC

5 CP-THEORIES IN POSSIBILISTIC LOGIC

Wilson [35, 36] has proposed a new formalism named CP-theories
that extends CP-nets and TCP-nets in order to express stronger
conditional preferences as well as the usual CP-net ceteris paribus
statements. For a set of variables V', the language £y (abbreviated
to £) consists of all statements of the form v : z > x’ [W], where
u is an assignment to a set of variables U C V (i.e, u € U),
x,x’ € X are different assignments to some variable X ¢ U (and
so z and " correspond to different values of X) and W is some
subset of V. — U — {X}.If p is the statement u : x > x’ [W],
we may write u, = u,Uy, = U,y = z,2, = o/, Wy, = W
and T, = V — ({X} UU U W). Subsets of £ are called
conditional preference theories or CP-Theories (on V). For
p=mu:z >a [W] let " be the set of pairs of interpretations
{(tuzw, tuz'w") : t € Ty, w,w’ € W}. Such pairs (w,w') € p*
are intended to represent a preference for w over w’, and ¢ is
intended as a compact representation of the preference information
©*. Informally, ¢ represents the statement that, given v and any
t, x is preferred to ', irrespective of the assignments to W, it
means that we prefer any outcome with  to any outcome with z’,
in the context w. For conditional preference theory I' C L, define
= U(P cr > so I'" represents a set of preferences. We assume
here that preferences are transitive, so it is then natural to define
order > , induced on V by T, to be the transitive closure of I"*. With
this type of statements (CP-theory statements), we can represent a
CP-net by a statement v : z > 2’ [W] with W = 0 and a TCP-net
with W containing at most one variable [36].

In possibilistic logic, a CP-theory statement ¢ = u : © > z’ [W]

is represented by A(tuz) > T(tuz’) standing for

96

MiNytusT(W) > MaTemtum(w’) [33] which has the
same semantics as the “irrespectively" constraint (given u x is pre-
ferred to x’ irrespective of the assignments to W). The possibilistic
encoding of CP-theory expression uses exactly the same possibilistic
formulas (with symbolic weights) as for the corresponding CP-net
expression (when W is ignored). All the additional constraints
between the weights of the father nodes with respect of child node
are also maintained. Further, constraints between weights are added
according to the procedure that we describe now.

Consider a CP-theory expression u : z > z’ [W]. It is encoded
by a possibilistic preference statement (—u V x, ;). Then we shall
add the constraint o; > «; for any a;, such that (—u V w, a;)
is a possibilistic preference statement, with the same context wu,
over one variable (or more) w € W. These constraints over
weights can be obtained by Algorithm 2: from a set of CP-theory
statements of the forme u : x > z'[W], we elicit a partial order
over symbolic weights used for inducing the same order between
interpretations as the CP-theory. This procedure indeed guarantees
that the constraints of the form A(tuz) > II(tuz’) which is same
as Vw,w' € W, n(turw) > w(tux’'w’) will be satisfied. Let us
give a sketch of the reason why:

Consider X = {z,z'} and W = {w, w'}, the possibilistic encoding
of the constraint will be ¢; = (—u V z, @;), and consider that we
got a possibilistic constraint ¢; = (—u V w, o). Let the possibility
distribution of the constraint A(tuz) > I(tuz’) Vt € T :

o m(tuzw) > 7(tuz'w)

o m(tuzw') > w(tuzr'w)

o T(tuzw) > m(tuz'w')

o m(tuzw') > w(tuz'w')

Proof: we proceed using reductio ad absurdum, so, we suppose
that a;; > «;. Consider the two interpretations w1 = tuzw’ and
wy = tux’w, wy satisfies the first constraint (c;) and falsifies the
second one (c;), however, wy falsifies the first constraint and satisfies
the second one, let v1 = (1,1 — ;) and v2 = (1 — a4, 1) be
the vectors of satisfactions associated to w; and wsa respectively,
w1 > wz imply 1 —oy; > 1— oy, that means o; < a; (contradiction)
QED.

