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PREFACE

Intelligent interactive agents that are able to communicate with the world
through more than one channel of communication face a number of research
questions, for example: how to coordinate them in an effective manner? This is
especially important given that perception, action and interaction can often be
seen as mutually related disciplines that affect each other.

We believe that machine learning plays and will keep playing an impor-
tant role in interactive systems. Machine Learning provides an attractive and
comprehensive set of computer algorithms for making interactive systems more
adaptive to users and the environment and has been an central part of research in
the disciplines of interaction, motor control and computer vision in recent years.

This workshop aims to bring researchers together that have an interest in
more than one of these disciplines and who have explored frameworks which
can offer a more unified perspective on the capabilities of sensing, acting and
interacting in intelligent systems and robots.

The MLIS-2012 workshop contains papers with a strong relationship to in-
teractive systems and robots in the following topics (in no particular order):

– sequential decision making using (partially observable) Markov decision
processes;

– multimodal dialogue optimization and information presentation using flat or
hierarchical (multiagent) reinforcement learning;

– social state recognition using non-parametric Bayesian learning;
– dialogue modelling using learning automata;
– knowledge representation using ontology learning and reasoning; and
– gesture recognition using AdaBoost, random forests, ordered means-models

and hidden Markov models.

The structure of the workshop will consist of individual presentations by au-
thors followed by short question and discussion sections concerning their work.
In addition, the workshop features two renowned invited speakers who will
present their perspectives on modern frameworks for interactive systems and
interactive robots. The workshop will close with a general discussion section
that aims to collect and summarise ideas raised during the day (e.g. advances
and challenges) and come to a common conclusion.

We are a looking forward to a day of interesting and exciting discussion.

Heriberto Cuayáhuitl
Lutz Frommberger
Nina Dethlefs
Hichem Sahli

(MLIS-2012 organizers)
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INVITED TALK

DATA-DRIVEN METHODS FOR ADAPTIVE MULTIMODAL

INTERACTION

OLIVER LEMON, HERIOT-WATT UNIVERSITY, UK

How can we build more flexible, adaptive, and robust systems for interac-
tion between humans and machines? I’ll survey several projects which combine
language processing with robot control and/or vision (for example, WITAS and
JAMES), and draw some lessons and challenges from them. In particular I’ll fo-
cus on recent advances in machine learning methods for optimising multimodal
input understanding, dialogue management, and multimodal output generation.
I will argue that new statistical models (for example combining unsupervised
learning with hierarchical POMDP planning) offer a unifying framework for
integrating work on language processing, vision, and robot control.

Prof. Dr. Oliver Lemon leads the Interaction Lab at the school of Mathematical
and Computer Sciences (MACS) at Heriot-Watt University, where he is Profes-
sor of Computer Science. He works on machine learning methods for intelligent
and adaptive multimodal interfaces, on topics such as Speech Recognition, Spo-
ken Language Understanding, Dialogue Management, and Natural Language
Generation. He applies this research in Human-Robot Interaction, Technology
Enhanced Learning, and situated Multimodal Dialogue Systems.

See: http://www.macs.hw.ac.uk/InteractionLab
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INVITED TALK

AUTONOMOUS LEARNING IN INTERACTIVE ROBOTS

JEREMY WYATT, UNIVERSITY OF BIRMINGHAM, UK

In this talk I will give an overview work on learning in robots that have mul-
tiple sources of input, and in particular that can use a combination of vision and
dialogue to learn about their environment. I will describe the kinds of architec-
tural problems and choices that need to be made to build robots that can choose
learning goals, plan how to achieve those goals, and integrate evidence from
different sources. To that end I will focus on Dora and George, two robot sys-
tems that use natural language to guide their behaviour, developed as part of the
CogX project. I will also describe how methods for planning under state uncer-
tainty can be used to drive information gathering and thus learning in interactive
robots.

Dr. Jeremy Wyatt leads the Intelligent Robotics Laboratory at Birmingham Uni-
versity, where he is Reader in Robotics and Artificial Intelligence. He is inter-
ested in a number of problems, all of which are motivated by the same sci-
entific goal: studying general architectures and methods for learning and rea-
soning in autonomous agents, especially those with bodies. He has worked on
the exploration-exploitation problem in reinforcement learning, the problem of
managing diversity in committees of learning machines, cognitive architectures
for intelligent robotics, learning of predictions in robot manipulation, planning
and learning of information gathering strategies in robots, and on the use of
physics knowledge in prediction and estimation in vision.

See: http://www.cs.bham.ac.uk/research/groupings/robotics/
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Machine Learning of Social States and Skills for
Multi-Party Human-Robot Interaction

Mary Ellen Foster and Simon Keizer and Zhuoran Wang and Oliver Lemon1

Abstract. We describe several forms of machine learning that
are being applied to social interaction in Human-Robot Interaction
(HRI), using a robot bartender as our scenario. We first present a
data-driven approach to social state recognition based on supervised
learning. We then describe an approach to social interaction manage-
ment based on reinforcement learning, using a data-driven simulation
of multiple users to train HRI policies. Finally, we discuss an alter-
native unsupervised learning framework that combines social state
recognition and social skills execution, based on hierarchical Dirich-
let processes and an infinite POMDP interaction manager.

1 MOTIVATION

A robot interacting with humans in the real world must be able to
deal with socially appropriate interaction. It is not enough to simply
achieve task-based goals: the robot must also be able to satisfy the
social obligations that arise during human-robot interaction. Build-
ing a robot to meet these goals presents a particular challenge for
input processing and interaction management: the robot must be able
to recognise, understand, and respond appropriately to social signals
from multiple humans on multimodal channels including body pos-
ture, gesture, gaze, facial expressions, and speech.

In the JAMES project2, we are addressing these challenges by de-
veloping a robot bartender (Figure 1) which supports interactions
with multiple customers in a dynamic setting. The robot hardware
consists of a pair of manipulator arms with grippers, mounted to
resemble human arms, along with an animatronic talking head ca-
pable of producing facial expressions, rigid head motion, and lip-
synchronised synthesised speech. The input sensors include a vision
system which tracks the location, facial expressions, gaze behaviour,
and body language of all people in the scene in real time, along with
a linguistic processing system combining a speech recogniser with
a natural-language parser to create symbolic representations of the
speech produced by all users. More details of the architecture and
components are provided in [3].

The bartending scenario incorporates a mixture of task-based as-
pects (e.g., ordering and paying for drinks) and social aspects (e.g.,
managing simultaneous interactions, dealing with arriving and de-
parting customers). For the initial version of the system, we sup-
port interactions like the following, in which two customers ap-
proach the bar, attract the robot’s attention, and order a drink:

1 School of Mathematical and Computer Sciences, Heriot-Watt University,
email: {M.E.Foster, S.Keizer, Z.Wang, O.Lemon}@hw.ac.uk

2 http://james-project.eu/

Figure 1. The JAMES robot bartender

A customer approaches the bar and looks at the bartender
ROBOT: [Looks at Customer 1] How can I help you?
CUSTOMER 1: A pint of cider, please.
Another customer approaches the bar and looks at the bartender
ROBOT: [Looks at Customer 2] One moment, please.
ROBOT: [Serves Customer 1]
ROBOT: [Looks at Customer 2]

Thanks for waiting. How can I help you?
CUSTOMER 2: I’d like a pint of beer.
ROBOT: [Serves Customer 2]

In subsequent versions, we will support extended scenarios involving
a larger number of customers arriving and leaving, individually and
in groups, and with more complex drink-ordering transactions. We
are also developing a version of this system on the NAO platform.

2 SOCIAL STATE RECOGNITION

In general, every input channel in a multimodal system produces
its own continuous stream of (often noisy) sensor data; all of this
data must be combined in a manner which allows a decision-making
system to select appropriate system behaviour. The initial robot bar-
tender makes use of a rule-based social state recogniser [10], which
infers the users’ social states using guidelines derived from the study
of human-human interactions in the bartender domain [7]. The rule-
based recogniser has performed well in a user evaluation of the ini-
tial, simple scenario [3]. However, as the robot bartender is enhanced
to support increasingly complex scenarios, the range of multimodal
input sensors will increase, as will the number of social states to
recognise, making the rule-based solution less practical. Statistical

In Proceedings of the ECAI Workshop on Machine Learning for Interactive Systems: Bridging the Gap
Between Language, Motor Control and Vision, Montpellier, France, pages 9-11, 2012.



approaches to state recognition have also been shown to be more
robust to noisy input [14]. In addition, the rule-based version only
considers the top hypothesis from the sensors and does not consider
their confidence scores: incorporating other hypotheses and confi-
dence may also improve the performance of the classifier in more
complex scenarios, but again this type of decision-making is difficult
to incorporate into a rule-based framework.

A popular approach to addressing this problem is to train a su-
pervised classifier that maps from sensor data to user social states.
The system that is most similar to our robot bartender is the virtual
receptionist of Bohus and Horvitz [1], which continuously estimates
the engagement state of multiple users based on speech, touch-screen
data, and a range of visual information including face tracking, gaze
estimation, and group inference. After training, their system was able
to detect user engagement intentions 3–4 seconds in advance, with a
low false positive rate. Other recent similar systems include a system
to predict user frustration with an intelligent tutoring system based on
visual and physiological sensors [8], and a classifier that used body
posture and motion to estimate children’s engagement with a robot
game companion [12].

Applying similar techniques to the robot bartender requires a gold-
standard multimodal corpus labelled with the desired state features.
(An alternative to using labelled data is explored in work using un-
supervised learning methods [13], described in Section 4.) We are
currently developing such a corpus based on logs and video record-
ings from users interacting with the initial robot bartender [3], along
with data recorded from human-human interactions in real bars [7].
The state labels capture both general features of multi-party social
interaction such as engagement and group membership, as well as
domain-specific states such as the phases of ordering a drink. We
are also carrying out signal processing and feature extraction on the
raw data to turn the continuous, multimodal information into a form
that is suitable for supervised learning toolkits such as WEKA [5].
The resulting classifier will be integrated into the next version of the
robot bartender, where its output will be used as the basis for decision
making by a high-level planner [10] as well as by the POMDP-based
interaction manager described below.

3 SOCIAL SKILLS EXECUTION

The task of social skills execution involves deciding what response
actions should be generated by the robot, given the recognised cur-
rent social state as described in the previous section. Such actions in-
clude both communicative actions (i.e., dialogue acts, such as greet-
ing or asking a customer for their order), social actions (such as man-
aging queueing), and non-communicative actions (typically, serving
a drink); the system must also decide how communicative actions
are realised, i.e., which combinations of modalities should be used
(speech and/or gestures). This decision-making process should lead
to robot behaviour that is both task-effective and socially appropri-
ate. An additional challenge is to make this decision-making robust
to the generally incomplete and noisy observations that social state
recognition is based on.

Automatic learning of such social skills is particularly appeal-
ing when operating in the face of uncertainty. Building on previ-
ous work on statistical learning approaches to dialogue management
[14], we therefore model social skills execution as a Partially Ob-
servable Markov Decision Process (POMDP) and use reinforcement
learning for optimising action selection policies. Action selection in
our multi-modal, multi-user scenario is subdivided into a hierarchy of
three different stages with three associated policies. The first stage is

concerned with high-level multi-user engagement management; the
second stage involves deciding on response actions within an inter-
action with a specific user; and the final stage involves multimodal
fission, i.e., deciding what combination of modalities to use for re-
alising any such response actions. Each of the policies provides a
mapping from states to actions, where the state space is defined by
features extracted from the recognised social state.

As in the POMDP approaches to dialogue management, we use
simulation techniques for effective policy optimisation. For this pur-
pose, a multi-modal, multi-user simulated environment has been de-
veloped in which the social skills executor can explore the state-
action space and learn optimal policies. The simulated users in the
environment are initialised with random goals (i.e., a type of drink to
order), enter the scene at varying times, and try to order their drink
from the bartender. At the end of a session, each simulated user pro-
vides a reward in case they have been served the correct drink, in-
corporating a penalty for each time-step it takes them to get the bar-
tender’s attention, to place their order and to be served. This reward
function is based on the behaviour of customers interacting with the
current prototype of the robot bartender [3], who responded most
strongly to task success and dialogue efficiency. Policy optimisation
in this setting then involves finding state-action mappings that max-
imise the expected long-term cumulative reward.

Preliminary experiments on policy optimisation have demon-
strated the feasibility of this approach in an MDP setup, i.e., under
the assumption that the recognised social states are correct. The ac-
tion selection stages of multi-user engagement and single-user in-
teraction are modelled by a hierarchy of two MDPs, which are op-
timised simultaneously using a Monte Carlo control reinforcement
learning algorithm. The trained strategies perform at least as well as
a hand-coded strategy, which achieves a 100% success rate in noise-
free conditions when using simulated users which are very patient
(i.e., they keep trying to make an order until the session is ended
externally by the simulated environment). The trained system starts
to outperform the hand-coded system when the simulated users are
set to be less patient (i.e., they give up after a maximum number of
time-steps) and/or when noise is added to the input.

An important current goal is to make more use of collected human-
human and human-machine data to make the user simulation as real-
istic as possible, and therefore to ensure that the trained social skills
executor is more likely to perform well in interaction with real user.
A further goal is to explicitly represent the uncertainty underlying
the social state recognition process, and to exploit this uncertainty in
a POMDP framework for more robust social skills execution.

4 AN UNSUPERVISED FRAMEWORK

As an alternative to the preceding supervised approaches to social
state recognition and social skills execution, which require labelled
data, we have also developed a non-parametric Bayesian framework
for automatically inferring social states in an unsupervised manner
[13], which can be viewed as a natural fusion of multimodal obser-
vations. This approach makes use of the infinite POMDP method [2],
which does not require advance knowledge of the size of the state
space, but rather lets the model grow to accommodate the data.

To adapt the infinite POMDP to multimodal interactions, we de-
fine a distribution for every observation channel, and let the joint ob-
servation distribution be their tensor products, where distributions of
different forms can be utilised to capture different representations of
observations. For example, the Bernoulli distribution that has a con-
jugate Beta prior is a natural choice to model binary discrete events,

Mary Ellen Foster, Simon Keizer, Zhuoran Wang and Oliver Lemon
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such as gesture occurrences. When generalised to the multivariate
case, it also models the occurrences of events in n-best lists such
as ASR hypotheses, where respective Beta distributions can be used
conjunctively to draw the associated (normalised) confidence scores.
(Although Beta likelihood does not have a conjugate prior, one can
either employ Metropolis-Hastings algorithms to seek a target poste-
rior [6], or perform a Bernoulli trial to choose one of its two param-
eters to be 1 and apply a conjugate Gamma prior for the other one
[9].) Finally, to model streams of events, multinomial or multivariate
Gaussians can be used to draw the respective discrete or continu-
ous observation in each frame, for which conjugate priors are the
well-known Dirichlet distribution and Normal-Inverse-Wishart dis-
tribution, respectively.

In addition, to allow the optimised POMDP policy to find a timing
solution, and to avoid rapid state switches, we adapt the idea of the
“sticky” infinite HMM [4] here as follows. Firstly, state inference
is performed for every frame of observations, where “null” actions
are explicitly defined for the frames between system actions. Then,
transition probabilities depending on the “null” actions are biased on
self-transitions using the same strategy as [4], with the assumption
that users tend to remain in the same state if the system does not do
anything (although the probabilities of implicit state transitions are
still preserved). After this, at each timestamp a trained policy either
decides on a particular action or does nothing.

