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Introduction

Diagnosis is the reasoning process that aims at determining whether certain
properties (such as the occurrence of a failure, of an unexpected measure-
ment, or of a deviation from prescribed behavior) hold at a given time inside
a system (fault diagnosis) and/or in its environment (situation diagnosis)
and identifying their causes. Diagnosis reasoning is thus crucial for many
reasons: safety/maintainability in supervised systems, robustness/decision
autonomy of smart agents in their partially observed environment, reconfig-
uration of business strategies after a failure... Despite the huge spectrum of
applications, Model-Based Diagnosis (MBD) problems are generic as any di-
agnosis algorithm relies on a class of models, or a modeling framework, that
represents a larger class of systems. In the last decades, many diagnostic
modeling frameworks have been proposed that are now well established.

Nowadays, the community is more and more interested in understanding
the power and the limits of such frameworks/techniques. Such studies al-
low to determine in advance how the diagnosis algorithm will behave. This
is crucial especially if Diagnosis is the input of other automated reasoning
tools (like planning, scheduling,...). The accuracy and performance of MBD
algorithms depend to a large extent on some properties of the underlying
model (correctness, fidelity, accuracy, diagnosability, predictability...). For
example, the size of the model (measured as the number of variables and
constraints) affects all major diagnostic metrics such as diagnostic accuracy,
computational performance, etc. Tools for model analysis are necessary to
assist both in the modeling and in the computation phases of MBD. Model
analysis can be used for creating worst-case scenario benchmarks, asserting
model correctness, and facilitating automatic or semi-automatic modeling.
As such, model-based analysis can be done with the help of a variety of AI
and optimization tools such as SAT and Max-SAT methods, search algo-
rithms, optimal sensor placement algorithms, and others.

The purpose of the DREAMAP workshop, held in conjunction with the
20th European Conference on Artificial Intelligence, is to gather researchers
in order to fill the gaps and exchange ideas about which reasoning techniques



are needed for the analysis of the various models used in MBD and the im-
plication of these analyses to the performance of MBD algorithms.
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A 3-Valued Logic for Diagnostic Applications
Antoni Ligęza1

Abstract. This paper presents a yet another three-valued logic for
AI applications. The proposed logic is motivated by strictly techni-
cal analysis of systems, and can be applied in domains such as in-
telligent system monitoring, automated diagnosis, or intelligent con-
trol. Contrary to some other 3-values logics developed so far, the one
presented here builds on one nominal true value and two opposite
false-values — false-negative and false-positive. The main technical
intuition behind this proposal is that in numerous technical systems
negation of correct state can be interpreted as one having either lower
or higher value of certain signal. With use of the proposed logic mod-
eling dynamic systems can be more precise and generated diagnoses
are more refined.

1 INTRODUCTION

One of the principal investigation issues of AI is to develop Knowl-
edge Representation formalisms and automated inference tools, so
that complex tasks that require intelligent reasoning can be accom-
plished. By now, there seems to be a general agreement, that there
can be no single, universal solution for modeling intelligence.

The plethora of logical formalisms and languages aimed at cap-
turing characteristics such as nonmonotonicity, impreciseness, time,
etc. is a spectacular confirmation of failure to cover the functionality
of natural language, and especially — its expressive power.

This paper is focused on some logical perspective on diagnos-
tic reasoning. Methods of formal description of diagnostic infer-
ence are diversified. There are algebraic, graph-based, logical and
mathematical model-based diagnostic approaches. Some of the pop-
ular models include extended diagnostic matrices [11, 13, 12], set-
covering model [20, 21], consistency-based reasoning [22, 9, 17],
logical causal graphs [6, 15, 17], and many other [24, 23, 3, 10].

In the area of Fault Detection and Isolation (FDI) emerging from
classical Automatic Control mathematical models, such as algebraic
and differential equations, are mostly in use [4, 5, 10]. However,
other tools, such as causal graphs, fuzzy rule-based systems, and neu-
ral networks are in application as well.

A survey and comparison of the approaches coming from the Au-
tomatic Control and the FDI Community confronted with the ones
based on Artificial Intelligence (AI) techniques and developed by the
DX Community2 is provided in [2, 1]. It turns out that both the ap-
proaches, developed almost independently by the FDI and DX re-
searchers, are highly analogous, and there are intrinsic similarities
between analytical redundancy analysis and consistency-based rea-
soning. Moreover, both of the approaches are based on similar as-
sumptions and use only the model of correct behavior of the system.

1 AGH University of Science and Technology, Krakow, Poland, email:
ligeza@agh.edu.pl

2 DX is a series of conferences devoted to automated diagnosis methods
emerging from AI.

Neither expert nor statistical knowledge, e.g. in the form of evidence
of fault history are taken into account.

In general, the main conceptual approaches to building a diagnos-
tic engine can be classified as follows:

• expert-type — where expert diagnostic knowledge is encoded in
the form of rules, decision trees, decision graphs or decision ta-
bles; this includes also case-based reasoning,

• causal models and abductive reasoning — where a causal model
is available and abductive reasoning is used to put forward diag-
nostic hypotheses,

• model-based consistency-based reasoning — where a model of
positive behavior is available and diagnoses are generated through
inconsistency elimination while observations are inconsistent with
the expected behavior.

Here we are concerned with the third type of approach. Note that,
solving a diagnostic problem within this framework can be consid-
ered as a kind of constraint programming problem [18]; the variables
denoting components can be assigned values, such as ok and faulty,
so that consistency is regained.

In this paper an attempt to move the variable assignment to the log-
ical level of different truth-values is put forward. The work presents
a yet another three-valued logic for AI applications. The proposed
logic is motivated by strictly technical analysis of systems, and can
be applied in domains such as intelligent system monitoring, auto-
mated diagnosis, or intelligent control. Contrary to some other 3-
values logics developed so far, the one presented here builds on one
nominal true value and two opposite false-values — false-negative
and false-positive. The main technical intuition behind is that in nu-
merous technical systems false correct state can be interpreted as one
having either lower or higher value of certain signal. With use of the
proposed logic modeling dynamic systems can be more precise and
generated diagnoses are more refined.

The key issue for diagnoses refinement is based on inconsistency
detection, analysis and elimination. Inconsistency detection takes
places when two chunks of knowledge that cannot be satisfied at
the same time appear in the set of deduced consequences and ob-
servations. Inconsistency is then eliminated by appropriate selection
and refinement of diagnostic hypotheses. All potential diagnoses left
must be consistent with all the other knowledge at hand.

Inconsistency can be checked for in a purely logical way (e.g. p
and ¬p are present in the knowledge under discourse), or as material
inconsistency, when two pieces of knowledge are invalid together
due to the assumed interpretation.

The proposed formalism is not truth-functional in the sense that
for any two defined truth values and for any logical connectives one
can determine the resulting truth value. This is also the case of other
non-trivial multi-valued logics. For example the Łukaszewicz logic
applied in relational databases has the so called NULL (or UNDE-
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TERMINED) value. Here instead of introducing some artificial value
for covering uncertainty we prefer to provide a set of still-possible
values. The fact that in some diagnostic reasoning cases (e.g. based
on abduction) we are not able to precisely define the logical value
is an intrinsic feature of such types of reasoning. In abduction one
states hypotheses and try to refine them. This will be explained with
an example further on.