Example 2 [36] : Let I' be a CP-Theory over three variables
X1, X2 and X3, composed of set of preferences statements p1_5
given by: o1 =T : 1 > @1[X2, X3|, 2 =21 : 3 > ©3[X2], 3
=1 : T2 > T2, Pa=2T1 : T2 > 1‘_2[X3}, Y5 =T1 1 T3 > Z3, this
statements are coded in possibilistic logic by:

Ko = {Cl = (xl,a),CQ = (:LTl ng,ﬂ),C;g = (fl Vv .2132,’}/),84
(1‘1 V xa, (5), Ccs = (1‘1 \Y .’L‘_3,E)}.

Table 2 gives the satisfaction levels for the possibilistic clauses
encoding the five elementary preferences, and the eight possible
choices. The last column gives the global satisfaction level by
minimum combination.

After applying the Pareto ordering (or equivalently here,
discrimin ordering), what we get is an ordering which is less re-
fined than the ordering induced by the CP-theory or by the CP-net
(see Figure 2). But we can capture the CP-theory ordering by taking
into account an ordering between weights that reflects the relative
importance of the constraints, and which can be elicited from the
CP-theory. In the example, we should enforce o > maxz (5,7, 6, &)
due CP-net “father" constraints (X is the father of X2 and of X3);
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Table 2. Possible alternative choices in Example?2.

c1 Co C3 Cy4 Cs5 min
r1T2T3 1 1 1 1 1 1
T1T2T3 1 1-6 1 1 1 1-6
r12L2IT3 1 1 1-~y 1 1 1~
XT1T2T3 1 1-8 1-vy 1 1 1-8,1-y
Z1ToT3 1-a 1 1 1 1-¢ 1-a,1-¢
T1T2X3 1-a 1 1 1 1 1-a
T120x3 | l-a 1 1 1-0 | I-e | 1-a,1-0,1-¢
T1T2X3 1-a 1 1 -0 1 1-a,1-¢

besides, we have 3 > -y due to the “irrespectively" constraint [w. r. t.
X>2]in 2 and we have § > ¢ due to the “irrespectively” constraint
[w. r. t. X3] in 4 (by applying the procedure explained above, or
Algorithm 2). Then, the order induced by the CP-theory and the one
captured by the possibilistic approach (taking account the above in-
equalities between symbolic weights) coincide. It is given by:
T1X2X3 Flex T1L2L3 Hlex L1T2TL3 lex T1T2X3 Mlex L1X2L3 >lex
T1T2T3 ¥ lex T1T2X3 > lex T1X2T3

Algorithm 2 calculates the relative importance between CP-theory
preferences statements

Require: C a set of constraints of the form (P;, ;)
T a set of preference statement of the form u : = > z'[W]
IDC=0
for p; =u; : ; > z;[W;]in T do
if ;=0 then
IDC « IDC + Algorithm 1 (C ,{¢;})
else
for c; in C do
if c; is of the form (—u; V x;, ;) then
for c;, in C do
if ¢ is of the form (—u; V —x; V v, ) or
(—ui V z,a)/z € Wi, v € {V — U} then
IDC « IDC + (a; > ovi)
end if
end for
end if
end for
end if
end for
return IDC

As a summary, the Pareto ordering (here equivalent to the dis-
crimin ordering) is obtained without introducing any inequality con-
straint between importance weights (all symbolic weights, distinct
from 1, remain incomparable). Then the CP-net is obtained by en-
forcing priorities in favor of constraints associated with “father"
nodes, but ignoring the “irrespectively” constraints of the CP-theory.
Note that Pareto ordering is compatible with the CP-net and CP-
theory orderings, but less refined, and the CP-net ordering is less
refined than the CP-theory one (due to the ignorance of “irrespec-
tively" constraints).

6 CONCLUDING REMARKS

In this paper, the possibilistic logic framework has been recalled and
its interest for preference representation strongly advocated. Clearly,
possibilistic logic is still close to classical logic, but the introduction
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CP-theory CP-net (ignoring [W]) Pareto ordering
ordering ordering (discrimin order)
B>yetd>c¢ a >max(f,y,6,¢&)

X1X3%X3

Figure 2. Lexmin, Cp-net and CP-Theory orders in Example 2

of weights substantially increases its representation capabilities, es-
pecially with respect to inconsistency handling. We have shown how
the use of symbolic weights in the possibilistic logic setting enables
us to deal with partial orders (encoding CP-nets and CP-theories in
this way). This constitutes an alternative to the introduction of a pref-
erence relation inside the representation language, as in, e.g., [12].