Initial experiments have been performed using a human-human in-
teraction corpus from the bartender domain [7]. We employ the for-
ward search method proposed in [2] for iPOMDPs to perform action
selection, where a set of models is sampled to compute a weighted-
average Q-value, and only a finite set of observations generated by
Monte-Carlo sampling are maintained at each node of the search tree.
The decisions computed based on the “sticky” infinite POMDP agree
with the human actions observed in the corpus in 74% of cases,
which outperforms the standard iPOMDP and is comparable to a
supervised POMDP trained based on labelled data. Moreover, our
system selected many of the correct actions more quickly than the
human bartender did [13].

At this stage, our non-parametric Bayesian approach only handles
single-user interactions. Multi-party interactions can be addressed by
hierarchical action selection [11] with higher-level actions specify-
ing which user to interact with and lower-level actions executing the
actual plans, where hierarchical action policies can be trained via re-
inforcement learning based on simulated user environments. These
aspects are our ongoing work, and will be integrated into the next
version of the robot bartender system.

5 SUMMARY

We have presented a range of machine learning techniques that we
are using to explore the challenges of multi-modal, multi-user, so-
cial human-robot interaction. The models are trained on data col-
lected from natural human-human interactions as well as recordings
of users interacting with the system. We have given initial results us-
ing real data to train and evaluate these models, and have outlined
how the models will be extended in the future.
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Fast Learning-based Gesture Recognition
for Child-robot Interactions

Weiyi Wang and Valentin Enescu and Hichem Sahli 1

Abstract. In this paper we propose a reliable gesture recognition
system that could be run on low-level machines in real-time, which
is practical in human-robot interaction scenarios. The system is based
on a Random Forest classifier fed with Motion History Images(MHI)
as classification features. To detect fast continuous gestures as well
as to improve the robustness, we introduce a feedback mechanism
for parameter tuning. We applied the system as a component in the
child-robot imitation game of ALIZ-E project.

1 INTRODUCTION
Human gesture and movement recognition plays an important role in
robot related interaction scenarios. The system we describe in this pa-
per can detect dynamic gestures in video sequences using a machine
learning approach. So far, four types of gestures defined in the Simon
game (children - robot imitation game) of ALIZ-E project are rec-
ognized: Left-Arm-Up, Right-Arm-Up, Left-Arm-Down and Right-
Arm-Down [9], while extension to other more complicated ones is
trivial, provided training data is available. Moreover, the system pro-
vides the probabilities of each pre-defined gesture, which is useful to
tell ”how good you are” in the children-robot game scenario.

The main contribution of this work lies in proposing a reliable
gesture recognition system based on motion history features and a
random forest classifier, with low computational requirements. This
makes it fit for low-end machines, such as various robots where the
processors are not as powerful as normal computers. Temporal seg-
mentation is not necessary as we continuously calculate the MHIs
w.r.t. each received frame, then feed them to the classifier, while a
feedback mechanism is introduced between the two modules.

Owing to its importance in human-computer interactions, plenty
of research work has been done on this topic so far. Mitra et al. [7]
conducted a literature survey, in which some widely used mathemat-
ical models as well as tools or approaches that helped the improve-
ment of gesture recognition were discussed in details. [8] widened
the survey of human action recognition and addressed some chal-
lenges such as variations in motion performance and inter-personal
differences. Usually, the recognition procedure is computationally
intensive and time consuming. To address this issue, [6] developed
a real-time hand gesture recognizer running on multi-core proces-
sors and [2] implemented a GPU-based system which also runs in
real-time. Unlike our approach, both these methods require a specific
hardware setup.

Motion history images (MHI) represent a view-based temporal
template method which is simple but robust in representing move-
ments [1]. To employ MHI as classification features without feature
1 Dept. of Electronics and Informatics (ETRO), Vrije Universiteit

Brussel (VUB), Brussels, Belgium. Email: {wwang, venescu,
hsahli}@etro.vub.ac.be

selection or dimensionality reduction (which is time consuming), we
need a classifier that could handle highly-dimensional features effec-
tively. According to [5], random forests [4] have the best overall per-
formance in this situation. The combination of these two approaches
makes our system efficient and provides reliable recognition results.

2 IMPLEMENTATION

The system structure is depicted in Figure 1.

Motion History 
Image Feature Vector Random 

Forests

Training 
Data

Result

Parameter Tuning

Figure 1. System structure

2.1 Feature extraction

Our processing loop starts by cropping the video images to the upper
body area using the face detection approach provided in the OpenCV
library. Since the face detection is a time consuming process and in
our game scenario the child’s body does not move too much, we only
perform the face detection once and keep constant the cropping pa-
rameters for the ensuing video images. In other more general cases,
it is easy to run it in a separate thread or periodically update the crop-
ping area after a certain number of frames.

A motion history image is computed as soon as the system re-
ceives a new captured image from the camera or a video file. Refer
to [3] for the details of motion history images calculation. We resize
the MHI to a proper resolution such that the resulting feature vector
is large enough to contain sufficient information and small enough
to be easily handled by the classifier. After experimentation, we set
the MHI width and height to be 80 and 60, respectively. Hence the
dimension of feature vector is 4800.

One important parameter of MHI is the duration time, which de-
termines the span of time before the motion ”fades out” in MHI after
a gesture is performed. We set it at two seconds based on the assump-
tion that this is the time span of one gesture.

In Figure 2, on the left side, one can see the original captured im-
age (320 * 240) from the camera/video file and, on the right side, the

In Proceedings of the ECAI Workshop on Machine Learning for Interactive Systems: Bridging the Gap
Between Language, Motor Control and Vision, Montpellier, France, pages 13-15, 2012.



resized motion history image (80 * 60) for that frame. In the cap-
tured image, the red rectangle indicates the cropping area based on
the position of the detected face region.

2.2 Classification
Training data was prepared in the form of labeled video clips per-
formed by several subjects. We use the last frame of the motion
history images of each video file to derive the features as described
in Section 2.1. After the feature vectors are obtained from all video
clips, they are fed to a Random Forest algorithm as a batch to train
the classifier.

During the recognition phase, we compute the feature vector of
each frame, which further serves as input for the classifier. The Ran-
dom Forest algorithm is a voting-based classifier whereby the de-
cision is made by collecting the votes from the trees in the forest.
Before the final decision, we evaluate the votes for each class. Only
when one class received the most votes and they exceed a certain
threshold (i.e., a percentage of the number of trees in the forest), it is
considered as a recognized result. In this way, the static gesture and
irrelevant movements will be distinguished as ”Idle” or, say, ”Un-
known” type. This threshold needs to be set properly: low values will
make the system too sensitive to any kind of movement, thereby in-
creasing the number of false alarms; high values will be too strict for
discrimination. An optimal value for the threshold can be found by
plotting the histogram of votes for the four defined gesture classes as
well as the histogram for the ”Idle/Unknown” class, and then taking
the value at the boundary between the two histograms (or the middle
value of the overlapping part) as threshold. Temporal segmentation
is unnecessary as the MHI features contain temporal information and
are continuously (i.e., at each frame) computed and fed to the clas-
sifier, which will make a decision whenever a certain class receives
enough votes.

Due to the inherent character of random forests, it is feasible to
derive the probabilities of classes in real-time – simply divide the
number of votes of one class by the number of trees in the forest.
Those values are important in our child-robot imitation game sce-
nario to indicate ”how good you are”.

Figure 2. Motion history features of continuous gestures without feedback
tuning of duration time

2.3 Feedback
In the right image of Figure 2, one can see that a ”Right-Arm-Up”
gesture immediately followed by a ”Left-Arm-Up” gesture results in
the MHI featuring both of them in the same time. This phenomenon
hurdles the classification in taking the right decision as the two dif-
ferent gestures can not be properly discriminated, thereby preventing
the reliable recognition of quick gesture sequences.

To solve this problem, we devised a feedback mechanism for the
duration time of MHI calculation (see Section 2.1). As soon as the
system detects a certain gesture, the system decreases the duration
time to a minimum value such that the trace of last gesture fades
out immediately. After a certain period of time (e.g., 500 ms), this
parameter is increased back to the normal value to enable MHI to
capture the trace of gestures lasting as long as two seconds.

3 RESULTS

To assess experimentally the system performance, we recorded 80
video clips by two subjects as training data, i.e., 10 repetitions for
each gesture. Then other six subjects were asked to perform each
gesture again 10 times to test the system. At all times, the subject
was asked to return to the neutral gesture with two hands positioned
around the waist. Moreover, we asked the same subjects to perform
some randomly irrelevant movements apart from the four gestures
(e.g., both arms up/down, waving etc.), which are considered as be-
longing to the ”Unknown” class.

We set the number of trees in random forests as 200 and the size
of the randomly selected subset of features at each tree node is set
to be 100. The tests were run on single core at 1.6 GHz and the sys-
tem reached an average speed of 29.6 frames per second. The con-
fusion matrix is presented in Table 1. Left-Up and Right-Up were
sometimes recognized as their ”Down” counterparts, as the motion
regions of Up/Down gestures are partially overlapped.

We compared our method with the one proposed in [2] that used
AdaBoost classifier fed with optical flow features to recognize sim-
ilar gestures (punch-left, punch-right, sway, wave-left, wave-right,
waves, idle), in which they achieved 20.7 frames per second with
GPU acceleration and a recognition accuracy of 87.3%, at the same
resolution (320 * 240).

Table 1. Confusion matrix for the four gestures classes and the unknown
class. Rows represent the true movements, and columns represent the

numbers as well as percentage output by the system.

L-U L-D R-U R-D Unknown

Left-Up 57 1 0 0 2
95% 1.7% 0% 0% 3.3%

Left-Down 0 58 0 0 2
0% 96.7% 0% 0% 3.3%

Right-Up 0 0 55 2 3
0% 0% 91.7% 3.3% 5%

Right-Down 0 0 0 59 1
0% 0% 0% 98.3% 1.7%

Unknown 3 3 2 1 51
5% 5% 3.3% 1.7% 85%

4 CONCLUSION

We have proposed a gesture recognition algorithm that can achieve a
good accuracy in real-time, even on the low-end machines. We have
applied it in a gesture imitation game between children and the hu-
manoid NAO robot. It has high potential to be run on the on-board
processor of the NAO robot, due to the low computation require-
ments. As the motion history image features do not contain direction
information about the movements, we plan to enhance the feature
vectors with the MHI gradient calculation to improve recognition
rates.

Weiyi Wang, Valentin Enescu and Hichem Sahli

14



REFERENCES
[1] Md. Atiqur Rahman Ahad, J. K. Tan, H. Kim, and S. Ishikawa, ‘Motion

history image: its variants and applications’, Mach. Vision Appl., 23(2),
255–281, (March 2012).

[2] Mark Bayazit, Alex Couture-Beil, and Greg Mori, ‘Real-time motion-
based gesture recognition using the gpu’, in IAPR Conference on Ma-
chine Vision Applications (MVA), (2009).

[3] A. F. Bobick and J. W. Davis, ‘The recognition of human movement
using temporal templates’, IEEE Transactions on Pattern Analysis and
Machine Intelligence, 23, 257–267, (2001).

[4] L. Breiman, ‘Random forests’, Machine Learning, 45(1), 5–32, (2001).
[5] R. Caruana, N. Karampatziakis, and A. Yessenalina, ‘An empirical eval-

uation of supervised learning in high dimensions’, in Proceedings of the
25th international conference on Machine learning, ICML ’08, pp. 96–
103, New York, NY, USA, (2008). ACM.

[6] T. Ike, N. Kishikawa, and B. Stenger, ‘A real-time hand gesture interface
implemented on a multi-core processor’, in MVA, pp. 9–12, (2007).

[7] S. Mitra and T. Acharya, ‘Gesture recognition: A survey’, IEEE Transac-
tions on Systems, Man, and Cybernetics, Part C, 37(3), 311–324, (2007).

[8] R. Poppe, ‘A survey on vision-based human action recognition’, Image
and Vision Computing, 28(6), 976–990, (June 2010).

[9] R. Ros, M. Nalin, R. Wood, P. Baxter, R. Looije, Y. Demiris, T. Bel-
paeme, A. Giusti, and C. Pozzi, ‘Child-robot interaction in the wild:
advice to the aspiring experimenter’, in Proceedings of the 13th inter-
national conference on multimodal interfaces, ICMI ’11, pp. 335–342,
New York, NY, USA, (2011). ACM.

Fast Learning-based Gesture Recognition for Child-Robot Interactions

15





Using Ontology-based Experiences for Supporting Robot
Tasks - Position Paper

Lothar Hotz and Bernd Neumann and Stephanie von Riegen and Nina Worch1

Abstract. In this paper, we consider knowledge needed for inter-
action tasks of an artificial cognitive system, embodied by a service
robot. First, we describe ideas about the use of experiences of a robot
for improving its interactivity. Our approach is based on an multi-
level ontological representation of knowledge. Thus, ontology-based
reasoning techniques can be used for exploiting experiences. A robot
interacting as a waiter in a restaurant scenario guides our considera-
tions.

1 Introduction
For effective interactions of an artificial cognitive system in a non-
industrial environment, not every piece of knowledge can be manu-
ally acquired and modeled in advance. Learning from experiences is
one way to tackle these issues. Experiences can be defined as “an
episodic description of occurrences and own active behavior in a
coherent space-time segment”. Experiences can be used for future
situations by generalization. Generalizations (or conceptualizations)
build the basis for further interactions and possible implications.
Such interactions then constitute the current source for experiences
which again can be integrated and combined with existing conceptu-
alizations.

For approaching this task of experience-based learning, we con-
sider a service robot acting in a restaurant environment, see the sim-
ulated environment in Figure 1.

Figure 1: Simulation example: A robot serves a cup to a guest.

In such an environment, domain-specific objects, concepts, and
rooms have to be represented. Objects can e.g. be used for a certain
purpose and can have impacts on the environment. Different types of
relationships between objects have to be considered: taxonomical on
the one hand and spatial or temporal relationships on the other hand.
Terminological knowledge about dishes, drinks, meals as well as ac-
tions and possible occurrences is needed. Areas which may contain

1 HITeC e.V. c/o Fachbereich Informatik, Universität Hamburg, Germany
email: {hotz, neumann, svriegen, worch}@informatik.uni-hamburg.de

served orders (at a table) may be distinguished from seating areas. To
perform complex tasks, we consider the interaction that is needed to
serve a guest. Moreover, to learn a model for such a process, we ex-
amine experiences that result from performing such operations, and
investigate how to generalize them.

Our approach is based on ontological knowledge, which com-
prises models, presented in Section 2 and experiences, introduced
in Section 3. Section 4 presents possible generalizations that lead to
new conceptualizations in form of new ontological models. A short
overview of the architecture of our approach will be given in Section
5 and a discussion of our approach finalizes the paper in Section 6.
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Guest PR2
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…

…
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Figure 2: Taxonomical relations of actions and physical objects

2 Ontology-Based Approach
Due to the service domain as well as the inherent interaction with
the environment and thereby with agents within, a continuous need
of knowledge adjustment to such a dynamic application area is es-
sential. In our approach, an ontology represents the knowledge an
agent needs for interacting. This knowledge covers concepts about
objects, actions, and occurrences in a TBox (like cup, plate, grasp,
serve_cup etc.) as well as concrete instances of such concepts in an
ABox [1]. Taxonomical relations (depicted in Figure 2) and compo-
sitional relations, presented in 3 are essential means for modeling.

A complex activity like serve_cup is decomposed into finer activi-
ties until we get a sequence of elementary actions, that the robot can
execute directly. Not only these taxonomical and compositional rela-
tions, but temporal constraints represent the possible order of actions,
like e.g. for the action serve_cup: “Take coffee mug from counter and
place it on tray. Go to table, look for guest and place coffee mug in
front of guest.” Technically, we model binary relations with OWL22

2 www.w3.org/TR/owl2-overview
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Figure 3: Compositional relations of actions

and n-ary relations, like temporal constraints for complex actions,
with SWRL3, see [2].

