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PREFACE

AUTONOMOUS AND DECENTRALIZED APPROACHES IN

LOGISTICS

With AILog-2012 the workshop “Artificial Intelligence and Logistics” will
be held for the third time. From the submitted manuscripts we selected 8 papers
for presentation at the workshop after a thorough peer-review process. As in the
previous years we could attract authors covering a wide range of problems and
solution methods. This again shows the difficulty of modern Logistics problems.
There certainly is a need for powerful solution methods, such as AI methods, in
order to successfully cope with the complexity and requirements of current and
future logistic systems and processes. In our opinion, especially decentralized
and autonomous approaches seem to be very promising. In the presented papers
this theme is taken up by many of the papers concerned with supply chain sce-
narios. An inherent geographical as well as organizational distribution of such
processes seems to naturally match the use of decentralized methods such as
multi-agent systems.

We want to thank all the authors for their contributions and the members
of the program committee and the external reviewers (Paul Karaenke, Thomas
Makuschewitz, Fernando J. M. Marcellino, Michael Schuele, Steffen Sowade
and Rinde van Lon) for the substantial and valuable feedback on the submitted
manuscripts. Torsten Hildebrandt again provided significant help in the work-
shop organization. We thank collaborative research centers “SFB/TR 8 Spa-
tial Cognition” and “SFB 637 Autonomous Cooperating Logistic Processes”,
funded by the German Research Foundation (DFG), for their support.

The AILog workshops aim at aggregating a variety of methods and applica-
tions. Being located at the major international AI conferences, we hope for an
intense contact between experts in Logistics and experts in AI in order to trigger
mutual exchange of ideas, formalisms, algorithms, and applications. While this
has been successfully achieved with the previous AILog workshops, we hope
to achieve it with this year’s workshop as well. We are looking forward to an
inspiring exchange of ideas and fruitful discussions in Montpellier.

Lutz Frommberger
Kerstin Schill
Bernd Scholz-Reiter

(AILog-2012 organizers)
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INVITED TALK

SMART FACTORIES AND THEIR IMPACT ON SMART

LOGISTIC SYSTEMS

DETLEF ZÜHLKE, DFKI KAISERSLAUTERN, GERMANY

Factories will face major changes over the next decade. This change is char-
acterized by the keyword ”smart factories”, i.e., the broad use of smart tech-
nologies which we face in our daily life already in future factories. More in
detail this means that factories will benefit from the advances in computer sci-
ences and electronics like cyber physical systems, wired and wireless network-
ing and various AI techniques. The planning and control systems will change
from today’s monolithic and hierarchical structures to more or less open net-
works with a much higher degree of autonomy and self-organization. Because
of these fundamental changes this situation was described in Germany by a new
paradigm ”Industry 4.0” characterizing the changes as the 4th industrial revo-
lution. It is obvious that smart factories will also have a substantial impact on
logistics which must fit into this new world.

In Kaiserslautern a large demo factory called ”SmartfactoryKL” was in-
stalled years ago in close cooperation with many industrial partners. This fac-
tory serves as a realistic testbed for developing and demonstrating new factory
technologies. Close links to the German Research Center for Artificial Intel-
ligence (DFKI) and also the local university allow for the necessary research
actions and offer a unique environment for a beneficial transfer of the research
results to industrial application.

This presentation will describe the experiences gathered by the Smartfactory
consortium over the last years and identify the impact and challenges for future
production systems.

Prof. Dr.-Ing. Detlef Zühlke received the MS in electrical engineering and com-
puter sciences and his PhD in robotics both from RWTH Aachen/Germany. Cur-
rently he is a Professor for Production Automation at the University of Kaiser-
slautern and scientific director of the research department Innovative Factory
Systems (IFS) at the German Research Center for Artificial Intelligence (DFKI).
He is chairman of the executive board of the SmartFactoryKL, chairman of
the IFAC CC 4 on Mechatronics, Robotics and Components and member of
the IFAC Technical Board, advisory board member of the VDI/VDE-Society
for Measurement and Automatic Control and member of the advisory panel of
Springer publishing.

His research interest is in industrial control architectures, factory planning
and operation and human- machine-systems for industrial applications.
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Finding Optimal Paths in Multi-modal Public
Transportation Networks using Hub Nodes and

TRANSIT algorithm.
Leonid Antsfeld1 and Toby Walsh2

Abstract. We present a new algorithm to find optimal routes in a
multi-modal public transportation network. This work is an extension
of recent work on finding multi-criteria optimal paths in multi-modal
public transportation networks [8] using the ideas of TRANSIT al-
gorithm [4]. As a preprocessing step, we identify hub stations, a rela-
tively small subset of all stations and then precompute optimal paths
only between those hubs. Given a query between any two locations
we show how to extract the optimal path in an efficient way using
those hubs. In addition we present an improvement of our algorithm
using service patterns. This allows us to significantly reduce both
memory requirements and preprocessing time of previously reported
algorithm by order of magnitude. Finally, we present results of our
experiments on the Sydney metropolitan and the New South Wales
state public transport networks.

1 Introduction
An Intermodal Journey Planner (IJP), is a computer system which
can provide a traveler with an itinerary as a sequence of several
modes of transport (bus, train, ferry, tram, metro, etc.). There exist
many different systems that provide users with this kind of transit
information, e.g. NSW TranportInfo [10], Google Transit [7]. Such
systems are often available as a Web or smart phone application.
The application asks a user to input an origin, destination and ex-
pected departure or arrival time and provides the user with recom-
mended travel routes. Such systems are useful in encouraging people
to switch from their private cars to use public transport services, thus
reducing congestion, CO2 emission and providing the travelers a bet-
ter experience.

We present here an algorithm to find an optimal route from a loca-
tion A to a location B leaving at time t. This work is an extension of
the idea described in [8]. First of all we observe that when one needs
to change a service during his journey, there are only a relatively
small number of stations where it is worth to do so. We call those
stations hub nodes. Next we notice, that knowing how to get from
one hub to another will allow us almost immediately to produce an
optimal trip between any two (non hub) stations. In addition we de-
scribe another, new speed up technique, which brings substantial im-
provement in both memory requirements and preprocessing time, by
precomputing optimal routes for a limited number of service patterns
rather than for every particular service. We present comprehensive
experiment results with real world public transportation network of
scale of metropolitan city of Sydney (containing 9.3K multi-modal
stations and 2.6M events) and the whole state of New South Wales
(containing 46.5K multi-modal stations and 6.7M events).
1 NICTA/UNSW, Australia, email: leonid.antsfeld@nicta.com.au
2 NICTA/UNSW, Australia, email: toby.walsh@nicta.com.au

2 Related work
In recent years several algorithms have been developed that use pre-
computed information to obtain a shortest path in a road network
in a few microseconds, [12]. However there has been less progress
for public transport networks. In [2] H. Bast discusses why finding
shortest paths in public transport networks is not as straight forward
as in road networks. There are several issues that arise in public net-
works, which are not encountered in road networks. First of all public
transport network are inherently multi-modal. i.e. the are at least two
different means of transport. Other issues we need to consider are
time dimension, transfer time safety buffers, tickets cost, operating
days, etc. The recent and the most prominent result in this area is by
H. Bast et al. [3]. They also use a notion of hub stations, but in com-
pletely different way. H. Bast et al perform Dijkstra searches from a
random sample of source stations and choose as hubs stations those
that are on the the largest number of shortest paths. They report a
time of 10ms for station-to-station query for a North America pub-
lic transportation network consisting of 338K stations and more than
110M events. Besides being relatively complicated, the main draw-
back of their algorithm is the large computational resources required
for precomputation. The authors report requirements of 20-40 (CPU
core) hours per 1 million of nodes.
The original TRANSIT algorithm [4, 5] is one of the best methods for
finding shortest paths in very large road networks, [6], but was previ-
ously limited to a single mode of transport and static and undirected
graphs. One of the advantages of the TRANSIT is that the final query
time is completely indifferent to the path length, but only depends on
the number of transit nodes of the origin and destination. Abraham et
al. [1] formalized this property as a highway dimension. Intuitively
a graph has small highway dimension if for every r > 0, there is a
small set of vertices Sr such that every shortest path of length greater
than r includes a vertex from Sr . The very impressive performance
of TRANSIT on road networks suggests that road networks may have
low highway dimension. On the other hand, the public transportation
network, somewhat resembles the structure of road network, there-
fore it looked natural to extend and adjust the TRANSIT to pub-
lic transportation network. In [8] we reported a promising direction
extending the TRANSIT algorithm [4, 5] and applying it to an im-
proved time expanded graph of the multi-modal public network. This
approach is more intuitive, has much less hardware requirements and
precomputation time. In addition we show how to provide multiple
results in the real world incorporating user preferences.

3 Contribution
In this section we describe our new model of the public transport
network and give a detailed description of our idea.
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3.1 Modeling the Network
There are two main approaches to model a public transport networks,
known as Time-Dependent and Time-Expanded models. For an ex-
haustive description of the models and existing techniques we ad-
dress the readers to [9, 11]. We suggest a new model which is an
enhanced combination of the two. Our model consist of two layers:
station graph and events graph. The station graph nodes are the sta-
tions and it has two types of links station links and walking links.
In our experiments we assume that we can walk from every station
to every other station within 10 minutes walking radius. The events
graph nodes are arrival and departure events of a station and are in-
terconnected by four types of links: departure links, continue links,
changing links, waiting links. Typically the Time-Expanded model
has three types of nodes: arrival node, departure node and trans-
fer node. Eliminating transfer nodes and all the links from transfer
nodes to departure nodes in the typical Time-Expanded model and
connecting arrival and departure nodes directly allowed us to re-
duce space requirements by 30%. In addition to the storage saving
this modification also speeds up precomputation time. The described
graph is illustrated in Figure 1.

Figure 1. The two layered, time expanded graph. The first layer consist of
three stations connected with station links and walking links. The second

layer consist of arrival (A) and departure (D) events connected with depart
links, continue links, change links and wait links.

Modeling the public transport in this way allows us to treat all
different modes as a single mode.

3.2 Hub Nodes
Consider an example in Figure 2 below.

Assume there are three bus (or e.g. train) services: A → B →
C → D → F , H → B → C → D → E and G → D → E.
We want to travel from A to E. Clearly, at some point we will have
to change a service and it can be either at B, C or D. Now, there
is no particular reason for us to change a service at C. On the other
hand, potentially we may change a line at B or D. Therefore, we
will identify B and D as hub stations and will refer to C as a non
hub station. We observed that in reality (for Sydney and NSW public
transportation networks), only relatively small portion of all stations,
15% − 20%, are hubs. More formally, let GS = (VS , ES) to be a

Figure 2. Example of hub and non-hub nodes

station graph, as described in Section 3.1. Denote Si be a set of all
services that depart from station si ∈ VS . Then set of hub nodes is
defined as

H = {si ∈ VS | ∃sj . s.t. (si, sj) ∈ E ∧ Sj ⊂ Si}
⋃

{sj ∈ VS | ∃si. s.t. (si, sj) ∈ E ∧ Si ⊂ Sj}
⋃

{si, sj ∈ VS | (si, sj) ∈ E ∧ Sj 6= Si}

3.2.1 Pseudo code for identifying hub-nodes

Using the notations from previous Section, we present a pseudo code
for determining hub nodes.

Algorithm 1 Pseudo code for identifying hub-nodes
for(si ∈ VS)
for((si, sj) ∈ E)

if (Sj ⊂ Si)
H := H r sj
H := si

else if (Si ⊂ Sj)
H := H r si
H := sj

else if (Si 6= Sj )
H := si
H := sj

We notice that if we know the optimal route between any hub sta-
tion to any other hub station, then a shortest route between any two
nodes (not necessarily hubs) can be found immediately as described
in the next Section.

3.3 Extracting the optimal path
We make an important observation that for every two “far away” non
hub stations A and B, the following schema holds.

Generally, if a station si is not a hub node, there is only one
succeeding station sj , such that there is a service between si to sj ,
i.e. (si, sj) ∈ ES . Otherwise si would be a hub node itself. Similar
holds for Sj , etc... Therefore, referring to Figure 3, there is only one
direct way to follow from any non hub node A to its first hub node
HA and from HB to B. In other words, any service that departs
from A will certainly arrive to HA. Similarly any service that arrives
to B will certainly depart from HB (cause otherwise B would be
a hub as well). It brings us to the following idea. If we only knew
the shortest path from any hub node to any other hub node, it would

Leonid Antsfeld and Toby Walsh
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Figure 3. Example of query between two non hub stations

give us very fast, simple and intuitive algorithm for finding shortest
path between any two stations.
Given a query between A and B:
(i) Start from A and follow to it’s first (outgoing) hub node HA

(ii) Traverse backwards from B find it’s first (incoming) hub node
HB .
(iii) Fetch from precomputed database the optimal routeHA  HB .
(iv) Combine all three segments together to obtain an optimal path .
Since eventually public transportation networks are inherently time
dependent, we are interested in a query A@t → B. Adding a time
dimension to the algorithm above is relatively simple as well:
(i) Start with first service that departs at time t1 > t form A and
follow until first hub node HA arriving there at time t2.
(ii) Fetch from the precomputed database the optimal route
HA@t2  HB

(ii) Continue to B with a direct service that departs from HB at time
t3 > t2
(iv) Combine all three segments together to obtain an optimal path .

Although the obtained path, in theory will be the fastest, in practise
it may not be very convenient and involve unnecessary waiting (for
example if services departing from HA are infrequent) and unneces-
sary change between services at the hub nodes. In order to address
this we do some ”after-analysis” of the obtained route: if in the ob-
tained route there is a relatively long waiting (say more than 10 mins)
at HA, we check if we can leave A later and still eventually to arrive
at the same time. We will discuss in a Section 4.6 in more details how
to apply the obtained results into the real world.

4 TRANSIT with Hub Nodes

Assume for a moment that our world is a public transport network,
i.e. we start and finish our journey at event nodes. We start with
solving a single objective problem, e.g. we are interested to find the
fastest way to get from station A to station B starting our journey
at time t, i.e. A@t → B. This problem is equivalent to finding an
earliest arrival time, given the departure time. In reality the user may
be interested in finding a route with the latest departure time, given
an arrival time, which we will denote as A → B@t. This can be
answered efficiently by simply applying exactly the same algorithm
but using backward links.
From Section 3.3 we know that it is enough to know the optimal route
only between pair of hubs in order to easily reconstruct the optimal
route between any two nodes. Therefore our aim will be to efficiently
answer the queries between any two hubs. For this we will use the
modified TRANSIT algorithm. Similarly to our previous algorithm
this one also consists of two phases - precomputation and query.

4.1 Precomputation
In order to identify transit nodes we exploit the fact that the pub-
lic transport stations have geographical coordinates associated with
them.

4.1.1 Determining the Transit Nodes

This stage is performed on the station graph layer of our network.
Consider a bounding box of the given network and the subdivision of
this box into g× g cells. Let’s C denote a cell. Intuitively, the transit
node is an access node to (or from) a cellC. Let Sinner and Souter be
squares around cell C in the center, as depicted in Figure 4. In what
follows, we will look for transit nodes near the border of Sinner ,
whilst Souter will determine where long distance paths end. Gener-
ally, the size of the squares can be arbitrary without compromising
correctness, but it directly impacts the preprocessing time, number of
transit nodes, and consequently the storage space and query time. Ex-
perimentally we verified that the sizes of Sinner and Souter of 3× 3
and 5×5 cells produce a good compromise between precomputation
time, storage space and finally average query time. We differentiate
between two types of transit nodes - access nodes into the cell and
out of the cell. Let VC be a set of nodes as follows: for every link
that has one of its endpoints inside C and the other outside C, if the
link is bidirectional VC will contain the endpoint inside C and for
one directional link VC will contain both of its endpoints. Similarly
we define Vinner and Vouter , considering links that cross Sinner and
Souter accordingly. Now, the set of transit nodes for the cell C is the
set of nodes v ∈ Vinner with the property that there exists a shortest
path from/to some node in VC to/from some node in Vouter which
passes through v. We associate every node inside C with the set of
transit nodes of C. Next, we iterate over all cells and similarly iden-
tify transit nodes for every other cell.
Remark: It wouldn’t be correct simply to ”shortcut” between hub
nodes and to determine transit nodes in the induced network. This is
since in order to get from one hub to another, we still may need to
change a service at the non hub node, therefore we can not eliminate
them at this stage.

Figure 4. Example of the grid, cells, inner (blue) and outer (red) squares,
different types of crossing links and two types of transit nodes

4.1.2 Computation and storage of Subpaths

This stage is performed on the events graph layer of our network. We
precompute the following shortest routes and store them in three ta-

Finding Optimal Paths in Multi-modal Public Transportation Networks using Hub Nodes and TRANSIT algorithm.
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bles: (i) hub-to-transit: for every hub stationH , from every departure
event of H to every transit station node of H (ii) transit-to-transit:
from every departure event of transit station node to every other tran-
sit station node and (iii) transit-to-hub: for every hub stationH , from
every departure event of its associated transit station node to H .

4.2 Local Search Radius
In order for TRANSIT algorithm to be correct, we need to guaran-
tee that for every two nodes src and dst both of them (i) outside
Souter of each other and (ii) their corresponding Sinner squares do
not overlap. Therefore, we define a local search radius to be the size
of Sinner plus the distance from Sinner to Souter . Two nodes for
which horizontal or vertical distance is greater than local search ra-
dius are considered to be ”far away” and a query between them called
a global query. All other queries are local.

4.3 Query (time only)
Given a global query A@t → B, between two hub nodes A and
B, we find the fastest journey time as follows. We fetch transit sta-
tion nodes of A and B, TA and TB accordingly. Let τA ∈ TA and
τB ∈ TB be transit nodes of A and B. For every τA we fetch
c1 = cost(A@t, τA). Let’s assume that this route arrived to τA at
time t1. Then we fetch c2 = cost(τA@t1, τB). Finally, assuming
that the fastest route from τA at time t1 arrived to τB at time t2, we
fetch c3 = cost(τB@t2, B). Eventually the total travel time will be
c1 + c2 + c3. Iterating over all τA ∈ TA the cost of the fastest route
will be the one that yields minimal c1 + c2 + c3. In case A@t→ B
is a local query, we just apply any efficient search algorithm, A* for
example.

4.4 Query (actual path)
Unlike road networks, where for many applications returning the
time (or distance) is good enough, in public transport networks users
will be usually interested in concrete trip directions. More precisely,
besides knowing on which service to board at the start of their jour-
ney, we need to provide instructions where they should change ser-
vices. Luckily, the vast majority of our journeys consist of very small
number of transfers, 2-3, 4 and more on very rare cases. Observing
this, during precomputation phase for every precomputed pair we are
storing the full instructions at what station and at what time to de-
part with the next services. Alternatively we can store only the first
transfer instruction and reconstruct the whole journey by iteratively
applying the Query from the next transfer station. Again the number
of iterations should be very small.

4.5 Dealing with Multiobjectiveness
In addition to find the fastest connection between two points, the user
usually consider also other criteria, such as the cost of tickets, hassle
of interchanging between services, etc. Moreover, different users can
have different preferences over these criteria. For example a busi-
nessmen may try to optimize his travel time, a student may try to
minimize his costs and a visitor may wish to avoid changing ser-
vices in order not to get lost. There are several ways to deal with
multiobjective optimization [9], in this work we choose the normal-
ization approach, by introducing a linear utility function as in [9].
This approach reduces the multi-criteria problem to a single-criterion
optimization, which we can solve as described. We will precompute

the tables for different values of the linear coefficients of such a lin-
ear combination. For example a businessmen will try to optimize his
travel time, a student will try to minimize his costs and a visitor will
try to avoid interchanging services in order not to get lost.

4.6 Providing multiple results in the real world

In the real world, we may need to walk from our home to our first
public transport station and from the last station to our final desti-
nation. Also, in the real world, most of the time we may not be in-
terested in the theoretically optimal result, but in more practical one.
For example, one may prefer a journey that is only 2 mins longer to a
shorter journey that involves an additional change. Moreover, in real
life we would prefer to wait a little bit now if we know that eventu-
ally we may arrive earlier, for example to wait for an express bus. In
addition we all like choices, therefore the system will be more user
friendly if it could provide multiple attractive alternatives to the user.
In order to cover those real life scenarios and provide the user several
attractive suggestions we will run our Query starting from different
stations around the user’s starting location and different times around
his specified departure/arrival time t. Also, at step (ii) we will fetch
several routes from HA to HB . From the all combined routes, we
will choose, say the best five. Experimentally we could see that this
heuristics provide us with the most reasonable results that a person
would make.
Another important aspect we consider is robustness of the provided
solutions. In practice, public transport often runs late due to traffic
congestion or accidents or other unpredicted events. Missing a con-
nection by one minute may cost us an hour in our total journey time,
if the next connection is infrequent and departs say only once an hour.
In order to minimize such occurrences and to make the system more
reliable and user friendly we identify those trips and warn the user
about risky connections. Another option is to ask the user to define
his risk adverseness and/or preferred time for connection between
two different services. Then the user will choose his preferred trip
according to his risk adverseness.
In the next Section we present a speed up technique to efficiently
precompute and store the optimal routes between hubs.

4.7 Speed up

Since we don’t precompute shortest paths between any two stations,
but only between, say 15% of the stations, at the first glance the pro-
posed algorithm may seem appealing. But considering the fact that
actually we are precomputing an optimal route for every event of the
hub station, precomputation time and memory requirements are still
relatively large. Looking closely, we can observe particular patterns
for every service during the day. Luckily number of these patterns is
not large, for example it may take for some service 20min. at night,
30min. in the morning, 25mins during the day and 35min. at evening.
Essentially this is the same service, but it may be affected and take
different time due to city traffic patterns. As a preprocessing stage,
we identify those patterns and then at stage (ii) we precompute only
for the patterns rather than for every departure event. For example,
if there is a service from A to B, departing say every 10 mins and
it stops at the same stops at exactly the same times there is no need
to precompute for the same pattern several times. This observation
allowed us to achieve a significant reduction in both preprocessing
time, and storage space.

Leonid Antsfeld and Toby Walsh
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5 Implementation and Experiments

The proposed algorithm was implemented using the Java program-
ming language and the experiments were performed on PowerEdge
1950 server, with those specifications: CPU: 2 x 2.00GHz Intel Quad
Core Xeon E5405, Memory: 16 GB. The presented results were ob-
tained using the Sydney metropolitan and state of NSW public trans-
port multimodal network consisting of buses, trains, ferries, lightrail
and monorail modes. The graph representing Sydney network con-
tains 9.3K station nodes, 2.1M event nodes and 8.1M links. The
graph representing the whole NSW network contains 46.3K station
nodes, 6.7M event nodes and 23.2M links.
Given a grid size g × g and sizes of Sinner and Souter , for every
query it is very easy to verify whether it is a global or a local. We
just need to check if the two nodes within local radius of each other.
Therefore by simple sampling of many random queries we can have
a good estimate of the percentage of global vs.local queries. It allows
us to fine tune the sizes of grid, Sinner and Souter to achieve the
desirable percentage of global queries. Larger values for Sinner and
Souter normally yield smaller number of transit nodes, consequently
requiring smaller memory requirement, but also covers a smaller
number of global queries. We experimented with different sizes of
the grid, Sinner and Souter and below present results demonstrat-
ing tradeoff between percentage of global queries and memory/time
requirements of the offline stage.

Area Global Grid size |T | Storage Precomp.
queries (cells) Mb. time (hours)

Sydney 70% 70 x 70 1174 321 0.7
Sydney 80% 89 x 89 1505 446 0.9
Sydney 90% 136 x 136 2256 825 1.2
NSW 70% 42 x 42 1023 215 1.5
NSW 80% 59 x 59 1733 375 2.5
NSW 90% 94 x 94 3270 1200 6.5

Table 1: Experimental results for Sydney and NSW public trans-
port network using different grid sizes, with Sinner = 3 × 3 and
Souter = 5 × 5 squares comparing between |T | number of transit
nodes, storage space and precomputation time.

Applying TRANSIT algorithm in a naive way, without includ-
ing hub nodes and any speed ups yields memory requirements up to
45Gb for Sydney and 50Gb for NSW networks with the estimated
precomputation time of several days.

Below is a table summarizing the average query time for a single
query of different types, specifically: hub-to-hub (HH), station-to-
station (SS), location-to-location (LL).

Area Global Grid size HH SS LL
queries (cells)

Sydney 70% 62 x 62 91 95 104
Sydney 80% 80 x 80 70 76 85
Sydney 90% 121 x 121 49 55 65
NSW 70% 38 x 38 70 76 85
NSW 80% 55 x 55 89 95 105
NSW 90% 87 x 87 66 71 80

Table 1: The average query time (in micro seconds) for a sin-
gle query of different types: hub-to-hub (HH), station-to-station (SS),
location-to-location (LL).

6 Conclusions and Future work
In this work we presented a novel approach for finding optimal con-
nections in public transportation network. We presented an experi-
mental results using the Sydney metropolitan and state of New South
Wales public transportation network. From the results we believe that
the idea has a great potential and plan to improve it further. Our fu-
ture work includes improving the preprocessing time and reducing
the database tables storage space, if possible whilst preserving op-
timality. There are several promising directions we are interested to
investigate in order to achieve this, such as using an adaptive grid
rather than simple, fixed grid or partitioning the underlying graph
into clusters in a completely different manner. Hub nodes, the way
we defined it, can be seen as a second level of hierarchy over the
station graph, therefore it looks natural to combine this idea with
Contraction Hierarchies [6] that works very well for road networks.
In addition, we are interested to provide more rich set of alternatives
to the user. Also we would like to extend this idea to fully realis-
tic inter modal journey planer which includes combination of private
transport (e.g. car, motorbike, bicycle) and public transport and in-
corporates real time updates for both traffic conditions and public
transport actual location and estimated time of arrival.
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Improved Agent Based Algorithm for Vehicle Routing
Problem with Time Windows using Efficient Search

Diversification and Pruning Strategy
Petr Kalina1 and Jiřı́ Vokřı́nek2

Abstract.
We suggest an improved algorithm for the vehicle routing problem

with time windows (VRPTW). The algorithm is based on negotiation
between a fleet of agents corresponding to the routed vehicles using
a set of generic negotiation methods and a state-of-the-art insertion
heuristic. A search diversification and pruning strategy is introduced
which allows for a wide range of competing algorithm instances to be
instantiated and efficiently managed throughout the solving process.
Experimental results on the widely used Solomon’s and the extended
Homberger’s benchmarks prove that the algorithm is broadly com-
petitive with respect to the established centralized state-of-the-art al-
gorithms equalling the best known solutions in 64% of the cases with
an overall relative error of 2.4%, thus achieving a new best known re-
sult for an agent based algorithm to date. The vastly improved nego-
tiation process and the inherent parallelization features provide for
excellent anytime features, outperforming even the state-of-the-art
algorithms in this respect.