Moreover, it has been recalled how the use of symbolic weights
[11] enables us to represent CP-nets faithfully in the possibilistic
logic setting, by imposing greater priority weights to father nodes.
Moreover, possibilistic logic with symbolic weights has a represen-
tation power much richer than the one of CP-nets, since, e.g., one
may give priority to a constraint associated with a child node (which
is impossible in CP-nets or in TCP-nets). Then, after restating the
CP-theory representation framework, and results illustrating its ex-
pressive power which generalizes CP-nets and TCP-nets [36], we
have shown that a CP-theory can be faithfully represented in pos-
sibilistic logic by introducing further inequalities between symbolic
weights in order to take into account the CP-theory idea that some
preferences hold irrespective of the values of some variables. An in-
teresting question for further research would be to examine the pos-
sible relations that may exist between the non symmetrical notion of
independence in possibilistic networks [1] and some limitations of
graphical representation settings such as CP-nets.

We have also indicated that our handling of preferences statements
in the style of Qualitative Choice Logic remains close to mainstream
database approaches to preference queries pioneered by Lacroix and
Lavency [34]. It has also already pointed out that Chomicki’s ap-
proach [16] based on winnow operator can be also expressed in our
setting [28].

Lastly, let us also mention other possibilistic logic-based works in
preference modeling where one may handle both general statements
about importance levels and (couter)-examples [19, 26]. This kind
of approach may also incorporate a Choquet’s integral-like handling
of importance levels [31]. Moreover, a possibilistic logic represen-
tation of Sugeno integral has been recently proposed [25], and last
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but not least possibility theory setting enables to represent bipolar
preferences, where both negative preferences (rejections) and posi-
tive preferences (what is really desired) can be expressed [7].
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Strong possibility and weak necessity as a basis
for a logic of desires

Emiliano Lorini' and Henri Prade?

Abstract. Strong possibility and weak necessity measures are two
decreasing set functions that have been introduced in the setting of
possibility theory. They are respectively min-decomposable with re-
spect to union and max-decomposable with respect to intersection.
This research note advocates that the characteristic properties of the
strong possibility and weak necessity set functions are meaningful
when modeling the notion of desire and a dual notion of admissible-
ness. This setting thus offers a semantic basis for developing a logic
of graded desires.

1 Introduction

Possibility theory has been originally proposed as an alternative ap-
proach to probability for modeling epistemic uncertainty, indepen-
dently by two authors. In economics, Shackle [17] advocated a new
view of the idea of expectation in terms of degree of surprise (a
disguise for a degree of impossibility). Later in computer sciences,
Zadeh [19] has introduced a setting for modeling the information
originated from linguistic statements in terms of fuzzy sets (under-
stood as possibility distributions). Zadeh’s proposal for a possibility
theory relies on the idea of possibility measure, a max-decomposable
set function with respect to union taking its values in the unit interval.
However, in these works, the duality between possibility and neces-
sity (captured by a min-decomposable set function with respect to
intersection) was not exploited at all.

Later, it has been recognized that two other set functions, which
contrast with the two previous ones by their decreasingness, make
also sense in the possibility theory [6]. These two latter set functions,
which are dual of each other, model an idea of strong (guaranteed)
possibility and of weak necessity respectively, while the original pos-
sibility measure is a measure of consistency between the considered
event and the available information, corresponding to an idea of weak
possibility.

The framework of possibility theory with its four basic set func-
tions exhibits a rich structure of oppositions, which can be also
closely related to other structures of oppositions that exist in modal
logics and other settings such that formal concept analysis for in-
stance [7]. Moreover, possibility theory is graded since the four set
functions can take values in the unit interval. This very general set-
ting can not only be interpreted in terms of uncertainty. It makes also
sense for preference modeling in particular. But it is also of interest
in the modeling of situations that require modal logic languages, and
where grading modalities is meaningful. For instance, when model-
ing uncertainty, necessity measures are useful for representing beliefs
and their epistemic entrenchments [5].
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In this research note we provide a preliminary investigation of the
potentials of possibility theory for modeling desires. We first present
a background on possibility theory. We then investigate the model-
ing of desires in terms of strong possibility, as well the dual notion of
admissibleness in terms of weak necessity, before pointing out some
lines for further research on the relationship between possibility the-
ory and the logic of emotions.