The material presented in this paper is based in part on some pre-
vious works3. The concept of Potential Conflict Structure was first
presented in [14]. It was further developed in [16], [7], and especially
in the Ph.D. Thesis [8]. The concept of AND/OR graphs were intro-
duced in [15]. Basic logical material and the Reiter’s theory were pre-
sented in [17]. The diagnostic procedure presented here and based on
modeling the space of diagnostic hypotheses with AND/OR graphs
is coming from [19]. The ideas on qualitative three-valued diagnoses
have been introduced in [19], and the diagnostic part of the presenta-
tion here is based on [18].

2 MULTI-VALUED LOGICS:
STATE-OF-THE-ART

First multi-valued logics were introduced as early as in 1920 by
Łukasiewicz. From that time a number of proposals have been put
forward by Łukasiewicz, Post, Kleene, Priest, Belnap, Jaśkowski,
Sobociński, Słupecki, and perhaps many other. A modern practical
approach is the simple fuzzy logic with numerous possibilities of
T-norms and T-conorms, and some further constructs based on pos-
sibility theory and modal logics.

Most of the work done within the area of three-valued logics (also
Belnap four-valued one) turn around the concept of one definite truth
value and one false value, and some values in-between with seman-
tics of the type undetermined or partially true/false. In general, this
is also the case of simple fuzzy logic. Our proposal seems to be dif-
ferent; perhaps some relationship to qualitative physics of Kuipers
can also be observed.

3 MOTIVATION AND INTUITIONS
In this section we present motivations behind the proposed logic. In
fact, it is based on simple engineering intuition. The basic assump-
tions are as follows.

In classical, two-valued logics, purely logical negation can be con-
sidered not to be constructive. Instead of negating a logical statement
p, which leads to ¬p, one can think about replacing ¬p with a con-
structive statement q. Obviously, the meaning of q must depend on
the interpretation (the universe of discourse and mapping of the sym-
bols into relations defined over this universe).

For example, referring to a simple universe with two-state ele-
ments, one can say that if p ≡ (state(component) = on), then ¬p
can be defined as state(component) = off with the obvious mean-
ing.

We shall refer to this kind of negations as material negation. Note
that material negation always refers to the universe of discourse and
the intended interpretation. It is by nature constructive. It can be very
helpful in analysis and understanding of physical systems.

This classical understanding of negation is like operating in a
world where every object is just white or black. If it is not white,
then it must be black, and vice versa. But if one admits more colors
to play, the situation changes, and the statement that something is not

3 Of the author and his former Ph.D. student Barłomiej Górny, Ph.D. and
some common work with Jan Maciej Kościelny.

white is no longer equivalent to claiming that it is black; in fact, its
color is constrained to belong to some set.

In more complex worlds, there can be no simple one-to-
one relationship between logical and material negation. In-
stead of black-and-white objects world consider one with col-
ors such as red, green, and blue. Now, the material negation
of p ≡ (color(object) = red) would be equivalent to ¬p ≡
(color(object) = green ∨ color(object) = blue). In such a case one
is placed against some ambiguity, since the material negation is no
longer defined in a unique way.

Now, in case of technical systems we often observe signals which
should be stabilized around some required values (the so-called set-
points). A statement such as ’it is OK’ can refer to a correct value,
while its negation to incorrect one. The key idea is that a new, more
precise negation can directly point to one of the alternative val-
ues, while set-valued negation can define the constraints on negated
proposition.

For the purpose of this paper we assume just two false-values; the
key ideas are as follows:

• there are three defined logical values:

0 — for intuition true or normal/nominal state,

− — false-negative — below the expected state, and

+ — false-positive — above the expected state,

• each proposition (formula) can take only a single logical value at
a time,

• a combination of two different logical values can be considered as
a constraint imposed over a formula.

In fact, in more realistic treatment, a component can fail in several
ways; thus, one can speak about type of fault or faulty mode. It is pro-
posed to distinguish one correct mode, denoted with 0 and two faulty
modes, denoted with + and −, with the obvious intuitive meaning
(above or below the expected value of the parameter).

4 LANGUAGE: NOTATION AND LOGICAL
CONNECTIVES

Consider a set of propositional symbols P = {p1, p2, . . . , pn}.
Further, let I be an interpretation, i.e. a function assigning each
propositional symbol its current logical value (if known). Let T =
{−, 0,+} be the set of admissible truth values. Hence, I is a (partial)
function of the form: I:P → T .

In order to simplify the notation, instead of writing I(p) = τ ,
where τ ∈ T we shall write p[τ ]. Further, we introduce a kind of
constraints over the logical value of p; by p[τ1, τ2] we mean that p
takes as its logical value τ1 or τ2. Note that, this in fact allows to
specify some uncertainty w.r.t the logical value of p. For example,
p[−, 0] means that either p[−] or p[0] holds. Surely, if the value of p
is determined, we have p[−, 0,+] which can be considered as an ex-
tension of the excluded middle law from classical, two-valued logic.
Finally, p[?] means that the value of p is undetermined.

It is also convenient to assume that the elements of T are ordered,
and the order is (−, 0,+), i.e. − < 0 < +. In a sense, the true
is located in a central point (for engineering intuitions — a nominal
value). The− and + represents deviations from 0. Since we have one
true value and two false values, the shorthand to refer to this logic is
1T-2F.4

4 One can easily imagine extensions of the form kT-nF with k different true
values and n false values; further, extensions to kT-mM-nF with m middle
values are possible.
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Assume the elements of T are ordered, and the order is (−, 0,+).
Let us introduce two simple operators, p′— circular shift of the value
of p right and p8 — circular shift of the value of p left. For example,
if p[0], then p′[+], p′′[−], and, finally p′′′[0]. The extended version
of the law of excluded middle can be now formulated as follows:

|= p8 ∨ p ∨ p′, (1)

or in equivalent way as |= p ∨ p′ ∨ p′′ (|= p ∨ p8 ∨ p88).

4.1 Negation
The key issue in the proposed 1T-2F logic refers to modified, con-
structive understanding of negation. As it was mentioned, there are
three definite logical values: true (denoted with 0), false-negative
(denoted with −) and false-positive (denoted with +). The conse-
quence of that is that negation of true is not defined in a unique
way: it can be both false-negative as well as false-positive. In gen-
eral, negation of a valid proposition leads to a set of admissible false
values. The negation is in fact understood as set-complement of log-
ical values.

The detailed operation of negation is given in Table 1. Negation of

Table 1. The formal definition of negation operator

proposition negated proposition

p[0] p[+,−]
p[+] p[0,−]
p[−] p[+, 0]
p[−, 0] p[+]
p[−, +] p[0]
p[0, +] p[−]

a propositional symbol p will be denoted as p̄ or ¬p; negation of a
more complex formula Φ will be denoted as ¬(Φ).

It is straightforward to observe that the Principle of Excluded Mid-
dle is no longer true in its basic form. However, its extended version
can be put forward as follows:

p[0] ∨ p[+] ∨ p[−] (2)

which can be a useful constraint in potential diagnoses elimination
procedures.