1 Introduction

The vehicle routing problem with time windows (VRPTW) is one of
the most widely studied problems in the the domain of logistics. The
VRPTW is a problem of finding a set of routes from a single depot to
serve customers at geographically scattered locations. Each customer
is visited by exactly one route with each route starting and ending at
the depot. There are two constraining factors that need to be consid-
ered: (i) for each route the sum of demands of the customers served
by the route must not exceed the capacity of the vehicle serving the
route (capacity constraint) and (ii) the service at each customer must
begin within a given time interval (time window constraints). The
primary objective of the VRPTW is to find the minimum number of
routes servicing all customers.

Recent years have seen a growing interest of the scientific commu-
nity in multi-agent systems as an emerging choice for modeling com-
plex systems with highly dynamic, heterogenous, potentially non-
cooperative or privacy conscious environments. The real world appli-
cations of routing algorithms often display many of the above men-
tioned characteristics. Traditionally, the majority of VRPTW related
research is concerned with centralized algorithms, with the agent
based studies being scarce and typically concerned rather with the
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real-world applicability of the presented algorithms than their thor-
ough performance and theoretical analysis.

Several very recent agent based works [6, 5] reported a competi-
tive solution quality and provided a sound theoretical analysis of the
respective algorithms. Within this paper we extend these works by in-
troducing an improved parallel algorithm based on agent negotiation
(Section 3) using an efficient search diversification and pruning strat-
egy (Section 4). The performance, convergence and other aspects of
the algorithm are assessed using the widely used benchmark sets of
Solomon [14] and Homberger [4] (Section 5).

2 Related Work

We refer the reader to a comprehensive survey of VRPTW algorithms
up to year 2005 provided by [1]. Also, the list the contemporary lead-
ing algorithms with respect to the benchmarks used within this study
is maintained at [13].

In [9] the authors present an algorithm based on the ejection pool
principle. The algorithm is based on performing very good unfeasi-
ble insertions of customers to individual routes, followed by an ejec-
tion procedure in which the feasibility is recovered by ejecting some
other customers from the unfeasible routes. The algorithm equals
the best known cumulative number of vehicles (CVN) of 405 on the
Solomon’s instances.

An improved algorithm presented in [11] further employs a spe-
cific local search strategy guiding the ejections. Also, a feasible in-
sertion mechanism denoted as squeeze as well as a search diversifi-
cation perturb procedure are employed throughout the solving pro-
cess boosting the algorithm’s convergence. The algorithm provides
for the contemporary best known CVN of 10290 over the extended
Homberger’s benchmark set.

An agent based algorithm for VRPTW and PDPTW is presented
in [6] based on the Task Agent — Allocation Agent — Vehicle Agent
hierarchy. The tasks are allocated to a fleet of the Vehicle Agents in a
series of auction steps based on the well known contract net protocol
(CNP). A set of improvement methods is introduced based on agent
negotiation, that can be executed either dynamically after each auc-
tion step or finally after all tasks have been allocated. Several initial
task orderings are introduced, providing for a number of alternative
particular solvers. These solvers are then run in parallel with the best
result being returned. The algorithm provides for a CVN of 10889
over the Homberger’s extended benchmark set. However, as already
shown in [14] and [5], a cost structure targeting directly the temporal
aspects of the problem has been proved superior to the used travel
time savings heuristic. Also the set of competing particular solvers
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is static accross all instances, resulting in a significant performance
overhead.

The algorithm presented in [5] is based on similar concepts. How-
ever, it introduces a cost structure corresponding to the slackness sav-
ings heuristic similar to [10] as well as a set of more refined improve-
ment methods. The algorithm is run using three initial task orderings
with the best result being considered. The algorithm provides for a
contemporary best known results achieved by an agent based algo-
rithm for both the Solomon’s and the extended Homerger’s bench-
marks with a respective CVN of 429 and 10609. However, the tra-
versed search space is quite narrow due to the static choice of or-
derings and algorithm configurations. The above mentioned perfor-
mance overhead is not addressed as well.

To our knowledge, the only other agent based algorithm with re-
sults comparable to those presented within this work is presented
by [8] achieving a CVN of 436 over the Solomon’s benchmark set.
The remaining relevant studies [3, 7, 2] focus on real-world derived
scenarios using ad-hoc problem sets and therefore do not provide
comparable performance information.

3 Negotiation Based Allocation Algorithm
The main contribution of this work is (i) the extension of concepts
presented in [5] and [6] by introducing an improved parallel algo-
rithm based on agent negotiation with an efficient search diversifi-
cation and pruning strategy and (ii) the assessment of its relevance
with respect to the state-of-the-art centralized as well as previously
presented agent based algorithms.

3.1 Core Agent Framework
The algorithm is based on a three layer basic architecture appearing
also in [5] featuring a top layer represented by a Task Agent, mid-
dle layer represented by an Allocation Agent and a fleet of Vehicle
Agents present at the bottom level of the architecture.

Task Agent acts as an interface between the algorithm’s computa-
tional core and the surrounding infrastructure. It is responsible for
registering the tasks and submitting them to the underlying Allo-
cation Agent.

Allocation Agent instruments the actual solving process by negoti-
ating with the Vehicle Agents. The negotiation is conducted based
upon task commitment and decommitment cost estimates pro-
vided by the Vehicle Agents.

Vehicle Agent represents an individual vehicle serving a route. It
provides the Allocation Agent with the above mentioned inputs.
These are computed based on local (private) Vehicle Agent’s plan
processing.

Characteristic to the agent decomposition is the clear distinction
between Vehicle Agents’ local planning and the global planning
managed by the Allocation Agent. This allows for a transparent in-
clusion of the typical real-world concepts such as loading constraints,
heterogenous cost structures for individual vehicles or a more com-
plex commitment semantics.

3.2 Improved Agent Negotiation Process
At the core of the algorithm is the negotiation carried out between
the Allocation Agent and the fleet of Vehicle Agents. The improved
negotiation process is illustrated by Figure 1.

Input: Set of problem instance tasks T
Output: Improving sequence of solutions

Procedure negotiate(T )
begin

1: σbest := null;
2: foreach (setting S ∈ diversified algorithm settings set ∆)
3: foreach parallel (ordering O ∈ diversified orderings set Ω)
4: vn := (σbest = null ? CLB(T ) : vn(σbest)− 1)
5: repeat
6: TO := apply O on T ;
7: σO := initial fleet of vn empty vehicles
8: foreach task t ∈ TO

9: v := auction(t, σO);
10: σO := commit(t, v);
11: σO := dynamicImprove(S, σO, TO);
12: end foreach
13: σO := finalImprove(S, σO, TO);
14: if (feasible(σO))
15: if (σbest = null or vn(σ) < vn(σbest))
16: σbest := σO;
17: output(σO);
18: end if
19: vn := vn(σbest)− 1;
20: else
21: if (σbest = null or vn(σ) < vn(σbest)− 1)
22: vn := vn+ 1;
23: else
24: store σO for orderings pruning
25: break repeat;
26: end if
27: end if
28: end repeat
29: end foreach parallel
30: prune(Ω);
31: end foreach
end

Figure 1. Improved agent negotiation process

The process begins with resetting the temporarily best found so-
lution σbest (line 1). Follows the selection of a particular algorithm
configuration from a set of increasingly complex algorithm config-
urations ∆ (line 2). A particular algorithm configuration C ∈ ∆ is
given by specifying the particular improvement methods to be used
for the dynamic and final improvement steps at lines 11 and 13. There
are three improvement methods defined (e.g. the ReallocateAll)
that are refinements of the similar methods presented in [5] providing
for an efficient search diversification on the algorithm configuration
level, described in detail in Section 4.1.

Follows the selection of the particular instance task processing or-
dering (line 3). Based on previous findings [5] the agent based nego-
tiation mechanism provides a very good convergence given a fitting
task ordering is provided. The set of orderings Ω is obtained by two
specific ordering diversification operators described in detail in Sec-
tion 4.2 applied to a set of canonical analytically sound orderings,
providing for the search diversification on the task ordering level.

Lines 3–29 outline the internal task allocation loop, denoted also
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as a particular algorithm instance parameterized by C ∈ ∆ and O ∈
Ω. All algorithm instances corresponding to the currently processed
algorithm configuration C ∈ ∆ are processed in parallel, providing
for a set of solutions σO, O ∈ Ω. After these algorithm instances
have finished, the results are used to prune the set Ω in an effort to
effectively direct the search in the most feasible direction.

Thus for each algorithm instance an initial empty partial solution
σO is instantiated, corresponding to a fleet of empty vehicles (line
7). Individual tasks are allocated to σO in a series auction steps (lines
9,10), followed by a particular dynamic improvement step (line 11),
with the final improvement step being applied after all tasks have
been processed (line 13). As the task allocation process is vastly sim-
ilar to the one presented in [5], for the sake of clarity we present only
a simplified version, neglecting some of the finer details not relevant
for the contribution presented within this work.

In a departure from the previous works [6, 5], the initial size of the
fleet (number of vehicles - VN) is always determined to target a new
best found solution with respect to the current best solution σbest.
In both above mentioned works the individual algorithm instances
were initialized with a VN corresponding to the theoretical lower
bound count on the number of vehicles (LBVN). In case the resulting
solution was not feasible (e.g. contained uncovered customers), the
instance was restarted with a VN incremented by 1 until a feasible
solution was found. There are several drawbacks to this strategy.

The discrepancy between the LBVN and the VN eventually found
by a particular algorithm instance has a multiplicative effect on the
complexity of the resulting negotiation process due to the above men-
tioned restarts strategy. Considering an instance using an unfitting
ordering a higher number of restarts is necessary before a feasible
solution is found. Even more intriguingly, such a solution is likely to
be superseded by a solution provided by an algorithm instance with
a more fitting ordering. Thus the majority of the processing time is
actually spent by constructing solutions that will be most likely dis-
carded and thus wasted.

Also, by starting from the LBVN, all competing algorithm in-
stances are bound to be restarted at least a fixed number of times cor-
responding to the difference between the VN of the best eventually
found solution and the LBVN. Thus the complexity of the resulting
algorithm depends heavily on the nature of the instance being solved,
as the interdigitation of the underlying multiple bin packing problem
and the time windows constrains may require a much greater VN
than the LBVN. Lastly, the determination of the LBVN is actually a
NP-hard problem in itself [10]. The algorithms presented in [6] and
[5] use therefore a greedy O(N3) approximation, requiring further
processing time.

Thus, as already mentioned, an alternative restart strategy is in-
troduced, with the initial VN being set to improve on the best found
solution to date σbest. In case such a solution is not available (e.g.
during the initial stages of the solving process), an alternative ca-
pacity based LBVN (CLB) is used, computed based on the vehicle
capacity and the cumulative demand of all customers [6] that can be
computed in O(1) time (line 4).

After the task allocation has finished (line 14), depending on the
feasibility of the resulting solution σO and the current σbest (which
may differ from the initial value from the beginning of the instance
run), the instance can be (i) pruned (line 25), (ii) restarted with an
increased initial VN (line 22) or (iii) restarted with a new best found
targeting VN (line 19).

The first situation occurs when σ is unfeasible with a VN higher
than the contemporary vn(σbest)−1. In such a case a restart with an
increased fleet size vn + 1 cannot potentially yield a result superior

to σbest and is therefore redundant. In case the current σbest has a
higher VN or has not yet been set, the restart is feasible, correspond-
ing to the second above mentioned situation. On the other hand when
a feasible solution σO is found the process can be restarted with a VN
targeting a new best found solution. In case σ also represents the new
contemporary best found result, it is stored and output (lines 16, 17).

After all algorithm instances have finished and before a new al-
gorithm configuration C ∈ ∆ is processed, the set of orderings Ω
is pruned for the next phase, based upon the solutions σO, O ∈ Ω
stored during the previous phase (line 30). Two alternative ordering
pruning strategies are introduced in Section 4.2.2.

Thus the search diversification is achieved by using diversified sets
∆ and Ω with the resulting performance penalty being partially off-
set by introducing an overall pruning strategy consisting of (i) an
ordering pruning strategy limiting the number of algorithm instances
run for the more complex algorithm configurations and (ii) a strat-
egy allowing for an efficient management of the overall solving pro-
cess based on reusing the already achieved results to effectively limit
(prune) the number of individual algorithm instance restarts.

4 Search Diversification and Pruning Strategy
As mentioned above, the broader search space coverage of the pre-
sented algorithm is achieved by the (i) diversification on the algo-
rithm configuration level by means of fine grained control over the
improvement methods and (ii) diversification on the instance task
ordering level by means of two specific ordering diversification op-
erators.

4.1 Algorithm Configuration Diversification
The three improvement methods used for the dynamic and final im-
provement steps are the ReallocateAll method, the εεε-ReallocateWorst
method and the εεε-ReallocateRandom method. Their basic semantics
is carried over from [5]. The methods are based on iterating through
portions of each agent’s plan and reallocating corresponding cus-
tomers in a series of auction steps to agents with a better commit-
ment cost estimates, thus improving the partial solution σO under
construction. The methods differ by the specific order in which the
customers in an individual agent’s plan are processed. For purposes
of this work these methods were further improved by introducing
the loop count parameter, affecting the number of repetitions of the
above mentioned process on a single agent’s plan. This allows for a
configurable tradeoff between the method’s complexity and its rela-
tive strength.

The algorithm configurations basic notation is carried over from
[5], with B (Basic) denoting a configuration with neither improve-
ment step applied, FI (Final Improvement) denoting a configuration
with only a ReallocateAll based final improvement step being ap-
plied and DI denoting configurations extending the FI configuration
with a particular dynamic improvement step being applied as well.

The set ∆ thus comprises of a B configuration, a FI configuration
and three subsets of DI configurations each corresponding to a par-
ticular method being used for the dynamic improvement step. These
subsets are further diversified by using an increasing loop count pa-
rameter setting.

4.2 Ordering Diversification and Pruning
As mentioned above, the initial set of orderings Ω is generated from
the set of analytically sound orderings using two specific operators.
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Table 1. Performance of the algorithm compared to the best known results — CVN and relative error

Type SotA [9, 11] Agents [8] Agents [6] Agents [5] BP CSP BP+CSP ∆× Ω

All 10695 – – +343 (3.2%) +290 (2.7%) +258 (2.4%) +254 (2.4%) –
100 405 +31 (7.7%) – +24 (5.9%) +17 (4.2%) +16 (4.0%) +16 (4.0%) –
200 694 – – +21 (3.0%) +18 (2.6%) +12 (1.7%) +12 (1.7%) –
400 1380 – – +38 (2.8%) +35 (2.6%) +31 (2.2%) +29 (2.1%) +29 (2.1%)
600 2065 – – +56 (2.7%) +51 (2.5%) +43 (2.0%) +43 (2.1%) +41 (2.0%)
800 2734 – – +89 (3.3%) +76 (2.8%) +72 (2.6%) +71 (2.6%) +70 (2.6%)

1000 3417 – – +115 (3.4%) +92 (2.7%) +84 (2.5%) +83 (2.4%) +82 (2.4%)
200–1000 10290 – +609 (3.1%) +319 (3.1%) +273 (2.7%) +242 (2.4%) +238 (2.3%) –

The canonical set contains the three orderings introduced in [5] with
two additional orderings — the larliest expiry first (LEF) based on
the latest service start value of individual tasks’ time windows and
the Most Distant First (MDiF) based on the distance of individual
customers from the depot.

4.2.1 Ordering diversification operators

The two presented operators were introduced to provide means of
diversification by providing for a diversified set Ω of initial instance
task orderings. The k-perturb(O) operator is based on randomizing
the order of sub-sequences of length k on the underlying set of tasks
ordered byO. The k-mixin(O1,O2) operator combines two orderings
by applying the secondary orderingO2 to sequences of k tasks on the
underlying set of tasks ordered by O1.

As opposed to the well known ordering crossover and mutation
operators used by the genetic ordering based algorithms [12], these
two operators were specifically tailored to allow for traversing a
neighborhood that is very close to the original analytically sound
orderings and thus preserve the nature of these orderings. This ef-
fort was motivated by the previous findings [5], as it was proved that
the analytically sound orderings significantly outperform randomly
generated orderings. However, the rigorous assessment of suitability
of known crossover operators or eventual applicability of a genetic
based approach to identify the most fitting ordering is not part of this
study and therefore remains an interesting area of future research.

4.2.2 Ordering pruning strategies

As outlined by the main negotiation process, after a particular algo-
rithm configuration has been processed, the set of orderings is pruned
based on the achieved results. Due to the fact that some results corre-
spond to unfeasible partial solutions, instead of using the VN as the
indicator of the resulting quality, we introduced the average route
size metrics, corresponding to the average number of customers in a
single route, providing for an ordering of the set of (partial) solutions
σO . Two fundamentally different pruning strategies were introduced.

The Basic Pruning Strategy (BP) is based on the assumption that
the optimal ordering may differ significantly for each problem in-
stance. Thus a given number of the best (with longest average routes)
orderings to be kept for each processed algorithm configuration is
specified and the set Ω can be effectively pruned based on the re-
sults from the faster configurations in an effort to provide the most
complex configurations with the only best fitting orderings.

An alternative strategy denoted as the Minimal Covering Set Prun-
ing Strategy (CSP) is based on the opposite assumption — that the set
of orderings and their interesting neighborhoods is limited and par-
tially static across all problem instances. Thus using only a specified

subset of problem instances (in our case the 100 and 200 customer
instances from the Solomon’s and Homberger’s benchmark set) the
whole space of orderings and algorithm configurations ∆×Ω is tra-
versed. A minimal covering set of orderings ΩC is identified. These
orderings are then used across the whole solving process. Obviously
the success of such a strategy is based on the fact that the processed
instances are similar in their nature as the training set, however we
argue that real world scenarios often display such a characteristic and
therefore such an approach is an interesting alternative way of prun-
ing the set of orderings.

A hybrid strategy denoted as CSP+BP combines the two by ap-
plying the BP pruning while treating the orderings O ∈ ΩC as un-
prunable.

5 Experimental Evaluation
The experiments were carried out using the established Solomon’s
and the extended Homberger’s benchmark sets [14, 4], sharing the
same basic attributes. Thus the complete set of 356 instances con-
tains instances of 6 different sizes with 100, 200, 400, 600, 800 and
1000 customers respectively, with 60 instances in each set (except
the Solomon’s with 56 instances). For each set there are 6 instance
types provided — the R1, R2, RC1, RC2, C1, and C2 type, each with
a slightly different topology and time windows properties [14]. The
inclusion of the extended Homberger’s benchmarks provides for a
relevant comparison with the established state-of-the-art centralized
solvers that has been missing from most previous agent-based stud-
ies.

The algorithm prototype is implemented in JAVA programming
language. The experiments were carried out using a 8G RAM AMD
Athlon 2G Gentoo system running the 64-bit Sun JRE 1.6.0 22.

Four overall configurations were considered denoted as BP, CSP,
CSP+BP and ∆ × Ω corresponding respectively to the three previ-
ously defined pruning strategies being applied and a configuration
with no ordering pruning employed thus traversing the whole diver-
sified search space.

5.1 Overall Quality Analysis
The results summarizing the overall achieved solution quality are
presented by Table 1. The SotA [9, 11], Agents [8], Agents [6] and
the Agents [5] columns correspond to the state-of-the-art results for
established centralized [9, 11] and the three previously presented
comparable agent based algorithms [8, 6, 5] respectively. The re-
maining columns correspond to the four respective algorithm overall
configurations. The presented results correspond the the cumulative
number of vehicles (CVN) for the respective problem instance sub-
sets, or the respective absolute and relative errors.
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In overall the algorithm in it’s full fledged CSP+BP configura-
tion achieved a CVN of 10949 over all the benchmark instances,
corresponding to a 2.4% relative error in terms of the primary op-
timization criteria with respect to the state-of-the-art centralized al-
gorithms, equalling the best known results for 64% of the problem
instances. With respect to previous agent based approaches this rep-
resents a new best known overall result, with the new best known
result being achieved for 81 instances (23% of the cases).

The results thus strongly suggest that the presented diversification
strategy is successful in terms of enabling the algorithm to traverse
interesting areas of the search space resulting in a significantly im-
proved solution quality.

5.2 Orderings Analysis
The experimental results presented within the Table 1 outline the re-
spective success of the three alternative pruning strategies presented
and the baseline ∆×Ω strategy without ordering pruning. The used
set Ω corresponds to the 5 canonical orderings, extended by their 3-
perturb and 6-perturb mutations and by their 10-mixin and 20-mixin
combinations, providing for a set Ω of 65 instance task orderings.

The ΩC corresponds to the minimal covering set of winning order-
ings from the ∆× Ω strategy being run over the Solomon’s 100 and
Homberger’s 200 customer instances. Thus ΩC contains 10 order-
ings, including the LEF canonical ordering attributing for the major-
ity of wins, 4 orderings based on the k-perturb operator and 5 k-mixin
based orderings.

The pruning strategy was set to retain 20 orderings based on the
results from the first two B and FI algorithm configurations followed
by a minimal DI configuration with the ReallocateAll dynamic im-
provement method and a loop count = 1, upon which the set of or-
derings was pruned to mere two members processed by the rest of
the algorithm configurations, corresponding to three subsets of con-
figurations based on the three individual improvement methods being
used for the dynamic improvement step with the loop count parame-
ter being set to 3 and 6 respectively.

5.2.1 Diversification Operators

In overall the results indicate that the search diversification provided
by the two introduced operators applied on the extended set of ana-
lytically sound orderings significantly improves the solution quality
achieved by the solver. An additional experiment was carried out to
determine a fitting parametrization of the mentioned ordering diver-
sification operators, consisting of analyzing the corresponding ΩC

for the unrestricted ∆×Ω setting using a wider set of orderings gen-
erated by setting the k parameter to k = 2, 4, 8, 16, 32, 64 for both
operators.

In case of the k-mixin operator the setting of the k parameter does
not affect the success of the resulting ordering greatly, with the over-
all success roughly corresponding to the success of the two under-
lying orderings. However, with the k-perturb operator the lower k
values dominate the higher values. These results suggest that (i) the
k-mixin operator preserves the analytically derived soundness of the
orderings irrespective of the k parameter settings providing for a flex-
ible search diversification operation while (ii) the k-perturb operator
diverges from the feasible analytically sound orderings with increas-
ing k.

In terms of overall success the k-mixin operator slightly outper-
forms the k-perturb operator, however their simultaneous appearance
in the identified set ΩC mentioned in the previous section suggests

Figure 2. Individual algorithm instance results and runtimes with (bottom)
and without (top) overall pruning strategy

that both provide for an effective alternative means of search diversi-
fication, given a fitting k is used for the k-perturb operator.

5.3 Pruning Strategies

The results presented in Table 1 outline the success of the individual
pruning strategies.

The BP strategy posted results that are clearly an improvement
over the previous results based on a similar allocation process. With
only the two best orderings being processed by the full blown solvers
in the latter stages of the process the results suggest that the order-
ing pruning based on results of increasingly more complex algorithm
configurations is quite successful. However, the convergence to the
optimal ordering is not straightforward and — as outlined by the sig-
nificantly superior results posted by the CSP strategy — often fails to
identify the optimal ordering from the set Ω. We argue that this is due
to two factors: (i) the metrics of a particular ordering success based
on the average route size of the underlying (partial) solution is a very
loose one, with many orderings achieving identical results and (ii)
the relationship between relative success of two different algorithm
configurations using the same instance task ordering is not straight-
forward, as the dynamic improvement methods process the tasks in
the order as they appear in the corresponding agent’s plan and thus
the two solving processes based on an identical initial ordering can
diverge significantly.

The very good results achieved by the CSP strategy suggests, that
this strategy is actually very successful in identifying particularly
good orderings or — in case of orderings produced by a particular
ordering diversification operation — suggesting valuable neighbor-
hoods of particular orderings. Considering the relatively small over-
all difference in achieved quality between the CSP, CSP+BP and the
full ∆× Ω strategies the results suggest that the set of dominant or-
derings is relatively small and consistent over the whole benchmark
set, further supporting the soundness of the CSP pruning strategy.

5.4 Runtime and Convergence analysis

The results presented within this study are based on an extended
search based on diversified sets ∆ and Ω inherently increasing the
complexity of the overall process. To offset the increased complexity
an overall pruning strategy is introduced based on ordering pruning
and the improved negotiation process.

Figure 2 illustrates the improvements in runtime achieved by the
introduced overall pruning strategy, corresponding to a subset of 16
problem instances from the 1000 customers instance set. The two
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Table 2. Comparison with the state-of-the-art solvers in terms of runtime
and convergence

Nagata [11] Lim [9] CSP+BP
Size Avg. RT Avg. RT Avg. RT Anytime RT
200 1 min 10 min 10 s 57 ms
400 1 min 20 min 2 min 300 ms
600 1 min 30 min 8 min 2 s
800 1 min 40 min 24 min 7 s
1000 1 min 50 min 54 min 14 s

compared settings correspond to (i) the CSP+BP strategy using the
improved agent negotiation process outlined by Figure 1 (bottom)
and (ii) the ∆×Ω strategy using a process based on [5] thus not em-
ploying any of the presented improvements (top). Individual points in
the respective graphs correspond to the relative errors and runtimes
recorded for individual algorithm instances. The results are grouped
based on the underlying overall algorithm configuration with the
pruned results being denoted as P.