2 Background on possibility theory

Let 7 be a mapping from a set of worlds W to [0, 1] that rank-orders
them. Note that this encompasses the particular case where 7 reduces
to the characteristic function of a subset £ C W . The possibility dis-
tribution 7 may represent a plausibility ordering (and E the available
evidence) when modeling epistemic uncertainty, or a satisfactoriness
ordering (E is then the subset of satisfactory worlds) when modeling
preferences. Let us recall the complete system of the 4 set functions
underlying possibility theory [6] and their characteristic properties:

e i) The (weak) possibility measure (or potential possibility)

I1(4) = maxm(w)
evaluates to what extent there is a world in A that is possible.
When 7 reduces to F, II(A) = 1if AN E # @, which expresses
the consistency of the event A with E, and II(A) = 0 otherwise.
Possibility measures are characterized by the following decom-
posability property:

II(AU B) = max(II(A),II(B))
e ii) The dual (strong) necessity measure (or actual necessity)

N(A) = glirjl —7(w) =1-1(A4)
evaluates to what extent it is certain (necessarily true) that all pos-
sible worlds are in A. When 7 reduces to £, N(A) = 1if E C A,
which expresses that F entails event A (when F represents evi-
dence), and N(A) = 0 otherwise. The duality of N w. r. t. II
expresses that A is all the more certain as the opposite event A is
impossible. Necessity measures are characterized by the following
decomposability property:

N(AN B) = min(N(A), N(B))

e iii) The (strong) possibility measure (or actual, or “guaranteed”
possibility)

A(A) = lruneng w(w)
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evaluates to what extent any value in A is possible. When 7 re-
duces to E, A(A) = 1if A C E, and A(A) = 0 otherwise.
Strong possibility measures are characterized by the following
property:

A(AU B) = min(A(A), A(B))

iv) The dual (weak) necessity measure (or potential necessity)

V(A) =max1—7m(w) =1 - A(A)
wgA
evaluates to what extent there is a value outside A that is impos-
sible. When 7 reduces to E, V(A) = 1if AUE # U, and
V(A) = 0 otherwise. Weak necessity measures are characterized
by the following property:

V(AN B) = max(V(A), V(B))

A and V are set decreasing functions. This contrasts with (weak)
possibility and (strong) necessity measures which are both set in-
creasing functions.

A modal logic counterpart of these 4 modalities has been proposed
in the binary-valued case (things are possible or impossible) [3].

The close linkage between Spohn functions and (weak) possibility
and (strong) necessity measures can be found in [5].

3 A and V as operators of desire

The possibility operator IT and the necessity operator /N have a clear
epistemic interpretation both in the framework of possibility theory
and in the framework of Spohn’s theory of uncertainty [18] generally
referred to as ‘x calculus’ (Goldszmidt & Pearl [11] refer to it as
‘rank-based system’ and ‘qualitative probabilities’).

Differently from the operators II and N, the operators A and V
do not have an intuitive interpretation in terms of epistemic attitudes.
More generally, although A and V make sense from the point of
view of possibility theory and also from a logical point view, it is not
completely clear which kind of mental attitudes these two operators
aim at modeling.

Here we defend the idea that A and V can be viewed as operators
modeling motivational mental attitudes such as goals or desires.’ In
particular, we claim that the operator A can be used to model the
notion of desire, whereas the operator V can be used to model the
notion of admissibleness (or desire compatibility).*

According to the philosophical theory of motivation based on
Hume [12], a desire can be conceived as an agent’s motivational at-
titude which consists in an anticipatory mental representation of a
pleasant (or desirable) state of affairs (representational dimension of
desires) that motivates the agent to achieve it (motivational dimen-
sion of desires). In this perspective, the motivational dimension of an
agent’s desire is realized through its representational dimension. For
example when an agent desires to be at the Japanese restaurant eat-
ing sushi, he imagines himself eating sushi at the Japanese restaurant
and this representation gives him plesaure. This pleasant represen-
tation motivates him to go to the Japanese restaurant in order to eat
sushi.