We introduce also a more refine directed negation. Having in mind
the physical interpretation of the truth-values, and the order among
them, we define one step negation down (⇁) and one-step negation
up (⇀) operating as follows: ⇁ p[+] = p[0], ⇁ p[0] = p[−],
⇁ p[−] = p[−]; ⇀ p[−] = p[0], ⇀ p[0] = p[+], ⇀ p[+] = p[+].
This time the value of negation is defined in a unique way. Moreover,
analogous but circular negation can be defined as above, with two
additional rules assuring circularity, namely ( ◦⇁p[−] = p[+] and
◦⇀p[+] = p[−]).

4.2 Conjunction
Conjunction here means in fact composition of two signals repre-
sented by propositions. The following table defines it in a formal
way. The conjunction will be denoted with standard symbol ∧; so
p∧ q is the conjunction of p and q. Note that inference may be possi-
ble both for single and double truth-values. For example, for p[−, 0]
and q[0] we can infer (p ∧ q)[−, 0]; it takes the form of constraint
propagation. For p[−, 0] and q[−] we have (p ∧ q)[−]; there is a
refinement of the final value. For For p[−, 0] and q[0,+] we have
(p ∧ q)[?], i.e. the result is totally undefined.

Table 2. Formal definition of conjunction

∧ - 0 +
- - - ?
0 - 0 +
+ ? + +

5 APPLICATION EXAMPLE
In order to present a constructive, practical application of the 1T-
2F logic consider monitoring and diagnosis of the classical, non-
trivial benchmark system being a multiplier-adder network presented
in [22] and further frequently explored in the domain literature, e.g.
[9, 2, 1]. The system schema is presented in Figure 1. The system
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Figure 1. An example arithmetic system

is composed of two layers. The first one contains three multipliers
m1, m2, and m3, and receives five input signals A, B, C, D and
E. The second layer is composed of two adders, namely a1 and a2,
and produces two output values of F and G. Only inputs (of the first
layer) and outputs (of the second layer) are directly observable. The
intermediate variables X, Y, and Z are hidden; one cannot measure
them.

The observed state of the system is as follows: A=3, B=2, C=2,
D=3 and E=3. If the system works correctly — the outputs should be
F=12 and G=12 (with X=6, Y=6 and Z=6). Since the current value
of F is incorrect, namely F=10, the system is faulty. In fact, at least
one of its components must be faulty. Note that the fault may consist
in lowering or increasing the signal level.

In this classical case, i.e. F being faulty and G correct, the fi-
nal minimal diagnoses are calculated as minimal hitting sets of
the following conflict sets: C1 = {m1,m2, a1} and C2 =
{m1,m3, a1, a2} [22]. There are four potential diagnoses: D1 =
{m1}, D2 = {a1}, D3 = {a2,m2} and D4 = {m2,m3}; note
that the last two, two-component diagnoses take into account the
phenomenon of compensation in order to recover the correct value
of G.

Now, one can ask for a more precise definition of faults. In fact,
diagnosis D = {p} can be considered as a statement that p is
false; in the presented 1T-2F logic it can be p[−] or p[+], since
⇁ p[0] = p[−] and ⇀ p[0] = p[+]; the obvious meaning is that
the incorrect value of the signal is lower or higher then the correct
one. A statement such as p[−] or p[+] constitute in fact a qualitative
diagnosis [19] which provides reacher information about the nature
of the fault. Such more precise information can be used to eliminate
inadmissible diagnoses (e.g. a fault battery always produces lower
voltage). In the example, the four classical diagnoses lead to as many
as 12 potential qualitative diagnoses: {m1[−]}, {m1[+]}, {a1[−]},
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{a1[+]}, {a2[−],m2[−]}, {a2[−],m2[+]}, {a2[+],m2[−]},
{a2[+],m2[+]}, {m2[−],m3[−]}, {m2[−],m3[+]},
{m2[+],m3[−]}, {m2[+],m3[+]}.

More formally, if p[0] denotes correct work of a component,
¬p[0] = p[−,+] denotes possible faults; since p can take a unique
truth value at a time, two candidate diagnoses, p[−] and p[+] should
be considered. In case of multiple diagnosis {p1, p2, . . . , pk} we
have the Cartesian product Xi=1..k{pi[−], pi[+]}.

Now, consider a single component p, with two inputs x1 and x2,
and single output y — such as a multiplier or adder in the example
system. The logical model of it producing (hopefully correct) output
can be expressed in the form: x1∧x2∧p |= y with the interpretation,
that if the inputs are correct, and the component works correctly, the
output should be correct as well.

Now, consider a single potential qualitative diagnosis {m1[−]}.
Combined with inputs A[0] and B[0] we conclude that X[−].
This, combined with Y [0] and a1[0] gives F [−]. Hence diagnosis
{m1[−]} is confirmed; it is also consistent with other observations,
since Y [0], Z[0] and a2[0] gives G[0] consistent with the expected
value of G.

On th other hand, potential diagnosis {m1[+]}withA[0] andB[0]
leads to X[+], and in consequence, having Y [0] and a1[0] we con-
clude F [+]. Hence, diagnosis {m1[+]} is rejected; it is inconsistent
with observations.

In an analogous way, a1[−] is confirmed, while a1[+] must be
rejected.

Now, consider potential diagnosis with two components:
{a2[−],m2[−]}. m2[−] combined with B[0] and D[0] leads to
Y [−]. This combined with Z[0] and a2[−] leads to G[−]. Hence
diagnosis {a2[−],m2[−]} must be rejected; it is inconsistent with
observations. On the other hand, {a2[+],m2[−]} leads to Y [−] (as
before), but Y [−] combined with Z[0] and a2[+] leads toG[?] — no
inconsistency is detected on G. Further, Y [−] combined with X[0]
and a1[0] gives F [−] which explains the observed fault.

In a similar way diagnosis {m2[−],m3[+]} is proved admissible,
while the other three are rejected as inconsistent.

Finally, we arrive at the following set of admissible qualitative
diagnoses: {m1[−]}, a1[−], {a2[+],m2[−]}, {m2[−],m3[+]}.
Note that, we have obtained more precise diagnoses at no cost; just
a more precise logic for modeling the nature of faults has been em-
ployed. Note also, that if auxiliary knowledge about possible fault
types is available, further refinement through inconsistency elimina-
tion can be pursued.

6 CONCLUSIONS

An idea of a new, inspiring 1T-2F logic has been put forward. It is
aimed at more precise modeling of systems for tasks such as monitor-
ing, control or diagnosis. New interpretation of negation have been
introduced and application example has been shown.

Note that this kind of negation can be also considered as construc-
tive negation; instead of saying ’anything, but not p’ (without both-
ering, if and what can this mean), we insist on pointing to a different,
but specific value.

The 1T-2F logic seems to have potential for development of further
kT-mM-nF type logics with k true values, m middle values and n
different false values; the k true can be interpreted as different OK
working modes, while the m middle vales — as some partial faults.
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[19] Antoni Ligęza and Jan M. Kościelny, ‘A new approach to multiple fault
diagnosis. combination of diagnostic matrices, graphs, algebraic and
rule-based models. the case of two-layer models’, Int. J. Appl. Math.
Comput. Sci., 18(4), 465–476, (2008).