The results suggest that the pruning strategies have a dramatic pos-
itive impact on the resulting runtime features of the algorithm. While
in case of the original algorithm the biggest runtime penalty was im-
plied by the least successful algorithm instances requiring numerous
restarts with an incremented initial VN before a feasible solution is
found, these instances are effectively pruned after only one restart in
case of the presented algorithm. Furthermore by pruning the set of or-
derings the number of instantiated algorithm instances drops signif-
icantly with their increasing complexity with minimal impact on the
resulting solution quality, providing for yet another massive boost in
the algorithm’s efficiency. Thus the recorded average composite sin-
gle threaded time per processed instance (the sum of runtimes for all
algorithm instances) is 41 minutes with the overall pruning in place,
representing a massive 6.3 times improvement over the configuration
not using the pruning strategy with 258 min.

The comparison in terms of runtime of the full fledged CSP+BP
setting with the state-of-the-art algorithms is presented by Ta-
ble 2. The listed values correspond to the average composite single
threaded runtime. To provide illustration of the algorithm’s anytime
features the parallel runtime before the best solution is found is listed
as well. The results confirm exceptional anytime features of the al-
gorithm when its inherent parallelization features are fully exploited
with the time before the best solution is found significantly outper-
forming all previous solvers. The composite runtimes are also com-
petitive, especially considering that the underlying prototypal imple-
mentation is far from being performance optimized. We must note,
however, that: (i) compared algorithms outperform presented algo-
rithm in terms of CVN and (ii) are not computationally bound. There-
fore to be able to draw definitive conclusions, settings with similar
solution quality would have to be compared.

6 CONCLUSION

Within this paper we introduce an improved parallel agent based al-
gorithm for the widely studied VRPTW problem, built around similar
concepts as the algorithm presented in [5]. The algorithm is based on
the execution of increasingly complex algorithm configurations over
a set of instance task orderings.

The main presented contribution is (i) the introduction of an effi-
cient search diversification strategy based on generating a diversified
set of orderings using two specific introduced ordering diversifica-
tion operators and (ii) the presented overall pruning strategy based

on three efficient ordering pruning strategies and a vastly improved
negotiation process, offsetting the increase in the overall complexity
of the algorithm inherent to the diversified search.

The relevance of the improved algorithm is assessed using two sets
of widely used benchmark instances. When compared to the state-of-
the-art centralized solvers, the algorithm achieves a relative error of
2.4% while equalling the best known results for 64% of the instances.
This result also represents a significant improvement over all previ-
ously presented agent based algorithm, with 81 new best found so-
lutions. Moreover, benefitting from its inherently parallel nature the
algorithm boasts an excellent anytime characteristics, outperforming
even the centralized algorithms in this respect.

Future interesting research opportunity was identified in the as-
sessment of suitability of known ordering crossover operators and
the eventual applicability of a genetic based approach to identify a
fitting ordering for a particular problem instance.
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[6] Petr Kalina and Jiřı́ Vokřı́nek, ‘Parallel solver for vehicle routing and
pickup and delivery problems with time windows based on agent ne-
gotiation’, in IEEE International Conference on Systems, Man and Cy-
bernetics (to appear), (2012).

[7] Robert Kohout and Kutluhan Erol, ‘In-time agent-based vehicle routing
with a stochastic improvement heuristic’, in 11th Conference on Inno-
vative Applications of Artificial Intelligence. AAAI/MIT Press, (1999).

[8] Hon Wai Leong and Ming Liu, ‘A multi-agent algorithm for vehicle
routing problem with time window’, in Proceedings of the 2006 ACM
symposium on Applied computing SAC 06. ACM, (2006).

[9] A Lim and X Zhang, ‘A two-stage heuristic with ejection pools and
generalized ejection chains for the vehicle routing problem with time
windows’, INFORMS Journal on Computing, 19(3), 443–457, (2007).

[10] Quan Lu and Maged M. Dessouky, ‘A new insertion-based construction
heuristic for solving the pickup and delivery problem with hard time
windows’, European Journal of Operational Research, 175, 672–687,
(2005).

[11] Yuichi Nagata and Olli Brysy, ‘A powerful route minimization heuris-
tic for the vehicle routing problem with time windows’, Operations Re-
search Letters, 37(5), 333–338, (2009).

[12] P.W. Poon and J.N. Carter, ‘Genetic algorithm crossover operators for
ordering applications’, Computers and Operations Research, 22(1), 135
– 147, (1995).

[13] Sintef. Top — http://www.sintef.no/projectweb/top/problems/.
[14] Marius M. Solomon, ‘Algorithms for the vehicle routing and schedul-

ing problems with time window constraints’, Operations Research, 35,
254–265, (1987).

Petr Kalina and Jiřı́ Vokřı́nek
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Improving Grid Sustainability by Intelligent EV Recharge 
Process  

Mikhail Simonov and Antonio Attanasio1 
 
Abstract.1 The paper describes one modeling tool used to simulate 
the use and recharge of the fleet of Electric Vehicles on local 
topology served by a number of energy plants supplying the 
electricity flow. Authors model different categories of users 
including residents and tourists and real-life events occurring in 
time dimension. The toolkit attempts the time shift to optimize the 
use of the available energy flows. It makes the simulation of the 
growing demand until the sustainability limits of the system will be 
reached. Therefore the tool might be useful for operational 
planning and the local government because showing the grid’s 
sustainability limits. 

1 INTRODUCTION 
The growing demand of electric energy in EU27 is noticeable 

from the corresponding annual increments in the energy 
production, as shown in Fig. 1.  
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Figure 1. Energy production trend in EU (source: Eurostat). 
 

Except for the -4.9% decrease of electricity production in 2009 
caused by the economical crisis, the volume of produced electricity 
has continuously increased during the last ten years  [1]. Even with 
such a production trend, we expect the sustainability limits will 
likely be exceeded in the next years, when a high number of 
Electric Vehicles (EVs) will become ubiquitously available. This is 
due to both the EVs market, which will undergo a more than linear 
increase of sales, as shown in Fig. 2, and mostly to the relevant 
power needed for the recharge of EVs batteries. Residential meters 
limit energy flows by 3 - 6 kW thresholds. A family with one EV 
car demands additionally up to 6,25 kW to refill 50 kWh battery in 
8 hours. The quick recharge schemes are much more energy 
intensive: 30kW flow (136A at 220V) is required to refill 5kWh in 
10 minutes, which corresponds to 10% of the full capacity of 50 
kWh EV battery. In fact, while one typical residential house 
demands up to 14 kWh of electricity daily, an EV energy request 
stays in a range of 20 – 50 kWh. The simultaneous request for 
electricity by both residential houses and EVs leads to the 
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significant increase of the global energy demand exceeding the 
known energy production dynamics. Because of this growing 
trend, at a certain time the available energy might become 
insufficient to host the recharge processes of too many EVs. 
 

Figure 2. Global EV sales penetration by through 2025 (source: Morgan 
Stanley Research, North America) 

 
Balancing between the available electricity and its demand is 

possible from within certain stability limits, which depend on the 
physical characteristics of distribution sub-topologies, becoming 
problematic in saturated grids. The work being described is an 
attempt to propose a toolkit helping to calculate the sustainability 
limits of an electric grid while modeling the real-life processes 
accompanying the EV use and its recharge. 

2 PROBLEM AREA 
The reference scenario includes one energy generation capacity 
characterized by the production load shape function Pavailable(t) ≥ 0 
for any t. The use of renewable energy sources introduces certain 
time variability impacting negatively in stability terms. An 
example is less-predictable photovoltaic distributed generation 
profile. An unexpected production drop in a saturated grid (Fig.3) 
imposes load shedding actions. It might result in switching off 
some EV consumers. 
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Figure 3. Photovoltaic Energy production profile. 
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EV can be considered as a new kind of energy consumer, with 

an electricity demand profile described by the EVi(t) function, 
conventionally assumed as being negative for any t. Depending on 
its usage by residents and/or tourists, each EV has a mobility 
profile, which is poorly predictable in time dimension. At the end 
of mobility stage, the EVi battery has a residual charge xi(t0) 
denoted also as xi because of the completeness of the predecessor 
(mobility process). For a fleet of n EVs, the aggregate energy 
demand – immediate or delayed one - is expressed by Pdemand = (c1 - 
x1) + (c2 - x2) + … + (cn - xn), where ci is the full battery capacity 
for EVi. As the precise mobility profile for each EV is actually 
unknown, the values of xi i = [1,n] appear better predictable 
through statistical distributions. The EV battery recharge process 
aims to increase xi values in some way up to ci. To supply (ci-xi) 
individual energy quantities the grid should provide (ci-xi)/Δt 
elementary flow components along time slots tk, tk+Δt and so on. 

In energy domain, many researchers ( [2],  [3],  [4]) have 
produced several load shaping models through the adoption of 
econometric, statistical, engineering and combined approaches. 
Load shaping for different categories of users is a highly complex 
task  [4], because it is linked to the imprecisely defined lifestyle and 
related psychological factors, both subjective by their nature. It is 
known also that the definition of the standard behavior of the 
various types of customer in load terms through statistical 
correlations unlikely can lead to solving the load balancing 
problem, because it fails to consider the variability of the demand, 
which is a random factor. 

The absolute sustainability limit of the power system, in terms 
of the overall energy, is expressed by the formula Pdemand≤Pavailable, 
while with the time varying expression for a generic instant t, 
Pdemand(t)≤Pavailable(t), we state the importance of maintaining a 
constant margin of available energy, in order to prevent black-out 
and to reduce denial of service for clients. 

To satisfy the above conditions, different EV battery usages are 
possible (Fig. 4). Use Case 1 is about saturated grid condition with 
Pdemand(t)>Pavailable(t): EV cars wait in the queue until some energy 
become available. The immediate recharge (Use Case 2) originates 
Denial-of-Service (DoS) for newcomers when 
Pdemand(t)>0.99*Pavailable(t). Compared with immediate recharge 
scheme, the delayed recharge option (Use Case 3) gives a chance 
to optimize the available energy use by postponing the service for a 
while. Let denote by time shifting the process of moving the 
immediate energy demand exceeding the grid capacity 
Pdemand(tk)>Pavailable(tk) to the future time slots tl with 
Pdemand(tl)<Pavailable(tl). It reduces the number of DoS occurrences 
when EV availability for operations is longer compared with the 
recharge time. More sophisticated energy trading options (Use 
Cases 4 and 5) give new load management techniques leveraging 
between the peak and non-peak periods. 

The authors defined four main events belonging to the battery 
recharge process: EV_plugging_in (coming from outside the grid, 
detected by RFId sensor) , relè_on_outgoing (the effective start of 
EV recharge), relè_off_outgoing (the effective end of EV 
recharge), and EV_unplug (from outside the grid). Two additional 
events (relè_on_incoming, relè_off_incoming) come from the 
inverted flow usage known as EV discharge. Until EVs remain 
plugged into the electricity grid, the intended use of their batteries - 
from the user viewpoint - is the recharge mode steadily increasing 
the energy resource up to 100% and then detaching the EVs (Use 
Cases 2 and 3). From the grid operator viewpoint more modalities 

are desirable to better manage the demand. For example it could be 
a delayed or intermittent recharge or even the promiscuous mode 
combining both recharge and discharge cycles (all Use Cases). In 
this way, the EVs are transformed in “prosumers” having the 
EVj(t)>0 behavior for certain time intervals and EVj(t)≤0 for the 
remaining ones (Use Cases 4 and 5). 
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Figure 4. EV battery usage schemes. 

 
The alternation of recharge and discharge processes becomes 

possible thanks to the presence of the time exceeding that 
necessary to reach full charge (idle time). Intelligent sequences of 
recharge-discharge cycles might be used for time-shift purposes, 
leveraging the peaks on the load shape. 

The optimal time-shift combination for all recharge processes 
could be more easily determined if the usage profiles of all EVs 
were known. This represents a key feature of the i-Travel project 
(www.ertico.com/i-travel), which has proposed the Travel Agent 
(Fig. 5) useful to support the use of EV on a local topology, of 
which the simplest case is an island. The statistics tell that an 
average time spent in a vehicle is 70 minutes or less. The 
remaining time EVs are parked. Being attached to the grid, their 
EV batteries remain available to leverage the energy flows. 
Supplying the individual travel plans to Travel Agent (TA), it can 
consider all remaining time as possible candidate timeslots for 
recharge or time-shift processes. 
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Figure 5. i-Travel project architecture. 

 
Within the considered scenario, the island is populated by a 

number of residents owning an EV and a number of tourists 
coming from elsewhere by air and sea travels and getting EVs from 
local car rental agencies. The external events impacting on the EV 
usage by tourists are the arrivals and departures of the ships and 
airplanes (Fig. 6). The publicly available timetables give the 
estimation of the possible travel plans by tourists renting cars upon 
their arrivals and releasing them before the definitive departures. 
On the other hand, the working hours of the residents determine 
their house-workplace mobility and the consequential statistical 
distribution of the period of connection to the grid.  

 

Mikhail Simonov and Antonio Attanasio

20



t6:40External 
events

Piraeus
ferry

Crete
ferry

Piraeus
ferry

Crete
ferry

AMS 
flight

MXP
flight

LED
flight

11:40 13:00 14:00 15:00 19:00 22:00

EV fleet
operations

 
Figure 6. Events occurring on the territory. 
 

The usage of EVs on the island determines the time slots in 
which they are available for the recharge operations. During the 
optimization phase, the objective function will result in time-
shifting of these time slots to optimize the fleet recharge processes. 
In order to better formulate the criteria used for the scheduling of 
recharge processes, a semantic model of the above plans has been 
developed by defining an ontology and a set of semantic rules, 
which describe the local topology (an island), the main entities and 
the relationships of EV use, EV recharge, and electricity supply. 

3 MODELING PROCESS 
The EV recharge processes can be directly observed by 

interfacing the intelligent recharge stations (their RFID readers) 
with the experimental software. An alternative is to model it using 
simulation tools. The authors designed a model describing EV 
mobility on an island, prepared software components and used 
them to evaluate the energy flows in time-space dimensions. Based 
on the knowledge expressed by domain experts and the timetable 
of events occurring in sea- and air- ports, the authors have modeled 
the real life mobility using probabilistic distributions based on the 
heuristics derived from the observations of the most recurrent 
events (Fig. 7). In the context of an island, tourists rent EV cars in 
the aforementioned ports immediately after their arrivals. Tourists 
leave vehicles some earlier their departure time. The residents use 
EV cars daily to make home-work-home trips. The set of rules and 
a number of probability distribution functions were defined and 
used in the dataset generation/simulation tool. In this way the 
instances generated accordingly the aforementioned model are 
conceptually identical to those being supplied by the RFID readers 
installed on real parking places.  

Activity recognition is consistently applied to many human-
centric problems  [2], to extract the heuristics that simplify the 
description of the most recurrent daily processes. The 
understanding and correct statistical modeling of the daily 
activities is a key element to improve the EV related services. The 
cause-effect relationship linking the daily activities and the use of 
the vehicle is then relevant for the car to grid integration. For 
example, in the proposed model the end_of_rental events occur in 
the port during 60 minutes slot before the ship departure. Similarly, 
arrivals and departures occurring in airport become digital events 
(DEj) distributed in 90 min. corresponding slot (Fig. 7). By 
assuming that after the departing tourists have left their EVs, these 
are immediately plugged into the grid to recharge their batteries, it 
is fair to consider a certain correlation between the tourists 
departures and the time of arrival at the recharge station for their 
EVs. Residents parking their vehicles in the sea- or air- port areas 
can plug their EVs for recharge purposes. An additional 
contribution to the modeling of the EVs use can be obtained from 
employing both smart metering of load shapes for indoor/domestic 
activities and GPS/IoT technology to trace the outdoor mobility.  
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Figure 7. Event space on the local topology. 

 
The major challenge of this work is the optimal balancing of the 

power flows inside storage-less electric grid by the application of 
time-shifting (Fig. 8) in the context of a plurality of EVs being 
charged simultaneously. The First-In First-Out service option is 
kept until Pdemand(tl)≤0.9*Pavailable(tl). To prevent DoS occurences, 
the authors attempt time shifting when Pdemand(tl)>0.9*Pavailable(tl). 
When Pdemand(tl)>Pavailable(tl) conditions persist after the 
optimization attempt, the battery will be recharged at least 
partially. In the last case the optimization software asks the 
customer about the expected battery unplugging time (or simulate 
it), estimates the possible energy quantity as a percentage of the 
full battery’s capacity, and communicates the aforementioned 
value to the user. 
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Figure 8. Leveraging load shape using time-shift offered by EV battery 

 
Vehicles equipped by electric engines being interconnected to 

the electric grid introduce an interesting storage capability and an 
important advantage in terms of energy that could be temporarily 
borrowed (or bought) from the EVs connected to the grid.  Since a 
car is used from 30 minutes/day (in UK) up to 97 minutes/day (in 
Australia) on average, the EV battery could offer to the electricity 
grid an ubiquitous storage in the remaining time, e.g. up to 22 
hours per day (91%). However, in the real life the aforementioned 
time slot is poorly predictable, calling for the use of modeling. 

Since EVs could be recharged ubiquitously and randomly in any 
geographical location, the symmetry of the system makes 
unnecessary modeling the directional processes: the number of 
trips from A to B is typically balanced by a number of trips from B 
to A. With a capillary presence of a large number of EVs in the 
electric grid it is possible to exploit this sort of distributed storage 
in order to delay the recharge of some EVs. On the other hand, it is 
necessary to manage the queue of recharge processes to avoid that 
the simultaneous recharge of too many EVs, with a negative impact 
in grid stability terms.  

The study  [3], besides showing the importance of simulation, 
sustains the thesis about the need of a software for identifying and 
managing the potential impacts of distribution-connected storage. 
For this reason, starting from the EVs usage model described in 
this section, the authors have developed a modeling software 
toolkit, that simulates the EV mobility inside a generic isolated 
topology together with their recharge processes.  
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4 MODELING TOOLKIT 
The toolkit developed for experimental purposes (Fig. 9) is a 

collection of algorithms written in C++. The Dataset Generation 
Tool is a component which generates the EVs arrival and departure 
events distributed over the topology in both space and time 
dimension. This module uses both the model and probability 
distribution functions. Its output is a dataset containing the daily 
population of individuals using EV cars. In a commercial version, 
deployable in a real recharge station, the simulated events would be 
replaced by those generated by RFID sensors, directly interacting 
with the EVs at the parking places and/or by car rental application 
software declaring the travel terms/plans mentioned in the rental 
agreement. Currently, the datasets can be generated on a daily 
horizon each. The real RFID-based application will stream 
individuals separately. The batch calculation for different days of 
the year is also possible. Another software module of the toolkit 
receives in input the number of days, the expected trend, and it 
calls several times the Dataset Generation Tool obtaining the 
collection of daily datasets then. This way the collection of 
differentiated daily situations accounting the variability of the EV 
use by human being enables the analysis of trends and 
sustainability limits of the system. 
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Figure 9. Toolkit architecture.  
 

The variability could be achieved setting up the input 
parameters such as: 

- the number of residents; 
- the number of tourists; 
- the available energy production (or its load shape 

function). 
The output of the modeling toolkit is the dataset describing the 

behavior of the dynamic system in time dimension.  
The batch component of the toolkit has additional features to 

simulate time-varying attributes of the evolving population. 
Namely, it changes dynamically the input parameters to simulate 
the population dynamics - growth or decline - on the island. As the 
effect, the ratio between the available energy and the demanded 
one will be variable as well. It gives a chance to find and/or test the 
sustainability limits during the whole period. 

The data coming from the Dataset Generation Tool are 
processed from within a module offering the SCADA-like interface 
to support better the intended use by the grid operator. Besides the 
other features, the module monitors the balance between available 
and consumed power flows. It verifies the following constraint: 
 

PAvailable ≥ EV1 + … + EVn (1) 
 

At certain time the demand might exceed the maximal available 
power. In such a case the above condition will be false, no more 
satisfied. The application emanates a warning signal about the 
dangerous condition in the electricity grid to alert the grid operator 
then. Finally the optimization tool calculates one “best” control 
plan thanks to the use of semantic reasoning. It supports and/or 
automates the decisions that should be taken by grid operator. 

5 EXPERIMENTAL RESULTS 
The authors have used the Dataset Generation Tool to obtain the 

daily populations of EV mobility processes describing the EV 
availability for recharge/discharge. The study started from a simple 
scenario, such as a little island with 240 residents and 320 tourists 
only, in which the EV fleet is being used up to the 60% of 
PAvailable(t). The authors assumed the PAvailable setting it to 1000 kW 
assuming it as a normal operational condition. 

The authors evolve the simulation process assuming the 
increasing demographic trend. The process starts at 100% of the 
mixed population of residents and tourists and it goes to increase it 
gradually. It arrives and stops at 150% of the initial values. The 
obtained collection of data sets is analyzed then. The results are 
shown on Fig. 10, where the maximum available power remains set 
to 1000 kW in all cases.  
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Figure 10. Event space populated by instances of EV recharge processes.  
 

It is worth to notice that, with an excessive population growth, 
the sustainability condition is broken for certain daytime slots of 
time only. The red colored peaks on the model show clearly the 
time periods at which the system looses the sustainability, e.g. the 
violation of the rule (1).  

An example of the individual being generated by the toolkit and 
its corresponding ontological representation are the following ones: 

 
Type: TouristEV; Location: Airport_1; Start: 
8:51:41; Estimated end: 14:48:1; Charge 
power(KW): 2.5; Residual CH(KWh): 5.15229; 
Max CHLevel(KWh): 20; Max Power (KW): 20;  

 
<rdf:Description rdf:nodeID="A266"> 
<evMaxChargePower>20.0</evMaxChargePower> 
<evMaxEnergyLevel>20.0</evMaxEnergyLevel> 
<evResidualEnergyOnArrival>5.15229</evResidua
lEnergyOnArrival> 
<evRequiredPower>2.5</evRequiredPower> 
<evEstimatedDepartureTime>14.800278</evEstima
tedDepartureTime> 
<evArrivalTime>8.861389</evArrivalTime> 
<evPlugsIntoParking #Airport_1"/> 
<rdf:type#TouristEV"/> 
</rdf:Description> 
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Based on the aforementioned simulation, the authors obtain the 
indicators as a function of the number of residents and tourists 
useful to anticipate the sustainability limits. An extract is reported 
in the Table 1. The energy requests by EVs could be satisfied until 
the energy demand remains below 1000 kW threshold. For this 
particular scenario, when both the residential population and 
tourists will increase more than 30%, the additional energy 
quantity becomes necessary. It should be introduced by import or 
considering a building of a new local power plant. 

 
Table 1. The population growth and grid sustainability. 

Residents/ 
Tourists 

100% 110% 120% 130% 140% 150% 

100% 750,00 772,50 793,75 810,00 827,50 847,50
110% 821,00 840,00 865,00 872,50 895,00 922,50
120% 878,75 870,00 890,00 922,75 938,33 975,00
130% 883,58 905,00 960,00 977,33 1015,83 1034,17
140% 962,50 995,00 1014,00 1043,75 1032,50 1070,00
150% 1032,50 1047,50 1085,00 1099,17 1106,83 1129,08

 
Let use one dataset containing a traveling population demanding 

more energy than it is available (Fig.11). The forecast of energy 
demand is made based on the previous day’s data (orange dotted 
line). Without optimization (blue dotted line), the first DoS occur 
at 12.00. Applying time shifting (green line), the recharge of some 
EVs happens outside peak hours. 
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Figure 11. Optimization results: aggregated electricity consumption. 

 
One input dataset is shown on Fig. 12. The optimization results 

are shown on Fig. 13. The improvement achieved, e.g.; the 
difference between the original FIFO recharge process and the 
optimized scheme are visible comparing the Figures 12 and 13. 
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Figure 12. Non optimized FIFO recharge scheme. 
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Figure 13. Optimized recharge scheme. 

 

6 ONTOLOGY 
As mentioned above, the authors have developed an ontological 

model of the considered recharge system. This model, together 
with semantic rules, is used to enhance the management of the 
scheduling of EVs recharge processes and to constantly monitor 
the sustainability condition (1). 

The ontology describes the main entities and relations between 
them- EVs and their usage, Power Plants, Power Flows, etc. - that 
participate to the energy distribution processes through the 
electricity grid. Afterwards it supports the optimization of charge 
processes scheduling. In Fig. 14 the principal OWL classes defined 
within the model are represented graphically. 
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Figure 14. Representation of the ontological model (main classes). 

 
An Electric Vehicle connects to a Power Plug, which is located 

inside a specific Parking. While charging, it executes a Charge 
Process, which describes, on a time dimension, the evolution of the 
Power Flow used by the EV. 

The structure of the Electric Grid is deducible from the 
connectedOf properties owned by Power Plug, Parking and Power 
Plant entities. 

Power Series Array Element and its sub-classes are used to 
model the trend of energy consumption, production and availability 
over time. More specifically, a discrete time domain is considered, 
divided in constant intervals (time slots). Each Array Element is 
part of an hypothetical array which expresses the time evolution of 
an aggregate power flow. This class owns an index property, which 
uniquely matches the index of the time slot to which it refers. The 
powerValue property is used to express the power intensity 
(consumed, produced or available) for the corresponding time slot. 
The ontology model has been encoded in OWL using software tool 
Protégé. The control module and the rules have been developed 
using the Apache Jena API. 

7 USE OF THE ONTOLOGICAL MODEL  
The basic inference mechanism (that simply describes the 

current state of the system) is executed according to the following 
assumptions. 