3 We use the term ‘motivational’ mental attitude (e.g., a desire, a goal or an
intention) in order to distinguish it from an ‘epistemic’ mental attitude such
as knowledge or belief.

4 Another possible term is desire admissibility that we take it to be synony-
mous of desire compatibility.
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Intuitively speaking, with the term admissibleness we refer to a
weaker form of motivational attitude. We assume that an agent con-
siders a given state of affairs ¢ admissible if ¢ does not conflict with
the agent’s current desires. In this sense, ¢ is admissible if it is com-
patible with the agent’s current desires.

Following the initial ideas presented in [14], let us explain why the
operator A is a good candidate for modeling the concept of desire
and why the the operator V is a good candidate for modeling the
concept of desire compatibility.

To this aim, we introduce a simple propositional language defined
by the following grammar:

pl-ploAe

14

where p ranges over a given set of atomic propositions Atm
{p, q,...}. The other Boolean constructions T, L, V, — and < are
defined from p, — and A in the standard way. Furthermore, we define
amodel as a tuple M = (W, des, V') where:

o W is a set of worlds or states,

e des: W — [0, 1] is a total function mapping every world w in
W to its desirability (or pleasantness) value in [0, 1],

o V : Atm — 2" is a valuation function which maps every
atomic proposition to the set of worlds in which the atomic propo-
sition is true.

For any model M = (W, des, V') and atomic proposition p € Atm,
lIp|| = {fw € W : w € V(p)} denotes the extension of p. The
extension of propositional formulas is defined in the standard way as
follows:
=@l = W\ [lel|
lle Al = [lell Ol

We here assume for any model M there exists a world in this
model with a minimal degree of desirability 0. This type of nor-
mality constraint is traditionally assumed in the context of possi-
bility theory. Formally speaking we assume that for every model
M = (W, des,V):

(Normp.;) there is w € W such that des(w) = 0.

31

We here assume that in order to determine how much ¢ is desirable
an agent takes into consideration the worst situation in which ¢ is
true. Therefore, for any model M = (W, des, V') and propositional
formula ¢, we can interpret

Modeling desire using A

A(llell) = min des(u)

uellel|

as the extent to which the agent desires ¢ to be true.
Let us justify the following two properties for desires:

Allle vV ll) = min(A(llel]), A1)

and
A(lle Al]) = max(A(l[e]]), A]|4]]))

According to the first property, an agent desires ¢ to be true with
a given strength « and desires 9 to be true with a given strength 3
if and only if the agent desires ¢ or v to be true with strength equal
to min(c, 3). Notice that in the case of epistemic states, this prop-
erty would not make any sense because the plausibility of ¢ V ¢
should be clearly at least equal to the maximum of the plausibili-
ties of ¢ and . For the notion of desires, it seems intuitively sat-
isfactory to have the opposite, namely the level of desire of ¢ V
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should be ar most equal to the minimum of the desire levels of ¢
and 9. Indeed, we only deal with here with “positive” desires (i.e.,
desires to reach something with a given strength). Under this pro-
viso, the level of desire of ¢ A ¢ cannot be less than the maximum
of the levels of desire of ¢ and 1. According to the second property,
the joint occurrence of two desired events ¢ and v is more desir-
able than the occurrence of one of the two events. This is the reason
why in the right side of the equality we have the max. The latter
property does not make any sense in the case of epistemic attitudes
like beliefs, as the joint occurrence of two events ¢ and v is epis-
temically less plausible than the occurrence of a single event. On
the contrary it makes perfect sense for motivational attitudes likes
desires. By way of example, suppose Peter wishes to go to the cin-
ema in the evening with strength « (i.e., A(||goToCinemal|) = «)
and, at the same time, he wishes to spend the evening with his
girlfriend with strength 8 (i.e., A(||stay WithGirlfriend||) = 3).
Then, according to the preceding property, Peter wishes to to go
the cinema with his girlfriend with strength at least max{h, k} (i.e.,
A(||goToCinemaA stay WithGirlfriend||) > max{c«, 8}). This is
areasonable conclusion because the situation in which Peter achieves
his two desires is (for Peter) at least as pleasant as the situation in
which he achieves only one desire. A similar intuition can be found
in [1] about the min-decomposability of disjunctive desires, where
however it is emphasized that it corresponds to a pessimistic view of
desires.