[20] J. A. Reggia, D. S. Nau, and P. Y. Wang, ‘Diagnostic expert system
based on a set covering model’, International Journal on Man-Machine
Studies, 19, 437–460, (1983).

[21] J. A. Reggia, D. S. Nau, and P. Y. Wang, ‘A formal model of diagnostic
inference. problem formulation and decomposition’, Information Sci-
ences, 37, 227–256, (1985).

[22] R. Reiter, ‘A theory of diagnosis from first principles’, Artificial Intel-
ligence, 32, 57–95, (1987).

[23] Knowledge-Based System Diagnosis, Supervision and Control, ed.,
S.G. Tzafestas, Plenum Press, New York, London, 1989.

[24] S.G. Tzafestas, ‘System fault diagnosis using the knowledge-based
methodology’, in A chapter in [23], 509–595, Plenum Press, (1989).

4/33



Modeling and diagnosis of dynamic systems from timed
observations

Ismail Fakhfakh 1 and Marc Le Goc 2 and Lucile Torres 2 and Corinne Curt 1

Abstract. This paper proposes the use of the Timed Observation
theory as a powerful framework for model-based diagnosis. In fact,
this theory provides a global formalism for modeling a dynamic sys-
tem (TOM4D), for characterizing and computing diagnoses of the
system under investigation

1 INTRODUCTION

In the last two decades model-based diagnosis has been an important
research area where numerous new methodologies and formalisms
have been proposed, studied and experimented ([3] and [9]). This
is motivated by the practical need for ensuring the correct and safe
functioning of large complex systems. These frameworks have been
created (i) to provide semantics for the diagnosis problem solving,
(ii) to analyze the properties and to characterize the diagnosis rea-
soning and (iii) to give modeling principles.

In dynamic systems, the observation is timed unlike in static sys-
tems where the observations are given at only one point of time. This
is restrictive in several fields. The extension of the problem poses
many problems with the existing approaches. Since (Reiter, 1987),
most of the frameworks are based on the logic formalism. Despite of
the important contributions in the domain of temporal logics, there is
still a difficulty to take into account the time of the observations in
the diagnosis reasoning. Later, the Discret Event System formalism
has been used to diagnose dynamic systems [1]. One basic difficulty
that arises is then the definition of the observations. Cordier [4] pro-
poses to slice off the flow of the measurements into temporal win-
dows to define the observations within these slices and to compute
the diagnosis incrementally using the observations of the successive
slices. This approach is applied only to D.E.S and is seldom used
in real cases. One of the problems with this kind of approach is to
define the size of the slices so that the relevant observations can be
perceived: there is no a priori reason for the observations to be syn-
chronized with the slicing algorithm. In other words, the slicing algo-
rithm can mask pertinent observations and, within a slice, the obser-
vations must be ordered to be taken into account in a model. These
difficulties are classical with discrete time systems. To avoid these
problems, Le Goc [8] proposes to define observations time-stamped
with clocks in time continuous. The Timed Observation Theory of Le
Goc [8] provides a general mathematical framework for modeling
dynamic processes from timed data. The application of this frame-
work to diagnosis has given birth to a modeling methodology for
diagnosis TOM4D (Timed Observation Theory for Diagnosis). The
aim of the modeling methodology is to provide an efficient diagnosis

1 IRSTEA, 3275 route de Cézanne - CS 40061, Aix-en-Provence, France
2 Aix-Marseille Université, LSIS, 13397 Marseille, France

based on models built at the same abstraction level as these of the
experts.

In this paper, after a brief presentation of the Timed Observation
Theory and the TOM4D method (Sections 2 and 3), we show how
TOM4D supports the modeling of complex physical systems. In sec-
tions 4 and 5, we show how the models can be used to characterize
the diagnosis and we demonstrate that the diagnosis can be computed
easier using the TOM4D models (section 6). We apply the modeling
approach and the diagnosis algorithm to an hydraulic system. Finally,
Section 7 provides conclusions and proposes some perspectives to
this work.

2 THEORY OF TIMED OBSERVATIONS
Le Goc’s Timed Observation Theory extends Shannon’s Theory of
Communication to timed data and offers a unique frame for Markov
Chains and Poisson Theories. It also extends the Logical Theory
of Diagnosis to timed observations. This theory considers that the
timed messages of a serie are written in a database by a program
called a Monitoring Cognitive agent (MCA), which monitors a dy-
namic sytem. A dynamic system is a process Pr(t)={x1(t), x2(t),
..., xn(t)} defined as an arbitrary set made of time functions xi(t)
defined on the real set denoted < (i.e. ∀ t ∈ < , xi(t) ∈ <).

This theory defines a timed observation in the following way [8].
Given a set Pr(t)={x1(t), x2(t), ..., xn(t)} of time functions the
evolution of which are observed by a program Θ; let X = {x1, x2,
..., xn} be the corresponding set of variable names; let ∆= ∪

∀xi∈X

∆xi each ∆xi ={δi
1, δi

2, ..., δi
m} being a set of constants denoting

the possible values for xi; let Γ={tk}tk∈< be a set of arbitrary time
instants.

Definition 1 (A Timed Observation). A timed observation o(tk) ≡
(δi

j , tk), made by a program θ when observing a time function xi(t)
at time tk ∈ Γ, is the assignation of the values v=xi, δv=δi

j and
t=tk to a predicate Θ(v, δv, t) so that: Θ(xi, δi

j , tk).

Conceptually, the θ program applies the spatial segmentation prin-
ciple: a value δi

j is assigned to a variable xi whenever the value of
its corresponding time function xi(t) enters in a range [ψi, ψi+1[,
where ψi is a threshold for xi(t) (i.e. ψi ∈ < ). This means that the
values are assigned to the variables with a program (or a human) the
basic specification of which is the following (cf. [7] for examples of
more complex spatial segmentation algorithms):
∀ k ∈ N, xi(tk) ≥ ψi ∧ xi(tk−1)< ψi ⇒ o(tk) ≡ (δi

j , tk) ∧ tk ∈ Γ
In practice, each time tk the predicate Θ(xi, δi

j , tk) is assigned, the
program θ (or a human) writes a couple (δi

j , tk) in a database, a dat-
alog or a simple document. As a consequence, to any timed obser-
vation o(tk)≡ (δi

j , tk) corresponds an assigned predicate Θ(xi, δi
j ,
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tk). [8] shows that this predicate can always be interpreted as the
”Equal” predicate so that: Θ(xi, δi

j , tk)≡ Equal(xi, δi
j , tk)⇔ xi(tk)

∈ [ψi, ψi+1[. Such an assigned predicate is often represented in the
expert’s language under the form of the assignation of the value δi

j to
the variable xi at tk: xi(tk)=δi

j . The value δi
j can therefore then be

considered as a symbol denoting the range [ψi, ψi+1[. This leads to
define the notion of class of observations.

Definition 2. An observation class Ci={(xi, δi
j), (xi+1, δi+1

j+1), ...,
(xi+n, δi+n

j+n} is a set of couples (xi, δi
j) associating a variable xi,

eventually unknown, with a constant δi+k
j+k.

In other words, an observation class Ci associates variables xi ∈
X with constants δi

j ∈∆xi . This leads to the following property:

Proposition 2.1. Each timed observation o(tk)≡ (δi
j , tk) corre-

sponds to an occurrence of an observation class Ci = {(xi, δi
j)}.