While an Electric Vehicle is connectedTo a Power Plug, a 
Virtual Charge Process (sub-class of Charge Process) is executed 
and its power flow is derived from the estimation of the departure 
time of the EV. Virtual processes are not considered for the 
sustainability of the system and no reasoning is applied for their 
power balancing, but they describe the usage of each EV and for 
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this reason are used to forecast the aggregate energy request 
(Estimated Aggregate Power Consumption) arriving from all EVs. 

A Real Charge Process implies the presence of a Power Flow 
from the electricity grid. The aggregated energy request coming 
from these processes at every instant (Effective Aggregate Power 
Consumption) represents the principal problem for the grid 
sustainability. If we assign negative values to consumed power and 
positive values to supplied ones (Aggregate Power Production), 
the sum of their values represents, at every time instant, the 
Effective Total Available Power, which should always be greater 
than zero. Similarly, the Estimated Total Available Power is 
calculated as the sum of Aggregate Power Production and (the 
negative value of) Estimated Aggregate Power Consumption. All 
these classes, representing instantaneous aggregated power flows, 
are sub-classes of Power Series Array Element. 

A Control Agent is responsible for the processing of an Event 
that occurs into the system. Two major external events (generated 
by RFId sensors) are considered: EV_plugging_in and EV_unplug. 
In practice, a semantic web reasoner is invoked each time an EV is 
plugged into (or unplugged from) the electricity grid. At each event 
detection, the Control Agent, driven by the reasoner, activates a 
sequence of rules (recognized Situations and executed Actions), in 
order to take the appropriate decisions about the management of 
EVs charge processes. No other event is considered until the 
inference cycle ends.  

At the end of each time slot, even when no event is detected, 
another inference cycle is called, in order to update the properties 
of plugged EVs and to constantly monitor the electrical energy 
balance (Cyclic Update). 

For example, when an EV is plugged into the grid, the reasoner 
fires the appropriate rules in order to decide whether or not to 
allow the charging. Moreover, a priority ranking is assigned and 
periodically updated to the EV, based on its residual charge. Since 
a minimum charge level for every EV should be guaranteed, EVs 
which have already overcome this threshold receive the lowest 
priority (e.g. detachable EVs). If an EV has a residual charge lower 
than the threshold, but, according to its estimated departure time, it 
is still possible to delay its charge (introduction of idle time before 
charge process) and reach the minimum charge level, it receives a 
medium priority ranking (e.g. deferrable EV). When an EV has to 
be immediately put in recharge in order to reach the minimum 
charge level, it receives the maximum priority ranking. 
When available power runs out, the Control Agent may decide to 
stop and delay the recharge processes of detachable and deferrable 
EVs (time-shift), eventually allowing the charging of EVs with the 
highest priority.  

The integration of the renewable energy sources into the smart 
power grid and piloting the EV recharge processes accordingly the 
aforementioned methods progress further the known art [7]. 

8 CONCLUSIONS AND FUTURE WORK 
The authors described one new modeling and optimization tool 

used to simulate the use and recharge of the fleet of Electric 
Vehicles on local topology served by a number of energy plants 
supplying the electricity flow. Authors modeled different 
categories of users including residents traveling between the 
houses and work places and tourists renting EVs from car rental 
agencies. The real-life events occurring in time dimension 
accordingly the model have contributed to determine the EV 

battery’s recharge schemes. Because of the long lasting availability 
of the plugged EVs - exceeding the minimal needed time to 
recharge up to 100% level - the toolkit attempts the time shift 
optimization of the available energy flows at daily basis. It delivers 
the valid control sequences to govern the interleaved 
recharge/discharge cycles. 

Additionally, the Model Application Utility gives a possibility 
to run the simulation of the growing demand until the sustainability 
limits of the system will be reached. Therefore the resulting tool 
might be useful for operational planning and the local government 
because showing the grid’s sustainability limits.  

Based on the experimental results, the authors conclude that the 
modeling toolkit is useful in the following cases:  

- to obtain one dataset describing a day of the EV fleet use to 
correlate with the expected less-predictable PV production, 
notably affected by the weather conditions; 

- to obtain the sequence of the datasets showing the forecast 
of the growing trend. 

The new optimization method applying time shifting is useful 
when the sustainability limits are reached. When the known FIFO 
disciplined recharge processes result in DoS because exceeding the 
energy limits, the proposed time shifting method moves the 
recharge of some EVs outside peak hours. The new algorithm kept 
unused the 10% reserves. 

In a future work, the optimization phase will require the use of 
the time-shift feature to better manage the electricity demand by 
EVs. The authors plan to integrate the Dataset Generation Toolkit 
by incorporating an efficient algorithm capable to optimize a 
massive quantity of recharge processes. 
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Application of model-based prediction to support
operational decisions in logistics networks

Philip G. Welch1, Zsolt Kemény2, Anikó Ekárt1 and Elisabeth Ilie-Zudor2

Abstract. We present a model to predict end of day demand in
less-than-truckload freight networks based on continual monitoring
of relevant events during the day. Existing advance order information
prediction models are extended to exploit the wealth of real world
data available in our domain. A simple final model form that can
be interpreted by end-users is retained. In a decision support con-
text, human decision makers can assess the predictions and if needed,
override the proposed decisions.

Keywords: advance order information, demand prediction, hub-and-
spoke networks.

1 INTRODUCTION
The last few decades have seen the emergence of logistics networks
that successfully bridge the apparent gap of fast and low-cost ship-
ping of small - typically less-than-truckload3 (LTL) - consignments.
One proven way of such solutions is a multi-level structure that im-
plements, from an operational point of view, a class of hub-and-spoke
networks, while from an organisational perspective it is an enterprise
network of a “major player” with a large-throughput core structure of
hubs, contracting smaller local logistics providers also called operat-
ing depots, with collection and delivery services. The key to the suc-
cess of such networks is the bundling and re-bundling of shipments
that make transporting LTL consignments economically feasible:

• In an inbound phase, consignments are collected by a local depot
and are shipped to a central hub bundled by origin.

• At the hub, consignments are re-bundled by destination—the hub
is optimised for serving this purpose at a large throughput.

• In an outbound phase, vehicles of sub-contracted depots carry
consignments bound for their specific destination area.

Typically, the same fleet of vehicles is utilised for inbound and out-
bound services, i.e., trucks bringing to the hub consignments from
a given region depart from the hub with consignments bound for
the same region. This can benefit both types of participants, and en-
ables business models to combine complementary competencies of
large-scale efficiency and autonomous functioning with an adequate
sharing of obligations and benefits—as also demonstrated in other
branches of logistics with related hybrid approaches [11].

Successful as they are, such hub-and-spoke networks operated
by multi-level organisational structures still have room for improve-

1 Aston University, Aston Triangle, B4 7ET Birmingham, United Kingdom.
E-mail: research@pgwelch.info, a.ekart@aston.ac.uk

2 Computer and Automation Research Institute, Hungarian Academy of Sci-
ences, Kende u. 13–17, H-1111 Budapest, Hungary. E-mail: {kemeny,
ilie}@sztaki.hu

3 LTL consignments vary in size from ∼ 100 to ∼ 5,000 kg [10].

ment. The major challenges in this context are the balancing of in-
bound and outbound loads of a given depot in order to prevent dead-
heading vehicles and the coverage of demand bursts with transporta-
tion assets. Organisational heterogeneity often inhibits process trans-
parency that would contribute to more efficient operation:

• Subcontractors may use different data models, interpret or han-
dle events in their own specific ways, hampering interoperability
needed for seamless network-wide propagation of information.

• Participants, especially subcontractors, may be reluctant to share
certain types of operational information as they may compete in
local business regardless of collaborating within a larger network.

• De-facto forwarding and reporting practices may result in the in-
formation stream lagging behind the material stream, or not leav-
ing sufficient time for well-informed decisions.

Our work is part of the developments ongoing in the EU FP7-
funded ADVANCE project, which addresses inefficient utilisation of
resources (e.g. unbalanced capacities) in networked logistics com-
panies due to limitations in processing localised information. AD-
VANCE will support networked companies in improving their infor-
mation collecting and processing infrastructure, enabling strategic
planning coupled with instant decision making. It addresses these
problems in two parallel ways: (a) by locating possibilities of im-
proving process transparency and supporting these by solution ele-
ments, and (b) by investigating what can be effected within existing
transparency limits relying on modelling and prediction, based on
known historic data of consignments. A key objective of the project
is to allow improvement in a “non-disruptive” way, i.e., new solu-
tions have to fit into existing business models and processes without
excessive interference, so that operators can, if necessary, safely re-
vert to conventional practices. This is best done in the form of deci-
sion support where relevant information is extracted and presented
in a human-interpretable way. It is important to note that the evolv-
ability of such decision support solutions depends on interoperabil-
ity with human personnel in two ways: (a) the information provided
must “make sense”, i.e., it must be possible for an operator to inter-
pret it in their daily routine context, and (b) the process leading the
decision-critical information must be, to a certain degree, transpar-
ent or interpretable as well.

This paper reports advances in predicting demands based on pre-
viously known data, while keeping models simple enough to be in-
terpreted and evaluated by end-users. The paper is organised as fol-
lows: first, the targeted scenario is explained, and a formal problem
definition is provided, followed by a review of available literature.
Hereafter, our specific choices of model and solution approach are
put forth in detail, followed by the description of available source
data, the experimental setup pursued, and the evaluation of results.
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Figure 1. Relevant events of the targeted scenario. Dotted arrows indicate information stream, continuous lines denote material stream.

2 PROBLEM DEFINITION
2.1 Targeted scenario
We focus on a subsequent series of inbound-to-outbound operations
from the point of view of a single depot at a time—this boils down to
estimating the daily volume of outbound consignments a given depot
has to take from the hub by the end of the day. Each consignment
has its associated demand, i.e., actual volume it occupies within the
transportation assets. To this end, we first examine the events of han-
dling a selected consignment (see Figure 1).

Entering a consignment (E). The sender signals the intent of
sending a consignment. If this is to be handled via our logistics net-
work, the consignment is entered into the system of the depot the
sender has contacted. A departure date is, however, not yet specified.

Alerts (A). Should a demand of extraordinary size for a certain
destination occur, an alert can be sent to the depot in charge of de-
livery, so that a sufficient number of vehicles is made available to
handle the delivery peak. An alert does signal extraordinary demand,
but does not necessarily occur for all demand peaks.

Scanning a consignment onto a vehicle (S). Sooner or later, most
of the entered consignments are prepared for shipment and collected
by the depot where they are bundled and dispatched to the hub at an
adequate time. Scanning a consignment onto a vehicle (to depart for
the hub) is usually recorded shortly before the consignment actually
departs, but is not fully guaranteed to be taken to record.

Declaring a consignment. This event signals the departure of the
consignment for the hub and is, therefore, the primary event for our
demand prediction. All events previously mentioned (E, A, and S)
can additionally be used for enhancing our forecast but are consid-
ered secondary events.

Once the inbound vehicles arrive in the hub, consignments are un-
loaded into the area associated to the depot serving their destination
address and this depot takes charge of the consignments. Vehicles
of the given depots are then obliged by contract to take all consign-
ments bound for their designated delivery area by a specific deadline.
Hence knowing the demand in advance is important: it helps in bal-
ancing inbound and outbound traffic, and it is vital to meet outbound
obligations once balancing is out of question during demand bursts.

2.2 Addressed problem
With existing transparency limitations, modelling and prediction of
demand is of key importance. Here, we investigate making during the
same day predictions of the total end-of-day demand for a depot. Our
aim is two-fold: to minimise the prediction error and to maximise
the simplicity of the final model for better end-user acceptance. A
comprehensible model is also advantageous in situations where end-
users have access to relevant knowledge that the model may not have
(and hence less trust should be placed in the model’s prediction)—
e.g., knowledge of a local public event that would increase demand.

2.3 Basic notation
Our problem is defined as a regression upon a series y which accu-
mulates over a day. y(t) is the sum of demand of the consignments
declared as being sent by the prediction time t in the current day,

y(t) =
∑

j

dj j ∈ {1, . . . , |D| : τj < t} (1)

whereD is the set of all consignments declared by the end of the day
and dj and τj are the demand and declaration time for consignment
j. If te denotes the end of the day we are therefore predicting y(te)
at time t < te. We know the distribution of y for all time in the day
earlier than t. We use C as shorthand to denote the current demand
y(t) and we denote the remaining demand (that will be declared by
the end of the day) as R, where R = y(te)−C. As C is a known
quantity, predicting R is equivalent to predicting y(te).

We extend this notation to include both the partially known series
from the current day and the multiple completely known series from
preceding days. We use yi to refer to the series i days previously,
hence y0 is the partially-known series for the current day, y1 is the
completely-known series for the previous day etc. The same conven-
tion applies to C and R, hence Ci=yi(t) and Ri=yi(te)−yi(t).

3 RELATED WORK
Prediction models which use information on already-booked orders
to predict the total number for a period have several names in the
literature—predictions using advance order data/information [6, 13],
predictions with partial accumulation [4] or advance demand infor-
mation [12]. We adopt the term advance order information (AOI) as
it is the more commonly used. The majority of these models make
monthly or weekly sales forecasts, to aid planning of inventory and
staffing levels. Orders can be placed up to several periods in advance,
and hence predictions using AOI are made on this timescale.

Utley and May [13] present an overview of several model types4:

• Additive model, which makes a prediction R̂ of R.
• Multiplicative model, which makes a prediction ŷ(te)=C/f(t),

where f(t) is the historical average of C/y(te).
• Combined model of Kerke et al. [8] where ŷ(te)=a0+a1C and
a0 and a1 are determined from the historic data.

The combined model is equivalent to the multiplicative model
when a0 = 0 and the additive when a1 = 1. As ŷ(te) = C + R̂
the combined model can be re-written as an additive model contain-
ing C:

R̂ = ao + (a1 − 1)C = a0 + a2C. (2)

where we assume a1 to be constant and absorb it into a constant a2.

4 The models listed in [13] make predictions for multiple periods in-advance;
as we make same period predictions only we have simplified the notation.
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Utley and May also present their own model based on a linear re-
lation between the ratio y0(te)/y1(te) and the ratio C0/C1. They do
not however offer guidance on extending this model to the seasonal
case (where y0(te)/y1(te) will vary systematically across the sea-
son). We expect during-week “seasonality” to be present in our data
(i.e. different weekdays having different average demand) and hence
we do not consider this model to be applicable to our specific case.

Several authors use additive models. Haberleitner et al. [6] detail
the implementation of a system in which the prediction R̂ is deter-
mined by treating R as a time series and applying an exponential
smoothing method. Tan [12] presents several simple additive models
based upon a combination of human-expert and automatic forecasts.
Although suitable for his own application, not all of Tan’s models are
easily applicable to our own due to (a) their inclusion of expert fore-
casts, (b) their assumption that the number of orders is small enough
to construct a conditional probability of remaining orders based on
known ones and (c) their dependence on previous forecasts. The
automatically generated component of Tan’s Right Tail Estimation
method is applicable; similar to Haberleitner this calculates R̂ using
a time-series approach, in particular a weighted average of previous
values of R. Tan also introduces some useful terminology, namely
“perfect” and “imperfect” AOI to indicate (a) placed orders that are
certain and (b) placed orders that may change before the period end.

Bayesian techniques are also commonly used to address AOI pre-
diction problems [4, 15]. They derive the probability distribution
of y(te) using probabilistic modelling techniques together with as-
sumed forms for the prior probability distributions of several quanti-
ties of interest. Although we can make no comment on the predictive
accuracy of these methods, their derived expressions for ŷ(te) (or
the probability of y(te)) are highly complex and do not meet our re-
quirement of a simple form that can be easily understood by users.
We therefore exclude Bayesian approaches from this work.

Comparing our problem to those within the literature we see that
although it fits within the domain of AOI predictions, our predictions
are on a much shorter timescale which gives us much more training
data. If a model is too complex (i.e. has too many fitted terms) for the
available training data, over-fitting can occur which degrades per-
formance on out-of-sample data (see Witten and Frank [14]). Con-
versely if too little complexity is allowed, relevant concepts may be
unlearnable. More data allows us to fit models with more terms than
those typically found in the literature, potentially increasing predic-
tion accuracy. The trade-off is this makes the model harder for the
end-user to understand; hence a balance must be struck.

4 OUR MODEL

We use the combined model in the additive form of Equation 2
as a starting point as this includes both additive and multiplicative
models. We augment it by adding the set of attributes shown in Ta-
ble 1 generated from the partial series y0 and the recent full series
yi, i = 1. . .n. We select a broad set of attributes from which an
attribute selection scheme will determine a smaller relevant subset.
Following the time series approach we include as attributes the pre-
vious n observationsRi, i=1 . . .n and the current day of weekDW,
allowing the model to fit a different constant level per weekday. In
addition to C0 already present in Equation 2, we include the previ-
ous n observations Ci, i=1 . . .n. We also include differenced terms
(e.g. Ri−Ri+1) as time series predictions often use differencing to
model trend [3] and their explicit inclusion may allow adjustment for
short-term (≤n) trends using a smaller attribute set. Different models
are trained for different times of the day, hence the time t is constant

within a single trained model and is not needed as an attribute.
By defining a large and diverse initial attribute set we aim to max-

imise the chances of the final model having a small attribute subset
(as it is conceivable that one attribute could convey the same informa-
tion that would require several in a narrowly-defined set). We make
the assumption that the smaller the final model representation is, the
easier it will be for non-technical users to understand.

4.1 Extension to multiple source events
The primary event - declaring that a consignment will be sent - is
perfect AOI; the demand dj for that consignment will form part of
y(te). Within our source data we also have imperfect AOI provided
by the secondary events for some, but not all consignments (entering,
scanning and alert events as explained before). These occur before
the primary event and indicate that the consignment will be sent, but
do not specify a date for the primary event. Using Equation 1 we can
also derive secondary series for each secondary event type and the
attributes in Table 1 can be calculated separately for each series. Sec-
ondary information is potentially useful for predicting y(te), hence it
is desirable to include it in our prediction model. In our experiments
we test the following inclusion mechanisms:

Secondary attributes. We include the attributes of Table 1 for
each secondary series together with the same attributes for the pri-
mary series (and therefore regress on multiple cumulative series to
predict the final value of one series).

Embedded predictor. We include an embedded predictor—a pre-
dicted value for theR of each secondary series—as an input attribute
for the primary series prediction. We therefore train a separate model
for each secondary series in addition to the primary model.

Waiting consignments. A consignment is in a waiting state with
regard to a secondary event ε if ε has occurred (and therefore the con-
signment is known to the network) but the primary event has yet to
occur. From simple inspection of our source data we see the likeli-
hood of a consignment being sent depends on the number of week-
days it has been waiting k. The majority of consignments are sent on
the same day or day after, i.e. k≤ 1, the number sent dips at k=2,
peaks again at k = 3, drops at k = 4 and those sent for k > 4 are
negligible.

As it is unclear whether this relationship can be captured in a sin-
gle attribute for all waiting consignments we define a set of attributes.
For each secondary event type ε we define the total demand of wait-
ing consignments wεk(t) based on all secondary events of type ε that
have occurred for consignments in the previous k weekdays as

wεk(t) =
∑

j

dj 0 < Tεj ≤ k or (Tεj = 0 and τεj < t) (3)

where Tεj and τεj indicate the day and the time of event ε for de-
mand dj for which the primary event has not occurred yet. For all
our experiments k ∈ {0, 1, 2, 3, 4} as the consignments with k > 4
are negligible.

4.2 Choice of machine learning scheme
Our model is designed to be usable with any machine learning (ML)
algorithm that supports regression. We require the trained model to
have an easily interpretable representation for the non-technical user.
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Assuming a model for each time of day, a real-life implementation
may require a different trained model for every minute of the day,
hence training cannot require significant computational resources.

Initial experiments performed on a single year of data with dif-
ferent ML algorithms, including linear regression (LR), model trees,
neural networks, support vector machines and instance based learn-
ers, showed little difference in performance between simpler and
more complex methods, with LR sometimes outperforming the latter.
As we require the trained model to have an easily interpretable rep-
resentation and efficient training, LR is the natural choice due to its
simplicity and quickly computable closed form expression that can
be updated in an online manner as new data becomes available [1].

4.3 Attribute selection and cross-validation

We use an attribute selection scheme to simplify our final model and
to guard against overfitting during the training process, which can
degrade the performance of ML algorithms (see Witten and Frank
[14]). Feature selection methods can be divided into three groups -
embedded, filter and wrapper methods (see Guyon and Elisseeff [5]).
Unlike the other methods, a wrapper uses the ML algorithm itself as
a ‘black box’ to evaluate the predictive potential of attribute subsets.
It is assumed that this evaluation gives a better estimate of accuracy
than a separate measure not using the ML algorithm (see Blum and
Langley [2]). We therefore choose a wrapper method for our selec-
tion scheme and use a simple greedy forward selection mechanism
as this is known to be computationally efficient [5].

To ensure that the training data is always chronologically earlier
than the independent test data, we use the rolling cross-validation
(CV) scheme of Hu et al. 1999 [7] and thus perform a CV without
violating causality. The scheme is illustrated in Figure 2. The rolling
cross-validation is used within the wrapper method itself. To obtain
an independent error measure we nest the entire attribute selection
search within an additional outer rolling cross-validation loop (see
Kohavi and John [9]). With 10-fold outer cross-validation a single set
of model parameters is therefore run 10 times, potentially generating
different sets of attributes on each fold.

Training 1

Training 2

Training 3

Training 10

Increasing time

Test 1

Test 2

Test 3

Test 10

Figure 2. Rolling cross-validation scheme, following Hu et al. 1999 [7].
After each fold the independent test data (in white) is added to the training

data. A buffer region (corresponding to the length of Training 1) is included
at the start to ensure a minimum amount of data is available for training.

5 SOURCE DATA

We have four years of consignment data from a LTL freight network.
Each consignment record has a demand value, the identifier of the
delivery depot, the primary event and the E secondary event. The A
event occurs for 33% of consignments and the S event for 94%. 86%
of consignments have the primary event occurring on the same day
as E. For the A event this rises to 90% and for S to 94%. E and

A typically occur one or more hours prior to the primary whereas S
events typically occur only a couple of minutes before it.

As the current model does not adjust for trend and seasonal ef-
fects we limit ourselves to a subset of data where these are minimal.
Within the available data we identified a subset of three depots with
approximately stationary behaviour over the four years for this pur-
pose. Each of these three depots has≈ 105 consignment records with
≈ 100 consignments being received on each working day. The mean
demand per consignment is ≈ 0.95.

We preprocess the data to remove atypical cases of demand - spe-
cial cases with zero or near-zero demand (e.g., weekends and public
holidays), and also the period from 20 December to 5 January.

Table 1. Candidate attribute set for the single series model only. n was set
to 5 for all experiments. As weekends were removed C5 and R5 refer to the

current day of week in the previous week.

Attribute(s) Interpretation
DW Day of week when prediction is made.

Ci, i ∈ {0, . . . , n} Demand declared by time t and for
same time on previous n weekdays.

Ri, i ∈ {1, . . . , n} Demand remaining to be declared for
time t on previous n weekdays.

(C0 − Ci), i ∈ {1, . . . , n} Difference between current demand
and demand declared on previous
weekday, two weekdays before, etc.

(Ci−Ci+1), i ∈ {1, . . . , n−1} Difference between demand declared
by time t on consecutive weekdays.

(Ri−Ri+1), i ∈ {1, . . . , n−1} Difference in demand remaining at
time t on consecutive weekdays.

6 EXPERIMENTAL SETUP

The attribute selection is run for all three depots and times of day
together, generating a single attribute set for each CV fold and model
parameters combination. We make predictions at hourly intervals
T = {12:00, 13:00, . . . , 20:00} with our limits chosen based on the
observation that for all depots y(t =12:00) ≈ 0 and y(t =20:00) ≈
y(te). Internally to the selection algorithm, a model is trained for
each individual depot and time of day. For each attribute subset ex-
amined in the selection we therefore train 3×|T |=27 models in par-
allel5. The selected attributes are therefore constrained to be identical
for each depot and time but the attribute weights can be different.

Before running our main set of experiments we ran the attribute
selection scheme to generate an embedded predictor model for each
of the secondary series. The data was partitioned to ensure causality;
for the embedded predictors the rolling scheme was only run on the
first two years of data and in the main experiments only data from
the third year onward was used for out-of-sample tests.

6.1 Model parameters

To investigate the impact on predictive performance of including
the different event types we ran models including (a) no secondary
events, (b) only E (which is earliest and common to all consign-
ments) and (c) all 3 secondary events. The secondary events models
were run twice, once with and once without embedded predictors.

5 |T |=9 as we make predictions at 9 distinct times during the day.
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Table 2. Errors for five model configurations. Chosen model is shown in
bold typeface. The number of selected attributes is the mean across the 10
folds of the outer cross-validation. The mean of the value being predicted,

R(ti), over all times in day T is 77.13.

Secondary Emb. No. No. DAMA P(Above
Events pred. attribs. sel. error better)
E,A,S yes 116 8.5 7.901 N/A
E,A,S no 113 11.8 7.907 0.552
E no 55 10.3 7.938 0.815
E yes 56 6.0 7.982 0.832
none no 26 7.3 10.555 1.000

7 RESULTS
All models were run on an 8-core PC with 12 GB of RAM and took
around 5 hours computer time in total. We tested the stability of
the attribute selection scheme by comparing the different sets of at-
tributes chosen across the 10 outer CV folds. We found that although
the sets showed variation after the first couple of attributes selected,
the reduction in prediction error for each additional attribute selected
was generally small by this point and we therefore expect the impact
of any instability upon prediction error to be minor.