3 Experiences
Experiences must be gained by the robot, while the robot is accom-
plishing a task and will be processed afterwards. In our ontological
approach, experiences are also represented as ABox instances (see
Figure 4). Thereby, experiences can be represented at all abstraction
levels: the complete compositional structure of robot activities, in-
cluding motions, observations, problem solving and planning, and
inter-agent communication. Furthermore, relevant context informa-
tion, like description of static restaurant parts and initial states of
dynamic parts, as well as an indicator of the TBox version are used
during experience gaining.

Parallel to robot’s interactions, raw data is gathered in subsequent
time slices (frames) for a certain time point. From these slices, time
segments (ranges) of object occurrences and activities are computed
(e.g. grasp in Figure 5). Such an experience is passed on to a gener-
alization module which integrates the new experience with existing
ones.

The initial experience is based on an action of the handcrafted on-
tology. The outcome of the generalization module will be integrated
in the ontology. In general, experiences are gained continuously, thus
during every operation, but are dedicated to a goal. We reckon with
a manageable number of experiences, because of the successive exe-
cution of goals.

Since the experiences are relevant to specific goals, we do not dis-
tinguish between experiences that are more important than others at
present. But according to "background noise" in the scenery (like a
dog walking past during a serve action) some parts of experience
might be more significant than others. The accomplishment of this
circumstance is presented in the following Section 4.

4 Generalization
We consider an incremental generalization approach, where an ini-
tial ontology is extended based on experiences using suitably cho-
sen generalization steps. New experiences are integrated into existing
conceptualizations in a cyclic manner. Table 1 shows typical general-
ization steps based on Description Logic (DL) syntax. Those can be
standard DL services (like subsumption of concepts or realization of
instances) and non-standard services (like least common subsumers
(LCS) [1]). As an example, consider two experiences gained serving
coffee to guests, depicted in Figure 4. In principle, all instance to-
kens are candidates for generalization, e.g. table1 to table. Depending

3 www.w3.org/Submission/SWRL/

on the commonalities and differences between distinct experiences,
however, promising generalizations can be selected, e.g. coffee1, cof-
fee2→ coffee→ drink. In order to deal with new situations the robot
extends its competence.

Over-generalization, e.g. generalizing coffee not to drink but to thing
can be avoided by applying the LCS, by the use of the LCS drink is
selected. However, when the integration of new concepts is impossi-
ble over-generalization can not be prevented.

Generalization Path: from→ to Reasoning Service
instance→ set of instances realization

instance→ closest named concept realization
instance→ concept expression realization

set of instances→ concept expression realization
concept→ superconcept subsumption

set of concepts→ concept expression LCS
role cardinality range→ larger role cardinality range range union

role filler concept restriction→ generalized role filler concept restriction LCS
numerical ranges→ larger numerical ranges range union

Table 1: Ontology-based generalizations and their computation
through reasoning services

In Section 3 we raised the issue of experience parts that might be
more significant than others, on the example of a dog walking past
during a serve activity. We cover this circumstance by integrating
cardinalities to mark that a dog may appear but it is not mandatory.

In addition to ontological generalization, temporal and spatial con-
straints can be generalized. Figure 5 presents an example for a tempo-
ral generalization. Quantitative temporal orderings by concrete time
points are generalized to qualitative temporal relations.

Experience 1: Guest1 is ordering coffee1.
…
(at guest1 table1)
(on counter1 coffee1)
(grasp counter1 coffee1)
…

Experience 2: Guest2 is ordering coffee2.
...
(at guest2 table1)
(on counter1 coffee2)
(grasp counter1 coffee2)
…

Conceptualization 1: Guest1 is ordering a coffee.

…
(at guest table1)
(on counter1 coffee)
(grasp counter1 coffee)
…

Coffee1 is‐not‐a coffee2 and have been generalized to 
coffee. 

Experience 1 is considered as the initial conceptual.

guest2 is instance of guest 

Experience 3: Guest2 is ordering beer1.

...
(at guest2 table1)
(on counter1 beer1)
(grasp counter1 beer1)
…

Conceptualization 2 Guest is ordering a drink.

…
(at guest table1)
(on counter1 drink)
(grasp counter1 drink)
…

Beer1 is not a coffee; thus entries have 
been generalized to drink. Constraint: 
Drink of ‘on counter’ (and all other 
entries) is instance of beverage of 
‘grasp’.

S
tep 1

S
tep 2

Figure 4: Example for creating conceptualizations from two experi-
ences, or one experience and a conceptualization

5 Architecture
Experiences do not contain only observed data, like perceived ac-
tions, objects and relational information but also occurrences and
robot’s states. These experience contents are gathered by the com-
ponents presented in Figure 6. Information on object detections (like
the identification of counter1) and spatial relations (e.g. (on counter1
coffee1)) are released by the object publisher. The action publisher
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Experience 1: Guest1 is ordering 
a coffee at time t1.

Experience 2: Guest2 is ordering 
a coffee at time t15.

…
(at guest1 table1 t2 t9)
(on counter1 coffee1 t4 t6)
(grasp counter1 coffee1 t5 t6)
…

…
(at guest2 table1 t15 t25)
(on counter1 coffee2 t17 t20)
(grasp counter1 coffee2 t18 t20)
…

Conceptualization 1: Guest is ordering a coffee.

(grasp counter1 coffee) during (at guest table1)
(on coffee counter1) during (at guest table1)
(on coffee counter1) before (grasp counter1 coffee)
(grasp counter1 coffee) finishes (at coffee counter1) 

at_table

on_counter

grasp

5 10 15 20 25 30t

on_counter

grasp

Exp. 1 Exp. 2

at_table

Figure 5: Temporal generalizations preserving temporal order

exports performed action informations, like (grasp counter1 coffee1).
Extremity informations of the robot, like the position of the torso
or of an arm are published by the actuator monitor. These outputs
are gathered by the integration manager. This manager provides the
experience manager with this content. The reasoner offers reason-
ing services and the learning component generalizes current experi-
ences (in the homonymous module) or complex scene examples to
new models. All kinds of knowledge about objects, actions, occur-
rences and the environment are described in the ontology, which will
be extended based on experiences made by the robot during it’s pro-
cessing. The experience database is a storage location, hold available
already gained experiences in a specific format.

Reasoner

Experience 
DB

Object
Publisher

Actuator
Monitor

Action
Publisher

Integration
Manager

Learning

offline

Generalization 
Module

Experience
Manager

Ontology

Figure 6: Architecture overview

6 Discussion
In this paper, we presented an ontology-based method for dealing
with robot interaction tasks in a dynamic application area. The ontol-
ogy model provides a central framework for all task relevant knowl-
edge. By successively extending a hand-coded ontology through
generalizing from experiences, a learning scheme is realized. [3]
presents a similar approach for rudimentary actions like grasping or
door opening, we consider aggregated actions like serving a cup to
a guest. However, in both cases, experiences provide the basis for
refinement of actions.

Representing a robot’s knowledge in a coherent way by an ontol-
ogy, we are able to use existing ontology-based reasoning techniques
like DL services. Ontology alignment can also be applied to inte-
grate experiences obtained with different TBoxes (e.g. differing be-
cause of new conceptualizations). Similar methods must be applied

for generalizing temporal and spatial experiences. Although we pro-
pose continuous gathering of experiences, one might as well consider
scenarios building the source for an experience that have explicit start
and end points (similar to [3]).

Some parts of an experience may be more significant than others,
it may be useful to focus on experiences which were made in respect
to a specific goal. Furthermore, not every detail should be the subject
of generalization, the temporal order or equality of instances in a
complex action have to be preserved (more concrete: the cup that
is served should be the same cup that was taken from the counter
before).

With the aggregation of occurrences, states and elementary actions
(covering also agent interactions) to composites and the expansion
of knowledge via experience gaining an extension of the interaction
ability with the environment and people within is achieved.
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A Corpus Based Dialogue Model for Grounding in
Situated Dialogue

Niels Schütte and John Kelleher and Brian Mac Namee1

Abstract. Achieving a shared understanding of the environment
is an important aspect of situated dialogue. To develop a model of
achieving common ground about perceived objects for a human-
robot dialogue system, we analyse human-human interaction data
from the Map Task experiment using machine learning and present
the resulting model.

1 Introduction
The problem of achieving a shared understanding of the environment
is an important part of situated dialogue. It is of particular importance
in a situated human-robot dialogue scenario. The application sce-
nario for our work is that of a semi-autonomous tele-operated robot
that navigates some environment, and is controlled through dialogue
by a remote human operator. The robot uses a camera to perceive the
environment and sends the video feed on to the operator.

The operator gives instructions to the robot using natural language.
For example, the operator may instruct the robot to perform a move
by giving the instruction “Go through that door”, using an object
from the environment as a landmark (LM). The success of such in-
structions depends on whether or not the operator and the robot agree
about their understanding of the objects in the environment. The
robot will not be able to execute the move-instruction felicitously
if it has not recognized the object the operator is referring to, and is
therefore not aware of its presence. Another possible problem could
arise if the robot has recognized the presence of the object, but has
not classified it in the same category as the operator, and for exam-
ple thinks is a large box or a window. This may be the case due to
problems with the robot’s objects recognition mechanisms.

It is therefore necessary that the participants reach a mutual under-
standing about what they perceive. We suggest that this problem can
be understood as a part of the grounding problem, i.e. the achieving
of a common ground [3] in a dialogue.

The problem of grounding in general and in human-computer di-
alogue in particular has been addressed by a number of authors (e.g.
[6]), but we are not aware of work that addresses the problem we de-
scribed. With this work we do not intend to provide a comprehensive
discussion of grounding but to focus on a quantitative analysis of a
specific and small area of grounding in a visual context. We addition-
ally hope to use the techniques explored in this work as the basis of
further work in our domain. In some sense the problem we address
is also related to the symbol grounding problem [4] because it deals
with achieving an agreement about how to treat sensoric perception
in the linguistic domain. However, in this work we focus on ground-
ing in the sense we initially discussed.

1 Dublin Institute of Technology, Ireland, email: niels.schutte@student.dit.ie,
john.d.kelleher@dit.ie,brian.macnamee@dit.ie

Our overarching interest is in recognising the occurrence of such
problematic situations and in identifying strategies to avoid and re-
solve them, taking into account the characteristics of the robot do-
main such as multimodal interaction or object recognition mecha-
nisms that can be primed. In this work we focus on the aspect of
grounding of newly introduced objects from the environment. We
also plan to use an approach that is based in quantitative corpus anal-
ysis rather than single examples.

We are not aware of any corpus data that directly relates to the
phenomenon in question. We instead use data from the map HCRC
Map Task Corpus [1] which we believe contains similar phenomena.

The paper is structured as follows. In Section 2 we introduce the
data set we use in this work and the steps we took to extract data. In
Section 3 we describe the steps we took to analyse the data and our
preliminary results. In Section 4 we introduce the model we devel-
oped based on our observations. In Section 5 we discuss our results
and in Section 6 we describe our planned next steps.

2 Data

The map task corpus contains data from interactions involving two
participants who worked together to solve a task involving a visual
context. The task consisted of the following: The participants were
issued separate maps. On one participant’s map (we call this partic-
ipant the instruction giver or g in the following) a target route was
marked, the other participant’s map (the instruction follower or f)
did not contain the route. Figure 1 contains an example of such a
map pair. The instruction giver was asked to describe the route on
their map to the instruction follower, who was asked to reproduce
the described route on their own map. The participants were allowed
to engage in dialogue, but were not able to see the other participant’s
map.

In total the corpus contains 128 dialogues that use 16 different in-
struction giver/follower map pairs. Each dialogue was annotated for
a number of phenomena. For our experiment we were interested in
the dialogue move annotations because they provided us with a good
level of abstraction over the structure and contents of the dialogues,
and the landmark reference annotations because they indicated to us
when participants were talking about objects in the visual context.
The dialogue move set used in the dialogue move annotations is de-
tailed in the corresponding coding manual [2]. All data related to the
dialogue transcripts and their annotation could be efficiently accessed
through a query-based tool and an API [5].

What makes this data set interesting for us is that there are a num-
ber of differences between the maps used by the instruction giver and
follower. For example, landmarks that are present on one map may
be missing on the other map, or landmarks on one map may be re-
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Figure 1. An instruction follower/giver map pair. Highlighted is an
example of a landmark that is present on one map and missing on the other

one.

placed on the other map by different but similar landmarks (e.g. a
landmark called “white water” on the instruction giver’s map may be
called “rapids” on the follower’s map). We assume that the way the
participants handled these problems would be analogous to the way
problems arising from different perception of objects in the human-
robot dialogue scenario could be handled.

We were interested in instances where an object was for the first
time referred to in the dialogues. Our approach was to detect in-
stances in the dialogue where a landmark is introduced for the first
time, and to record how the introduction is performed and what the
reaction to the introduction consists in. We did this in the following
way.

We took each dialogue separately and extracted all references to
landmarks. We then sorted these references by the landmark they re-
ferred to and ordered them by their time stamp. We then selected the
earliest reference. This gave us the first mention of a landmark. Using
this information we could then extract the utterance that contained
the reference, as well as preceding and succeeding utterances as con-
text. In total we extracted 1426 initial references. We expected that
landmarks would be treated differently based on whether they were
(a) initially visible to both participants (b) visible to only either in-
struction giver or follower, or (c) visible to both but with a difference.
This meant each landmark would fall into one of four conditions:

Condition 1: The landmark appears on both maps in the same place.
Condition 2: A landmark appears on both maps in the same place,

but there is a difference between the landmarks.
Condition 3: The landmark is on the instruction giver’s map, but

not on the follower’s map.
Condition 4: The landmark is on the instruction follower’s map, but

not on the instruction giver’s map (basically the inverse of Condi-
tion 3).

We determined for each landmark on the maps into which condi-
tion it fell by manually comparing the instruction giver/follower map
pairs. In Table 1 we show how many instances we found for each
condition. As we can see the majority of landmarks are shared be-
tween the participants. Most of the remaining landmarks fall either
into Condition 3 or 4, while only a small number falls into Condition
2.

The participants typically approached the task in such a fashion
that the instruction giver visited the landmarks step by step as indi-

Condition Count Proportion
1 787 55.0%
2 69 4.8%
3 302 21.1%
4 268 18.8%

Table 1. Number of landmark instances per condition.

cated by the route on their map and instructed the follower to draw
the route based on the landmarks. This meant that initiative in the
dialogue was primarily one-sided and with the instruction giver.

As mentioned previously our goal for this work is to model the
grounding of newly introduced objects from the visual context. We
base our approach on extracting sequences of dialogue moves that
occur in the context of where a new object is introduced in the dia-
logue, and then extracting general strategies from them. We focused
on one specific type of sequence, namely sequences that were started
with a query yn-move that contained an initial reference to a land-
mark and finished with an instruct-move

A query yn-move is defined as a move that asks the other partici-
pant a question that implies a “yes” or “no” answer. We assumed that
if a query yn-move contained a reference to a landmark, it would
most likely be about the landmark and could be seen as an attempt
by the speaker to find out whether or not the other participant had the
landmark on their map. We manually checked some example moves
and this appeared to be a reasonable assumption. An instruct-move
is a move in which the speaker asks the other participant to perform
some action. Usually this move refers to instructions to the other par-
ticipant to draw a stretch of the route. To be able to better distinguish
between different instruction giving strategies, we split the annotated
instruct-moves into two more specific moves: the instruct LM-move
refers to instruct-moves that contain a references to a landmark and
the instruct NOLM-move refers to instruct-moves that do not con-
tain a reference to a landmark. We based this distinction on the land-
mark reference annotations that were contained in the corpus data. In
general we assumed that the instruct LM-moves used the contained
landmark as a point of reference, while the instruct NOLM-move did
not use a landmark as a point of reference, but contained only direc-
tional move instructions (e.g. “go to the left and slightly upwards”).