In practical applications, the observation classes are usually de-
fined as a singleton of the form Ci = {(xi, δi

j)}. These definition
allow defining a modeling methodology for diagnosis.

3 MODELING APPROACH FOR DIAGNOSIS :
TOM4D

TOM4D is a modeling methodology for dynamic systems focused
on timed observations. The objective of this methododology is to
produce a suitable model for dynamic process diagnosis from timed
observations and experts’ a priori knowledge. TOM4D relies on
the idea that experts use an implicit model to both formulate the
knowledge about the process and diagnose it. It is a multi-model ap-
proach that combines CommonKads templates [11] with the concep-
tual framework proposed in [12] and the tetrahedron of states (T.o.S),
[10], [2]. These elements are merged according to the Timed Obser-
vations Theory [8].

The TOM4D methodology is based on the notion of observation
class Ci = {(xi, δi

j)} and associates the variable xi of each observa-
tion class Ci with one and only one component ci. This means that
the values δi

j a variable xi can take over time is the result of a couple
(θ(∆xi ), xi(t)) made with a program θ(∆xi ) that observes the evo-
lutions of a time function xi(t) and write a timed observation o(tk)
≡ (δi

j , tk) whenever a predicate Θ(xi, δi
j , tk) is assigned. In other

words, xi(t) is the signal provided by some sensors associated with a
component ci. This allows to organize the available knowledge about
a process Pr(t) according to (i) a Perception Model PM(Pr(t))
defining the process as an arbitrary set made of time functions x−i(t)
and its operating goals and its normal and abnormal behaviors, (ii) a
Structural Model SM(Pr(t)) defining the components of the pro-
cess and their relations, (iii) a Functional Model FM(Pr(t)) defin-
ing the relations between the values of the process variables (i.e. their
definition domain) with a set of mathematical functions, and (iv) a
Behavior Model BM(Pr(t)) defining the timed observation classes
firing the evolutions of the time functions of Pr(t).

Figure 1 describes the three main steps of the TOM4D modeling
process: Knowledge Interpretation, Process Definition and Generic
Modeling. The aim of this process is to produce a coherent generic
model M(Pr(t)) = < PM(Pr(t)), SM(Pr(t)), FM(Pr(t)),
BM(Pr(t))> from the available knowledge and data.

The Knowledge Interpretation step uses a CommonKADS tem-
plate to interpret and to organize the available knowledge about
a dynamic system. This knowledge is provided by a knowledge
source (an expert, a set of documents, etc) and when possible,

Figure 1. TOM4D Modeling Process

at least one scenario. This first step aims at producing a scenario
model M(Ω) =< SM(Ω), FM(Ω), BM(Ω) > of the system that
is coherent with the available knowledge about its evolution over
time. This model is used in the Process Definition step to provide
a definition of the process under the form of a perception model
PM(Pr(t)). This is made with the use of the tetrahedron of states to
provide a physical dimension to each variable of the process and with
the use of formal logic to define its operating goals and its normal
and abnormal behaviors. The aim of this step is to control the way
the semantics of the available knowledge is introduced in the model
to avoid the potential representation errors. The Perception Model
PM(t) defined, the Generic Modeling step aims at defining an ab-
stract representation of the dynamic system where the different terms
of the available knowledge are reified through a set of relations. This
paper being focused on the use of the resulting model BM(Pr(t)),
the interested reader is invited to see [9], [5] or [6] for further details
about TOM4D.

A TOM4D behavior modelBM(Pr(t)) describes the possible se-
quences of observation classes that can occur and therefore the dis-
cernible states between them.

Definition 3. A behavior model BM(Pr(t)) of a dynamic process
Pr(t) is a 3-tuple < S,C, γ > where:

• S = {s : X → ∆|s(xi) = δ, xi ∈ X, δ ∈ ∆} is a set of
functions which characterize the discernible states of the process
Pr(t),

• C is a set of observation classes, where an observation class as-
sociated with a variable xi ∈ X is a set Ci = {(xi, δ)|δ ∈ ∆xi}
containing only one element (i.e. a singleton),

• γ : S × C → S is a function of discernible state transition.

Given a sequence ω = {o(k)} of observation class occurrence
o(k) ≡ (δi, tk), a transition from a discernible state si to the dis-
cernible state sj is triggered when:

• there is an occurrence o(k) ≡ (δi, tk) of class Ci in ω;
• the current state s(t) of the finite state machine implementing
BM(Pr(t)) is the discernible state si (i.e. s(t) = si);

• there exists an assignment γ(Ck, si) = sj .
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The observation classes being singletons, an occurrence of an obser-
vation class (i.e. a timed observation o(k) ≡ (δy, tk)) corresponds
to the assignation of a particular value δy to a variable xi of Pr(t).

4 SEQUENTIAL BINARY RELATIONS
The important point is that a state transition in a finite state machine
implementing a TOM4D behavior model BM(Pr(t)) can occur if
and only if there exist two assignations si = γ(Cx, sk−1) and sk =
γ(Cy, si) in BM(Pr(t)).

Definition 4. Given a TOM4D behavior model BM(Pr(t)) =<
S,C, γ >, a sequential binary relation r(Cx, Cy, si) between two
observations classesCx andCy , labelled with a discernible state si,
exists iff: ∃sk−1, si, sk ∈ S, si = γ(Cx, sk−1) ∧ sk = γ(Cy, si).

A sequential binary relation between two observation classes
r(Cx, Cy, si) is an oriented (sequential) relation between two ob-
servation classes Cx = {(x, δx)} and Cy = {(y, δy)} that is
linked with a discernible state si. This latter can correspond to the
current state of a finite state machine implementing a TOM4D be-
havior model BM(Pr(t)) after observing an occurrence Cx(tk) =
(δx, tk) of the ”input” observation classCx and before observing the
occurrenceCy(tk+1) = (δy, tk+1) of the ”output” observation class
Cy .

The γ function defines then the possible sequential relations be-
tween two observation classes:

Proposition 4.1. Two assignments si = γ(Cx, sk−1) and sk =
γ(Cy, si) define a sequential binary relation r(Cx, Cy, sj) between
two classes Cx and Cy labelled with a discernible state si.

In other words, a TOM4D behavior model BM(Pr(t)) =<
S,C, γ > specifies a graph between the set C of observation classes.
This graph is used to control the diagnosis reasoning.

A class graph C-Graph is a set GC = {..., ri(C
x, Cy, sx,y), ...},

i = 1...n, of sequential binary relations of the form r(Ci, Co, sio)
between an input observation class Ci and an output observation
class Co labelled with a discernible state sio . The C-Graph is built
from a TOM4D generic behavior model generated with the following
algorithm.