3.2 Modeling admissibleness using V

From the normality constraint (Normp.s), we can deduce the
following inference rule:

A(llell) >0

A(ll=ell) =0

This means that if an agent desires ¢ to be true — in the sense that
he desires ¢ to be true with some strength o > 0 — then he does
not desire ¢ to be false. In other words, an agent’s desires must be
consistent.

As pointed out above, we claim that the operator V allows to cap-
ture a concept of admissibleness (or desire compatibility): V(||¢]|)
represents the extent to which an agent considers ¢ an admissible
state of affairs or, alternatively, the extent to which the state of affairs
 is compatible with the agent’s desires. An interesting situation is
when the state of affairs ¢ is maximally admissible for the agent (i.e.,
V(||¢ll) = 1). This is the same thing as saying that the agent does
not desire ¢ to be false (i.e., A(||¢||) = 0). Intuitively, this means
that ¢ is totally admissible inasmuch as the level of desire for - is
0. In particular, when the subset £ C W of satisfactory or desirable
worlds is not graded, V(||¢||) = 1ifand only if EN||~¢p|| # 0, i.e.,
- is consistent with what is undesirable, represented by the com-
plement E of E in W. Another interesting situation is when the state
of affairs ¢ is maximally desirable for the agent (i.e., A(||¢]|) = D).
This is the same thing as saying that — is not at all admissible for
the agent (i.e., V(||=¢||) = 0).

It is worth noting that if an agent desires ¢ to be true, then ¢
should be maximally admissible. This property is expressed by the

5 The distinction between positive and negative desires is a classical one in
psychology. Negative desires correspond to state of affairs the agent wants
to avoid with a given strength, and then desires the opposite to be true.
However, we do not develop this bipolar view here.
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following valid inference rule which follows straightforwardly from
the previous one and from the definition of V(||¢||) as 1—A(||¢]]):

A(llell) >0

Vllell) =1

Let us now consider the case in which the agent does not desire ¢
(i.e., A(]|¢l|]) = 0). In this case two different situations are possible:
either A(||-¢||) = 0 and ¢ is fully compatible with the agent’s de-
sires (i.e., V(||e]]) = 1), or A(||=¢]||) > 0 and then ¢ is not fully
compatible with the agent’s desires (i.e., V(||¢|]) < 1).

4 Further inference rules

The following is a valid inference rule for A-based logic, see [3, 8]
for the proof:

Allle AYll) > a
A(ll=e A xl) > B

A([l¢ A xll) = min(e, B)

Therefore, if we interpret A as a desire operator, we have that if
an agent desires ¢ A 1 with strength at least o and desires ~¢ A x
with strength at least 3, then he desires 1 A x with strength at least
min(c, 3). This seems a reasonable property of desires. By way of
example, suppose Peter desires to be in a situation in which he drinks
red wine and eats a pizza with strength at least o and, at the same
time, he desires to be in a situation in which he does not drink red
wine and eats tiramisu as a dessert with strength at least 3. Then, it is
reasonable to conclude that Peter desires to be in a situation in which
he eats both a pizza and tiramisui with strength at least min(c, 3).

Another rule, never published, mixes A (alias desire) and V
(alias admissibleness). Namely

Alle Al]) =
V(ll=eAxl) 2 8

V[l Axll) = axp
whereax =aifa>1—FandaxF=0if1 — 3> a.

Proof. First, we have by duality A(||¢ AY|]) > a < V(||-e V
) <1-a

Then observe —p A x = (m@ V =) A (e V) A x

Thus V([|=¢ A x[[) = max(V(||=¢ Vv =[]), V([[(=¢ V ) A
xl) =B

which leads to max(1 — o, V(||¢0 A x||)) > B from which the
result follows.

The last inequality is obtained by noticing that V(||(—¢ V 9) A
xl) < V(|[¢ A x||) due to the decreasingness of V.

It can be shown that « * 3 is the tightest lower bound that can be
established for the above pattern. QED

Thus, in particular, if ¢ is fully admissible (V(||¢||) = 1), and
- A 1 is fully desirable (A(]|—¢ A ¥||) = 1), then ¢ is fully
admissible (V(||¢]]) = 1.