We assumed that these sequences would typically comprise a piece
of dialogue that consisted of the following elements:

• The introduction of a landmark by the instruction giver.
• The reaction of the follower, possibly a counter reaction and the

grounding of the landmark.
• The instruction move using either the grounded landmark or some

alternative strategy that has been decided upon due to the outcome
of the grounding process.

Figure 2 contains an example of a typical piece of dialogue we
captured.

We decided to focus on Condition 1 and Condition 3 landmarks
at this stage of the work. We expected that Condition 4 landmarks
would exhibit fundamentally different phenomena in the dialogue
because the landmarks in this condition were only visible to the fol-
lower, and could therefore only be introduced by the instruction fol-
lower. We also excluded Condition 2 landmarks at this stage because
of the small number of available examples. We found 290 sequences
for the Condition 1 domain and 129 sequences for the Condition 3
domain. We may revisit the other conditions at a later stage under a
different perspective.
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g: erm have you got a collapsed shelter (query yn)
f: yes i do (reply y)
g: right (acknowledge)
g: you’ve to go up north and then round the collapsed shelter

(instruct LM)

Figure 2. An example of a query-instruction dialogue.

To be able to distinguish between successful strategies and unsuc-
cessful strategies, we decided to annotate for each landmark along a
route on the instruction giver’s map how well the route on the instruc-
tion follower’s map had been reproduced when the route visited the
corresponding landmark. We asked the annotators to compare each
map produced in a dialogue by a instruction follower with the map
given to the instruction giver, and give a judgement for each land-
mark along the route. We allowed three possible categories:

Good: The route on the follower’s map matches the route on the
instruction giver’s map.

Ok: The route on the follower’s map roughly matches the route on
the instruction giver’s map, but it is apparent that the follower did
not take special care to take the landmark into account when they
drew the route.

Bad: The route on the follower’s map does not match the route on
the instruction giver’s map at all.

We then assigned to each sequence the value annotated for the
landmark mentioned in the sequence. This way we got an indication
of how successful each sequence was.

We used this information to filter the set of instances and only
used those that had been annotated as “good”. This left us with 271
Condition 1 instances (93.1% of the original Condition 1 instances)
and 90 Condition 3 instances (69.7% respectively).

In the following section we describe the steps we took in analysing
the data.

3 Analysis

Our aim is to create a model that explains the process of grounding in
the map task domain and that we can adapt to drive the same process
in our human-robot domain.

Our first goal of the analysis was to determine whether there were
any dominating structures in the dialogue move sequences that we
could later on use to develop dialogue strategies. As a second goal
we wanted to see if there were other, less dominant, structures that
occurred with some consistency and might be appropriate to specific
situations. Our third goal was to analyse the structures and to see if
we could develop plausible assumptions about why these structure
come about, i.e. a model of the underlying information state of the
dialogue.

Due to the large number of examples, it was not feasible to per-
form a manual analysis. We therefore used machine learning to ex-
tract structure.

To gain a general overview of the sequences and their common-
alities we decided to create a graph representation of the move se-
quences in the domain that conflated sequences where they were sim-
ilar and branched out where they diverged.

To this purpose we added to each move its position in the
sequence as an index. This means, the sequence

g query yn→ f reply y→ g acknowledge→ g instruct LM

will be represented as

g query yn 0 → f reply y 1 → g acknowledge 2 →
g instruct LM

This was based on the idea that if two sequences contained the
same move at the same position, they would be similar at this point.
We did not add an index the final instruct-move of each sequence
because due to the manner in which sequences were created each
sequences ends with one.

We then created a graph where each node represents one of the
indexed dialogue moves. Two nodes n1 and n2 were connected if
any sequence contained an instance where the move corresponding
to n1 was directly followed by the move corresponding to n2. Each
arc was labelled with the number of times such an instance occurred
in the sequences. Figure 3 shows the graph created for Condition 1
and the graph for Condition 3 (note that for readability and ease of
presentation we omitted arcs with counts less than 5 in the first graph
and counts of 3 in the second graph).

A general observation we can draw from the graphs is that land-
mark based move instructions in both conditions are more frequently
used than non-landmark based ones. However, it appears that the
tendency to use non-landmark based instructions is stronger in the
Condition 3 domain. This is plausible, because in the Condition 3
domain the instruction giver cannot use the landmark they initially
asked about as a point of reference, and may therefore be more likely
to switch to a direction based strategy.

We then used the sequence analysis tool of the SAS Enterprise
Miner 6.22 to detect typical sequences from the set of observation
sequences. Sequences 1-4 in Table 2 are some selected interesting
sequences from the Condition 1 domain that we produced in this step.
Sequences 1-5 in Table 3 are the interesting sequences we extracted
from the Condition 3 domain.

It appears that there are clear differences in the detected sequences,
namely that the Condition 1 domain strongly features Yes-No queries
that receive a positive answer, while the Condition 3 domain features
queries with negative answers. We also get complete sequences that
start with a query yn-move and end with an instruct-move. They de-
scribe the most typical complete sequences. When we compare the
detected sequences with the graphs, we discover that the longer se-
quences in fact correspond to paths through the graph that have high
count figures along the arcs. But we also see that there are alterna-
tive paths which have lower count figures but could nevertheless be
important enough to be worth modelling.

As a general observation we can see that reply-moves are often
responded to with either an acknowledge-move, a ready-move or a
combination of both. However, it appears that these moves may also
be omitted. To gain a better understanding of the domain, we repeated
the sequence detection process, but this time we removed acknowl-
edge- and ready-moves from the sequences because we suspected
that they introduced noise that might prevent other significant se-
quences from being detected. This resulted in Sequence 5 in Table 2
for the Condition 1 domain and Sequence 6 and 7 in Table 3 for the
Condition 3 domain. These sequences do not contain complete se-
2 SAS Enterprise Miner, Version 6.2,

www.sas.com/technologies/analytics/datamining/miner/
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.

Figure 3. Dialogue move graphs for Condition 1 and Condition 3. The nodes and arcs that are highlighted with dashed red lines represent sequences that are
covered by the model introduced in Section 4.

Number Length Sequence
1 2 g query yn→ f reply y
2 3 g query yn→ f reply y→ g instruct LM
3 4 g query yn→ f reply y→ g acknowledge→ g instruct LM
4 3 g query yn→ f reply y→ g instruct NOLM
5 4 g query yn⇒ f reply y⇒ f explain⇒ g instruct LM

Table 2. Interesting sequences from the Condition 1 domain.

Number Length Sequence
1 2 g query yn→ f reply n
2 3 g query yn→ f reply n→ g instruct LM
3 3 g query yn→ f reply n→ g instruct NOLM
4 4 g query yn→ f reply n→ g acknowledge→ g instruct LM
5 4 g query yn→ f reply n→ g acknowledge→ g instruct NOLM
6 3 g query yn→ f reply n→ g query yn
7 3 g query yn→ f reply n→ f explain

Table 3. Interesting sequences from the Condition 3 domain.
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quences but important sub-sequences which would be important for
our model.

3.1 Condition 1

For Condition 1, the dominant structure appears to be one where
the follower responds positively to the request and the instruction
giver then issues a landmark based instruction, or alternatively a non-
landmark based instruction. This is supported by the Sequences 2-5
in Table 2.

Another important structure appears to be one where the follower
responds positively and then adds an explain-move (this is exempli-
fied by the Sequence 6 from Table 2). The instruction giver then pro-
ceeds with the move instruction as normal. We manually inspected
some sample sequences and concluded that this explain-move may
serve one of three purposes:

• It may confirm the landmark by repeating it.
• It may mention an additional landmark that is close to the intended

landmark.
• It may describe the location of the intended landmark in relation

to the current position.

We believe that this extra move generally serves as an additional
grounding step. The second move is of course context dependent be-
cause it requires that there is a suitable landmark available.

3.2 Condition 3

In Condition 3 we can identify a dominant structure where the fol-
lower responds negatively to the query, and the instruction giver then
issues a move instruction (Sequences 2-5 in Table 3). Another struc-
ture appears to be one where the instruction giver, instead of issuing
the instruction immediately, issues another query (Sequence 6). We
interpret this as the instruction giver testing out a different landmark
for their instruction.

As another possibility, the follower may also offer an explain-
move after the negative reply. We examined the moves manually and
determined that they either serve to mention explicitly that the fol-
lower does not see the landmark in question or to offer an alternative
landmark (Sequence 7). We show an example for such a sequence in
Figure 4. The instruction giver may or may not use a landmark in the
instruct-move that concludes the sequence. We examined some sam-
ples from the dialogues and found that in the cases where a landmark
is used, it is a landmark that has been discussed in the dialogue im-
mediately prior to the current exchange, and is therefore still salient.

g i sp– i don’t suppose you’ve got a graveyard have you
f ehm no
g no right
f got a fast running creek and canoes and things

Figure 4. An example of a dialogue where the follower offers an
alternative landmark.

Based on these observations we developed a model of how these
grounding sequences can be performed in a human-robot dialogue
system is presented in the following section.

4 Model

In the previous section we introduced an analysis of the structures
encountered in the dialogues, and made some suggestions about the
underlying reasons for these structures. Based on this, we are now
going to present a finite state model that can be used by a dialogue
system to model grounding. This model is shown in Figure 5. In our
model, a robot system is engaged in a dialogue with a human opera-
tor. Both operator and system have access to a shared visual context.

In this model we take an object as grounded from the perspective
of the system if the system perceives the object, knows that the other
participants perceives the object in the same way, and knows that the
other participants knows that the system perceives the object.

The model uses an information state consisting of the following
components:

G: the set of grounded objects.
D: the set of “discarded” objects (should therefore be avoided for

shared reference e.g. because an attempt to ground them has
failed).

i: an object that has been referred to by the other participant (an
abstract object reference that may match objects in the visual con-
text).

f: an object in the visual context of the system that is in the focus of
attention.

df: an object that the system has declared is in focus.
dn: an object that the system has declared it does not perceive.

The model is intended as a sub-part of a larger model that controls
the system’s dialogue. We assume that this larger model maintains
sets equivalent to G and D that can be used to instantiate the model.
The model triggers when the operator produces a query yn about a
landmark. The system takes the reference and attempts to resolve it
in its visual context. If it succeeds, we branch into the left side of the
model (we base this part of the model on our analysis of the Con-
dition 1 domain). The object that had been found is put into focus,
and the system produces a reply y to indicate it has found the object.
The object is not grounded yet, but the system has declared that it
perceives the object. If the operator then produces an acknowledge-
move, the object is added to the set of grounded objects.

If the system is unable to resolve the reference in the first step,
we go into right side of the graph (this part of the model is based
on our analysis of the Condition 3 domain). The system produces an
reply n-move to indicate this fact. We represent this in the state by
storing the object in dn. If the operator reacts with an acknowledge-
move, we add the object to the set of discarded objects. If the operator
poses a new query at this point, we model this as a return to the first
state with a new intended object while retaining the set of shared and
discarded objects.

As we discussed in the previous section, it occurs in some cases
that the follower suggests an alternative landmark. We suggest to
model this in the following way: The system may check if there is
an object available in the place where it expects the object intro-
duced by the operator to be, e.g. based on direction expressions in
the introduction. It then expresses this with an explain-move. If the
operator acknowledges this by making an acknowledge-move, it is
entered into the set of grounded objects G.

Based on our observations, basically at any point after the first
response the operator can be expected to produce an instruction, ei-
ther using a landmark or not using a landmark. We believe that the
grounding state of the object used in the instruction determines how

A Corpus Based Dialogue Model for Grounding in Situated Dialogue

25



appropriate the use of the object as a landmark is. In particular we be-
lieve that an object that is in focus and in the common ground is most
acceptable (this would be an object that has undergone the process on
the left side of the diagram). Slightly less acceptable would be an ob-
ject that has been focused, but is not yet in the common ground (an
object that has undergone the process on the left side except for the
final acknowledge-move). It is also possible to use an object that is
in G, the set of grounded objects, but not focused (this corresponds
to the case of the instruction giver using an object that has been in-
troduced prior to the current sub-dialogue), but we believe that this
would be a less preferred option.

Figure 5. The finite state model. The boxes represent states, while the arcs
represents actions by the system or the operator. Each state is annotated with

current configuration of the information state of the system.

5 Discussion
We performed a quantitative analysis of corpus data and extracted
typical interaction sequences. The findings are certainly not surpris-
ing or counter to what other works about grounding describe. We
nevertheless believe that they are relevant because they are based on
data rather than a mostly manual analysis. This analysis also shows
us that parts of the domain can be captured, while highlighting those
parts of the domain that are not covered and remains to be investi-
gated. As mentioned earlier, Figure 3 provides an overview of possi-
ble interactions in the domain. We highlight the nodes and arcs that
are covered by our model. We calculated that for the Condition 1

domain, about 18% of the observed cases are covered in and about
28% for the Condition 3 domain. These number are low, but they
still represent the major observed structures in the domain. In addi-
tion to that it appears that optional ready and acknowledge moves
introduce variation that is hard to capture with a model as simple
as ours (for example, collapsing some of the ready and acknowledge
acts increases the coverage in the Condition 1 domain to about 53%).

6 Future Work
There are a number of possible future directions for this work. Our
main line of interest will be to set up an evaluation system that we
can use to examine how well the strategies we developed work in an
application scenario. We based parts of this work on manually anno-
tated information which will not be available in an online application
scenario. We will therefore in the near future focus on using machine
learning based tools to replicate equivalent information. We believe
that the data we have available at this stage will be useful as train-
ing data for those components. In addition to spoken dialogue, we
are also considering to investigate other modalities such as markup
information in the video displayed to the operator.

There are also some possible topics left to address within this data
set, such as the conditions we have not addressed in this work, and
other types of interactions. In particular we are also interested in
problems such as error recovery and clarification after a problematic
reference.
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Hierarchical Multiagent Reinforcement Learning for
Coordinating Verbal and Non-verbal Actions in Robots

Heriberto Cuayáhuitl1 and Nina Dethlefs2

Abstract. This paper proposes an approach for learning to coor-
dinate verbal and non-verbal behaviours in interactive robots. It is
based on a hierarchy of multiagent reinforcement learners executing
verbal and non-verbal actions in parallel. Our approach is evaluated
in a conversational humanoid robot that learns to play Quiz games.
First experimental results show evidence that the proposed multia-
gent approach can outperform hand-coded coordinated behaviours.

1 Introduction
Multiagent Reinforcement Learning is used to build autonomous
agents that learn their behaviour from a shared environment [3].
In the case of cooperative Reinforcement Learning (RL) agents,
they use the same reward function in order to optimize a joint goal
[2, 12, 13, 10]. Recent research on interactive systems using ma-
chine learning has experienced important progress in the optimiza-
tion of their conversational behaviours (e.g. confirmation, clarifica-
tion and/or negotiation dialogues), where the RL framework has been
an attractive alternative to hand-coded behaviours for the design of
optimized dialogue agents. However, although important progress
has been made for speech-based interactive systems, less progress
has been made on optimizing both verbal and non-verbal behaviours
in a unified way. Instead, both types of behaviours are often modelled
independently [1, 15, 14, 8], without the aim to jointly achieve a goal
as is the case in human interaction, where verbal and non-verbal be-
haviours are tightly coupled [16].

In this paper, we propose an approach based on hierarchical multi-
agent RL for optimizing the coordination of verbal and non-verbal
behaviours. In this approach, one agent optimizes verbal behaviour,
while another (simultaneously) optimizes non-verbal behaviour so as
to align with the non-verbal actions of a human user. As a result, the
joint action-selection of the RL agents represents the optimized coor-
dination of both behaviours. We present preliminary results suggest-
ing that this form of joint optimization is a promising and principled
alternative to non-joint approaches and can equip robots with a more
natural way of coordinating and adapting their multimodal actions.