Algorithm: Generate-C-Graph GC = {ri}
input: a behavior Model BM(Pr(t)) =< S, C, γ >
output: a C-Graph GC = {ri}, ri ≡ r(Cx, Cy , si)
1.GC = Φ
2.∀si ∈ S
2.1.∃sn, sm ∈ S,
sn = γ(si, Cx) = sn ∧ sm = γ(sn, Cy)
⇒ GC = GC ∪ r(Cx, Cy , si);
3.ReturnGC

The C-Graph GC describes the complete process behavior in
terms of observation class. This means that a path in this graph de-
scribes a particular behavior of the process. Such a path correspond
to a suite of discernable states in the behavior model BM(Pr(t)).
So looking for a particular suite of discernable states in BM(Pr(t))
corresponds to look for a particular path in the associated C-Graph
GC :

Definition 5. A class path PC is a sub-graph of a C-Graph GC

made with a suite PC = (ri,i+1), i = 1...n of n sequential binarys
relation ri,i+1 of the form r(Ci, Ci+1, si,i+1).

In other words, the general form of a class path PC is
the following: ( r1(C

i1 , Ci2 , si1,i2), r2(C
i2 , Ci3 , si2,i3), ...,

rn(Cin , Cin+1 , sin,in+1) ).
Because the timed observations provided by a MCA Θ(X,∆) are

the occurrences of the observation classes of the set C of a TOM4D
behavior model BM(Pr(t)), it is simpler to look for a class path in
the C-Graph and then to look for the corresponding state path, rather
that trying to directly build the suite of states from the suite of obser-
vations. This idea is the basis of the proposed diagnosis algorithm.

5 DIAGNOSING WITH C-GRAPHS
According to The timed Observation Theory [8], the timed observa-
tions are provided by a MCA θ(X,∆) that assumes the online super-
vision of a dynamic process Pr(t). Diagnosis is performed starting
from a sequence ω = {o(tk)} of timed observations and a TOM4D
process model M(Pr(t)). It consists in explaining the timed obser-
vations of ω written by MCA Θ(X,∆) during a period [t0, tn].

Figure 2. Diagnosis Engine

Consequently, the diagnosis aims at generating the minimal set D
of class paths PC that are compatible with the timed observations of
ω (cf. Figure 2) and the C-Graph derived from the behavior model
BM(Pr(t)) of the TOM4D process model M(Pr(t)).

Definition 6 (Diagnosis Definition). Given a C-Graph GC =
{..., r(Cx, Cy, si), ...} and a suite ω = {o(t0), ..., o(tn)} of n + 1
timed observations recorded during the period [t0, tn], a diagnosis
at time t ∈ [t0, tn] is the minimal set D(t) = {PC} of class paths
PC that are consistent with GC and ω.

(ω,GC) → D(tn) (1)

The algorithm of computing the minimal set D of class path PC

from a C-graph GC and a sequence ω of timed observations is made
with a loop on each timed observation o(k) ∈ ω and acts with three
main steps: (i) remove the paths of D that are no more coherent
with o(k), (ii) extend each path in the resulting set D with the right
sequential relations from GC and (iii) initialize the set D when it is
empty (at the first loop or if there are no more paths that are coherent
with ω. The algorithm also uses three functions: ”obsClassOf(o)”
to get the class of a timed observation, ”rightestRelationOf(P )”
to get the right most sequential binary relations of a class path and
”rightRelations(r(Ci, Co, sio), GC)” to get the set of sequential
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binary relation corresponding to the successor of a particular
sequential binary relation r(Ci, Co, sio) in a C-Graph GC .

Algorithm: Generate-Class-Path
input : a C-Graph GC and a sequence ω = {o(tk)} of n
timed observations
Output : a set D of class paths consistent GC and ω
1.D ← {φ}
//Loop on the timed observations of ω
//Γ(ω) is the set of time-stamp of the timed observations of ω
2.∀tk ∈ Γ(ω)
//Compute the set C of the classes occured at tk
2.1.∀o(tk) ≡ (δi, tk) ∈ ω, ObsClassOf(o(tk)) ∈ C
//Compute D for the set C at time tk
2.2.D = computeD(D, GC , C)
3.ReturnD

Algorithm: computeD
input : a set D of C-Path, a C-Graph GC and a set C of ob-
servation classes
Output : the upated set D
1.d← {φ}
//Loop on the observation classes of C
2.∀c ∈ C
2.1.d← d ∪ computeCPaths(D, GC , c)
3.D ← d
//If D is empty, initialise D with C and GC

4.D = {φ} ⇒ D ← initCPath(GC , C)
5.ReturnD

Algorithm: computeCPaths
input : a set D of C-Paths, a C-Graph GC and an observation
class c
Output : the updated set D
1.D1 = {φ} //Working set of C-Path
//Remove from D the paths that are not compatible with c
2.∀P ∈ D
2.2.r(Ci, Co, sio)← rightestRelationOf(P )
2.3.Co = c⇒ D1 = D1 + P
3.D ← D1 //D contains the C-Paths compatible with c
//Extends each path of D with the right sequential relations
4.D1 = {φ} //Reset the working set D1

4.∀P ∈ D
4.1.r(Ci, Co, sio)← rightestRelationOf(P )
//Get the relations from GC

4.2.R = rightRelations(r(Ci, Co, sio), GC)
4.3.∀r ∈ R
4.3.1.P1 = P + r //Create a new extended path for P
4.3.2.D1 = D1 + P1 //Add the new path in D1

5.ReturnD1

The next section illustrates this algorithm on the (simple) device
of Figure 3 studied in [3]. It is to note that this algorithm can easily be
extended to simultaneous timed observations that can occur in large
and complex systems. In other hand, the lack of timed observations
leads the algorithm to remove the C-Paths that are no more consistent
with the suite of timed observations. It can also be extended to use
the functional model FM(Pr(t)) to distinguish between a true lack
of timed observation and an inconsistency between the sequence of
timed observations and the behavior model BM(Pr(t)).

6 APPLICATION
[3] describes the example with the following terms: the system is
formed by a pump P which delivers water to a tank TA via a pipe PI;
another tank CO is used as a collector for water that may leak from

Algorithm: initCPath
input : a C-Graph GC and a set C of observation classes
Output : a set D of sequential binary relations consistent with
C
1.∀c ∈ C
1.1∀r(Ci, Co, sio) ∈ GC ,
1.2Co = c⇒ {r(Ci, Co, sio)} ∈ D
2.ReturnD

the pipe. The pump is always on and supplied of water. The pipe PI
can be ok (delivering to the tank the water it receives from the pump)
or leaking (in this case we assume that it delivers to the tank a low
output when receiving a normal or low input, and no output when
receiving no input). The tanks TA and CO are simply receive water.
We assume that three sensors are available (see the eyes in Figure
3): flowp measures the flow from the pump, which can be normal
(nrmp), low (lowp), or zero (zrop); levelTA measures the level of
the water in TA, which can be normal (nrmta), low (lowta), or zero
(zrota); levelCO records the presence of water in CO, either present
(preco) or absent (absco).

Figure 3. Hydraulic system

According to the TOM4D methodology, the system is a hydraulic
process Pr(t) = {x1(t), x2(t), x3(t)}made with three variables (cf.
the hydraulic T.o.S): x1(t) is a volume variable, x2(t) and x3(t) are
two outflow variables. The analysis of the system description shows
that x2(t) represents a normal outflow and x3(t) represents an ab-
normal outflow corresponding to water leakage. Table 1 shows the
variable-value association and the physical interpretation of the vari-
ables. The corresponding set of observation classes is given in Table
2 and the discernible states are provided in Table 3. The reader in-
terested with the application of the TOM4D methodology on this
example is invited to refer to [5].