At time t we have remaining demand R(t) and our prediction
R̂(t). The absolute error at t is therefore |R(t)− R̂(t)|. We define
our day-averaged mean absolute error (DAMA error) as:

DAMA =
1

|T |
∑

ti∈T

∣∣∣R(ti)− R̂(ti)
∣∣∣ (4)

Table 2 lists the DAMA error for each model averaged over all days
and depots, ranked by lowest error first. A paired Student t-test was
performed between each model and the model ranked directly above
it, based on comparing the DAMA error for each depot and day com-
bination in one model against the other. From this we derive the es-
timated probability that the model in the row above is more accu-
rate than the current row’s model (presented in the last column). The
model without any secondary series ranks lowest out of all models,
with a probability of over 99.9% that its performance is worse than
the next-best model. From this we conclude that the inclusion of the
imperfect AOI in our secondary series increases prediction accuracy.

Although our top-ranked model has embedded predictors, the
probability that it is more accurate than the next-best model is only
55.2%. Also, from models ranked 3rd and 4th, the model with em-
bedded predictor is ranked worse. Thus, we cannot conclude that em-
bedded predictors increase our predictive accuracy. Given that they
add significant complexity to the model, we exclude them from our
final model selection. If we compare the 2nd to the 3rd ranked model,
we see that the inclusion of the S and A series has an 81.5% prob-
ability of having improved the prediction error. At the same time, in
the different outer CV folds for the 2nd ranked model, the A series
attributes were only selected in six out of the ten folds, whereas E
and S were always selected. This suggests that the inclusion of S
can be expected to be beneficial whereas it is unclear whether the
inclusion of series A has any real benefit. Based on this reasoning,
we choose the 2nd ranked model including secondary eventsE,A, S
and no embedded predictor as our final model.

7.1 Interpretation of the final model
We performed a run for the final model to select the final attributes
using all available data (shown in Table 3). Attributes were selected
from the primary, E and S series but not from A. To simplify the
interpretation of the final model we group its selected attributes into

categories based on the type of source information used to generate
them (see Table 3). The categories are:

• Remaining. This category is based on the depot’s recent history,
indicating the remaining demand at the current time over the pre-
vious five weekdays for the primary, E and S series.

• Waiting. This category is based on current state and indicates the
total demand of the currently waiting (not yet declared) consign-
ments which have the E or S event and have been waiting for up
to k days.

• Current. This is a single attribute CE0 based on the current state
of the depot signifying the total demand of consignments with an
E event occurring by the current time t on the current day.

• Constants. The values in this group are based on the entire history
of the training data (i.e. the average Monday, Tuesday etc. over
all years), constant DW being different for each weekday and
constant c common for all weekdays.

We examined the contribution of each category towards the predic-
tion. Although each depot and time-of-day combination is a separate
trained model with a separate set of weights for its attributes, a com-
mon pattern across all depots which varies systematically over the
day is still visible. Figure 3 demonstrates this for three historic depot
and day combinations, with one plot per depot and the days spread
evenly across both week and year. Categories shown on the +y axis
are added to R̂(t) and those on the −y axis are subtracted from it.

At t =12:00 the predictions are based primarily on the remaining
and constants categories with waiting making a lesser contribution.
As the day continues information about waiting consignments be-
comes more important until it dominates the prediction. Earlier in
the day the model therefore relies primarily on the history before
the current day - both the recent and the entire history - but as imper-
fect AOI becomes available (i.e. more consignments enter the waiting
state) the model switches to using these instead.

A proportion of the current (i.e. CE0) is subtracted from the pre-
dicted value, with a magnitude that roughly increases over the day.
We interpret this as if a larger number of consignments have been
entered before time t, a smaller number is expected after t.

Table 3. Selected attributes with explanations for final model, categorised
by source information. The attribute set was generated by running the

attribute selection on all available data, after the model selection process.

Remaining (uses short-term history)
R1,R4,R5 Demand remaining at current time on the last weekday,

4 weekdays ago and on same day previous week.
(R1−R2) Difference in remaining at current time on previous

weekday and on weekday before that.
RE5 Remaining for E series at current time on same day pre-

vious week.
RS4 Remaining for S series at current time, 4 weekdays ago.

Waiting (uses current depot state)
(a) WE0

(b) WE1

(c) WE4

Waiting demand for E series consignments waiting for
up to (a) current day only (b) current and previous
weekday, (c) the 4 previous weekdays inclusive.

WS4 Waiting demand for S series consignments waiting up
to the previous 4 weekdays inclusive.

Current (uses current depot state)
CE0 Current total of E series.

Constants (uses all history)
DW Day of the week. A different constant is fitted for each

weekday and time of day.
c A single constant applied to all predictions at the cur-

rent time.
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Figure 3. Contribution of the different information categories to the
prediction across the day, shown for the final year of data. For the first depot
we show the 1st Monday in March (top), for the second depot we show the

1st Wednesday in July (middle) and for the final depot we show the 1st
Friday in November (bottom). The y-axis is in units of demand;

contributions on the negative y-axis subtract from the predicted number. The
members of the constants group (c, DW ) are shown separately to highlight

their individual contributions.

8 CONCLUSIONS
Although this work focuses in-depth on a case study of a single large
collaborative logistics network, several useful points can be made re-
garding the wider use of AOI models. We have demonstrated a spe-
cific scenario where using imperfect AOI clearly increases predictive
accuracy, as evidenced by model performance with and without im-
perfect AOI and the large contribution the imperfect AOI (i.e. wait-
ing) makes in our final model. We have shown that when sufficient
training data is available it is relatively straightforward to extend the
simple models from the literature to incorporate more information
whilst retaining an easily interpretable form. We also note the type of
model behaviour observed for our “current” category, where a mea-
sure of the current (albeit imperfect) orders was subtracted from the
estimate of R, is supported by the combined model of Kekre et al. If
circumstances dictated the use of the simple models we would there-
fore recommend the combined model over a purely additive or mul-
tiplicative one.

As maintaining a separate trained model for each time t in the day
could be cumbersome in a practical setting, future work should seek
to cover the day with a smaller number of models whilst retaining
predictive accuracy. Research should also be performed to extend
the model to the non-stationary case.
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Safety Stock Placement in Non-cooperative Supply
Chains

Péter Egri1

Abstract. The paper studies the safety stock placement problem
in decentralised supply chains consisting of autonomous stages. For
the inventory optimisation problem we apply the guaranteed-service
model, while the non-cooperative attitude is handled with mecha-
nism design theory. We propose and investigate four different mech-
anisms based on the Vickrey – Clarke – Groves scheme, and their dis-
tributed implementation. We illustrate on numerical examples how
the mechanisms achieve the globally optimal solution in different
ways.

1 INTRODUCTION
In order to provide high service levels for the customers, compa-
nies have to maintain inventories, and these are accumulated at the
most expensive point of the supply chain as end-products [6]. For ex-
ample, in the U.S. automotive sector recently so much finished cars
have been kept in inventories, that they would have been enough for
satisfying average demand for 60 days [1]. Japanese auto manufac-
turers perform significantly better, e.g., Toyota keeps finished goods
to cover demand for a 30 days shorter period than General Motors.

European automotive companies face similar problems. Cus-
tomers expect to have their orders fulfilled in a couple of days, and
they demand very high service levels [6]. Recently, several efforts
have been made in order to cope with this challenge by innovatively
applying modularity, flexibility, lead-time reduction [12] and collab-
orative planning [3]. These solutions deal with technologies, short-,
medium-, and long-term planning, lean production, but the global
supply chain design optimization is often missing.

Inventory positioning is such a strategic issue in complex supply
networks—like the one indicated on Fig. 1—that aims at minimising
overall inventory cost, while guaranteeing a given service level for
the customers. There are examples from the automotive industry for
30% reduction in inventory levels after repositioning of the inven-
tories, while at the same time, preserving the high standards of the
service [16]. In [11] it is mentioned that usually 25-50% reduction in
holding cost is achievable, and the inventory positioning is illustrated
on some large-scale industrial examples.

However, the applicability of such global optimisation approaches
in distributed environments requires cooperative attitude, i.e., that
the participants agree on minimising the total costs. This may be—
although not necessarily—true in the supply network of a single com-
pany, but almost inconceivable in a network consisting of different
companies.

Global optimisation problems involving agents with different
goals can be successfully handled by mechanism design theory,
1 Fraunhofer Project Center for Production Management and Informatics,

Computer and Automation Research Institute, Hungarian Academy of Sci-
ences, Kende u. 13-17, 1111 Budapest, Hungary, email: egri@sztaki.hu

Figure 1. A part of an automotive supply network.

which facilitates the alignment of conflicting goals with the global
objective. In this paper we combine an inventory positioning model
with mechanism design analysis in order to extend the applicability
of strategic supply chain design methods across companies.

The remainder of the paper is organised as follows. In Section 2
we overview the related literature. Next we present the optimisation
model for serial chains, and investigate four different mechanisms
that can achieve the optimal solution in Section 3. We demonstrate
the differences of the mechanisms using a numerical study in Section
4. Finally, in Section 5, we conclude the paper and enumerate some
possible future research directions.

2 LITERATURE REVIEW
Mechanism design theory deals with the problem of constructing the
rules of a game with incomplete information in order to achieve some
preferred outcome. It assumes an independent, benevolent decision
maker, who collects the private information from the agents, decides
about the outcome, and pays to the agents for disclosing the private
knowledge.

One of the main achievements in this field is the Vickrey – Clarke –
Groves (VCG) mechanism, which is the only one in the general
model that can provide efficient (globally optimal) and truthful
(agents are not interested in lying about their private information)
behaviour. Nisan and Ronen combined the classic mechanism design
theory with computer science considerations in their seminal paper,
where they also illustrated the application of the VCG mechanism
on the shortest path problem [13]. It was later proved that despite the
advantageous truthfulness and efficiency properties of the presented
mechanism, it tends to overpay the agents, and the overpayment can
be arbitrary large [5]. Recently, algorithmic mechanism design has
been extensively used in multiagent optimization problems, such as
multiagent planning [20] and resource allocation [2].
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Implementing a mechanism without an independent decision
maker is the field of distributed mechanism design [14, 15]. In [7]
a general method called replication is presented for implementing
VCG mechanisms in a distributed way. However, it does not solve
the problem of budget-balance: an independent source for the agents’
payments is still required.

Applying mechanism design for supply chain optimization is not
completely new in the literature. Both [8] and [9] present different
decision problems in decentralised supply chains, and they apply the
VCG mechanism for solving them. However, both models assume an
independent decision maker, and do not investigate the possibilities
of distributed implementation. In [4] a two-stage supply network is
considered with a single supplier and multiple retailers, and a com-
bined mechanism design and information elicitation model is devel-
oped. In this special case, a non-VCG mechanism can be applied,
which is truthful, efficient, budget-balanced, and can be implemented
in a distributed way, resulting in a theoretical model for the Vendor
Managed Inventory (VMI) business practice.

A recent review of general inventory control models in supply
chain management can be found in [18]. The problem of safety stock
placement in supply chains is discussed in [11], where two different
approaches, the stochastic- and the guaranteed-service models are
presented. In this paper, we adopt the latter one, and repeat its solu-
tion method in the simplest case, considering a serial supply chain in
Section 3.1.

3 MODEL

In this section we investigate a strategic supply chain design problem,
the safety stock placement, in a non-cooperative setting with rational
agents. We consider a serial supply chain with n stages, where the
nodes represent manufacturing or transportation operations as shown
in Fig. 2. Inventory can be held after each node with different hi unit
holding costs. The market demand is stochastic, but the Ti processing
lead-times at the nodes are deterministic. We assume that there is no
fixed ordering or setup cost, and the nodes apply a base-stock policy:
an order for stage i immediately generates an order with the same
quantity towards stage i+1 in order to maintain the base-stock level.
We also assume the guaranteed-service model: guaranteed service
time Si means that if stage i−1 places an order in period t, it receives
the goods in period t+Si, and the service time for the final customers
is given as a boundary condition (S1 = s1).

Tn,hn T1,h1Ti,hi
Sn Si+1 Si S2 S1=s1... ...

M
a
r
k
e
t

Figure 2. Supply chain setting.

3.1 Centralised approach

The demand in each period is assumed to be independent, normally
distributed random variable with mean µ and standard deviation σ.

Thus the total demand of t consecutive periods is normally dis-
tributed with mean µt and standard deviation σ

√
t. The required in-

ventory for satisfying the demand of t periods is therefore µt+kσ
√
t,

where µt is the expected demand and kσ
√
t is the safety stock. The k

safety factor should be determined depending on the allowed proba-
bility of stock-out, 1−α, where α denotes the required service level.
Table 1 shows the appropriate safety factors for some α values (based
on [17]). It is assumed that the demand over t periods cannot exceed
µt+kσ

√
t (or else it is lost, backlogged, served from an other source

or with extraordinary production).

Table 1. Service level and safety factors.

α 90% 91% 92% 93% 94% 95% 96% 97% 98% 99% 99.9%
k 1.28 1.34 1.41 1.48 1.56 1.65 1.75 1.88 2.05 2.33 3.09

Guaranteed service time Si ≥ 0 means that if stage i−1 places an
order in period t, it receives it in period t + Si. With the processing
lead-time, the replenishment time at stage i will be Si+1 +Ti, where
it is assumed that Sn+1 = 0. If stage i wants to provide service time
Si, it therefore needs to hold inventory for Si+1 + Ti − Si periods,
which is called the net replenishment time.

Since negative net replenishment time is meaningless, we have the
constraints Si ≤ Si+1 + Ti. From this limitation also follows, that
if S1 should equal to s1, the minimum service time at stage i is s1
minus the total lead-times in the chain (i − 1, . . . , 1). Let us define
the minimum service time as

Si = max

{
0, s1 −

i−1∑

j=1

Tj

}
, (1)

thus we have the constraint Si ≤ Si ≤ Si+1 + Ti.
Using the net replenishment time, the base-stock level at stage i

can be calculated as

Bi = µ(Si+1 + Ti − Si) + kσ
√
Si+1 + Ti − Si, (2)

and the expected inventory in period t becomes

E[Ii(t)] = Bi −
t−Si∑

j=0

µ+

t−Si+1−Ti∑

j=0

µ = kσ
√
Si+1 + Ti − Si.

(3)
The total expected inventory holding cost for the supply chain is

n∑

i=1

hikσ
√
Si+1 + Ti − Si, (4)

therefore the optimal service times can be determined with the fol-
lowing non-linear program:

min
n∑

i=1

hi

√
Si+1 + Ti − Si (5)

s.t.

Si = max

{
0, s1 −

i−1∑

j=1

Tj

}
i ∈ { 1, . . . , n } (6)

Si ≤ Si ≤ Si+1 + Ti i ∈ { 1, . . . , n } (7)

S1 = s1 (8)

Sn+1 = 0 (9)
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Let P (T, h, s1) denote the above program with the lead-time and
cost vectors T and h. Note that P (T, h, s1) is independent from µ, σ
and k. This means, that whether a stage should hold inventory or not
is independent from the specific mean and variance of the demand,
and can be determined only with the knowledge of the lead-times and
holding costs.

Simpson proved that the minimum of the objective function occurs
at a vertex of the convex polyhedron defined by the constraints of
the program [19]. This means that in an optimal S∗, each S∗i equals
either S∗i+1 + Ti (when the stage does not hold any inventory) or
Si (where the stage offers immediate—or minimal—service time).
Based on this result, Graves and Willems showed that the problem
can be solved efficiently using the following dynamic programming
recursion [10]:

fn+1 = 0 (10)

fi = min
j=i+1...n+1



fj + hi

√√√√Sj +

j−1∑

l=i

Tl − Si



 (i ≤ n) (11)

where fi is the optimal cost in the (n, n − 1, . . . , i) chain if stage i
holds safety stock for providing Si service time.

3.2 Mechanism design for safety stock placement
Let us consider the case, when the stages of the supply chain are
independent, rational entities with private information, i.e., hi and Ti

are only known at stage i. Instead of minimising the total cost, each
stage intends to minimise its own cost, which can be done simply
by not holding stock at all, except at stage 1, which has to keep an
enormous end-product stock in order to guarantee service time s1.

The solution for this situation provided by the mechanism design
theory is to assume a central decision maker, who collects the pri-
vate information from the stages, determines the service times and
provides some payment ti for each stage, see Fig. 3. Since the stages
might distort their disclosed information, we denote the inventory
holding costs and lead-times collected by the mechanism as ĥi and
T̂i. The utility function of the stages becomes

ui = ti − vi(S) (12)

where ti is the payment received, and vi(S) =
hikσ

√
Si+1 + Ti − Si is the expected inventory holding cost

at stage i. (When Si+1 + Ti − Si < 0 then vi(S) = 0.)

Tn,hn T1,h1Ti,hi... ...

MECHANISM

T̂n,ĥn tn,Sn T̂i,ĥi ti,Si T̂1,ĥ1 tn1

Figure 3. Mechanism design setting and information flow.

A VCG mechanism applied to the safety stock placement prob-
lem determines S∗ as the solution of P (T̂ , ĥ, s1), and defines the
payments in the form of

ti = gi(ĥ−i, T̂−i)−
∑

j 6=i

v̂j(S
∗), (13)

where ĥ−i = (ĥ1, . . . , ĥi−1, ĥi+1, . . . , ĥn), T̂−i =
(T̂1, . . . , T̂i−1, T̂i+1, . . . , T̂n), gi is an arbitrary function inde-

pendent from ĥi and T̂i, and v̂i(S) = ĥikσ

√
Si+1 + T̂i − Si.

It is well known, that VCG mechanisms are truthful, consequently,
the stages can optimise their utility by disclosing ĥi = hi and
T̂i = Ti. Furthermore it is efficient, viz., it minimises the total hold-
ing cost in the chain. The functions gi give the freedom for construct-
ing different mechanisms, e.g., gi ≡ 0 results in a situation, where
each stage must pay the total cost of the chain minus its own. In the
next subsections we examine different VCG mechanisms and their
properties.

The general idea that we use for developing specific VCG mech-
anisms is the following. We change ĥi and T̂i values in ĥ and T̂ for
a predetermined h̃i and T̃i, thus the resulting vectors denoted as ĥ(i)

and T̂ (i) will not depend on ĥi and T̂i. Then we calculate an opti-
mal S(i) solution for the program P (T̂ (i), ĥ(i), s1), and define the
gi function as

gi(ĥ−i, T̂−i) =
∑

j 6=i

v̂j(S
(i)). (14)

Let ṽi(S) = h̃ikσ

√
Si+1 + T̃i − Si denote the expected inven-

tory holding cost function in the modified problem for stage i. The
next theorem characterises the payment of any such mechanism.

Theorem 1 ṽi(S
∗)− ṽi(S(i)) ≥ ti ≥ v̂i(S∗)− v̂i(S(i))

Proof Since S∗ minimises the objective function of P (T, ĥ, s1)

v̂i(S
∗) +

∑

j 6=i

v̂j(S
∗) ≤ v̂i(S(i)) +

∑

j 6=i

v̂j(S
(i)), (15)

which can be rearranged resulting ti ≥ v̂i(S∗)− v̂i(S(i)).
On the other hand, S(i) minimises the objective function of

P (T̂ (i), ĥ(i), s1), therefore

ṽi(S
(i)) +

∑

j 6=i

v̂j(S
(i)) ≤ ṽi(S∗) +

∑

j 6=i

v̂j(S
∗), (16)

thus we get ṽi(S∗)− ṽi(S(i)) ≥ ti. �

The theorem provides an upper and a lower bound on the pay-
ments, which helps to characterise the expected utility of the stages
as well as the budget of the mechanism (the total payment). Note
that in some of the mechanisms we apply infinite h̃i modified hold-
ing cost, in which cases the upper bound also becomes infinite, thus
fails to provide any useful information about the possible overpay-
ment. However, due to the definition, the payments are always finite.

3.2.1 Commonly known lead-times (M1)

Firstly, we consider the situation where only the holding cost (hi)
is private information at stage i, and the Ti values are common
knowledge. Although this contradicts our original assumptions, we
decided to include this case for providing a comparison with the fur-
ther mechanisms.

We use h̃i = ∞ and the commonly known T in P (T, ĥ(i), s1).
We further assume that s1 ≥ T1, otherwise the stage 1 would have
to keep some safety stock in order to guarantee s1 service time, and
then any feasible solution would be optimal—with infinite total cost.
Since in the modified program the holding cost at stage i is infinite, in
the optimal S(i) solution stage i will not carry any safety stock, i.e.,
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S
(i)
i = S

(i)
i+1 + Ti. This mechanism is analogous to the shortest path

mechanism [13]: stage i receives as large payment as its contribution
to the cost decrease of other stages.

The next theorem states, that if a stage does not hold inventory, it
also does not receive any payment, otherwise it gets compensation
which is not less than its cost.

Theorem 2 If S∗i = S∗i+1 + Ti then ti = 0. Else S∗i = Si and then
ti ≥ v̂i(S∗).

Proof Since S(i)
i = S

(i)
i+1 + Ti, Theorem 1 in this case means

ṽi(S
∗) ≥ ti ≥ v̂i(S∗), from which the statement follows. �

An immediate corollary of the theorem is that ∀i : ui ≥ 0, which
property is called individual rationality. Furthermore, the mechanism
has deficit, i.e.,

∑n
i=1 ti ≥ 0.

Unfortunately, if Ti is private information this mechanism cannot
be applied, since S(i) would then depend on T̂i, which corrupts the
properties of the VCG mechanism. Therefore, in the following sub-
sections we construct different mechanisms for the case when Ti is
private information.

3.2.2 Disregarding holding costs (M2)

In this mechanism we use h̃i = 0 and an arbitrary T̃i. Since in
this modified problem the inventory holding is free in stage i, it will
keep as much safety stock, as possible (S(i)

i = S
(i)
i ). Furthermore,

none of the upstream stages holds any stock (S(i)
j = S

(i)
j+1 + T̂j ,

(j = i + 1, . . . , n)), and therefore S(i)
i+1 =

∑n
j=i+1 T̂j . It can be

seen that the optimal S(i) is indeed independent from the value of
T̃i. This mechanism corresponds to the Clarke pivot rule, and the
following theorem characterises its properties. The theorem follows
from Theorem 1 using T̃i = 0.

Theorem 3 0 ≥ ti ≥ v̂i(S∗)− ĥikσ
√∑n

j=i+1 T̂j − S(i)
i

This mechanism has surplus, i.e.,
∑n

i=1 ti ≤ 0. This approach can
be interpreted as comparing the optimal S∗ solution to S(i), where
stage i holds maximal inventory. It can be seen that this is unfair to
the lower stages, where the possible maximal inventory is larger.

3.2.3 Disregarding lead-times (M3)

The next mechanism is constructed by using h̃i = ∞ and T̃i = 0.
In the optimal S(i) stage i will not hold any stock, and therefore
S

(i)
i = S

(i)
i+1. The payment in this case can be characterised by the

following theorem (corollary of Theorem 1).

Theorem 4 If S∗i = S∗i+1 + T̂i then 0 ≥ ti ≥ −ĥikσ
√
T̂i. Else if

S∗i = Si then ti ≥ v̂i(S
∗) − ĥikσ

√
T̂i. In the special case when

S∗i = Si = 0 then ti ≥ 0.

This mechanism can work either with surplus or deficit, thus it can
be viewed as a transition between the previous two mechanisms.

3.2.4 Considering average lead-times (M4)

In this subsection, we try to approximate the behaviour of the mech-
anismM1 by defining h̃i = ∞ and T̃i =

∑
j 6=i T̂j/(n − 1), i.e.,

the mean lead-time of the other stages. If we assume that s1 ≥ T̃1,
then the optimal S(i) solution satisfies S(i)

i = S
(i)
i+1 + T̃i, wherewith

Theorem 1 is reduced to the following form.

Theorem 5 When the lead-time of stage i is below or equal to the
average (T̂i ≤ T̃i), then ti ≥ v̂i(S∗).

Otherwise, when the lead-time is above or equal to the average,
and S∗i = S∗i+1 + T̂i then 0 ≥ ti ≥ −ĥikσ

√
T̂i − T̃i, else ti ≥

v̂i(S
∗)− ĥikσ

√
T̂i − T̃i.

The corollary of the theorem is that the stages are interested in de-
creasing their lead-times, since decreasing it below the average guar-
antees non-negative utility.

3.2.5 Summary of the mechanisms

In the next table we summarise the construction of the previous four
mechanisms.

Table 2. Summary of the mechanisms

M1 M2 M3 M4

h̃i ∞ 0 ∞ ∞
T̃i Ti * 0 avgj 6=i Tj

3.3 Decentralised protocol
In order to implement a mechanism in a decentralised way, i.e., with-
out a trusted centre, two issues should be addressed: (i) the computa-
tion of the optimal safety stock placements, and (ii) assuring the pay-
ment for each stage. The first issue can be resolved by replication,
which is a standard technique for implementing a VCG mechanism
in a decentralised setting faithfully, i.e., in such a way, that the ratio-
nal stages are not interested in deviating from the proposed protocol
[7]. For example, if the stages disclose their private information to
all of the other stages (so every stage knows ĥ and T̂ ), and then all
of them can compute the optimal service times and payments. If they
agree on the solution, they adopt it, otherwise they suffer a severe
penalty, e.g., by missing the opportunity of serving the market.

Regarding the second issue, we suggest that the payments of the
mechanism have to be covered from the market. Let us consider the
situation presented on Fig. 4, where predefined unit prices pi for the
product and components are given.

pn pi+1 pi p2 p1... ...

M
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Figure 4. Decentralised implementation of the mechanism.

In order to assure the appropriate payment for the stages, the unit
prices have to be modified. Note that we assume that the modification
of p1 does not influence the demand. This can be assumed if the
modification is sufficiently small, therefore we prefer mechanisms
that imply small change to p1.

Let us define the new unit prices as p′i = pi +
∑n

j=i tj/µ. With
this modification, the expected utility of stage i—disregarding any
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production cost—in each period becomes

ui = (p′i − p′i+1)µ− vi(S∗) = (pi − pi+1)µ+ ti − vi(S∗) (17)

therefore the proposed decentralised implementation keeps the truth-
fulness and efficiency of the VCG mechanisms.