2 Proposed Learning Approach
To achieve scalable dialogue optimization, we cast interaction con-
trol as a discrete-time Multiagent Semi-Markov Decision Process
(MSMDP) M = <S, ~A, T,R, L, F> that is characterized by the
following elements: (a) a finite set of states S; (b) a finite set of joint
actions ~A = (Av, Anv) executed in parallel, where Av are verbal

1 German Research Center for Artificial Intelligence (DFKI), Saarbrücken,
Germany, email: hecu01@dfki.de

2 Heriot-Watt University, Edinburgh, Scotland, email: n.s.dethlefs@hw.ac.uk

actions and Anv are non-verbal actions; (c) a stochastic state tran-
sition function T (s′, τ |s,~a) that specifies the next state s′ given the
current state s and joint action ~a = (av, anv), where τ denotes the
number of time-steps taken to execute joint action ~a in state s; (d)
a reward function R(s′, τ |s,~a) that specifies the reward given to the
agent for choosing joint action~awhen the environment makes a tran-
sition from state s to state s′; (e) a language L that is represented as
a context-free grammar (CFG) to represent relational tree-based rep-
resentations as described in [4]; and (f) a stochastic model transition
function F = P (m′|m, s) that specifies the next model or subtask
m′ given model m and state s. This last element allows the user to
navigate more flexibly across the available sub-dialogues [5].

We distinguish two types of actions: (i) single-step joint actions3

corresponding to verbal actions such as ‘greeting’ or ‘ask question’
and non-verbal actions such as ‘head nodding’ or ‘lift right arm’,
and (ii) multi-step joint actions corresponding to sub-dialogues or
conjunctions of single-step joint verbal and non-verbal actions. In
addition, we treat each multi-step joint action as a separate MSMDP.

We decompose an MSMDP into multiple MSMDPs that are hi-
erarchically organised into X levels and Y models per level. The
indices (i, j) only identify a unique subtask (i.e. MSMDP) in the
hierarchy, they do not specify the execution sequence of subtasks
which is learnt by the RL agent, where j ∈ {0, ..., X − 1} and
i ∈ {0, ..., Y −1}. Thus, a given MSMDP in the hierarchy is denoted
as M (i,j) = <S(i,j), ~A(i,j), T (i,j), R(i,j), L(i,j), F (i,j)>. Notice
that each MSMDP is a multi-decision maker for verbal and non-
verbal actions, hence the term ‘multiagent’. The solution to a Mul-
tiagent Semi-Markov Decision Process is an optimal policy π∗(i,j),
which is a mapping from environment states s ∈ S to single- or
multi-step joint actions ~a ∈ ~A. The goal of an MSMDP is to find a
function denoted as π∗(i,j)(s) that maximizes the cumulative reward
of each visited state. The optimal policy for each learning agent in the
hierarchy is defined by π∗(i,j)(s) = arg max~a∈ ~A(i,j) Q

∗(i,j)(s,~a),
where the optimal action-value function Q∗(i,j)(s,~a) specifies this
cumulative reward for executing joint action ~a in state s and then
following policy π∗(i,j). We apply the HSMQ-Learning algorithm
[9, 6] to cooperatively induce such a hierarchy of multiagent policies
based on long-term cumulative rewards across policies.

3 Experimental Setting

To test our approach for generating coordinated joint actions and
compare it with non-coordinated baselines, we use a robot dialogue

3 We assume that the execution of single-step joint actions terminates at the
same time, which involves a non-verbal action to wait for the verbal one to
terminate, or vice versa. Other ways of termination, where agents behave
more autonomously but still in a coordinated way, are left as future work.
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Figure 1. Hierarchy of joint agents for our robot in the Quiz domain.
Whilst straight lines denote strict hierarchical control, dashed lines denote

less strict control for more flexible interaction across sub-dialogues [5].

system playing Quiz games. In this domain, the robot can ask the user
questions, or vice-versa, the user can ask the robot questions. Both
user and robot communicate with verbal and non-verbal actions and
our aim is to coordinate the robot’s non-verbal actions with its ver-
bal actions and simultaneously align them with the user’s non-verbal
actions to show individualised adaptation. Our system has been im-
plemented using the Nao humanoid robot (see dialogue in Table 2).

We use the hierarchy of dialogue agents shown in Figure 1. Ta-
ble 1 shows the set of state variables for our system, each one mod-
elled as a discrete probability distribution with predefined parame-
ters. Dialogue and game features are included to inform the agent of
situations in the interaction. The set of verbal actions (80 in total)
consists of meaningful combinations of speech act types and associ-
ated parameters.4 The set of non-verbal actions (20 in total) consists
of predefined body movements.5 We constrained the actions per state
based on the CFGs L(i,j), so that only a subset of joint actions was
allowed per dialogue state (constraints omitted due to space). This
reduces the state-action space from 1012, using a propositional rep-
resentation enumerating all variables and values, to only 104.

The global reward function aims for interactions that encourage
to play, get as many correct answers as possible, and imitate the
user’s non-verbal actions. It is defined by the following rewards for
choosing action a in state s: +10 for answering a question correctly
or reaching a terminal state (in which the user will be prompted to
play again), −10 for remaining in the same state (i.e. st+1 = st or
st+1 = st−1), +1 for imitating a non-verbal action, and 0 otherwise.
The multimodal user simulation used a set of user dialogue acts as
responses to the system dialogue acts (Footnotes 4-5). They used pre-
defined probability distributions for modelling verbal and non-verbal
interactions: P (av,usr|av,sys) and P (anv,usr|anv,sys), with errors
based on an equally distributed speech and gesture recognition error
rate of 20%. The recognition confidence scores were generated from
beta probability distributions with parameters (α = 2, β = 6) for
bad recognition and (α = 6, β = 2) for good recognition [4].

4 Verbal Single-Step Actions: Speech Act Types={Salutation, Request,
Apology, Confirm, Accept, SwitchRole, Acknowledgement, Provide, Stop,
Feedback. Express, Classify, Retrieve, Provide.} × Parameters={Greeting,
Closing, Name, PlayGame, Asker, KeepPlaying, GameFun, StopPlaying,
Play, NoPlay, Fun, NoFun, GameInstructions, StartGame, Question, An-
swers, CorrectAnswer, IncorrectAnswer, GamePerformance, Answer, Suc-
cess, Failure, GlobalGameScore, ContinuePlaying}

5 Non-Verbal Single-Step Actions={Hello, Bye, HandShake, NodYes,
NodNo, Success, Failure, OpenRightArm, OpenLeftArm, SitDown,
StandUp, SeatedWithExtendedLegs, SeatedWithCrossedLegs, Thinking,
ScratchingHead, StandingWithCrossedArms, StandingWithArmsBack,
StandingWithArmsHeadBack, Wait, None.}

State Variable Values
Salutation none, greeting, withName, regreeting, closing
UserName unknown, filled, known
ConfScore null, 0.1, 0.2, 0.3, 0.4, 0.5, ... , 0.9, 1.0
Confirmed null, no, yes
PlayGame unknown, no, yes, ready
Instructions unprovided, provided
Asker unknown, robot, user
QuizGame unplayed, playing, semiplayed, played,

interrupted, keepPlaying, stopPlaying
GameFun unknown, no, yes
GameOver no, yes
GameInstructions unprovided, provided
QuestionState null, unknown, unasked, askedWithAnswers,

askedWithoutAnswers, reaskedWithAnswers,
reaskedWithoutAnswers, confirmed

AnswerState unanswered, unclassified, correct, incorrect, unknown
MaxQuestions no, yes
GameScore unknown, good, bad
GlobalGameScore null, unprovided, provided
ExpressedScore no, yes

Table 1. State variables for the Quiz dialogue system, where combinations
of variable-value pairs define situations (states) in the interaction used by the

reinforcement learning dialogue agents for joint action-selection.

Hi, my name is NAO, what is your name?
I am Charles

Nice to meet you Charles.
Do you want to Play a Quiz game?
Sure

One of us asks questions and offers possible answers.
The other answers by selecting one of those answers.
Do you want to ask me questions or shall I ask you?
You ask me
The first question is. What is a typical magic instrument?
Your choices are: One, guitar. Two, drums.
Three, violin. Four, flute. What is your choice?
Violin

That is not quite right. Do you have another choice?
Maybe flute

Good, that is correct.
Now I want to ask you

Let’s do it like that. What is the first question?
What does water become at the temperature of zero degrees?
Your choices are: One, condensation. Two, ice. Three, steam.

I choose ice.
That is correct.

Okay, ask me another question.
I want to stop playing.

Did you like playing the Quiz Game?
I did

I am glad to hear that.

It was nice playing with you, see you soon. Bye!

Table 2. Illustrative multimodal dialogue exhibiting non-verbal actions
(left) and verbal actions (right). User responses shown in italics. The robot’s
images were generated with the Choregraphe tool from aldebaran.com
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Figure 2. Average reward (10 runs) of joint action learners. Settings:
α = 100/(100 + τ), γ of .99, ε-Greedy, ε = .01, initial Q-values= 0.01.

4 Experimental Results
We trained our agents, and compared their performance in terms of
dialogue reward against two baselines; see Figure 2. One baseline
uses learnt verbal actions without non-verbal actions (solid blue
line), and the other baseline uses learnt verbal actions with hand-
coded non-verbal actions (dashed green line). The latter baseline in-
cluded intuitive joint actions such as <Salutation(Greeting),Hello>
or <Feedback(CorrectAnswer),NodYes>. Results from the last 1000
episodes show that our multiagent approach (red crossed line) outper-
forms its counterparts (blue and green lines) by 27% and 8% in terms
of average reward, respectively. We can draw the following prelim-
inary conclusions. While the low performance of the verbal-only
baseline most likely results from its lack of non-verbal expressive-
ness (and therefore lack of positive rewards for imitating the user),
the difference between the jointly learnt and hand-coded policies is
most likely related to adaptiveness. While the hand-coded policy re-
lies on intuitive combinations of verbal and non-verbal actions, users
differ with respect to their individually preferred combinations. Co-
ordinating verbal and non-verbal actions jointly based on imitation
of the user’s gestures, therefore leads to a higher degree of individu-
alised adaptation and higher rewards.

As a consequence of these results, we will investigate two hy-
potheses in future research: (1) a humanoid robot that only speaks
but does not move has a lower perceived performance than a robot
that combines verbal with non-verbal actions; and (2) a humanoid
robot that does not learn to coordinate its verbal with non-verbal ac-
tions in an adaptive fashion is perceived as having a lower perfor-
mance than a robot that learns to coordinate both types of actions.
An advantage of learning to coordinate verbal with non-verbal ac-
tions is that the robot can exhibit different behaviours for different
users. Future work may also investigate how coordinated verbal and
non-verbal behaviour may affect task success or user satisfaction.

5 Conclusion and Future Work
We have described an approach for optimizing the behaviour of robot
dialogue systems by applying and extending a hierarchical RL frame-
work to support multiagent decision making of verbal and non-verbal
actions in a coordinated and adaptive way. To evaluate, we have in-
corporated our methods into a robot dialogue system that learns to
play Quiz games. Although preliminary, experimental results make
our approach look promising by combining the benefits of (a) pre-
defined state-action spaces, (b) scalable policy learning, (c) joint and
coordinated action section, and (d) opportunities for online learning.

We argue that those features, with a special focus on online learning,
represent an interesting direction to train robots’ behaviour, so that
they can learn how to coordinate their actions in an adaptive fashion
while interacting with users. The next step towards this is to train our
simulations and MSMDPs (online) from real human-robot interac-
tions to validate our results. We would like to optimize turn-taking
for more natural and efficient interactions. Another step is a compar-
ison with other hierarchical learning algorithms [11] using function
approximation. We also would like to extend our joint learning agents
with adaptive verbalizations [7], where each MSMDP in our hierar-
chy of agents would have three agents, one for dialogue management,
one for language generation, and one for non-verbal behaviour.
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Towards Optimising Modality Allocation for Multimodal
Output Generation in Incremental Dialogue

Nina Dethlefs, Verena Rieser, Helen Hastie and Oliver Lemon1

Abstract. Recent work on incremental processing in interactive
systems has demonstrated that incremental systems can gainhigher
responsiveness and naturalness than their non-incremental counter-
parts and are better perceived by human users. This paper presents a
first investigation, based on a proof-of-concept study, into how multi-
modal information presentation in incremental dialogue systems can
contribute towards more efficient and smooth interactions.In partic-
ular, we focus on how a combination of verbal and non-verbal output
generation can help to reduce the need for self-correctionsin a sys-
tem that has to deal with continuous updates of input hypotheses. We
suggest to use Reinforcement Learning to optimise themultimodal
output allocationof a system, i.e. the idea that for every context,
there is a combination of modalities which adequately communicates
the communicative goal.

1 Introduction

Traditionally, the smallest unit of processing in interactive systems
that triggers a processing module into action has been a complete
user utterance. While this facilitates processing and system design, it
can lead to inflexible turn-taking and stilted interactions. In contrast,
interactive systems with incremental processing align with human-
like turn-taking behaviour by defining themicro-turnas the smallest
unit of processing, which can be seen as the smallest part of an ut-
terance that can be mapped to a dialogue act. This allows themto
process input and plan output in parallel and to explore a range of
discourse phenomena that occur naturally in human discourse, but
that have so far been absent from interactive systems. Amongthese
are backchannel generation, handling of user and system barge-ins,
as well as corrections of generated output based on changed user or
system knowledge. Several studies have shown that such phenomena
can improve the user experience with an interactive system;see e.g.
[22, 4] for incremental dialogue management, [18, 8] for turn-taking,
[2, 23] for incremental automatic speech recognition, [12,17, 24, 3]
for incremental NLG, and [28] for a study on the impact of real-time
feedback on user behaviour. Very recently, incremental processing
has also been applied to the information presentation (IP) phase of
interactive systems, where it has been combined with machine learn-
ing techniques to optimise the timing and order of IP [7] and the
timing and occurrence of barge-ins and backchannels [6].

An important advantage resulting from the use of incremental pro-
cessing is the increased awareness that NLG modules gain of their
own generation process: they are able to monitor their own output
and, if necessary, e.g. due to updated information coming infrom

1 Heriot-Watt University, School of Mathematical and Computer Sciences,
Edinburgh, Scotland, email: n.s.dethlefs@hw.ac.uk, v.t.rieser@hw.ac.uk,
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the dialogue manager, modify or self-correct it. Such updates may be
necessary in cases where user input hypotheses change during gen-
eration (or dialogue processing). As such, incremental NLGhas to
solve a trade-off between higher system reactiveness versus poten-
tially disturbing self-corrections.

This paper argues that a possible remedy to this problem liesin
the combination of different modalities, for example, speech and vi-
sual displays on a mobile device. Such multimodality may present
a subtle way of communicating the system’s current best input hy-
pothesis to the user (and thereby give them a chance to correct it)
without mistakenly acting upon it and causing a disruption or delay
to the interaction. This hypothesis is based on previous work which
has shown that multimodal output generation can increase system
robustness to speech recognition errors [10] and decrease user cog-
nitive load [15]. Previous work by [16] has also shown that allowing
users to modify their search queries by combing speech and text in-
put can significantly facilitate mobile search in noisy environments.

In this paper, we investigate a model of automatic output gener-
ation optimisation that usesReinforcement Learning(RL) to max-
imise the expected return for the problem ofmultimodal allocation
[1], i.e. how to combine output modalities so that they adequately
convey a communicative goal in a given context. We present prelim-
inary results from a proof-of-concept study in the domain ofrestau-
rant recommendations that compare thetask easeachieved by our
system and a number of hand-crafted baselines in simulated interac-
tions. We discuss the possible advantages and disadvantages of our
proposed method with respect to incremental interactive systems in
hands-free, eyes-freemobile applications.