Variables Physical value Abstract
x interpretation interpretation value δi

normal, 2,
x1 V olume low, 1,

zero 0
normal, 2,

x2 normal
outflow

low, 1,

zero 0
x3 abnormal

outflow
presence, 2,

absence 1

Table 1. Variable-Value Association for the Hydraulic System
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C1
1 = {(x1,0)} C1

2 = {(x1,1)} C1
3 = {(x1, 2)}

C2
1 = {(x2,0)} C2

2 = {(x2,1)} C2
3 = {(x2,2)}

C3
1 = {(x3,1)} C3

2 = {(x3,2)}

Table 2. Timed Observation Classes

States x1 x2 x3 States x1 x2 x3

s0 0 0 1 s1 1 0 1
s2 2 0 1 s4 1 1 1
s5 2 1 1 s8 2 2 1
s9 0 0 2 s10 1 0 2
s11 2 0 2 s13 1 1 2
s14 2 1 2 s17 2 2 2

Table 3. The set of discernible states for the Hydraulic System

Figure 4 shows a graphical representation of the behavior model
BM(Pr(t)) of the hydraulic system. The ”Generate−C−Graph”
algorithm of section 4 produce the C-Graph GC of Figure 5.

Figure 4. behavior Model of the hydraulic system

To illustrate the ”Generate − Class − Path” algorithm of the
previous section, let us consider the following sequence of timed ob-
servations: ω = { ox2(t0) ≡ (1, t0), ox3(t1) ≡ (2, t1), ox2(t2) ≡ (0,
t2) , ox1(t3) ≡ (2, t3)} (We consider that ti ≤ ti+1). According to
the table 2, the observation class associated to the first timed obser-
vation ox2(t0) of ω is C2

2 . The set D being empty, the two first steps
of the algorithm do nothing but the third step initializes D with the
Algorithm ”initCPath” that is to say finds the set of binary relation
that are of the form r(C0, C2

2 , si0 ) so that D = { {r(C1
2 ,C2

2 , s1)},
{r(C2

1 ,C2
2 , s1)}, {r(C2

1 ,C2
2 , s2)}, {r(C1

3 ,C2
2 , s2)}, {r(C2

3 ,C2
2 , s8)},

{r(C2
1 ,C2

2 , s11)}, {r(C3
2 ,C2

2 , s11)}, {r(C1
3 ,C2

2 , s11)}, {r(C2
1 ,C2

2 ,
s10)}, {r(C3

2 ,C2
2 , s10)}, {r(C1

2 ,C2
2 , s10)}}.

The observation class of the second timed observation ox3(t1) ≡
(2, t1), ox2(t2) being C3

2 , the next step of the algorithm removes the
paths of D that are no more coherent with ox3(t1) and extends the
rest of paths with the right sequential relations from GC (cf. Figure

Figure 5. C-Graph of the hydraulic system

5) so that
D = { {r(C1

2 , C
2
2 , s1), r(C

2
2 , C

3
2 , s4)},

{r(C2
1 , C

2
2 , s1), r(C

2
2 , C

3
2 , s4)}, {r(C2

1 , C
2
2 , s11), r(C

2
2 , C

3
2 , s14)},

{r(C2
1 , C

2
2 , s2), r(C

2
2 , C

3
2 , s5)}, {r(C1

3 , C
2
2 , s2), r(C

2
2 , C

3
2 , s8)},

{r(C2
3 , C

2
2 , s5), r(C

2
2 , C

3
2 , s5)} }. Doing so, the algorithm finds

only two C-Paths that are consistent with all the timed observations
of ω (cf. Fig 6). The dark circle means that the new observation class
is inconsistent with the defined C-Path (there is no relation between
the last observation class and the new observation class).

Figure 6. P C consistent with the ω and BM

D(t) = {PC1 , PC2} = { {r0(C1
2 , C2

2 , s1), r1(C2
2 , C3

2 , s4), r2(C3
2 ,

C2
1 , s13), r3(C2

1 ,C1
3 , s10)}, {r0(C2

1 ,C2
2 , s1), r1(C2

2 ,C3
2 , s4), r2(C3

2 ,
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C2
1 , s13), r3(C2

1 , C1
3 , s10)}} and the state Path corresponding is S-

Path = {s1, s4, s13, s10, s11}. The interpretation of the results with
the behavior model shows that the system passed from the ok mode
(the grey states in Figure 4) : states (s1, s4) to leaking mode (the dark
states in Figure 4) : states (s13, s10, s11).

7 CONCLUSION

This paper proposes an algorithm to diagnose dynamic systems
modeled with the TOM4D methodology according to the Theory
of Timed observations of [8]. This alogorithm is a preliminary
work since we have not exploited all the potentialities of the theory.
In particular, this algorithm does not consider the lack of timed
observations that can occur in large and complex systems. An
extension is under consideration with the idea to use the function
model FM(Pr(t)) to discriminate between a true lack and an
inconsistency.
On other hand, with large and complex systems, the impossibility to
define a global behavior model obliges to model the behavior in a
decompositional way with the description of the behaviors of each
component of the system. Another extension to the proposed algo-
rithm aims at computing the diagnosis locally for each component
before merging the local diagnosis to get a global diagnosis. In the
D.E.S. approaches, the diagnoses are merged using the events which
are common with the local diagnosis. According to the TOM4D
methodology, the observations classes are not common between two
components because, by construction, each variable xi is associated
with one and only one component ci. Consequently, the idea is to
use the functional model FM(Pr(t)) to define the relation between
the observation classes and to merge the local diagnosis.

ACKNOWLEDGEMENTS

The authors would like to thank the Provence - Alpes - Côte d’Azur
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Comparison of Distributed Diagnosis Methods
on Networks with Different Properties

Priscilla Kan John1 and Alban Grastien2

We conduct a performance comparison between two algorithms

for distributed diagnosis of discrete event systems. We are particu-

larly interested in the time and memory requirements as the shape

and size of the system are varied. To this end, we consider different

classes of systems as can be found in the complex network litera-

ture [3]. We analyse and compare how certain properties of the net-

work affect the performance of the two diagnosers. Valuable insight

is gained into how network characteristics affect diagnostic perfor-

mance and allows us to choose appropriate strategies for electricity

networks, which are our motivating application.

1 Introduction

Real-world systems are often distributed in nature, i.e. they consist of

a set of interconnected components. While the behaviour of each in-

dividual component can be simple, their emergent global behaviour

is complex. As such systems increase in size, their supervision be-

come more and more challenging. Diagnosis is the process of deter-

mining what happened on a system, including the ability to detect

faults on the system and if possible isolate the fault(s). Diagnosis is

thus an important aspect of the supervision of systems to ensure their

smooth running or to take appropriate remedial actions. As systems

become more and more complex, new methods to handle diagnosis

are required. In model-based diagnosis (MBD) – our focus – the re-

construction of what happened on a system starting from a given ini-

tial state, takes into account observations on the system and a given

model of the considered system.