4 COMPUTATIONAL STUDY
4.1 Numerical example
Table 3 (page 6) illustrates the results of using the four different
mechanisms in a supply chain with 10 stages. The parameters of the
problem are s1 = 5, µ = 1000, σ = 100 and k = 2.05. The hi,
Ti and pi parameters are indicated in the table. In the optimal case,
stages 2 and 6 keep safety stock. In accord with the theorems, the
mechanism M1 assigns payment only to those two stages, and the
payment is not less than the expected holding cost. MechanismM2

determines only negative payments, except for stage 6, which is the
uppermost stage holding stock. The third and fourth mechanism as-
sign both positive and negative payments as well; and in the latter
case, the non-negative payment for stages with lead-time below the
average (3.6) can also be observed. Note that we have disregarded
the production costs in the model, which would only cause a con-
stant shift in the utilities, therefore do not influence neither the opti-
mal solution nor the payments. That is the reason of the unexpected
increase of the utility at the uppermost stage.

Fig. 5 illustrates the same costs and the payments according to the
different mechanisms at each stage graphically.

1 2 3 4 5 6 7 8 9 10

-15 000

-10 000

-5000

5000

10 000

Cost M1 M2 M3 M4

Figure 5. Illustration of the costs and payments at the different stages.

Table 4 shows the total payments which can be compared to the
total holding cost of the optimal S∗. It can be seen thatM3 resulted
in a total payment closest to zero, and therefore it caused the smallest
change in the market price by increasing it with only 2% .

4.2 Simulation
In order to check which mechanism results in the least change of the
market price, we have run several experiments with different parame-
ters. Table 5 shows the average results based on 500 simulation runs.
The n, s1, k, σ, µ and p parameters were the same as in the previ-
ous example, while the lead-times and holding costs were randomly

Table 4. Total payment and change in the market price

M1 M2 M3 M4∑
vi(S

∗) 15410∑
ti 16944 -47276 5125 16526

p′1/p1 1.075 0.79 1.02 1.075

generated in each run, but using the same dataset for each mecha-
nisms. The hi values are from a uniform distribution with support
[n − i + 1, 3(n − i + 1)], which is reasoned with the observation
that holding cost is likely to be higher downstream the supply chain.
The Ti parameters were generated from an uniform distribution over
{ 1, . . . , 5 }. The generating approach of the lead-times simulate var-
ious combinations of long manufacturing and short assembly opera-
tions, as well as long transportation times from global (e.g., Far East-
ern) suppliers.

Table 5. Average performance of the mechanisms based on 500 runs.

M1 M2 M3 M4∑
vi(S

∗) 13535
Avg

∑
ti 17773 -48628 2416 18133

Avg p′1/p1 1.036 0.901 1.005 1.037

It can be seen that mechanismM1 results in relatively high total
payment. A corollary of Theorem 2 is that the total payment can not
be less than the total cost. However, no upper bound was given for
the payment, and thus the problem of overpayment may occur, simi-
larly to the case of the shortest path mechanism [5]. The mechanism
M4 approximates the first mechanism by using an average lead-time
instead of the real one in the payment calculations, and therefore
they resulted in similar behaviour. TheM2, which allows only non-
positive payments, results in an enormous negative payment, which
is more than three times bigger than the inventory holding cost itself.
The decentralised protocol in this case results in approximately 10%
decrease in the market price, which—assuming price-independent
demand—is clearly not desirable for the supply chain. Finally,M3

resulted in a fairly low total payment, and its indicated increase in
the market price was only 0.5%.

5 CONCLUSIONS AND FUTURE WORK

We investigated the safety stock placement problem in non-
cooperative serial supply chains, motivated mainly by the inventory
management problems of global automotive supply networks. We ap-
plied mechanism design theory combined with the appropriate oper-
ation research models for minimising the overall inventory holding
cost. We presented and compared four specific mechanisms based on
the VCG scheme, and examined their distributed implementation.

There are several possible extensions of this work. Besides the
presented mechanisms several others are possible, including ran-
domised ones that may have more desirable properties. Providing
upper bounds on the total payment, proving approximate budget-
balance, is also an important research direction. Considering price-
dependent demand leads to a more complex, but more realistic in-
ventory holding and pricing problem. Group-strategyproofness, i.e.,
preventing collusions in possible coalitions, would also worth further
investigations. A distributed implementation with partial information
sharing, where the agents do not share complete private information
with every other agents would make the model much more practical.
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Table 3. Numerical example.

i 1 2 3 4 5 6 7 8 9 10
hi 16 15 24 10 10 5 8 4 2 1
Ti 3 5 4 4 2 5 4 2 5 2
S∗i 5 2 10 6 2 0 13 9 7 2

vi(S
∗) 0 11056 0 0 0 4354 0 0 0 0

pi 223 159 114 81 58 42 30 21 15 11

M1

ti 0 11778 0 0 0 5166 0 0 0 0
ti − vi(S∗) 0 722 0 0 0 812 0 0 0 0

p′i 240 176 119 87 63 47 30 21 15 11
ui 63780 46279 32541 23243 16602 12671 8471 6050 4322 10804

M2

ti -15410 -4354 -10099 -7297 -5240 0 -2401 -1275 -950 -249
ti − vi(S∗) -15410 -15410 -10099 -7297 -5240 -4354 -2401 -1275 -950 -249

p′i 176 128 86 64 48 37 25 19 14 11
ui 48370 30147 22442 15946 11362 7505 6070 4775 3371 10555

M3

ti -1359 9239 -1857 -1857 -886 3510 -514 -249 -654 -249
ti − vi(S∗) -1359 -1816 -1857 -1857 -886 -844 -514 -249 -654 -249

p′i 228 166 111 80 59 43 28 20 14 11
ui 62421 43741 30684 21387 15716 11015 7956 5801 3668 10555

M4

ti 280 11051 -191 -191 732 4671 -54 210 -192 210
ti − vi(S∗) 280 -5 -191 -191 732 317 -54 210 -192 210

p′i 240 176 119 87 64 46 30 21 15 11
ui 64060 45552 32350 23053 17334 12176 8417 6260 4129 11014

We emphasise that combining planning models with the results of
the algorithmic mechanism design can be applied to different logis-
tic problems; the model presented in the paper is only one exam-
ple. Therefore considering more complex planning problems is also
a possible future working field.
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with benefit balancing in dynamic supply loops’, CIRP Journal of Man-
ufacturing Science and Technology, 4(3), 226–233, (2011).
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Towards Decentralised Agent-Based Inter-Company
Scheduling

Haixiao Liu and Jeroen Keppens and Michael Luck1

Abstract. This paper examines inter-company scheduling in sce-
narios where the companies wish to collaborate with one another but
are not prepared to reveal operations or sales information. For ex-
ample, this type of scenario occurs when multiple small to medium
sized manufacturers of the same or similar products wish to pool
their resources to meet larger orders even though they remain com-
petitors with one another. Conventional approaches to inter-company
scheduling are inappropriate in such situations because they rely on
companies to reveal potentially sensitive information to one another
or to a third party. This paper presents a novel fully decentralised
agent-based approach to inter-company scheduling that substitutes
information sharing for negotiation. The performance of this ap-
proach is assessed in a range of simple scenarios consisting of only
two companies.

1 INTRODUCTION
It is often advantageous for separate organisations to coordinate the
planning and scheduling of their activities for a variety of reasons.
For example, inter-company scheduling can allow the organisations
involved to operate more cost-effectively, enable them to adapt to
environmental changes more quickly or achieve objectives that they
could not achieve otherwise [3][16]. Various multi-agent systems
for inter-company scheduling have been proposed and these have
achieved considerable success [12][7].

Conventional approaches to agent-based inter-company schedul-
ing approaches assume that organisations are prepared to share ac-
cess to potentially sensitive private information, such as orders and
production capacity, with a third party entity. For example, a yel-
low page agent is introduced in [8] to maintain the overall ca-
pacity of involved companies. Although these approaches to inter-
company scheduling are effective in many scenarios, there are cir-
cumstances where the organisations that may benefit from inter-
company scheduling tend to be unwilling to share as much infor-
mation with a third party as these approaches require [15][4].

We envision a scenario consisting of a number of small and
medium sized manufacturers that produce similar products. On the
one hand, these organisations compete with one another because they
manufacture similar products. As such, much of the information that
is shared with a third party in conventional inter-company schedul-
ing approaches is commercially sensitive. Therefore, the manufac-
turers in our scenario are unwilling to share such information. On the
other hand, in certain situations, small and medium sized manufac-
turers can benefit from pooling resources with their competitors to
achieve economies of scale or, simply, to allow them to fulfil larger
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orders. This scenario requires a different paradigm of inter-company
scheduling: one where resource sharing is accomplished through bi-
lateral negotiation between the organisations involved. A potential
drawback of such an approach is that globally optimal scheduling
solutions cannot be achieved due to lack of information sharing.

We propose a novel fully decentralised agent-based approach to
inter-company scheduling that substitutes information sharing for
negotiation. This approach effectively tackles the problem for two
reasons. Firstly, manufacturing companies can independently make
beneficial decisions to allocate their own resources. Secondly, since
manufacturers do not depend on another or a third party to share
resources, they may choose not to disclose private information for
their own good. Therefore, our approach can solve the inter-company
scheduling problem in a decentralised manner with privacy protec-
tion.

This paper presents a first step into our investigation to decen-
tralised agent-based inter-company scheduling, by means of a sim-
plified scenario that involves only two manufacturers. The scenario
is defined in Section 2. Next, Section 3 proposes a novel fully-
decentralised agent-based inter-company scheduling approach that
can deal with the scenario introduced in 2. This approach is evalu-
ated in Section 4, where we examine to what extent our approach
under-performs due to the organisations’ unwillingness to share in-
formation. Section 5 reviews related approaches to inter-company
scheduling are reviewed. Finally, our future work towards decen-
tralised agent-based inter-company scheduling is described in Sec-
tion 6.

2 SCENARIO
Our scenario is depicted in Figure 1. It consists of two manufactur-
ers 1 and 2, each aiming to maximise its profit. Each manufacturer
receives orders for the products it can manufacture. It also obtains
income by fulfilling orders. A company’s production capacity is re-
stricted by the production resources it possesses. We make the fol-
lowing assumptions about inter-company scheduling:

• Order: Only one type of product is required in all customer orders.
Each order is not fulfilled unless the manufacturer produces as
many products as stipulated in the order. No income is received
for orders that are only partially fulfilled.

• Resource: Only one type of resource is requested for production.
A company can increase the number of resources available for pro-
duction by buying additional resources from the other company.
Conversely, a company that sells resources to the other reduces
the resources available to it.

• Production: There is a linear relationship between resource input
and product output.
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Figure 1. Our scenario

Let d be the market price for the product. The manufacturer i owns
ci units of resources and receives a set of orders Oi from customers.
Each order q ∈ Oi represents the quantity of the product required
to fulfil the order. We assume that to manufacture one unit of the
product, mi units of resource are required in manufacturer i. For
each order q ∈ Oi that the manufacturer i fulfils, q ∗ mi units of
resources are allocated and an income q ∗ d is received.

A number of additional variables are introduced to represent
scheduling solutions and their implications. The boolean variable ωq

describes whether or not the order q ∈ Oi is accepted. The posi-
tive integer variable aq expresses the number of resources assigned
to order q; and the integer variable si indicates the number of units
of resource bought or sold in manufacturer i. pi is the price paid for
sharing each unit of resource between two manufacturers. Here pos-
itive or negative values of si indicate different meanings as below.

• si > 0: the manufacturer i intends to purchase si units of re-
source.

• si < 0: the manufacturer i wants to sell −si units of resource.
• si = 0: the manufacturer i does not wish to buy or sell any re-

sources.

In our scenario, when the resource sharing occurs there is a buyer
and a seller, which leads to s1 = −s2. Even when both manufac-
turers do not intend to share resources, this equation still holds as
s1 = 0 and s2 = 0.

An allocation of aq resource to production to meet order q is rep-
resented as a pair (ωq, aq). Let Ai be the set of all of i’s production
resource allocations. Then, a scheduling solution, or schedule, for
manufacturer i can be expressed as a vector xi = 〈Ai, (si, pi)〉. The
profit associated schedule xi is denoted P (xi). The optimal assign-
ment Xi is the most profitable solution of allocating resources for
processing customer orders based on its own production capacity, ig-
noring any potential for buying or selling units of resource. Its profit
Pi can be calculated from Equation 1.

Pi = max{
∑

q∈O

q ∗ d|O ⊂ Oi,
∑

q∈O

q ∗mi ≤ ci} (1)

If a rational manufacturer is unable to meet all its orders, it is will-
ing to purchase them provided the cost of purchase is less than the
marginal profit realised from those resources. In other words, a man-
ufacturer is only willing to purchase resources that increases total
profit. Thus, from the point of resource buyer i, then the following
two constraints apply to si and pi:

0 ≤ si ≤
∑

q∈Oi
q ∗mi − ci

0 ≤ pi ≤ ((si + ci) ∗ d/mi − Pi)/si
(2)

A self-interested company will only agree to sell resources instead
of committing them to production if the former yields a higher over-
all profit than the latter. The amount of resources it can sell cannot ex-
ceed its capacity. Moreover, the profit after selling should not be less
than allocating those sold resources for production or letting them
remain unused. Then from the resource seller i’s point of view, two
constraints in an acceptable schedule xi should be met as in Equa-
tion 3.

si ≥ −ci
P (xi) ≥ Pi

(3)

The negotiation strategy on resource sharing is used in manufac-
turer i to propose the quantity si and price pi. In resource sharing
negotiations, a prospective buyer would like to purchase resources
to meet as many orders as possible for maximal income from pro-
duction. Moreover, for the same amount of resource that it intends to
purchase, the buyer is willing to pay as little as the seller agrees for
minimal expenses.

We assume for si units of resources, the prospective buyer initially
desires to pay bi of marginal profit. Then the initial purchase request
for prospective buyer is decided as in Equation 4.

si =
∑

q∈Oi
q ∗mi − ci

pi = (
∑

q∈Oi
q ∗ d− Pi) ∗ bi/si (4)

The resource purchase request of manufacturer i should be up-
dated when (si, pi) is not agreed by the other. It can gradually in-
crease the payment by gi of marginal profit as in Equation 5 when
the payment pi does not reach the upper bound, namely pi <
((si + ci) ∗ d/mi − Pi)/si.

s′i = si
p′i = min{((si + ci) ∗ d/mi − Pi)/si,

pi + ((si + ci) ∗ d/mi − Pi) ∗ gi/si}
(5)

If the payment reaches the marginal profit, namely pi = ((si +
ci)∗d/mi−Pi)/si, the prospective buyer may reduce the amount of
resources it is willing to purchase. This process of updating (si, pi)
to (s′i, p

′
i) is specified in Equation 6.

s′i = max{
∑

q∈O
q ∗mi|O ⊂ Oi,∑

q∈O
q ∗mi < si + ci} − ci

p′i = (s′i + ci) ∗ d/mi − Pi)) ∗ bi/s′i
(6)

The objective of companies is to maximise their profit from ful-
filling orders and sharing resources as formalised in Equation 7.

max
∑

q∈Oi

ωq ∗ q ∗ d− si ∗ pi (7)
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In order to achieve this objective, the manufacturer has to satisfy
the resource and process constraints. The former one as shown in
Equation 8 means that the amount of resources assigned to orders
and shared with the other company should not exceed its capacity.
Equation 9 indicates the process constraint that any order is not met
unless the complete needed resources are allocated. In addition, the
valid range of variables are specified in Equation 10. Xi can be ob-
tained by using these equations with si = 0 and pi = 0.

∑

q∈Oi

aq − si ≤ ci (8)

∀q, aq ≥ ωq ∗ q ∗mi (9)

ωq ∈ {0, 1}; aq ∈ N. (10)

3 APPROACH
In our scenario, each manufacturer is an autonomous decision maker.
For this reason, each manufacturer is represented by an agent in our
approach. Following the scenario, an agent i is defined by a tuple
〈ci,mi, Oi〉, where ci represents i’s resource capacity, mi i’s pro-
duction process and Oi is the set of customer orders of i.

Each agent must make decisions on how to allocate resources. A
unit of resource can be allocated to production, sold to the other agent
or remain unused. An agent may also decide to attempt to increase
the number of resource units available to it by purchasing them from
its competitor and negotiate a price for this transaction. It is assumed
that each agent is driven by profit maximisation.

The decision making process of a single agent in the decentralised
agent-based inter-company scheduling system is shown in Algo-
rithm 1. The algorithm consists of two phases.

In the first phase, an agent i searches for the optimal resource as-
signment Xi through the simplex algorithm. The profit Pi of this
assignment is used as the lower limit for any decisions regarding re-
source sharing. If an agent is unable to fulfil all its orders by means
of the resources it possesses, then it generates an initial resource pur-
chase request rq = (i, si, pi). This request contains a proposal for
the quantity of required resources and payment, both of which are
decided according its negotiation strategy as in Equation 4. The sim-
plex algorithm is utilised here for corresponding resource allocation
for production Ai as well.

In the second phase, the agents negotiate potential resource shar-
ing. In our simple scenario, the way in which the negotiation pro-
ceeds depends on the circumstances of the agents. If neither of the
two agents sends a purchase request, both commit to allocating their
resources following the optimal assignment Xi. If one sends a pur-
chase request and the other does not, then further rounds of negoti-
ation take place. The recipient of the message answers with a reply
rp = (answer, rq) where answer ∈ {accepted, declined}. It de-
clines the proposal rq if agreeing to it does not enable it to increase
its profit. This decline leads to the sender updating its request accord-
ing to its negotiation strategy as in Equations 5 and 6. This continues
unless the negotiation terminates. If both agents make rent requests,
then they simultaneously send out their purchase requests until the
negotiation terminates. Here agents only send out requests to pur-
chase resources and replies to agree or disagree to the corresponding
requests.

The negotiation process terminates when either an agreement is
reached or when the agents discover it is not possible to reach an
agreement. The latter situation occurs when an agent reaches one of
its boundary conditions during the negotiation process as in Equation
2.

Algorithm 1 Decentralised agent-based scheduling approach
1: sharing agreed = false
2: Pi = get profit bound() //calculate the profit lower bound as in

Equation 1
3: Xi = get schedule(0, 0) // use the simplex algorithm to find out

the scheduleXi and its profit Pi in Equations 7, 8, 9 and 10 with
si = 0 and pi = 0

4: if
∑

q∈Oi
q ∗mi < ci then

5: si = initialise quantity()
6: pi = initialise payment() // set variables as in Equation 4
7: xi = get schedule(si, pi)
8: P (xi) = get profit(si, pi) // use the simplex algorithm to find

out the schedule xi and its profit P (xi) in Equations 7, 8, 9
and 10 with just initialised variables si and pi

9: rq ← (i, si, pi)
10: else
11: xi ← Xi, P (xi)← Pi, rq ← (i, 0, 0)
12: end if
13: repeat
14: send(rq)
15: receive(msg)
16: if msg is the reply rp = (answer, rq) then
17: if answer = accepted then
18: commit to xi
19: sharing agreed = true
20: else
21: s′′i = update quantity(si, pi)
22: p′′i = update payment(si, pi) // update variables as in

Equations 5 or 6
23: send(rq′′ = (i, s′′i , p

′′
i ))

24: if s′′i = 0 then
25: commit to xi
26: sharing agreed = true
27: end if
28: end if
29: else if msg is the request rq′ = (i′, si′ , pi′) then
30: if si = 0 ∧ si′ = 0 then
31: commit to xi
32: sharing agreed = true
33: else
34: s′i ← −si′ , p′i ← −pi′
35: x′i= get schedule(s′i, p

′
i)

36: P (x′i) = get profit(s′i, p
′
i)

37: if P (x′i) ≥ P (xi) then
38: commit to x′i
39: sharing agreed = true
40: send(rp = (accepted, rq′))
41: else
42: if si = 0 then
43: send(rp = (declined, rq′))
44: else if si > 0 then
45: s′′i = update quantity(si, pi)
46: p′′i = update payment(si, pi)
47: send(rq′′ = (i, s′′i , p

′′
i ))

48: end if
49: end if
50: end if
51: end if
52: until sharing agreed
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4 ANALYSIS
In our scenario, a manufacturer may be able to increase its prof-
its through resource sharing. However, the extent to which resource
sharing is possible is constrained by the amount of information that
the companies are willing to share. In this section, we compare the
performance of our approach (denoted DS or decentralised schedul-
ing) with two alternative approaches:

• Local scheduling (LS): the two agents do not exchange any infor-
mation and do not share any resources as a result. In other words,
two agents are isolated entities and no negotiation occur between
them. This approach constitutes a baseline on the performance of
DS.

• Global scheduling (GS): the resources and orders of both agents
are pooled into a single agent and its optimal resource allocation
is computed. In our scenario, this approach is equivalent to full
information sharing. It constitutes an upper bound on the potential
performance of DS.

This paper examines the effect of different features of our scenario
on overall profitability under DS, compared to LS and GS, by gener-
ating random instances of our scenario on a set of input parameters.
The effects of the following five input parameters are examined:

• Overall demand (OD): the total volume of products required by
customers of both companies. Formally,

∑

i=1,2

∑

q∈Oi

q = OD (11)

• Demand distribution (DD): the ratio of the whole demand of one
company to that of the other company. Formally, DD = x : y iff

∑
q∈O1

q∑
q∈O2

q
=
x

y
(12)

• Requirement distribution (RD): the probability distribution used
to partition the overall demand into individual order quantities. In
this work, a normal distribution with a given average µ and given
standard deviation σ is used. Thus, RD = N (µ, σ2).

• Overall capacity (OC): the ratio of the total volume of resources
owned by two companies to that needed to meet the overall de-
mand. Formally, OC = x : y iff

c1 + c2∑
i=1,2

∑
q∈Oi

mi ∗ q
=
x

y
(13)

• Resource distribution (ReD): the ratio of the volume of resources
owned by one company to that of the other company. Formally,
ReD = x : y iff

c1
c2

=
x

y
(14)

4.1 Experimental Set-up
In our experiments, the following parameters are used: market price
d = 120 and the number of resources required for production for
each manufacturer m1 = m2 = 4. It is assumed that an agent re-
questing to purchase resources makes an initial offer of a payment of
b = 60% of the marginal profits. If this offer is rejected, the agent
increases the payment by g = 20% until it reaches 100% of marginal
profits.

We have run five set of experiments whose input parameters are
shown in Table 1. For each set of input parameters, 50 random sce-
nario instances have been generated. The results shown are the aver-
ages over 50 experiments.

Set Fixed Parameters Variable Parameters

A DD = 1 : 9, RD =
N (10, 1), OC = 1 : 1,
ReD = 9 : 1

OD = 60, 70, 80, 90, 100, 110,
120, 130, 140, 150

B OD = 100, RD =
N (10, 1), OC = 1 : 1,
ReD = 5 : 5

DD = 1 : 9, 2 : 8, 3 : 7, 4 : 6,
5 : 5, 6 : 4, 7 : 3, 8 : 2, 9 : 1

C OD = 100, DD = 4 : 6,
OC = 1 : 1, ReD = 5 :
5

RD = N (5, 1), N (10, 1),
N (15, 1), N (20, 1), N (25, 1),
N (30, 1)

D OD = 100, DD =
4 : 6, RD = N (10, 1),
ReD = 5 : 5

OC = 1 : 10, 2 : 10, 3 : 10,
4 : 10, 5 : 10, 6 : 10, 7 : 10,
8 : 10, 9 : 10, 10 : 10, 11 : 10,
12 : 10

E OD = 100, DD = 4 : 6,
RD = N (10, 1), OC =
1 : 1

ReD = 1 : 9, 2 : 8, 3 : 7, 4 : 6,
5 : 5, 6 : 4, 7 : 3, 8 : 2, 9 : 1

Table 1. Experiment Settings

4.2 Results

The results of five experiments are shown in Table 2. In order to
compare the performance of three scheduling approaches, the overall
profit of LS and DS are presented as the percentage of GS. For each
set of input parameters, the mean overall profit is displayed.

Table 2. Results of three scheduling approaches in experiments.

Set Value LS DS Value LS DS

60 0.142 1.000 110 0.199 1.000
70 0.157 1.000 120 0.195 1.000

A 80 0.192 1.000 130 0.193 1.000
90 0.200 1.000 140 0.191 1.000
100 0.200 1.000 150 0.192 1.000
1:9 0.599 1.000 6:4 0.898 1.000
2:8 0.700 1.000 7:3 0.799 1.000

B 3:7 0.799 1.000 8:2 0.698 1.000
4:6 0.899 1.000 9:1 0.598 1.000
5:5 1.000 1.000

N (5,1) 0.900 1.000 N (20,1) 0.815 1.000
C N (10,1) 0.899 1.000 N (25,1) 0.874 1.000

N (15,1) 0.867 1.000 N (30,1) 0.714 1.000
1:10 0.296 0.887 7:10 0.839 0.965
2:10 0.458 0.988 8:10 0.990 1.000

D 3:10 0.422 0.929 9:10 0.967 0.996
4:10 0.982 0.999 10:10 0.924 0.999
5:10 0.925 0.988 11:10 0.921 0.985
6:10 0.859 0.995 12:10 0.990 1.000
1:9 0.698 1.000 6:4 0.799 1.000
2:8 0.796 1.000 7:3 0.697 1.000

E 3:7 0.895 1.000 8:2 0.599 1.000
4:6 1.000 1.000 9:1 0.500 1.000
5:5 0.897 1.000

These results show that in our scenario and under our experi-
mental conditions, the decentralised scheduling obtains largely glob-
ally optimal solutions solely by negotiating the price and quantity
of resources. The substantially weaker total profit results for local
scheduling show that genuine resource sharing benefits are being
achieved in these scenarios. For example, Figure 2 illustrates this by
plotting the overall profit achieved under LS and DS, relative to GS,
under the experimental conditions of set A.