2 Multimodal Information Presentation

Previous work on multimodal information presentation has inves-
tigated rule-based user-tailored content selection [27] and super-
vised re-ranking techniques [11] for multimodal generation, as well
as hierarchical Reinforcement Learning techniques for multimodal
dialogue management [20, 5]. However, none of these earlierap-
proaches has considered how multimodal information presentation
can be integrated into an incremental model of dialogue processing.

In the following, we extend an earlier model for multimodal IP
presented by [19] to incremental multimodal output allocation and
show how it can help to avoid frequent self-corrections or output
modifications from the system that are the result of dynamically
changing input hypotheses. While the benefit of generating fewer
self-corrections is not specific to incremental systems, but can be
generalised to all interactive systems, we assume here thatincremen-
tal systems face a particular danger of self-correcting toooften due
to their increased number of hypothesis updates.
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As a domain of application, we address the information presenta-
tion phase in an interactive system for restaurant recommendations,
extending previous work by [7], who present an incremental version
of the work by [21]. While this previous work has focused on choos-
ing a suitable presentation strategy for verbal presentation, here we
focus on choosing the best modality accompanying a list of database
hits. We assume that the choice of attributes (i.e. attributes that the
user wishes the search to focus on) is determined by matchingthe
types specified in the user input. Attributes include thecuisine, food
quality, location, price rangeand service qualityof a restaurant.
The system then performs a database lookup and chooses a multi-
modal presentation strategy amongverbalOnlyandcombinedModal-
ities, i.e. visual and verbal output together. Visual output in this con-
text refers to displays, on a screen or mobile device, that inform the
user of the system’s current best input hypotheses. Figure 1shows
examples of the main types of multimodal presentation strategies.
The system does not have the option to present only visual informa-
tion, since a Wizard-of-Oz study by [19] showed that human wizards
never chose this strategy.

3 Optimising Multimodal Output Generation in
Incremental Dialogue

3.1 Reinforcement Learning

To optimise the multimodal output generation process within an in-
cremental model of dialogue processing, we define an RL agentas a
Markov Decision Process, or MDP, which is characterised as afour-
tuple < S, A, T, R >, whereS is a set of states representing the
status of the output generator and all information available to it; A
is a set of output generation actions that combine strategies for mul-
timodal IP with handling incremental updates in the system;T is a
probabilistic transition function that determines the next states′ from
the current states and the actiona according to a conditional prob-
ability distributionP (s′|s, a); andR is a reward function that spec-
ifies the reward (a numeric value) that an agent receives for taking
actiona in states.

Using such an MDP, the output generation process can
be seen as a finite sequence of states, actions and rewards
{s0, a0, r1, s1, a1, ..., rt−1, st}, where t is the time step. Every
learning episode falls naturally into a number of time stepsat each
of which the agent observes the current state of the environmentst,
takes an actionat and makes a transition to statest+1. This mech-
anism also defines the principle for the agent’s micro-turn taking
behaviour: it checks at each time step whether the state of the en-
vironment has changed so that an output action is required, e.g. if
new input has come in or old input has been revised. If no partic-
ular action is required, e.g. because the user is still speaking, the
agent may also decide to do nothing for the moment. Once infor-
mation has been presented to the user, it iscommittedor realised.
Here is where the difference between modalities may become most
obvious to the user. While verbal output, once communicatedto the
user, cannot be changed without an explicit self-correction that marks
the changed hypothesis, visual output can be changed more straight-
forwardly through an updated visual display, which may cause less
disruption to an interaction.

The ultimate goal of an MDP is to find an optimal policyπ∗ ac-
cording to which the agent receives the maximal possible reward for
each visited state. We use the Q-Learning algorithm [29] to learn an
optimal policy according to

π∗(s) = arg max
a∈A

Q∗(s, a), (1)

States
dataBaseHits{0=none,1=few,2=medium,3=many}
incrementalStatus{0=none,1=holdFloor,2=correct,3=selfCorrect}
modalityStatus{0=none,1=verbalOnly,2=combined}
statusCuisine{0=unfilled,1=low,2=medium,3=high,4=realised}
statusFood{0=unfilled,1=low,2=medium,3=high,4=realised}
statusLocation{0=unfilled,1=low,2=medium,3=high,4=realised}
statusPrice{0=unfilled,1=low,2=medium,3=high,4=realised}
statusService{0=unfilled,1=low,2=medium,3=high,4=realised}
userReaction{0=none,1=select,2=askMore,3=other}
userSilence={0=false,1=true}

Actions

Slot-ordering:presentCuisine, presentFood, presentLocation, presentPrice,
presentService,

Incremental:backchannel, correct, selfCorrect, holdFloor, waitMore

Modality: verbalOnly, combinedModalities

Goal State ?, 0,≥ 1, 0∨ 4, 0∨ 4, 0∨ 4, 0∨ 4, 0∨ 4, 1, 0∨ 1

Figure 2. The state and action space of the learning agent. The goal state is
reached when all items (that the user may be interested in) have been

presented and the most suitable output modality has been chosen. The goal
state is defined with respect to the state variables above, where question
marks indicate that the variable’s value is irrelevant for reaching the goal

state.

whereQ∗ specifies the expected reward for executing actiona in
states and then following policyπ∗.

3.2 The State and Action Space

The agent’s state space needs to contain all information relevant for
choosing an optimal strategy for multimodal output generation and
an optimal sequence of incremental actions. Figure 2 shows the state
and action space of our learning agent. The states contain information
on the incremental, multimodal and attribute presentationstatus of
the system.

The variable ‘incrementalStatus’ characterises situations in which
a particular (incremental) action is triggered. For example, a
holdFloor is generated when the user has finished speaking, but
the system has not yet finished its database lookup. Acorrection
is needed when the system has to modify already presented in-
formation (because the user changed their preferences) anda
selfCorrection is needed when previously presented informa-
tion is modified because the system made a mistake (in recognition
or interpretation).

The variables representing the status of the cuisine, food,location,
price and service indicate whether the slot is of interest tothe user
(0 means that the user does not care about it), and what input con-
fidence score is currently associated with its value. Once slots have
been presented, they arerealisedand can only be changed through a
correction or self-correction.

The variable ‘userReaction’ shows the user’s reaction to anIP
episode. The user can select a restaurant, provide more information to
further constrain the search or do something else. The ‘userSilence’
variable indicates whether the user is speaking or not. Thiscan be
relevant for holding the floor or generating backchannels.

The focus of this paper lies in the optimisation of multimodal
output generation for incremental IP settings and is represented by
the ‘modalityStatus’ variable and its accompanying actionset ofver-
balOnlyandcombinedModalities(shown in bold-face fonts in Figure
2). The agent will learn to choose the best multimodal outputgenera-
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Verbal Presentation:

I have found the following 

restaurants that match your 

query for Italian food in 

central Edinburgh.

The restaurant Centotre is 

located in George Street and 

serves food in the medium 

price range. The restaurant 

Librizzis is also in the medium

price range. It is located in 

North Castle Street. The 

restaurant Amore Dogs is 

located in Hanover Street. It 

serves ...

Figure 1. Examples of the different modalities we are considering forinformation presentation. The system can choose an exclusively verbal presentation,
and verbalise all restaurant options it retrieved (left-hand side). Alternatively, the system can choose tocombine verbal and visualoutput and present a map of

the area along with a list of possible options and a verbalisation of those options that best match the user’s query (right-hand side).

tion strategy based on the other available variables, in particular with
respect to the (discretised) number of retrieved database hits and the
agent’s user input confidence scores. We do not consider avisualOnly
presentation strategy in this paper, since this action was never chosen
by human users in the Wizard-of-Oz data that underlies our training
environment [20]. In future work, we aim to include such a presenta-
tion strategy and investigate its impact within our framework.

The complete state-action space size of this agent is roughly 10
million. The agent reaches its goal state (defined w.r.t. thestate vari-
ables in Figure 2) when a multimodal output IP strategy has been
chosen and all relevant attributes have been presented.

3.3 The Simulated Environment

We train our learning agent in a simulated environment with two
components, one for estimating user reactions to multimodal IP
strategies and one for simulating dynamically updated input hypothe-
ses within the incremental dialogue setting.

The first component deals with estimating user reactions to amul-
timodal information presentation strategy which containsthe op-
tions verbalOnlyandcombinedModalities. This simulation compo-
nent was trained from data (using the simulation described in [20] )
and represents user reactions as bi-grams of the formP (au,t|IPs,t),
whereau,t is the predicted user reaction at timet to the system’s IP
strategyIPs,t in states at timet. We distinguish the user reactions
of selecta restaurant,addMoreInfoto the current query to constrain
the search andother.

While the multimodal IP strategies can be used for incremental
and non-incremental output generation, the second part of the simu-
lation deals explicitly with the dynamic environment updates during
an interaction. We assume that for each restaurant recommendation,
the user has the option of filling any or all of the attributescuisine,
food quality, location, price rangeandservice quality. The possible
values of each attribute and possible confidence scores are shown in
Table 1 and denote the same as described in Section 3.2.

At the beginning of a learning episode, we assign each attribute a
possible value and confidence score with equal probability.For food
and service quality, we assume that the user is never interested in
bad food or service. Subsequently, confidence scores can change at
each time step. (In future work these transition probabilities will be
estimated from a data collection, though the following assumptions
are realistic, based on our experience.) We assume that a confidence
score of0 changes to any other value with a likelihood of0.05. A
confidence score of1 changes with a probability of0.3, a confidence
score of2 with a probability of0.1 and a confidence score of3 with
a probability of0.03. The new states that the agent makes a tran-
sition into are uniformly distributed. Once slots have beenrealised,
their value is set to4. Verbally presented slots cannot be changed
then without an explicitly verbalised self-correction. Weassume that
realised slots change with a probability of0.1. If they change, we
assume that half of the time, the user is the origin of the change (be-
cause they changed their mind) and half of the time the systemis
the origin of the change (because of an ASR or interpretationerror).
Each time a confidence score is changed, it has a probability of 0.5 to
also change its value. The resulting input to the NLG component are
data structures of the formpresent(cuisine=Indian), confidence=low.

Attribute Values Confidence
Cuisine Chinese, French, German, In-, 0, 1, 2, 3, 4

dian, Italian, Japanese, Mexi-
can, Scottish, Spanish, Thai

Food bad, adequate, good, very good 0, 1, 2, 3, 4
Location 7 distinct areas of the city 0, 1, 2, 3, 4
Price cheap, expensive, good-price-

for-value, very expensive 0, 1, 2, 3, 4
Service bad, adequate, good, very good 0, 1, 2, 3, 4

Table 1. User goal slots for restaurant queries with possible valuesand
confidence scores.
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3.4 The Reward Function

The main trade-off that the learning agent needs to optimiseis to find
the best multimodal information presentation strategy given the num-
ber of database hits for the user’s query and the confidence scores
held for attributes that represent the user’s preferences.To learn an
action policy for this problem, we use the reward function suggested
by [20], which was induced from human data using a multiple linear
regression analysis. It aims to optimisetask ease, which is a com-
bined value of the metricsThe task was easy to solveand I had no
problems finding the information I wanted. Human users had origi-
nally assigned scores to these metrics in a Wizard-of-Oz study. 2 The
reward function is defined as follows.

R =







−20.2 × dialogueLength+
11.8 × taskCompletion+
8.7 × multimodalScore.

(2)

The value fordialogueLengthhere corresponds to the number of
dialogue turns until the user has selected a restaurant. Thevalue for
taskCompletionis a discretised score indicating whether the system
has been able to successfully make a restaurant recommendation. It
is +10 if the user selects a restaurant and−10 otherwise. The value
multimodalScore, finally, indicates the appropriateness of the chosen
presentation strategy estimated from human behaviour in a Wizard-
of-Oz study, please see [20] for details. The score is related to the
number of database hits presented using each modality through curve
fitting. This technique selects the most likely model for thedata based
on function interpolation. In terms of rewards for a multimodal (or
combined) output, it yields a quadratic function that assigns a max-
imal score to a strategy displaying14.8 items. This number corre-
sponds to the curve inflection point. For an exclusively verbal pre-
sentation, the reward is computed based on a linear functionwhich
assigns negative scores to all presented items≥ 4.

Rewards according to Equation 2 are assigned at the end of an
episode, which stretches from the moment that a user specified their
initial restaurant preferences to the moment in which they choose a
restaurant (or reject all presented choices). In addition,we assign a
number of rewards during the course of an episode that are directed
at the incremental dialogue setting. The agent receives a reward of
0 whenever the user adds more information to the query, a reward
of −10 for generating a (verbal or partially verbal) self-correction,
−0.5 for holding the floor and an increasing negative reward for wait-
ing waiting time2 (to the power of two), in terms of the number of
time steps passed since the last item was presented. This reward is
theoretically−∞ so that the agent is penalised stronger the longer it
delays to begin the information presentation phase. Using this reward
function, the agent was trained for10 thousand learning episodes.

4 Experimental Results

After training, the agent has learnt the following strategyfor multi-
modal output generation in an incremental dialogue setting. It will
choose an exclusively verbal presentation strategy whenever the
search has returned few items (up to four) and the confidence in their
values is relatively high (or at least medium). For a medium number
of items to present (i.e. more than four but less than 30), theagent

2 Note that even though our setting is not identical to the one used by [20],
we assume that the reward function is to an extent transferable to our do-
main, which is also a slot-filling application with relatively short episodes.
In the future, we aim to learn a separate reward function thatis specifically
tailored towards our incremental setting.

will choose a combined strategy of verbal and visual output if its con-
fidence in the requested attributes is relatively high. If its confidence
is low, it will first only display visual information and delay the ver-
bal presentation as long as possible, waiting for confidencescores to
stabilise. The same is true for a large number of items to present. In
other words, the agent learns to prefer to include visual information
whenever it is not confident (enough) of its current user input hy-
potheses. In this way, it is able to increase its dialogue efficiency be-
cause users are given a chance to restate their preferences when they
realise (through a visual display of the system’s input hypotheses)
that the system is currently working with a wrong input hypothesis.
The agent is also able to reduce the number of its own verbal self-
corrections (because visual displays can be updated without the need
for an explicit correction). Note that due to our incremental setting,
the multimodal presentation will typically precede the verbal presen-
tation in order not to interrupt the user while they are stillspeaking.
The system will thus present visual displays representing its current
best hypothesis of the user’s input and then, once the user has fin-
ished speaking, present the retrieved restaurant items verbally.

We designed three baselines to compare our approach with. The
first baseline chooses among output modalities randomly, wecall this
baselineRandomBase. This baseline was designed to test whether
modality allocation has an impact on task ease, at all. The second
baseline was designed to compare our multimodal approach with
a system that presents information only verbally. This baseline was
used to test whether the visual information that is displayed during
processing to inform the user about the system’s current hypothe-
ses was indeed helpful to increase task ease and reduce the num-
ber of dialogue turns and system self-corrections. We call this base-
line VerbalBase. Finally, we designed a third baseline which always
presents information combing verbal and visual information. We call
this baselinecombinedBase. This baseline tests the added value of
incremental modality allocation. Note that all systems, including the
baselines, learn to optimise the order of information presentation (as
described in [7]) and therefore have a learning curve.