The two above inference rules are the counterparts of the pattern
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N(lleVvyl) > a
N(||=eVXIl) > 8

N(ll¢V xl) = min(a, 5)

which is the basic inference rule in standard possibilistic logic, and
of the pattern [4]:

N(lle Vel = a
(|- VxIl) > B

H([y VX)) =2 axg
withax (8 =aifa>1—Fandax3=0if1 — 3 > a.

They are themselves the graded counterparts of two inference rules
well-known in modal logic [9, 4].

5 Conclusive remarks: towards emotions

In the previous sections, we have shown that possibility theory offers
a unified logical framework in which both epistemic attitudes such
as beliefs and motivational attitudes such as desires can be modeled.
While the operators of weak possibility II and strong necessity NV
have a clear epistemic interpretation, the operators of strong possi-
bility A and weak necessity V can be interpreted respectively as an
operator of desire and as an operator of admissibleness.

In this conclusion, we want to discuss how these two components,
the epistemic one and the motivational one, can be combined in order
to model basic emotion types such as hope and fear. Similar ideas on
the logic of emotion intensity have been recently presented in [2]
without making a connection with possibility theory.

According to psychological models and computational models of
emotions (see, e.g., [16, 13, 15, 10, 2]), the intensity of hope with
respect to a given event ¢ is a monotonically increasing function
of the degree to which the event is desirable and the likelihood of
the event (i.e., the strength of the belief that ¢ is true). That is, the
higher is the desirability of ¢, and the higher is the intensity of the
agent’s hope that ¢ will occur; the higher is the likelihood of ¢, and
the higher is the intensity of the agent’s hope that ¢ will occur.
Analogously, the intensity of fear with respect to a given event ¢ is
a monotonically increasing function of the degree to which the event
is undesirable and the likelihood of the event (i.e., the strength of the
belief that ¢ is true).

There are several possible merging functions which satisfy these
properties. For example, we could define the merging function
merge as an average function, according to which the intensity of
hope about a certain event ¢ is the average of the strength of the be-
lief that ¢ will occur and the strength of the desire that ¢ will occur.
Another possibility is to define merge as a product function (also
used in [10, 16]), according to which the intensity of hope about ¢
is the product of the strength of the belief that ¢ will occur and the
strength of the desire that ¢ will occur. Here we do not choose a
specific merging function, as we leave this issue for future research’.

6 According to Ortony et al. [15] the intensity of hope and fear is determined
by a third parameter called the (temporal and spatial) proximity to the ex-
pected event (the higher is the proximity to the expected event, and the
higher is the intensity of hope/fear.) This third dimension is not considered
in the present analysis.

7 The use of average or product here is however not fully in the spirit of the
kind of ordinal modeling proposed here, and minimum may be a more suit-
able merging operator. Although the minimum-based ordering of pairs of
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We only show how the basic operators of possibility theory discussed
above can be exploited in order to model intensity of hope and fear.

The operator of strong necessity N has been used in the past
to model a notion of graded belief both in possibility theory and
in the context of Spohn’s x calculus (where it amounts to state
the complete impossibility of worlds). That is, N(||¢||) can be
interpreted as the extent to which the agent believes that ¢ is
true. We have shown above that A(]|p]||) can be interpreted as the
extent to which the agent desires that ¢ is true. Therefore, we can
define the intensity of the hope about ¢ and the intensity of the
fear about ¢ as follows® where N and A are associated with two
distinct possibility distributions modeling epistemic uncertainty and
desirability respectively). If N(||¢]|) < 1 then,

Hope(||¢l|) = merge(N([[¢l]), Alll#l]))
Fear(|[¢]) = merge(N([|#l]), Alll=¢l1)

In the preceding two definitions of hope and fear, the strength of
the belief is supposed to be less than 1 in order to distinguish hope
and fear, which imply some form of uncertainty, from happiness and
distress which are based on certainty (i.e., N(||¢||) = 1). This is
consistent with OCC psychological model of emotions [15] accord-
ing to which, while joy and distress are triggered by actual conse-
quences, hope and fear are triggered by prospective consequences
(or prospects).’
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