Figure 3 plots the overall profit of the LS and DS approaches as
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Figure 2. Results of experiment set A

the percentage of that of GS, for experiment set B. It shows that DS
and LS generate the same profit result in scheduling instances with
DD = ReD. Additionally, the bigger the difference of demand are
distributed in two companies, the better DS works than LS whenOD
and ReD remain the same.
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Figure 3. Results of experiment set B

There are circumstances where decentralised scheduling does not
manage to produce a globally optimal solution as shown in Figure 4,
which depicts the results of experiment set D. This is because in our
approach the prospective purchaser initialises the resource request at
the point with highest quantity and lowest payment. When the re-
quest is declined, it gradually increases the payment at first and then
decreases the quantity when the payment reaches its upper bound.
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Figure 4. Results of experiment set D

5 RELATED WORK
An increasing number of papers examine developing agent-based
inter-company scheduling methods in manufacturing. In them, the

auction protocol has widely been used to guide agent negotiation
behaviours [11]. Generally, the manager agent announces available
resource capacities or production tasks and other agents reply with
bids for prospective rewards [6].

Oliveira and Rocha [9] applied the auction protocol to develop an
agent-based inter-company scheduling approach for scheduling pro-
duction tasks as shown in Figure 5. In this approach, one customer
task is not given to an individual manufacturer as private informa-
tion, but published in an electronic market system. Moreover, inter-
nal scheduling decisions for production subtasks in each company
should be submitted to the central market agent or delivery to other
companies in order to resolve potential conflicts for processing the
whole production task.
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Figure 5. Example of an agent-based inter-company scheduling method

Some inter-company scheduling approaches allow individual
companies to keep their production processes private, but require
customer orders to be managed by third-party agents [2][13]. For
example, the work presented in [8] introduces a yellow page agent
maintaining the overall capacity of all involved manufacturers. The
software agent common provider (SACP) representing a trusted third
party is used in [1] to make scheduling decisions, which maintains a
centralised repository of all available resources and a central sched-
uler to generate a schedule plan.

Another supply chain master planning approaches manage oper-
ational activities of organisational units for fulfilling customer de-
mands [14]. They aim to enhance the overall competitiveness of the
supply chain, especially to minimise the total relevant costs. Cen-
tralised methods may be only appropriate for static structures com-
posed of isolated entities [10]. Although negotiation mechanism has
been applied between buyer and supplier partners for collaborative
planning, the private information is also exchanged (e.g. local cost
effects of proposed resource supply [5]). This may be suited when
both buyer and supplier come from the same organisation but not
when they still compete with each other in the market.

6 CONCLUSIONS AND FUTURE WORK

This paper has presented a novel decentralised agent-based inter-
company scheduling approach that operates through negotiation
rather than sharing of potentially commercially sensitive informa-
tion. This is useful in scenarios where the companies that need to
coordinate their schedules are competitors and, therefore, reluctant
to share explicit information on their orders, capacity and production
plans with one another or with third party agents. We have examined
the performance of our approach in a simple, two-company scenario.
Through a set of experiments, we have shown that in this setting,
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the benefits of resource sharing can be achieved and mostly globally
optimal solutions are produced.

The work presented in this paper is a first step towards the develop-
ment of fully decentralised inter-company scheduling approaches. As
our approach is largely negotiation based, future work will elaborate
the negotiation protocol and negotiation strategies. On the one hand,
the use of richer communication language will allow the agents to ne-
gotiate more efficiently. This facilitates the discovery of globally op-
timal solutions. On the other hand, smarter negotiation strategies will
limit the amount of (potentially commercially sensitive) information
that is communicated to other agents. This prevents one agent from
gaining insights into the privacy of the other. However, the agents’
ability to discover globally optimal solutions may be limited as well.

Obviously, the scenario employed in this paper is a simple one.
The scenario was kept simple with a view to be able to study it more
effectively. Future work will examine the effect of such extensions.
In particular, the introduction of a temporal dimension has many im-
plications, not only for the simulation but the negotiation strategies as
well. For instance, in such a setting, different types of resources (cap-
ital resources, resources that are consumed in production and perish-
able resources) raise different considerations. Also, the scheduling
problem becomes a dynamic optimisation problem. Furthermore, in
such a setting an agent’s effectiveness is affected by its ability to pre-
dict future events (e.g. by learning from past experience).

Another important generalisation of the work is the introduction
of additional agents. Again, this affects the negotiation in a variety
of ways. In particular, adding agents makes negotiations multilateral
instead of bilateral, which has implications on both the negotiation
protocol and an individual agent’s negotiation strategies. However,
the computation complexity has to be considered when scaling up
the inter-company scheduling problem.
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Improving Production Scheduling with Machine Learning 
Jens Heger1, Hatem Bani1, Bernd Scholz-Reiter1 

 
Abstract.1  Decentralized scheduling with dispatching rules is 
applied in many fields of production and logistics, especially in 
highly complex manufacturing systems, e.g., semiconductor manu-
facturing. Nevertheless, no dispatching rule outperforms other rules 
across various objectives, scenarios and system conditions. In this 
paper we present an approach to dynamically switch dispatching 
rules depending on the current system conditions. The rules’ per-
formances are estimated by machine learning methods, whose 
learning data is generated by preliminary simulation runs. A com-
parison between neural networks and Gaussian processes as regres-
sion methods is conducted. Using a dynamic job shop scenario we 
demonstrate, that our general approach is capable of significantly 
reducing the mean tardiness of jobs; with Gaussian processes lead-
ing to better results. 

1 INTRODUCTION 

In today’s highly competitive, globalized markets, manufacturing 
companies have to use their production resources as efficiently as 
possible. Therefore, especially capital-intensive industries like 
semi-conductor manufacturing spend considerable effort to opti-
mize their production processes. Improvements in scheduling lead 
to a better achievement of objectives (e.g., tardiness of jobs). 
Scheduling in job shops or flexible flow shops is a combinatorial, 
NP-hard optimization problem. These problems have attracted 
researchers and practitioners for many decades now and are still of 
considerable interest, because of their high relevance. Many heuris-
tics, which calculate schedules in a centralized manner, have been 
introduced, since optimal solutions can only be calculated for small 
scenarios. If the production scenarios are facing high variability 
like continuously arriving new jobs, job changes, break-downs etc. 
decentralized scheduling methods are advantageous compared to 
central methods. One class of decentralized scheduling heuristics 
are dispatching rules ([1], [2]), which are widely used to schedule 
even very complex shop floors. Their popularity derives from the 
fact that they perform reasonably well in a wide range of environ-
ments, and they are relatively easy to understand. Furthermore, 
they only require minimal computational time, which qualifies 
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them to be used in real-time, online scheduling. Therefore, they can 
always take the latest information available from the shop-floor 
into account. Many dispatching rules are proposed in the literature, 
which perform well on specific scenarios. However, no rule is 
known to consistently outperform all other rules [3]. One approach 
to meet this challenge and improve scheduling performance is to 
select and switch dispatching rules depending on current system 
conditions. For this task machine learning methods, e.g. artificial 
neural networks [4], are frequently used. 

In this paper we present a comparison between artificial neural 
networks [5] and Gaussian processes ([6], [7]) as learning methods 
to determine which method performs better estimating dispatching 
rule performance. We also investigated how the number of learning 
data points affects the quality of the learned models for our chosen 
scenario. This paper is organized as following: In section 2 we give 
a review of previous work on dispatching rules, machine learning 
in scheduling and introduce Gaussian processes and artificial neu-
ral networks. In section 3 our chosen scenario and the experimental 
designs are described. Section 4 presents the results of our experi-
ments. The paper concludes with a short summary and provides 
directions towards future research. 

2 STATE OF THE ART 

2.1 Scheduling with dispatching rules 

Scheduling is defined by Haupt [1] as “the determination of the 
order in which a set of jobs (tasks) {i | i = 1, ..., n) is to be pro-
cessed through a set of machines (processors, work stations) (k | 
k=1...m).” Since the problem is NP-hard, heuristics are used. Espe-
cially in extremely complex scenarios with high variability dis-
patching rules are often employed. Dispatching rules are applied to 
assign a job to a machine. This is done each time the machine 
becomes idle and there are jobs waiting. The dispatching rule as-
signs a priority to each job. This priority can be based on attributes 
of the job, the machines or the system. The job with the highest 
priority is chosen to be processed next. Dispatching rules have 
been developed and analyzed in the scientific literature for many 
years; see e.g. [1], [2] and [8]. The best known rules are Shortest 
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Processing Time first (SPT), Earliest Due Date (EDD) and First 
Come First Served (FCFS). 

 
2.2 Machine learning in Scheduling 

Kotsiantis [11] gives an overview of a few supervised machine 
learning techniques, like artificial neural networks, decision trees, 
Naïve Bayes, support vector machines etc. Priore et al. [12] present 
a review of machine learning in dynamic scheduling of flexible 
manufacturing systems. Most approaches are based on artificial 
neural networks and are described in the following. 

A simulation-based approach was presented by Wu and Wysk 
[13]. They switch regularly between different dispatching rules on 
machines. They proposed a multi-pass scheduling algorithm, which 
starts a short-term simulation of alternative rules and selects the 
best candidate for the manufacturing system. 

A neural network based controller, consisting of an adjustment 
module and the equipment level controllers, was proposed for 
scheduling and controlling a manufacturing cell by Sun and Yih 
[14]. The adjustment module considers the user objectives and the 
current performance levels to determine the relative importance of 
performance measures. Based on these importance values and 
current machine status, the equipment level controller, implement-
ed by a neural network, selects a proper dispatching rule and the 
jobs are processed accordingly. The training samples for each 
equipment level controller are calculated by a one-machine simula-
tion and modified to reflect the impacts of different dispatching 
rules on the system performance.  

El-Bouri et al. [15] used a neural network to select dispatching 
rule in a job shop. They chose small scenarios with five machines 
and investigated three rules. To train the neural network they calcu-
lated optimal solutions for 10, 15 and 20 jobs. The neural network 
was used to select one rule for every machine. With this approach 
they were able to get better results than just using one of the rules 
on every machine. The drawback of this approach is that it is lim-
ited to scenarios with only a few machines and jobs, otherwise no 
optimal solutions for learning could be generated. 

Mouelhi-Chibani and Pierreval [4] use a neural network to dy-
namically switch dispatching rules on every machine depending on 
the current system state. They have selected four system parame-
ters (e.g. shop load) and 22 system state variables (e.g. average 
slack time of jobs in the first queue), which the neural network uses 
to decide which rule should be applied. They train the neural net-
work with preliminary simulation runs. The scenario they selected 
consists of only two machines and the set of dispatching rules 
consists of SPT and EDD. They outperform the static use of rules, 
but not that clearly, which might be due to the small scenario. 

These are interesting approaches, but the results seem to have 
potential for improvement. It is not clear if this is due to the select-
ed scenario or the learning technique. 

In [16] we have conducted a first study how Gaussian processes 
perform in the application of dispatching rule switching. A prelim-

inary comparison with other learning techniques, e.g. artificial 
neural networks has been performed.  

In this paper a more detailed and solid comparison between both 
methods including the optimization of parameter settings and an 
evaluation in a dynamic simulation study is conducted.  

2.3 Machine learning methods 

Alpaydin [17] stated: “The goal of machine learning is to program 
computers to use example data or experience to solve a given prob-
lem”. A common choice as a machine learning method are artificial 
neural networks. A relatively new and promising method is Gauss-
ian process regression. In this study, we are interested in a system 
that can predict the value of an objective function from production 
system characteristics, which otherwise would have to be obtained 
by costly simulations. To analyze which of these methods suits 
better for our field of application, we compare them in this study. 

2.3.1 Neural Networks 

Artificial Neural Networks have been studied for decades and 
Hornik [18] has shown that “…standard feedforward networks 
with as few as one hidden layer using arbitrary squashing functions 
are capable of approximating any Borel measurable function from 
one finite dimensional space to another to any degree of accuracy, 
provided sufficiently many hidden units are available.”  

 
 

Figure 1: Neural network architecture with one hidden layer 

Geva and Sitte [19] additionally demonstrate, that a feedforward 
multilayered neural network, based on neurons with sigmoidal 
transfer function, is able to approximate arbitrarily well any con-
tinuous multivariate function. In many engineering research areas 
function approximation is used to improve processes. Multilayer 
feedforward neural networks with sigmoidal activation functions 
are a powerful tool to approximate these functions [5]. Figure 1 
shows the architecture of a multilayer feedforward neural network 
with one hidden layer and the sigmoid transfer function. 

2.3.2 Gaussian Processes 

O'Hagan [20] represents an early reference from the statistics 
community for the use of a Gaussian processes as a prior over 
functions, an idea which was introduced to the machine learning 
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community by Williams et al. [7]. As stated before we have a 
simulation model implicitly implementing a (noisy) mapping be-
tween a vector of state variable (in our case containing, e.g. utiliza-
tion) and the objective function (mean tardiness)

 
 y f x   . 

The learning consists of finding a good approximation f*(x) of f(x) 
to make predictions at new points x. To learn such a model using 
Gaussian processes requires some learning data as well as a so-
called covariance function. This covariance function, sometimes 
called kernel, specifies the covariance between pairs of random 
variables and influences the possible form of the function f* 
learned. A common choice for the covariance function is the 
squared exponential (SE) covariance. It is depicted in equation (1): 

   2 2
2

1
, exp ²

2y p q f p q n pqk x x x x
l

       
 

 (1) 

The squared exponential covariance function has three hyperpa-
rameters. There is the length-scale l, the signal variance 2

f and the 
noise variance 2

n  with pq  being a Kronecker delta function, 
which is 1 if p=q and zero otherwise. These parameters of a covari-
ance function can be used to fine-tune the GP-model, thus learning 
of a Gaussian processes model requires having some learning data, 
choosing an appropriate covariance function and choosing a good 
set of hyperparameters (see ([6] chapters 2 and 4). 

To learn, or optimize the hyperparameters, the marginal likeli-
hood should be maximized. Details and mathematical background 
can be found in ([17] chapter 5), especially equation (5.9) page 
114. Basically, the hyperparameters are chosen in a way that the 
generalization error, which is the average error on unseen test 
examples, is minimized. This is done with cross-evaluation by 
splitting the training data in learning and test data. The training 
error is not optimized, because this may lead to over-fitting the 
data. Additionally, since hyperparameters can be interpreted as 
length-scale parameters in the case of the squared exponential 
covariance, additional optimizations can be performed. Rasmussen 
and Williams [6] describe the hyperparameters informally like this: 
“…how far do you need to move (along a particular axis) in input 
space for the function values to become uncorrelated…”. Thus, the 
squared exponential covariance function implements automatic 
relevance determination (ARD) [21] since the inverse of the 
length-scale determines how relevant an input is. A very large 
length-scale value means that the covariance will become almost 
independent of that input. ARD has been used for removing irrele-
vant input by several authors, e.g. [6]. 

3 APPROACH & EXPERIMENTAL SETUP 

The main focus of our research is to develop a new scheduling 
method, which uses local and global information to make schedul-
ing decisions. Therefore, we suggest learning performance models 
of the dispatching rules with a machine learning method to select 
the best rule for the current conditions. This is a promising ap-
proach, since the major drawback of dispatching rules is their lack 

of a global view of the problem. Rules approach the overall sched-
uling problem by taking independent scheduling decisions based 
on the current, local conditions at the particular machine; without 
consideration of the negative effects they might have on future 
decisions and on the overall objective function value. 

The performance models are learned by preliminary simulation 
runs, which add a global perspective on the system behavior to the 
local decision rules. Here we investigate if Gaussian processes or 
artificial neural networks perform better in our field of application. 

3.1 Scenario description 

The type of problems we address, are dynamic shop scenarios. Our 
computational experiments are based on the dynamic job-shop 
scenarios from Rajendran and Holthaus [3]. In total there are 10 
machines on the shop floor, each job entering the system has to 
visit each machine once, using a random routing, i.e., machine 
visitation order is random with no machine being revisited. Pro-
cessing times are drawn from a uniform discrete distribution rang-
ing from 1 to 49 minutes. The due dates of the jobs are determined 
by a due date tightness factor, a job’s due date is set to x-times the 
job’s total processing time + release time. Job arrival is a Poisson 
process, i.e., inter-arrival times of jobs follow an exponential dis-
tribution. The arrival rate is set to yield a desired long term utiliza-
tion level of each machine.  

The dynamic experiments simulate the system for a duration of 
12 months, using changing utilization rates and due date factors. 
All results in section 4.3 are based on these dynamic settings. The 
utilization rate of the shop, i.e., arrival rate, is oscillating between 
0.75 and 0.99 following a sine function with a period length of 30 
days. The sine function to generate due date factors has a period 
length of 15 days and oscillates between 2 and 7. Performance 
figures are calculated averaging the tardiness of all jobs started 
within the simulation length of 12 month. To generate the learning 
data we are only interested in the performance for a specific setting 
of utilization and due date tightness. Therefore, we closely follow 
the procedure from Rajendran and Holthaus [3]. We start with an 
empty shop and simulate the system until we collected data from 
jobs numbering from 501 to 2500. The shop is further loaded with 
jobs, until the completion of these 2000 jobs [8]. Data on the first 
500 jobs is disregarded to focus on the shop's steady state behavior. 

3.2 Switching dispatching rules 

We have selected two dispatching rules, out of which the best for 
each system condition can be selected. The first is a standard rule 
being used for decades; the second rule was developed by Holthaus 
and Rajendran [22] especially for their scenarios. If the rules calcu-
late the same priority for more than one job, we use ERD (earliest 
release date) as a tiebreaker. Our approach works with more than 
two rules, but the selected two outperform standard rules from the 
literature in most cases.  

Improving Production Scheduling with machine learning

45



MOD –Modified Operation Due Date: MOD orders the queue 
of waiting jobs by the larger of each job's operation due date (di,imt) 
minus the current time (t) or each job's operation processing time 
(pi,imt). Therefore, if all jobs in the queue have positive slack (no 
job is in danger of missing its due date) then MOD dispatches them 
in earliest operational due-date (ODD) order. If all jobs have nega-
tive slack (all jobs are in danger of missing their due dates), then 
MOD works like SPT to reduce shop congestion. Definition: 

, ,max( , )i i imt i imtMOD p d t   (2) 

2PTPlusWINQPlusNPT – 2Processing Time + Work in Next 
Queue + Next Processing Time: This rule [22] consists of three 
parts. First, the processing time on the current machine is consid-
ered. Secondly, the Work in Next Queue is added: WINQ – jobs 
are ranked in the order of a estimation of their waiting time before 
processing on the next machine can start. This estimation includes 
the time needed by a machine m to finish its current job plus the 
sum of processing times of all jobs currently waiting in front of m. 
The job where this sum is least has the highest priority. Thirdly, the 
processing time of a job's next operation NPT is added. Definition: 

, , 12   2    i i imt i i imtPTPlusWINQPlusNPT p WINQ p     (3) 

3.3 System architecture 

For the simulation experiments of this paper we use Jasima [24], a 
self-implemented discrete-event simulation. Jasima is very roughly 
based on a Java-port of the SIMLIB library [9] (described in [10]). 
For the Gaussian processes, we have used the software examples 
provided by Williams [23] and adapted them for our scenarios. 
They have been implemented with MatLab from MathWorks. For 
the implementation of the artificial neural networks we have used 
the Neural Network Toolbox from MatLab. The MatLab Builder 
JA is used as an interface between the simulation software and the 
Gaussian processes and the neural networks respectively. 

4 EXPERIMENTS AND RESULTS 

4.1 Machine learning settings 

4.1.1 Selection of learning data 

To learn performance models of the two selected dispatching rules, 
we performed preliminary simulations runs with both rules and 
different system conditions. For the system conditions we selected 
two parameters, which are the input for the machine learning 
methods. The first is the system’s utilization and the second is the 
due date factor, which defines the job’s due date tightness. These 

two system parameters have been combined in 1525 combinations. 
We have performed simulation runs with system utilizations from 
75% till 99% and have combined each of these with due date fac-
tors from 1 to 7 (in 0.1 steps). The two selected dispatching rules 
described in section 3.1 have been evaluated for all these parameter 
combinations. Our performance criterion is mean tardiness, but the 
general approach is applicable to other objective functions as well. 
Each result for each combination of utilization, due date factor and 
dispatching rule is the average of 20 independent replications to get 
reliable estimates of the performance of our stochastic simulation 
(see figure 2). 
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Figure 2. Results of preliminary simulation runs with 1525 parameter 

combinations (for better clarity some have been omitted; only best perform-
ing rule shown).  

If simulation runs are expensive and more system parameters 
are considered, not all parameter combinations can be simulated in 
advance. This is where supervised machine learning techniques can 
play an important role, helping to select the best dispatching rule 
with only a few simulations runs as a learning data set. Therefore, 
we also investigated how the number of learning data points affects 
the quality of the learned models and the scheduling results in the 
end for our chosen scenario. For the selection of data points, i.e. a 
combination of utilization rate and due date factor, we used 500 
latin hypercube designs (c.f. [25]) with set sizes of 10, 15, 20, 30, 
45, 60, 75, 120 and 350 data points each.  

4.1.2 Artificial Neural Networks 

For our study we have chosen a feedforward multilayered neural 
network. As a training algorithm the Marquardt algorithm has been 
used. It is incorporated into the backpropagation algorithm, which 
has been tested on several function approximation problems [26]. 
As an regularization technique we used early stopping [27]. 

Another important parameter to set is the number of hidden neu-
rons. Geva and Sitte claim that it is not some arbitrary number, but 
it should be rather set proportional to the number of function points 
in the training set [19]. Pei et al. show that a neural network can be 
used as an ‘universal approximator’, but the number of hidden 
neurons cannot be generally calculated, thus it imposes a signifi-
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cant practical challenge [5], [28]. Therefore, we performed a pre-
liminary study (see table 1), to determine which number of neurons 
leads to best results depending on the number of learning data in 
our field of application and use these later on. 
 
Table 1. Best number of neurons for different training set sizes and result-

ing decision errors  

  Number of neurons  
Training 
 set size 

 
2 

 
5 

 
10 

 
20 

 
30 

 
50 

NN 10 283.2 283.9 238.3 299.2 330.6 415.1 

NN 15 227.3 166.8 195.0 197.9 245.1 347.3 

NN 20 127.3 118.0 153.6 174.2 211.0 296.0 

NN 30 85.0 82.8 103.9 144.9 161.2 258.9 

NN 45 75.0 48.9 59.8 98.4 116.8 168.2 

NN 60 51.9 41.8 41.4 53.7 99.1 151.4 

NN 75 54.4 27.0 25.8 29.4 60.7 98.9 

NN 120 38.6 18.9 16.9 23.5 20.3 61.7 

NN 350 25.4 11.5 6.6 2.5 3.6 3.7 

4.1.3 Gaussian Process regression 

We use the squared exponential covariance with automatic rele-
vance detection and white noise for our analysis. As a mean func-
tion we used the sum of a linear and constant function with start 
setting 0.0 [6]. Further we have investigated the start settings for 
the hyperparameters with some example data.  Noise 2

n  has been 
set to values between log(0.01) for a small number of learning data 
points and log (0.1) for many learning points. Lengthscale factors 
have been initialized with 0.1 and 2.5 and the signal variance 

2
f has been set to 1000.  

4.2 Comparison of Gaussian Processes and 
Artificial Neural Networks 

For our experiments we have used 500 different sets for each num-
ber of learning points and calculated a decision error for each mod-
el. The error is calculated by summing up the wrong decisions of 
each model for each possible combination. The error is the differ-
ence between the best and the selected rule, e.g. if we have to test 
the parameter combination 0.83 utilization and due date factor 3, 
the model gives us an estimates of 150 minutes for MOD, and 180 
for 2PTPlusWINQPlusNPT. So we would select MOD. If the true 
values are 200 for MOD and 175 for 2PTPlusWINQPlusNPT the 
error would be 25 minutes. Figure 3 shows the results of our study 
and it can be seen, that the Gaussian processes outperform the 
Neural networks significantly (twice standard error) for all num-
bers of data points.    
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Figure 3: Results of 1525 tested parameter combinations for 500 different 

data point set for each number of learning data (twice standard error shown) 

4.3 Simulation experiments 

In addition to the static analysis we have conducted a simulation 
study, to evaluate our results in a typical dynamic shop scenario 
(see section 3.2). We have selected 50 different training sets, gen-
erated with latin hypercube designs, with 30 data points each. 30 
data points is a good compromise between the already well learned 
models and the number of needed simulation runs. 
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Figure. 4. Simulation results of the dynamic scenario. Two standard rules 

compared with the performance of switching rules based on neural network 
and Gaussian process models with 30 learn data points in 50 different sets 

 
The results in and figure 4 and table 2 show that Gaussian pro-

cesses outperform artificial networks significantly (twice standard 
error) in this dynamic scenario, which confirms our static analysis. 

 
Table 2. Dynamic scenario simulation results  

Rules tardiness [m]  Twice standard error 
(50 learning sets) 

2PTPlusWINQPlusNPT 228.3  

MOD 227.3  

NN 30 219.3 (0.97) 

GP 30 217.5 (0.74) 

The results of the dynamic simulation study also show, that sched-
uling with dispatching rules can be improved by >4% with only 30 
learning data points, i.e., preliminary simulation runs.  
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5 CONCLUSION AND NEXT STEPS 

In dynamic manufacturing scenarios with frequently changing 
system parameters, adaptive scheduling approaches improve the 
performance of dispatching rule based scheduling. In our study we 
have compared the performance of artificial neural networks with 
Gaussian process regression in learning dispatching rule behavior 
under different system conditions. In our static analysis we have 
shown that Gaussian processes perform significantly better than 
neural networks regardless of how many data points are used. We 
have confirmed our findings in a dynamic simulation study, where 
Gaussian processes also perform significantly better.  