Figure 3 shows the learning curves for the learnt policy and the
baselines and compares them according to their average reward (av-
eraged over ten sample runs). The average reward attained byeach
policy defines their degree oftask easeas specified in the reward
function. As expected,RandomBaseperforms worst and is outper-
formed by the learnt policy by44.8% (p < 0.0001, according to
a t-test). The low performance of this baseline is likely dueto its
multimodal allocation actions not being sensitive to the number of
retrieved database hits nor to the agent’s current confidence scores of
incoming user input. While the other two baselines also shownon-
optimal behaviour, their action policies are at least consistent, which
in the long run gives them a higher chance of choosing an appropriate
modality ‘by chance’.

VerbalBase, which presents all information verbally, performs
15.2% worse than the learnt policy (p < 0.0001). Again, this base-
line fails to take the number of retrieved database hits intoaccount.
What is worse, though, is that the policy at times starts presenting
results when it is still not confident enough in the user’s preferred
values. It may thus start to present wrong information to theuser
and eventually be forced to self-correct, which incurs a high nega-
tive reward. While the system has the option to delay the information
presentation phase as much as possible by choosing towaitMore, the
waiting action also incurs an increasing negative reward which even-
tually forces the agent to start its verbal presentation.

CombinedBase, which always combines multimodal and verbal
output, finally performs only9.9% worse than the learnt policy
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(p < 0.0001) and is therefore the best performing baseline. The rea-
son is that this baseline is only affected by a non-optimal multimodal
allocation, but significantly less by the problem of low confidence in
user input hypotheses. The combined modality policy has theoption
of holding back the verbal presentation until it is confidentin its in-
put hypotheses, and is free to modify its visual presentation as much
as possible, since a visual display does not need to be self-corrected
verbally (and thus does not incur the negative reward associated with
a verbal self-correction).3 The primary source of negative rewards
in this setting is therefore the suboptimal multimodal strategy cho-
sen when compared to the human strategies preferred in the Wizard-
of-Oz study, based on which we trained our simulation and reward
function.
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Figure 3. Learning curves indicating the average rewards, i.e. the average
degree of task ease, attained by each policy.

5 Discussion

This paper has presented a preliminary investigation into how multi-
modal output generation can be integrated into incrementaldialogue
systems that process user input and plan system output in a parallel
fashion. Our considerations here have been guided by how thetask
easeof a possible restaurant recommendation application for mo-
bile devices can be optimised, in particular by increasing dialogue
efficiency by multimodal display and reducing the number of verbal
self-corrections that are caused by dynamically changing user input
hypotheses. As is the nature of a proof-of-concept study, results are
preliminary and so far based on simulation only. A variety ofexten-
sions of this work are possible. Importantly, we have not considered
the restrictions that properties of the physical situation, the user or
the particular application may pose on the choice of output modality,
In in-car applications, for example, if we have indication of a high
cognitive load or stress level (e.g. the eyes are fixed on the street)
as in [9], the system could delay the presentation until a more suit-
able situation arrives and, simultaneously, mark the delayby a hesita-
tion signal such as a turn holder. Similarly, we have left thequestion
of user input modalities unaddressed and assumed that usersalways
provide speech input.

The physical location of the user can have an impact on the pre-
ferred output modality in several ways. In crowded places, for in-
stance, the system (and the user) may prefer a multimodal display
due to the noise conditions that are likely to affect ASR results. Sim-
ilarly, the system may take the user’s current GPS position into ac-

3 While we did not restrict the number of visual updates in thissetting, in
practice, such a restriction may be necessary in order not toconfuse users.

count for its database lookup and prefer restaurants that are located
close to the user’s current location.

In terms of restrictions posed by the user, it is well known that
individual users differ with respect to their specific preferences with
regard to semantic [25] and lexical-syntactic [26] choicesin language
production. There is thus reason to expect that individual users will
also have preferences for certain output modalities, some preferring
verbal presentations, some visual output and combinationsof differ-
ent sorts. As a system ‘gets to know’ its user better, it may there-
fore want to increasingly take its particular user’s preferences into
account when choosing an output modality.

In addition, certain applications may themselves restrictthe pos-
sible input and output modalities that a system can rely on. Many
hands-freeandeyes-freescenarios, such as an in-car mobile device,
require the user to use speech only, or buttons that are manufactured
into the steering wheel, to specify their search queries, and at the
same time, should not be followed by multimodal output of thesys-
tem that may require the driver to take their eyes off the traffic. On
the other hand, previous work has shown that noisy ASR can distract
drivers just as much [14], so that finding an appropriate multimodal
output combination could amount to a challenging task.

There is also no obvious reason to restrict the user’s input modal-
ities to speech only. Instead, previous work has shown that acom-
bination of speech and text input can lead to more efficient interac-
tions when users are allowed to (incrementally) modify their search
queries and retrieved results [13]. This can lead to decreased mental
demand, perceived effort and level of frustration.

Finally, we have not paid explicit attention to the synchronisation
between the different modalities, but have rather assumed that since
output modalities are decided at the micro-turn level, theywill au-
tomatically synchronise at the level of the utterance. While for the
present (simulation-based) study, this has not presented aproblem, it
needs to be determined whether in practice a more principledmech-
anism for synchronisation is needed. An interesting direction, for ex-
ample, could be to insert location points of restaurants on amap grad-
ually, as they are presented as speech output in parallel.

6 Conclusion and Future Directions

This paper has presented a proof-of-concept study for optimising
multimodal output generation for information presentation for incre-
mental dialogue systems, i.e. systems that perform processing of user
input and planning of system output in a parallel fashion. Inpartic-
ular, we have used Reinforcement Learning to optimise themulti-
modal allocationof our system, that is, to find an optimal combina-
tion of modalities for every given context. Preliminary results based
on a partially data-driven user simulation are promising. They in-
dicate that the agent is able to optimise its modality allocation by
choosing an exclusively verbal presentation strategy for few search
results and relatively high confidence scores in user input hypothe-
ses. Alternatively, the agent can choose a strategy that combines vi-
sual and verbal output for a higher number of search results or sit-
uations involving low confidence scores in user input hypotheses.
In this way, the resulting dialogues have gained intask ease, which
was suggested by significantly higher rewards, shorter dialogues and
fewer self-corrections which our system produced in comparison to
a number of hand-crafted baselines.

In future work, we would like to extend our suggested model and
re-train it using a fully data-driven simulated environment and re-
ward function based on a data collection that explicitly addresses
incremental discourse phenomena. This would allow us to explicitly
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take the real-time nature of our model into account and not only es-
timate how input confidence scores change over time, but alsohow
user behaviour changes through the incremental nature of our dia-
logue framework.

Further possible directions include the use of multiple user input
modalities, adaptation to individual users during an interaction us-
ing online learning and a comprehensive evaluation of our suggested
method using human users in a real-world setting. A further possibil-
ity is a data collection in an incremental multimodal setting to learn
more about the effects of combining incremental processingand mul-
timodal output generation on human-computer interaction.
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Learning Hierarchical Prototypes of Motion Time
Series for Interactive Systems

Ulf Großekathöfer1 and Shlomo Geva2 and Thomas Hermann1 and Stefan Kopp1

Abstract. For interactive systems, recognition, reproduc-
tion, and generalization of observed motion data are cru-
cial for successful interaction. In this paper, we present a
novel method for analysis of motion data that we refer
to as K-OMM-trees. K-OMM-trees combine Ordered Means
Models (OMMs) a model-based machine learning approach
for time series with an hierarchical analysis technique for
very large data sets, the K-tree algorithm. The proposed
K-OMM-trees enable unsupervised prototype extraction of
motion time series data with hierarchical data representation.
After introducing the algorithmic details, we apply the pro-
posed method to a gesture data set that includes substan-
tial inter-class variations. Results from our studies show that
K-OMM-trees are able to substantially increase the recogni-
tion performance and to learn an inherent data hierarchy with
meaningful gesture abstractions.

1 Introduction

Organizing complex (body) motion data is a challenging task
in todays robots/virtual agents research. Even thought robots
and agents are equipped with reliable sensing technology such
as time-of-flight cameras, tactile sensor grids, etc., the abil-
ity to coordinate and categorize observed motion data is still
far behind. When humans perform meaningful body motions
such as arm gestures, human observers are easily able to incre-
mentally and abstractly structure arising gestures by common
characteristics as orientation, shape, size, velocity etc. In ad-
dition, humans reproduce these gestures with their own body
according to the learned structure. Furthermore, a human ob-
server is capable to rapidly generalize from these characteris-
tics and recognize a gesture’s abstract meaning independently
from its orientation, size, velocity, shape etc. This is, for ex-
ample, the case in humans that communicate by means of sign
language signs: the interactants are able to recognize, struc-
ture, and reproduce sign gestures, whereby they make sense
of their observations in an incremental way, eventhough sign
language signs cover substantial inter-personal variations.

Thus, in order to benefit from advanced sensing technolo-
gies, computer systems, robots, or agents are confronted with
various technical challenges: (1.) data organization, i.e., in
what way the observations are structured and how motion

1 Cognitive Interaction Technology Center of Excellence (CITEC),
Bielefeld University, Germany, email: ugrossek@techfak.uni-
bielefeld.de

2 Queensland University of Technology, Brisbane, Australia, email:
s.geva@qut.edu.au

abstractions are represented, (2.) rapid, on-line and adaptive
processing of observed motions, i.e., to incrementally update
the data model if new observations arrive, (3.) reproduction
of motion data. i.e., to allow computer systems to learn body
motion and motion abstractions by imitation. In this paper,
we understand body motions as multivariate time series of
sensor values. For analysis of those sensor values, we present
K-OMM-trees – a machine learning approach that is able to
(1.) extract meaningful prototypes of body gesture data in
an unsupervised manner, (2.) hierarchically represent these
prototype gestures, and (3.) in principal, incrementally up-
date the learned structure as new observations arrive. We ap-
ply K-OMM-trees to data sets related to gesture recognition.
After discussing existing approaches to learning of body mo-
tions in Section 2, we introduce the K-OMM-trees algorithm
in Section 3. Then, we present our gesture study and discuss
the results in Section 4, followed by a conclusion in Section 5.

2 Related Work

In this paper, we represent body motion data as multivariate
time series, i.e., as multi-dimensional variables that vary in
time, for example, as location and orientation coordinates of
body parts such as hand wrists, and/or additional features
such as joint angle, pen pressure, etc. Representing gestures
and body motions as multivariate time series induces various
technical demands, and, therefore, algorithms have to con-
sider the particular properties of this data type. Challenges in
analysis of time series concern observations of variable lengths
and non-linear compressions or expansions of the time axis;
the application of standard machine learning algorithms to
time series data can be difficult and likely requires a data
pre-processing that might induce information losses. As a con-
sequence, the analysis of time series requires specialized tech-
niques such as dynamic time warping (DTW, [3]).

A common approach for representation and generation of
motion data are Hidden Markov Models (HMMs) [13, 14, 17,
20]. HMMs have been applied to representation of body mo-
tions, e.g., Calinon et al. [2] used HMMs together with Gaus-
sian mixture regression to generalize motion demonstrations
during reproduction. Inamura et al. [11] applied HMMs to
both recognition and generation of full body behavior; Amit
and Mataric [1] implemented gesture imitation learning based
on preprocessed and abstracted time series of joint values. Or-
dered Means Models (OMMs) as an easy-to-use approach for
gesture data recognition and generation have been introduced
lately [8, 9, 10, 21]. OMMs are based on a simple model ar-
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chitecture that allows a computationally efficient training of
time series data. In addition, OMMs are able to capture and
explicitly represent relevant characteristics of an underlying
time series distribution, and their model parameters can be
fully analyzed in terms of a prototype representation in the
original motion space [9].

3 K-OMM-trees

In this paper, we use a novel algorithmic approach to unsu-
pervised organization of body motion data, which we refer to
as K-OMM-trees. K-OMM-trees are hybrids of OMMs and
K-trees. After introducing the OMM-algorithm, we will out-
line a clustering approach for motion time series (K-OMMs),
and, finally, present the K-OMM-tree algorithm.

3.1 Ordered Means Models

An ordered means model (OMM) is a generative, discrete
state space model that emits a time series out of an adjustable
number K of model states. In an OMM, only transitions to
states with equal or higher indexes as compared to the cur-
rent state are allowed, i.e., the network of model states and
state transitions follows a left-to-right topology.

Let O = o1 . . .oT be a (multivariate) time series of ob-
servation vectors with ot ∈ Rd. Given the above model
structure, an OMM is defined by a set of emission densi-
ties B = {bk(ot)}, each of which is associated with a partic-
ular state. To model the emission densities we use Gaussian
densities bk(ot) = g(ot;µk, σ), where σ is identical in all
states and is used as a global hyper-parameter.

The global standard deviation and the left-to-right model
topology gives rise to models that are mainly defined by a
linear array of reference vectors [µ1 . . .µK ], i.e., the location
parameters of the emission densities.

In principle, OMMs require the definition of an explicit
length distribution P (T ) either by domain knowledge or by
estimation from the observed lengths in the training data
which may not be possible due to missing knowledge or non-
representative lengths of the observations. We assume a flat
distribution in terms of an improper prior according to equally
probable lengths. For a given length T , we define each valid
path qT = q1 . . . qT through the model to be equally likely:

P (qT |Ω) =

{ 1
MT
· P (T ) if q1 ≤ q2 ≤ .. ≤ qT ,

0 else
(1)

where MT is the number of valid paths for a time series of
length T through a K-state model:

MT = |{qT : q1 ≤ q2 ≤ · · · ≤ qT }| =
(
K + T − 1

T

)
. (2)

The likelihood to observe the time series O for a given
path qT and a model Ω then is

p(O|qT ,Ω) =
T∏
t=1

p(ot|qt,Ω) =
T∏
t=1

bqt(ot). (3)

The likelihood to observe the time series O and a path qT for
a given model Ω is

p(O,qT |Ω) = p(O|qT ,Ω) · P (qT |Ω) (4)

and the overall production likelihood for a time series of
length T corresponds to the sum of all possible paths in Eq. 4

p(O|Ω) =
∑
qT

p(O,qT |Ω). (5)

3.1.1 Differences to HMMs

A well-known limitation of HMMs is that the state dura-
tion probabilities are geometrically distributed, which might
not be compatible to a particular distribution found in a set
of observations. For example, the temporal characteristics of
speech are not well represented by a geometric distribution as
modeled by standard HMM approaches [12, 15, 17]. To cir-
cumvent this restriction, various approaches have been pro-
posed that incorporate the state duration into the model defi-
nition. E.g., Hidden Semi-Markov Models such as Explicit Du-
ration HMMs (EHMMs) introduced by Ferguson [6] and the
Continuously Variable Duration HMMs (CVDHMMs) from
Levinson [15], replace the transition probabilities by an ex-
plicit state duration distributions. Other approaches, such as
Variable Transition HMMs (VTHMMs, e.g. [19]), model the
transition probabilities as a function of the elapsed duration,
while Expanded State HMMs (ESHMMs) define sub-HMMs
in each state that share the same emission densities. How-
ever, none of these approaches reduces the overall complexity
of Hidden Markov Models.

In contrast, the radically simplified model design of OMMs
leads to implicitly modeled duration probabilities. Here, the
probability Pk(τ) to stay τ time steps in state k depends on
the sequence length T and the number of model states K.
Considering the combinatorics of the path generation process
(see Eq. 1 and Eq. 2), the duration probability distributions
of OMMs follow

Pk(τ) =

(
T+K−2−τ

K−2

)(
T+K−1
K−1

) , (6)

with an expected value of the state duration of T
K

.

3.1.2 EM-Training

To learn the model parameters µk from a set of N example
sequences O = {O1, . . . , ON}, we maximize the log-likelihood

L =
N∑
i=1

ln p(Oi|Ω) (7)

with respect to the mean vectors µk.
To solve this optimization problem, we use an iterative ap-

proach that is similar to Baum-Welch training of HMMs. The
optimization implies a training scheme based on the expecta-
tion maximization algorithm (cf. [5]) where we first compute
the responsibilities

rik,t =
p(Oi, qt = k|Ω)

p(Oi|Ω)
(E-step) (8)

and then re-estimate the model parameters according to

µk =

N∑
i=1

T∑
t=1

rik,t · oit
N∑
i=1

T∑
t=1

rik,t

(M-step). (9)

These two steps are repeated until convergence.