The scheduling performance compared to standard dispatching 
rules can be improved by over 4% in our chosen scenario. In fur-
ther studies the underlying scenario could be extended e.g. to semi-
conductor manufacturing, which is more complicated (i.e. se-
quence depending setup times, batch machines etc.). Switching 
rules in such a scenario might increase the performance even more, 
e.g. when the product mix changes and a batch machine becomes 
the bottleneck, the effect of different rules on the objective can be 
severe. Additionally, simulation costs increases, which makes a 
good selection of learning data more important. 
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Hypotheses Generation for Process Recognition in a
Domain Specified by Temporal Logic

Immo Colonius 1

Abstract. The degree of automation in the logistic domain is in-
creasing, which amplifies the need of autonomous robotic systems.
An autonomous system requires situational awareness as well as an
understanding of processes in its environment to act goal orientated.
Process Recognition methods show valid solutions for this problem.
Considering the challenge of recognizing processes from a humans
point of view, explainability of found solutions and simple process
definitions for processes to search for becomes essential. This leads
to the use of qualitative reasoning techniques. Especially logistic do-
mains like warehouses are highly dynamic and mobile robots situated
in that domain often do not have complete sensor coverage of the
whole environment. Logic methods like deduction for model check-
ing can thus be insufficient due to incomplete or wrong observations,
breaking the reasoning chain. Topic of this paper is the enhance-
ment of the deductive reasoning for process recognition with hy-
potheses based on background knowledge and reasoning techniques
to overcome these limitations. Therefore, a qualitative measurement
for certainty will be motivated and benefits of hypotheses integration
shown.

1 INTRODUCTION
This paper is a follow up of a previous paper that shows the use of
logic process recognition by Linear Temporal Logic (LTL) in the lo-
gistic domain [19]. There are two new features: Reasoning about all
histories of goods simultaneously, which enables the use of inference
knowledge at the time of reasoning and more important, enhance-
ment of the reasoning process with hypothetical facts. In this paper,
a hypothetical fact is a virtual observation inserted in our knowledge
base to close gaps in actual observations. The later enhancement is
overcoming the previous limitations of the model checking based ap-
proach of not being able to find processes if a crucial observation is
missing. Therefore, we introduce a qualitative uncertainty descrip-
tion that works well with the present logic reasoner.

Understanding processes happening in an autonomous agents en-
vironment is essential for goal orientated action. Especially in dy-
namic environments, known as a demanding challenge that involves
recognition as well as understanding of processes for the agent. An
example is automated construction of simulations for logistic domain
optimization [13, 1], like flow simulations for goods in warehouses
or productions lines. This challenge demands an robotic observer,
which is capable of paying attention to logistic processes around
him while avoiding dangerous zones (staying out of redistribution
processes or hazardous machines). Additionally scenarios alike offer
limited observability for a mobile, non intrusive robot, which makes

1 University of Bremen, Germany, email: colonius@informatik.uni-
bremen.de

process recognition non trivial, as not all information is provided or
may even be misinterpreted due to sensor noise.

With the demand of safety, plans verification for the control of
the mobile robot is desired, which leads to the use of formal logic
[22, 11, 4]. Deployment of logic for process recognition yields other
advantages, too: Explainability of recognized processes is easier hu-
man understandable than a trained process recognizer like a Neural
Network [17] or Markov Decision Process models [5]. Also system
setup, i.e. input of process definitions for model checking, of pro-
cesses that can be found in the given domain (like an admission of a
good in a warehouse) can be made possible for domain experts with-
out knowledgeability of robotic systems. Logics further provide a
flexible basis for late changes to queries without the need to relearn a
scenario. Additionally, by working on abstracted facts the reasoning
process is more portable than a domain-trained system.

The use of logic for robot control is widespread, specification
of controllers by a correct by construction method is introduced by
Kress-Gazit [18]. Motion planning from high level specifications is
common [15, 25, 20, e.g. ] and Kloetzer [16] demonstrate the appli-
cability to real robotic systems.

The use of logic reasoning for process recognition in the logistic
domain has been shown in [19] on real world data from an model
warehouse, even handling partial observability by the robotic ob-
server to a degree. Coping with incomplete data still remains a diffi-
culty on the logic reasoning level, even more difficulties arise when
wrong observations are incorrectly abstracted and result in contra-
dictory facts.

This paper argues for the use of hypotheses generation techniques
and incorporation of hypothetical facts as well as a qualitative mea-
surement of certainty into the reasoning process to narrow the gaps in
complete environment understanding left open by partial or incorrect
observability of the domain.

2 RELATED WORK

A multitude of different approaches exists for the problem of process
recognition and they can be categorized into learning approaches,
probabilistic process descriptions, and logic-based declarative ap-
proaches.

Examples for the learning approaches are Markov networks [3,
21], Bayesian networks [27], supervised learning [2], or inductive
logic programming [7], which require a training phase before de-
ployment. As written in [19], we fancy an approach that does not
need a training phase. This enables us to pose dynamic queries to our
knowledge base in a flexible formal language and to integrate new
knowledge at any point of the experiment.

Possible solutions are declarative, logic-based formalisms [11, 4].
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They are already in use, for example integration of ontology based
knowledge to recognize contexts in an ubiquitous environment by
Mastrogiovanni [23] or in controllers construction for robot control.

Combinations for logic and uncertainty are also present; In con-
trast to Fagin [10] we try to avoid a metric basis for our qualitative
notes altogether. While Ilić-Stepić [14] uses qualitative probability
to compare likelihood of facts against each other, we use the no-
tion of uncertainty to rate facts and conclusions. Another approach
was done by Goldszmidt [12], who uses qualitative uncertainty to
model if/then clauses. For a well done overview about differences
between descriptions of uncertainty in possibilities, probability the-
ory and multi-valued logics see [8].

In our process recognition approach, we match observations
against pre-proposed processes, which is essentially a model check-
ing approach. Model checking is widely known in software verifica-
tion, as well as robotics. Planning instances in this field are found in
[6, 9, 16, e.g.].

3 PROBLEM DESCRIPTION

3.1 PROCESS RECOGNITION

Imagine we have a description of processes that happen in our do-
main. Now, we have several observations about the state of our en-
vironment. Our goal is an understanding what exactly has happened
in the environment, so to speak finding instances of our processes,
based on an assemble of our observations. Also, take into considera-
tion that our environment is not fully observable and our observations
may not be entirely correct. This presents us with several problems,
additional to common process recognition, to solve:

• Uncertainty of made observations:
If we can’t be sure that an observation is true, we may conclude
wrong processes. Which leads to a general need for abstraction of
facts in order to lessen the impact of wrong observations.

• Observability of our domain:
If we can’t observe critical elements of processes happening, we
can’t infer named processes by pure deductive reasoning. That
leads to guesswork to achieve maximal environment understand-
ing. We have to close the gaps in our observations by somewhat
sensible hypotheses.

Our approach yields a high degree of generality. As our domain
can be highly dynamic, means to lessen the degree of noise from
sensor measurements, like done with abstraction towards logic facts
are desired.

A possible scenario is sketched in the following subsection.

Example for the Warehouse Scenario

Our process recognition problem is placed in so-called in chaotic
or random-storage warehouses. Their main features are absence of
a central control structure which often leads to incomplete knowl-
edge about the state of the warehouse. Especially if more than one
entity moves goods around. Additionally, a steady flow of moving
goods through space is present. The observers task is to recognize
the storage processes that occur. However, as a observer is generally
not able to gather all potentially relevant information about a pro-
cess and therefore needs to infer missing pieces of information, in
particular identifying functional locations. Although more complex
processes, such as inference about unnecessary redistributions or not
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outlet 
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Figure 1. A warehouse, its functional zones, and typical movements of dif-
ferent goods (G, G’)

needed spaces can be done, this paper presents a shorter one with
respect to limited space.

An example of stockpiling of a good can consist of:

• Bringing a good into the warehouse (making an observation
obs(G,L, T ) of a good G at a location L at time T that has not
been seen so far).

• Placement of the same good G at another location L+n at a later
point of time (making an observation later on T+n at another place
L+n than the one were the good G has been seen before). (here n
denotes a change and m a greater change)

• Second placement at another place even later on (making an ob-
servation even later on T+m at a third location L+m).

Storage processes are defined by a unique pattern [26]: on their
way into and out of the warehouse, goods are (temporarily) placed
into functional zones which serve specific purposes (see Fig. 1). All
goods arrive in an entrance zone (E). From there, they are picked up
and temporarily moved to a buffer zone (B) before they are finally
stored in the storage zone (S). This process is called ‘admission’.
Within the storage zone ‘redistribution’ of goods can occur arbitrar-
ily. When ‘taking out’ goods, they are first moved from the storage
zone to the picking zone (P) from where they are taken to an out-
let zone (O), before being moved out of the warehouse. Note that
functional zones can contain any number of locations and have a di-
mensional extend, while locations are points where goods have been
observed.

A working approach using logic deduction for process inference
has been shown in a recent publication [19], where this example orig-
inates. Incomplete observed processes were not successfully inferred
as no hypotheses generation has been deployed, so that the quality of
the results were directly proportional to sensor coverage and abstrac-
tion correctness.

Our task is to find suitable means to insert sensible hypotheses to
cover missing or wrong observations. As our observations are bound
to a spatial and temporal context, hypothetical observations have to
constructed likewise.

3.2 Example for Deductive Model Checking

Recognition of a process by model checking is done by fulfilling
all conditions of a process model (e.g. Admission-formalization in
Fig. admission-example-2) by found instances (e.g. at() primitives).
Used on our warehouse scenario, we have a good G, which enters
the warehouse and is stored in the entrance zone E at position L1 at
time t0. Movements occur between t1 and t2 (the good is moved to
a location L2) and between t2 and t3 (the good is moved further to
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in(L1, E)
in(L2, B) _ in(L2, S)
in(L3, B) _ in(L3, S)

at(G, L3)
in(L1, E)
in(L2, B) _ in(L2, S)
in(L3, B) _ in(L3, S)

at(G, L2)
in(L1, E)
in(L2, B) _ in(L2, S)
in(L3, B) _ in(L3, S)

at(G, L1)
in(L1, E)
in(L2, B) _ in(L2, S)
in(L3, B) _ in(L3, S)

observation

background
knowledge

t1 t2 t3 t4

z }| {
at(G, L1) ^ in(L1, E)^⌃

⇣ z }| {�
at(G, L2) ^ in(L2, B)

�
^⌃

z }| {�
at(G, L3) ^ in(L3, S)

� ⌘
Admission

Figure 2. Example: Model checking for an admission process of good G (only the relevant assertions for each world t1...4 are shown). in(L1, E) is background
knowledge, also it is known that locations L2 and L3 are either part of the buffer zone (B) or the storage zone (S) but not close to one another so that they do
not have to belong to the same zone. From this admission refined knowledge about the buffer and storage zones can be inferred: in(L2, B) ∧ in(L3, S) [19].

L3). Our mobile robot records the following observations: G to be at
L1 at t1, G to be at L2 at t2 and G to be at L3 at t4 .

Fig. 2 displays an example for an (1), i.e., the observed process is
an admission that starts in world t1 and ends in world t4. Our zone
inference reasoning allows us to infer that location L2 is contained in
the buffer zone B and L3 is contained in a storage zone S, whereas
we already had the knowledge about L1 belonging into the entrance
zone E.

4 FORMALIZATION
The descriptions and formulas are based on prior work [19].

4.1 Formalizing the Warehouse Scenario
To introduce our notion of uncertain we need the formal basis for
our process recognition. Processes and general background knowl-
edge is modeled in LTL formulas (see Sec. 4.3) which capture the
characteristics of spatio-temporal processes. These formulas are the
robots observation interpretation into logic and have a twofold use:
abstraction from possible noisy sensor measurements and knowledge
transfer from metric data into a more human readable format. The
grounding of our primitives is read as follows:

goods: A set G = {G1, . . . , Gn} of goods constitutes the entities
that move in space over time and determine the dynamics of the
scenario. They are observable by the robot and their position can
be estimated.

locations: A location is a property of a good which remains the
same when a good is not moved. During spatio-temporal ground-
ing, position estimates are abstracted to a discrete set of loca-
tions. For a spatially restricted scenario the set of locations L =
{L1, . . . , Lm} is finite.

zones: The warehouse scenario involves functional zones Z =
{E,B, S, P,O} as described in Section 3.1. The extent of a zone
is defined by the set of locations it contains. Zones are considered
to be fix in our scenario, but their extent is a-priori unknown to the
reasoning system.

4.2 Atomic Propositions for Spatio-Temporal
Processes

Our atomic propositions comply with common syntax used for de-
scription in LTL. Construction of this atomic propositions is either

done by said abstraction from sensor data or logic inference. We uti-
lize the following atomic propositions which we denote in a predicate
style for ease of readability, i.e., the atom at(G,L) stands for |G|·|L|
atoms, one per combination of good G and location L.

• at(G,L)⇔ good G is at a location L.
This type of atom is data-driven, that is, its value can directly
be obtained from sensor observations of the robot. Proposition
at(G,L) holds if and only if a good G is known to be at loca-
tion L. Truth of this proposition can thus change over time if a
good is moved.

• in(L,Z)⇔ location L is contained in a zone Z.
As the set of locations is generated at runtime, in(L,Z) also de-
pends on sensor perceptions. The interpretation of in(L,Z) re-
mains constant over time.

• close(L1, L2)⇔ two locations L1, L2 are close to one another.
We use closeness as a central concept to distinguish different
zones. close(L1, L2) remains constant over time.

Furthermore, the following constraints are in effect: A good can
only be at one location at a given time. Locations do not move
around, which implicates that one location that is close to another
one stays close. A location that belongs to a zone does not change its
zone. Zones itself are static, do not move and do not overlap.

For a in depth description of the integrity constraints associated
with the atomic propositions, see [19].

4.3 Linear Temporal Logic (LTL)
Linear Temporal Logic [24] extends a propositional logic by tem-
poral operators in a formula φ. The set of the usual logic operators
includes ∧, ∨,¬,→ and is enhanced by:

• ◦φ – next. A formula φ holds in in the following world
• 2φ – always. A formula φ holds now and in all future worlds
• 3φ – eventually. φ will hold in some world in the future (3φ ↔
¬2¬φ)

In our approach, we make extensive use of the 3 operator to con-
nect a spatial state transition of a good to a later point of time and
therefore make use of LTL.

4.4 In-Warehouse Processes
Three process definitions are predominant in our warehouse sce-
nario: admission, take-out, and redistribution of goods.

Hypotheses Generation for Process Recognition in a Domain Specified by Temporal Logic
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• Admission – a good G is delivered to the warehouse’s entrance
zone E and moved to the storage zone S via the buffer zone B.
For all G ∈ G and Li, Lj , Lk ∈ L:

AdmissionG,Li,Lj ,Lk = at(G,Li) ∧ in(Li, E)∧

3

(
at(G,Lj) ∧ in(Lj , B) ∧3

(
at(G,Lk) ∧ in(Lk, S)

)) (1)

• Take-out – a goodG is moved from the storage zone S to the outlet
zone O via a picking zone P . For all G ∈ G and Li, Lj , Lk ∈ L:

TakeoutG,Li,Lj ,Lk = at(G,Li) ∧ in(Li, S)∧

3

(
at(G,Lj) ∧ in(Lj , P ) ∧3

(
at(G,Lk) ∧ in(Lk, O)

)) (2)

• Redistribution – a goodG is moved within the storage zone S. For
all G ∈ G and Li, Lj ∈ L, i 6= j:

RedistributionG,Li,Lj = at(G,Li) ∧ in(Li, S)∧
3
(
at(G,Lj) ∧ in(Lj , S)

) (3)

4.5 Inferring Functional Zones

Our domain encloses functional zones, which are used to spatially
differentiate states of our process objects. While there may be knowl-
edge of zones beforehand, our deductive model checking approach
works by assigning missing zones. So to speak, we are looking for
models that satisfy our process definitions of affiliation to given
zones at given points of time. Current practice in [19] is that for each
good a history is searched for, independent of zones assigned while
matching a history for a different good.

A new contribution in this paper is that our reasoning, while keep-
ing the functionality of the model checking, is now able to take in-
ferred zone knowledge from other goods, e.g. the mapping of free
zones to functional zones, into account for all processes taking part
in the environment.

5 HYPOTHESES GENERATION

Our knowledge base consists until now of facts which are abstracted
from observations, for example, an occurrence of an entity at a def-
inite location at a definite time. These facts are grounded on spatial
and temporal context, which suggests that hypotheses have to be like-
wise. So far observed facts were transferred into at() atoms and used
as entries into the model checker.

Taking the at() atomic part of the logic formula (1) from before we
can define a method for generation of additional hypothetical facts.
For the hypothetical facts, a notion of uncertainty to rate them is
needed. As our formulas are logic based, a model for uncertainty
that keeps the benefits of human understandability and abstraction is
desired. That results in the following qualitative notion of decreasing
certainty about a fact. The syntax is comparable to fuzzy logic con-
cepts, albeit I do not have certainty intervals that do overlap in parts.
The following formula C maps an atomic part φ of a logic process
description to a uncertainty value:

C(φ) = {true, certain, uncertain,
doubtful, false} (4)

Beginning from the left side, likelihood descriptions decreases
stepwise.

U D F F

C U D F

T C U D

obs

U D D F

C U D D

C C U D

D U C U

U C C C

D U C U

D U C U

U C T C

D U C U

obs

U D F F

C U D F

T C U D

obs

D D D F

U U D D

D U U D

D U C U

U C T C

D U C U

obs

Forward
Distribution

Backward
Distribution

Merged
Distribution

Time Point 0 Time Point 1 Time Point 2

Figure 3. Example: Certainty propagation over 3 time steps. Upper line
shows the forward derived step from time point 0 to 1, line 2 shows the
backward derived step from time point 2 to 1 and line 3 shows the merged
intermediate step between two observations. The variables (T,C, U,D, F )
correspond to equation 4.

An instance of this mapping is done when actually observed facts
are added to the logic knowledge base. An observed good G at the
Location Li is leveled true:

C(at(G,Li)) = true (5)

For different combinations of knowledge facts in the reasoning
process appropriate mechanisms for combination can be written. The
combination of two atomic facts φ, ψ result in the minimum certainty
of the single facts for our first setup.

C(φ ∧ ψ) = min(C(φ), C(ψ)) (6)

In this paper, derived hypothetical facts are rated less certain than
observed facts. The approach is to relate bigger differences in space
and time to a lower certainty.

5.1 Hypotheses by Spatial Deduction
Currently, three further hypotheses variations of the at() atomic fact
are present. An observation at() of a fact close to (Lk) is still leveled
certain and an iteration one more close() relation away (Lm) is rated
uncertain. If there is no observation of a good at a given time point
at any location of the list of locations (Loc) a default hypotheses
is generated for all locations with a rating of doubtful. Only one
hypothesis per good, location and time point is allowed and the most
certain option is kept.

C(at(G,Li)) =





if close(Li, Lk) ∧ at(G,Lk) = certain

if close(Li, Lk) ∧ close(Lk, Lm)

∧ at(G,Lm)
= uncertain

if (¬at(G,Lj), Lj ∈ Loc) = doubtful

An example of that uncertainty propagation is depicted in the up-
per left element of Figure 3, where you can see an observation at a
location marked by a red circle and by the close() relation connected
locations with derived uncertainties. The upper line depicts the for-
ward propagation of uncertainty based on equation 5.1, the middle
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line shows the backward propagation and the lower line is the merge
from both time directions. For now, the method to combine formulas
with uncertainty is to weight the result based on the lowest certainty
used, e.g. a formula with one certain and one uncertain element
will result in an uncertain outcome. When more than one element
of the lowest likelihood is present, this automatically results in the
same likelihood, e.g. a formula with two uncertain facts generates
a uncertain result. Facts are only added to the knowledge base, e.g.
no evaluation of observations is made. In a future step a sanity check
for observations is planned, that takes for example distance traveled
in a given time as an argument and hands out a corresponding cer-
tainty if that movement is likely.

5.2 Hypotheses by Temporal Deduction
A similar approach is chosen for the temporal component, based on
the timestamps, that denote an actual change in our knowledge base
after entered into the reasoner, not observed goods are reentered with
a reduced certainty. Certainty is decreased until is reaches the default
level over time steps (T ).

C(at(G,Li)) =





if ¬at(G,L)T ∧ at(G,L)T+1 = certain

if ¬at(G,L)T ∧ at(G,L)T+2 = uncertain

if ¬at(G,L)T ∧ at(G,L)T>2 = doubtful

5.3 Uncertainty for Combined Facts
A further step that integrates uncertainty is the combination of facts.
Currently there are two combinations that take uncertainty into ac-
count. Firstly the combination of facts that combine into a process
(admission, redistribution or takeout) and the allocation of an
unbound zone to a functional zone. Both orientate on the default in
equation 6 and hand back the lowest uncertainty used in its atoms.

6 EVALUATION
The data used in this evaluation is in form of logic atoms that are a
simplified version from the abstracted facts taken from recordings of
the same warehouse environment as used in our previous paper. Due
to a straight forward Prolog implementation2, complexity is still an
issue. Nevertheless, the following results are (shorted) output from
the Prolog code. This evaluation shows the feasibility of my approach
and displays a list of outcomes that lead to new open questions. Our
scenario consist of at() atoms, close() atoms, a list of locations locs
and a list of wares wares. Previous knowledge about functionality
of zones is given as entrance and outlet are known (this is a given in
most real warehouses), locations not close to each other can belong
to different zones.

Inference on a completely observed process
observations old algorithm new algorithm

at(good1, loc1) found Histories: found Histories:
at(good1, loc2) [good1, [[entrance, [good1, [[entrance,
at(good1, loc3) buffer, storage, buffer, storage,
at(good1, loc4) picking, outlet]] picking, outlet],
at(good1, loc5) true]]

This table shows a result for a run with a single good and
5 different observed locations for the algorithm in [19] and

2 http://www.swi-prolog.org/, my source code is available on request.

the algorithm from this paper. Both runs detect the full history
(admission, takeout, composed of one stop at each of the 5 func-
tional zones) as every stop of the good in the warehouse is observed.
Note the missing certainty information of the old result, based on the
fact that no uncertainty estimation was made.

Inference on a partially observed process with one
missing observation

observations old result new result
at(good1, loc1) found Histories: found Histories:

[good1, [[storage [good1, [[entrance,
at(good1, loc3) picking, outlet]] buffer, storage,
at(good1, loc4) picking, outlet],
at(good1, loc5) doubtful]]

This table shows a result for a run with a single good and 4 differ-
ent observed locations. Note that the old approach did only recognize
a takeout (see equation 2) from the combination of zone knowledge
and inference, while the new algorithm makes use of a substitution
for the missing location and is able to infer the whole history. As the
uncertainty for the substitution is rated doubtful, the whole process
uncertainty drops to that level.

Inference on a partially observed process with one
misplaced observation

observations old result new result
at(good1, loc1) found Histories: found Histories:
at(good1, loc6) [good1, [[storage [good1, [[entrance,
at(good1, loc3) picking, outlet]] buffer, storage,
at(good1, loc4) picking, outlet],
at(good1, loc5) certain]]

closeTo(loc2, loc6)

Here, additional information in form of a closeTo relation is
given. A substitution for the missing at relation is formed and the
process uncertainty raises to certain, conforming to algorithm 5.1.

Inference on a partially observed process with two
missing observations

observations old result new result
at(good1, loc1) found Histories: found Histories:

[good1, [[entrance,
at(good1, loc3) buffer, storage,

picking, outlet],
at(good1, loc5) doubtful]]

This table depicts a situation, where a process is only observed
in the entrance, the storage itself and the takeout area. Our original
approach is not able to match a single process description as critical
observations are missing. The hypotheses enhanced approach can fill
the missing pieces, but results in a doubtful uncertainty.

7 DISCUSSION & OPEN QUESTIONS
Our prototypical Prolog implementation shows that the tradeoff of
definitely detected processes against detected processes with a uncer-
tainty value yields additional benefits. Processes, already detectable
by the old algorithms, are detected true and all remaining detected
processes have not been seen by the old approach. The price we pay
for an enhanced detection rate is computational complexity. Cautious
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estimations for the added complexity have to consider a worst case
scenario, where doubtful hypotheses are inserted at every known
location, as long as no observation is made for a ware.

This problem can be reduced by a more sensible construction of
hypotheses, which is still at a basic level. One open research question
here is to improve hypotheses generation, especially by abductive
based methods. Another possible solution is found in use of heuris-
tics for the model checking. It is to be investigated if we need every
solution or just an optimal one. In the experiments, we observe that
not in every case the integration of a doubtful fact, that reduces the
overall process uncertainty to doubtful actually makes sense. When
comparing the integration of one or more facts with the same level
of uncertainty, differences should be made accordingly to the quan-
tity of taken hypotheses. That opens up another research question of
a better integration of hypotheses in the deductive model checking.
Yet another open issue is the verification of observations. Integration
of an evaluation how likely an actual observation is contributes to ro-
bustness against sensor noise and may drop the number of facts that
the model checker has to utilize.

8 CONTRIBUTION
Our contribution so far is twofold, we propose a way of hypothe-
ses generation to close gaps in surveillance data used for process
recognition and realized the inferenz reasoning for process recogni-
tion that takes deducted zone knowledge for found histories of goods
into account. While the integration of inference knowledge into the
reasoning process will lead to better overall results as more false pos-
itives vanish due to the cross validation of our processes, far more
potential lies in the use of hypotheses for the reasoning process. By
adding more validation mechanisms to the generation procedure to
get more reliable hypotheses, the number of hypotheses will decrease
and complexity will drop. But even without the upcoming enhance-
ments, the introduction of hypotheses into the reasoning process has
resulted in a more accurate detection rate.
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