Ulf Großekathöfer, Shlomo Geva, Thomas Hermann and Stefan Kopp

38



Figure 1. Here, six randomly selected gestures from the used data set are shown. The 3-dimensional trajectories are mapped to the
x/y-axis; the color indicates the time during execution (from “blue” to “red”).

3.1.3 Efficient Computation of Production Likelihoods
and Responsibilities

To compute the production likelihood (Eq. 5) and the respon-
sibilities (Eq. 8) in a computationally efficient way, we use a
dynamic program similar to the forward-backward algorithm
known from HMMs [17]. Therefore, we define the forward vari-
able according to

αk,t = αk,t−1 · bk(ot) + αk−1,t ∝ p(o1..ot|qt ≤ k,Ω). (10)

Note that the current αk,t depends only on the variable val-
ues of the previous state k − 1 and of the previous point in
time t− 1. This yields an elegant and fast dynamic program-
ming solution:

αk,t = αk,t−1 · bk(ot) + αk−1,t (11)

that is initialized with αk,0 = 1, and α0,t = 0. In a similar
way we can compute the backward variable

βk,t = βk,t+1 · bk(ot) + βk+1,t ∝ p(ot..oT |qt ≥ k,Ω) (12)

by means of recursion, initialized with βk,T+1 = 1 and
βK+1,t = 0. Note that the terminal values for the forward and
backward variables are equal and proportional to the produc-
tion likelihood:

αK,T = β1,1 ∝ p(O|Ω). (13)

By combination of equation 10 and 12 the responsibilities can
be computed by

rk,t =
αk,t−1 · bk(ot) · βk,t+1

αK,T
. (14)

3.2 Identification of Time Series
Prototypes

An OMM Ω is completely represented by a linear array of
reference vectors Ω = [µ1, . . . ,µK ], which corresponds to the
location parameter of the emission distributions. Since the
location parameter are elements of the same data space as
the observed data examples, the series of reference vectors is
fully interpretable as a time series prototype. This affords the
reproduction ability, by simply traversing the model in left-
to-right order. Please see our paper [9] for further details and
demonstrations.

To use OMMs for unsupervised identification of a set of
time series prototypes, we use (1) an adjusted K-means ap-
proach, and (2) a hierarchical clustering technique for time
series that we refer to as K-OMM-trees.

3.2.1 K-OMMs

To discover a set {Ω1, ..,ΩK} of such time series prototypes in
an unsupervised manner, we adapted a K-means procedure,
in which we replace the cluster centroids by OMM proto-
types and apply the production likelihood p(O|Ω) as a dis-
tance function.

K-means clustering is a commonly used method to parti-
tion a set of observations into K groups [16] that, ideally,
are associated by a common quality. The general idea of K-
means is to minimize an objective function that accumulates
the distances between each observation Oi and a prototype Cj

(often called ”cluster centroid” or ”cluster means”) to which
it is assigned to. If the observations are (multi-variate) time
series, then specific time series distance functions and centroid
representations are necessary. To apply OMMs to clustering
analysis, a natural distance function between a sequence Oi

and a model Ωj is defined by the negative production log-
likelihood

d(Oi,Ωj) = − ln p(Oi|Ωj). (15)

By this, the objective function of K-OMMs accumulates the
likelihoods that the sequence Oi has been generated by the
model Ωj , which is used as the centroid. Again, the discovered
K prototypes that function as centroids can be interpreted as
time series prototypes for the set of associated time series.
The update function in such an approach is a re-training of
the models according to the assigned time series. Note that
in case of K-means the number of prototypes K has to be
determined by an external process, e.g., the elbow method.

3.2.2 K-OMM-trees

To enable hierarchical identification of time series prototypes,
we use K-OMM-trees—an approach of which the structural
properties are similar to those of K-trees [4, 7]. Generally,
K-trees are height balanced clustering trees that combine
classical K-means and B+-trees algorithms to highly time-
efficient clustering trees. A K-tree of order m is defined as
(cf. [7]):

1. All leaves are on the same level.
2. All internal nodes, including the root, have at most m

nonempty children, and at least one nonempty child.
3. Clusters centroids act as search keys.
4. The number of keys in each internal node is equal to the

number of its nonempty children, and these keys partition
the keys in the children to form a nearest neighbor search
tree.

5. Leaf nodes contain observations.
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Figure 2. This figure shows the cross validation accuracy of for varying number of model states K (a), varying order of the
K-OMM-tree (b), as well as varying variance parameter σ (c).

The time complexity of building K-tree is O(n logn).
To enable hierarchical analysis of time series by means of

K-OMM-trees, we use a hybrid of K-OMMs clustering and
K-trees in which the nodes of the tree are represented by
OMM prototypes and the leafs hold the time series examples.
The process of building a K-OMM-tree is similar to the build-
ing of a K-tree. However, in contrast to euclidean distances,
we use the negative log-likelihood (cf. Eq. 15) as a distance
function and re-train the OMM prototypes if a new time se-
ries is added to a branch. Since OMM are represented by an
ordered array of reference vectors and are, therefore, time se-
ries themselves, it is possible to build “OMMs of OMMs”, i.e.,
to train a model for a set of models. This unique property en-
ables a fast training of K-OMM-trees: for nodes that contain
sub-trees it is possible to build an OMM representation out
of the OMM representations from the level below.

Building a K-OMM-tree is a dynamic process that inserts
time series on-line, as they are observed. Consider an already
existing K-OMM-tree of order m to which an additional time
series O is presented for insertion. The insertion procedure is:
Firstly, the tree is searched to identify the node that contains
the time series nearest neighbor. If this node stores less than
m —the tree’s order— observations, O is inserted as a leaf.
Since this insertion changes the cluster structure, the parent
nodes up to the root node must update their search keys in
terms or re-computing their OMMs. When a leaf stores m+1
time series, it can not contain any more observations. It then is
split by applying the K-OMMs-algorithm with two clusters to
the m+1 elements of that node. The resulting OMMs become
the search keys for two new child nodes, each containing the
associated vectors. Now consider that the parent of this new
nodes contains m + 1 search keys after the splitting process,
too. Then it also has to be split, replacing itself in its parent
by the two new child nodes. This process is repeated in a
similar manner until a node with less than m search keys is
reached, or the root node is replaced by a new root node.
The procedure of building a K-OMM-tree is initialized with
an empty root node and just one leaf.

3.3 Classification with OMMs and
K-OMM-trees

To use OMMs for classification, i.e., to assign an unseen ges-
ture to one of J classes, J class-specific models are firstly esti-
mated from the data. Assuming equal prior probabilities, an
unknown gesture O is assigned to the class associated with the

model that yields the highest production likelihood p(O|Ω).
In case of K-OMM-trees, all models Ω that are related to the
tree and represent the tree’s nodes, are used for classification.

4 Experiments

To demonstrate the capabilities of our algorithm, we de-
signed an application setup that is optimized towards im-
itation learning during human-agent interaction. The scene
comprises a virtual agent that learns gesture classes by means
of a human demonstrator. In this study, we investigated the
following research questions:

1. Does the unsupervised learned structure of K-OMM-trees
support recognition of unseen gestures?

2. What influence do the chosen K-OMM-treehyper-
parameters have on the performance?

3. Do the learned OMM prototypes of K-OMM-trees provide
a model for gesture reproduction?

The setup comprises a time-of-flight camera, a marker-free
tracking software and a humanoid virtual agent called Vince.
The time-of-flight camera (a SwissRangerTM SR40003) cap-
tures the scene in 3d at a frequency of ≈ 30 fps. The scene
data are used by the software iisuTM 2.04 to map a human
skeleton on the present user in the scene. We extract the rel-
evant information of the skeleton, such as the user’s height,
spatial positions of the wrists and the center of mass to com-
pute the normalized 3d positions of the wrists with respect
to the user’s body size. Within a body-correspondence-solver
submodule, the wrists’ positions are transformed (rotated and
scaled) from the coordinate system of the camera to egocen-
tric space of the virtual agent which stays face-to-face to the
human demonstrator. In the current study we focus on the
right wrist and record these data as time series for each per-
formed gesture. During data acquisition, Vince imitates the
subject’s right hand movements in real time. In this way, the
demonstrator receives visual feedback on how Vince would
perform those gestures. It is worth noting that the ambigu-
ous position of the elbow at each time step is not captured
but computed with the aid of inverse kinematic [18].

Overall, 520 examples were captured in the format of 3d
wrist movement trajectories with time stamps. Each trajec-
tory starts from and ends at the rest position of the right

3 http://www.mesa-imaging.ch
4 http://www.softkinetic.net
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Figure 3. These plots illustrate the OMM prototypes that correspond to one branch of the learn K-OMM-tree for the class “circle”.
The plots are related to child-nodes from left to right, i.e., the left-most plot is on the tree’s root level, the second plot on level 1 and so
forth. The right plot shows a gesture performance in a leaf. Please note, that we used all 3 location coordinates in the training process;
these figures only plot the x/y-coordinates. The trajectories are mapped on the x/y-axis; the color indicates the development in time

(from “blue” to “red”).

hand, whereas the gestures were demonstrated at different ve-
locities and require an average execution of 4.75 seconds. The
performed gestures are collected in nine abstract classes that
range from conventional communicative gestures (“waving”,
“come here” and “calm down”) over iconic gestures (“cir-
cle”, “spiky”, “square”, “surface” and “triangle”) to deictic
gestures (“pointing”). These gestures have been performed
with respect to some of the following variant features: size
(e.g. small and big circle), performing space (e.g. drawing a
circle at the right side or in front of oneself), direction (clock-
wise or counter-clockwise), orientation (horizontal or verti-
cal), repetition (repeating some subparts of the movement,
such as drawing a circle once or twice, or swinging the hand
for several times during waving). Figure 1 illustrates six ran-
domly selected gestures from the “circle” class. The gestures
in the plots are mapped to the x/y coordinates.

We divided the data set into a training and a test set.
Thereby, the data set that is used for training contains ap-
proximately two-thirds of all examples (362 gestures). The
remaining 147 gesture performances were used for testing.

We used K-OMM-trees for classification of these abstract
gesture classes. For comparison, we also tested the data set by
means of an OMM- and an HMM-based classifiers. The HMM
incorporates similar properties as the used OMMs, i.e., left-
to-right topology and a global standard deviation parameter
σ that is used as a hyper-parameter. We applied an iden-
tical procedure to all classifiers. Firstly, we identified opti-
mal hyper-parameters by means of 5-fold cross validation We
chose equal values for the hyper-parameters: the number of
model states wasK ∈ {3, 5, 10, 20, 50}; the set of values for the
standard deviation parameter was sigma ∈ {0.5, 1.0, 1.5, 2.0}.
In case of K-OMM-trees, we additionally chose five values for
the tree’s order m ∈ {3, 4, 5, 7, 10}. Subsequently, we trained
a classifier using all training data and the hyper-parameter
combination that is associated with the lowest cross validation
error. To obtain the final error rate, we applied the resulting
classifiers to the dedicated test data set.

In addition, we examined the resulting OMM parameters
that represent the tree’s nodes, as well as the emerging tree
structure.

4.1 Results and Discussion

Table 1 displays the results from the classification exper-
iments. In terms of cross validation and test set accu-
racy, K-OMM-trees classifiers clearly outperform OMM- and

Method K σ order cv accuracy
test set
accuracy

K-OMM-trees 50 0.47 3 0.95 0.91
HMMs 51 0.47 - 0.76 0.81
OMMs 50 0.47 - 0.73 0.74

Table 1. This table denotes the results from the classification
experiments of the arm-gesture data set for all evaluated

methods. In detail, the hyper-parameters (number of model states
K, the variance parameter σ, and the order of the K-tree m) as

well as reached cross validation accuracy and test set accuracy are
shown.

HMM-based classifiers by up to ≈ 22%. While K-OMM-trees
achive a test set accuracy value of ≈ 0.91, OMM reach ≈ 0.74
and HMMs ≈ 0.81. Similarly, the cross validation accuracy
of K-OMM-trees is with ≈ 0.95 substantially higher than the
cross validation accuracy of OMM classifiers (≈ 0.73) and
HMM classifiers (≈ 0.76).

These results indicate that the hierarchical structure of
K-OMM-trees induce a superior data representation, at least
if, as given with the evaluated gesture data, the data set com-
prises a wide inter-class variability.

Figure 2 illustrates the influence of the chosen hyper-
parameters for K-OMM-trees on the achived cross validation
accuracy. Each plot displays the dependency of one varying
hyper-parameter while both remaining parameters are fixed.

Here, only a varying order m leads to substantially varying
cross validation accuracy. The K-OMM-tree classifier yields
an accuracy of ≈ 0.29 with an order m = 10. In contrast,
changes of the variance parameter σ are almost without conse-
quences: here, σ = 1.125 yields the lowest accuracy of ≈ 0.93 –
only ≈ 0.02 lower than the highest accuracy achived by a
classifier trained with σ = 0.47. Lastly, variations in the num-
ber of model states K induces small changes in cross valida-
tion accuracy; in particular small K values lead to decreased
classification performances, e.g., a K-OMM-tree classifier with
K = 3 model states yields an accuracy value of ≈ 0.79. The
fact that an increased tree’s order m leads to considerable
decreases in accuracy might originate in a well-suited rep-
resentation of the data with lower order. This is very likely
different for other data domains.

Figure 3 shows graphical representations for one branch
of the tree associated to class “circle”. The branch ranges
from the root node (sub-figure (a)) to an actual gesture in a
leaf (sub-figure (f)), i.e., the first 5 plots show OMM proto-
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types that represent the tree’s nodes and the last plot illus-
trates an “circle” gesture that was used for training of the
K-OMM-tree.

These plots suggests that K-OMM-trees are able to hier-
archically organize gesture trajectories whereby higher levels
are associated to more abstract gestures and lower nodes are
connected to more specific gesture performances. Addition-
ally, the plots indicate that the learned hierarchical represen-
tation reflects an inherent data taxonomy. I.e., the models in
figure 3 are related to gestures that are performed clockwise,
another branch of the tree contains counter-clockwise circles,
etc.

5 Conclusion

In this paper we have presented an approach for learning and
organizing gesture trajectories. Using K-OMM-trees our ap-
proach is able to learn how to organize gestures hierarchically
and to use this hierarchy for recognition and reproduction of
gestures. The results from our classification experiments show
that K-OMM-trees are able to recognize gesture data with
substantial higher accuracy than traditional classifiers. We are
thus poised to believe that the combination of improved ac-
curacy and hierarchical data representations that yield direct
interpretable gesture prototypes and prototype abstractions
make K-OMM-trees a well-suited method for interactive sys-
tems. Interestingly, the number of OMM model states as well
as the variance hyper-parameter of OMMs have almost no
influence on the classification performance of K-OMM-trees.
Only variations in the tree’s order leads to considerable de-
creases in accuracy. This conforms our analysis of the evolving
data representation of K-OMM-trees which showed that the
learned hierarchical structure reflects an inherent structure in
the time series data. Thereby, higher levels in the tree are as-
sociated with more general gesture properties, whereas nodes
closer to the leaves represent more specific gesture features.
It this the extraction of this structure that enables better
learning of instances of interactive behavior.

In our ongoing research we focus on applying the learned
motion hierarchy to imitation learning in human-agent inter-
action scenarios. Additionally, we investigate the application
of K-OMM-trees to further data domains.
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