We take a Discrete Event System (DES) approach to MDB [2] and

use the automaton formalism for implementation. Regardless of cho-

sen implementation, the search space involved in the overall history

reconstruction of a system as a monolithic block grows exponen-

tially with the size of the system (i.e., the number of components

considered). Hence for large systems, the diagnostic task becomes

intractable. Different approaches have been investigated to handle

this problem where the overall global computation is avoided by cal-

culating smaller ‘local’ diagnoses. Decentralised techniques [12, 4]

still require a final merging operation of the local diagnoses and

hence still suffer from computational blowup. Several distributed al-

gorithms have bee developed that further limit the problem by avoid-

ing the final merging step: CPLC [13] and JT [8].

These distributed algorithms are very sensitive to the shape of the

network and the number of components it contains (its size). The

shape of the network refers to how the individual components are

connected to other components and is generally domain-dependent.

1 ANU, Australia
2 NICTA and ANU, Australia

For instance, power networks have been shown to exhibit a small-

world structure [14]. In this paper, the performance of the two di-

agnosis algorithms (CPLC and JT mentioned above) are studied and

evaluated over a number of representative classes of networks. To

this end, we introduce a generic local diagnosis and vary the shape

and size of the network.

This paper is divided as follows. In Section 2, we introduce the

problem of diagnosis of DES, and the algorithms of interest. In Sec-

tion 3, we introduce the classes of networks that we considered in

this work, and their associated attributes. In Section 5, we present

the results of our experiments.

2 Diagnosis of Discrete Event Systems

We now present the diagnosis of discrete event systems and the two

existing algorithms that compute all the trace consistent with the ob-

servation that avoid computing the global diagnosis.

2.1 Languages

An alphabet, generally denoted Σ, is a finite set of letters. A word,

generally denoted w, over alphabet Σ is a (possibly empty and al-

ways finite) sequence of letters of the alphabet: w ∈ Σ⋆. A language,

generally denoted L, over alphabet Σ is a (potentially infinite) set of

words: L ⊆ Σ⋆.

Let w be a word defined over alphabet Σ. The projection of w over

alphabet Σ′ ⊆ Σ, denoted ProjΣ→Σ′(w) is the restriction of w to

the letters of Σ′. This is formally computed by

ProjΣ→Σ′ (w)







ε if w = ε
σw′ if w = σw′ and σ ∈ Σ′

w′ if w = σw′ and σ 6∈ Σ′

where ε represents the empty word. In general, the alphabet Σ will be

ignored in the formulas. The projection over alphabet Σ′ of language

L defined over alphabet Σ ⊇ is defined by the projection of each of

its words: ProjΣ′(L) = {w′ ∈ Σ′⋆ | ∃w ∈ L.w′ = ProjΣ′(w)}.

The reverse operation computes all words on the latter alphabet

whose projection on the former alphabet belong to the specified lan-

guage:

ProjΣ→Σ′
−1(L′) = {w ∈ Σ′⋆ | ProjΣ→Σ′(w) ∈ L′}

Let L1 and L2 be two languages defined respectively over alpha-

bets Σ1 and Σ2. The synchronisation of both languages, denoted

L1 ⊗ L2, is defined as the set of words on the union of their alpha-

bets whose projection on each alphabet belong to the corresponding

language:

L1 ⊗ L2 = {w ∈ (Σ1 ∪ Σ2)
⋆ | ∀i ∈ {1, 2}.P rojΣi

(w) ∈ Li}
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(Notice that the operation is associative and commutative.)

Finally, we present two operations of consistency. Given a set

of languages {L1, . . .Lk} possibly defined on separate alphabets

Σ1, . . . ,Σk, the global consistency of language Li is the synchro-

nisation of all those languages projected on Σi is Li.

gcons(L〉, {L1, . . .Lk}) = ProjΣ→Σi
(L)

where Σ =
⋃

j∈{1,...,k} Σj and L =
⊗

j∈{1,...,k} Lj . If the lan-

guage Li is unmodified by the operation of global consistency, we

say that the language is globally consistent.

The local consistency is similar to the global consistency, except

that it is performed pairwise:

lcons(L∞,L2) = ProjΣ1∪Σ2→Σ1(L1 ⊗ L2).

Practically, the language will be implemented by an automaton.

2.2 Diagnosis

In diagnosis, we consider a system consisting of a number of con-

nected components; for this reason, it will be called a network.

A letter will represent an event that can occur on the network. A

word, i.e., a sequence of event, is a behaviour of the network. A

language is a set of possible behaviours.

The model LM (defined on Σ) of the network is the set of be-

haviours that can physically take place in the network. When cer-

tain events occur, they are received by the monitoring system; these

events, denoted Σo ⊆ Σ, are called observable.

A behaviour w ∈ LM takes place in the network. This behaviour

is unknown, but is partially observed. The observation is the restric-

tion of w to the observable events, i.e., obs = ProjΣ→Σo(w). The

problem of diagnosis is finding w; because w is only partially ob-

served, it is impossible to retrieve it precisely in general. Instead, the

diagnosis is defined as the subset of the model that could produce the

observation:

∆ = LM ⊗ {obs}.

2.3 Decentralised Diagnosis

In practice, the network is a set of interconnected components. This

affects the diagnostic problem in two ways: the complexity of the

problem and the observations.

The size of the automaton representing LM is exponential in

the number of components. Because the network can include hun-

dreds or more components, this automaton cannot be computed. In-

stead, the network is represented by a set of component models

{LM1, . . . ,LMk} which implicitely represent the model LM =
⊗

i∈{1,...,k} LMi. The events that belong to several components

models are called synchronisation events.

Because of the physical decentralisation of the network, it is of-

ten impossible to determine precisely the order between the obser-

vations coming from different components [9]. The observation of

the behaviour w is therefore the set of local observations: ∀i ∈
{1, . . . , k}.obsi = ProjΣ→Σo∩ΣMi

(w). Consequently, the obser-

vation of the trace w is a set of observations defined by the language:

LO =
⊗

i∈{1,...,k}{obsi}. We write {obsi} = LOi.

A decentralised diagnosis is a representation of the diagnosis as

a set of languages whose synchronisation is the diagnosis. For in-

stance, the following set is a decentralised diagnosis:

{LM1, . . . ,LMk,LO1, . . . ,LOk}.

Not all decentralised diagnosis are equal. In order to provide useful

information, a decentralised diagnosis must be globally consistent.

A globally consistent diagnosis means that each local diagnosis is

the precise restriction of the global diagnosis on a set of events; for

instance, if a particular event e is of interest, and the local diagnosis

Li is defined over an alphabet that include e, then e possibly (resp.

surely) occurred iff a trace (resp. all traces) of Li contains the event e.

We want to compute the global consistency of the decentralised

diagnosis {∆1, . . . ,∆k} where for each i, ∆i = LMi ⊗ Loi. This

can be done by computing the global diagnosis ∆ =
⊗

i∈{1,...,k} ∆i

and projecting it back to the local alphabets. However, computing ∆
is generally impractical. The two algorithms presented in the follow-

ing two subsections aim at computing the globally-consistent decen-

tralised diagnosis without computing ∆. In practice, we will only

compute the global consistency of one local diagnosis which we will

arbitrarily choose to be ∆k .

2.4 CPLC

The Computational Procedure for Local Consistency (CPLC, [13])

incrementally synchronises the local diagnoses and projects the di-

agnosis on the set of events of the remaining local diagnoses, hence

reducing the complexity.

Let J ⊆ I = {1, . . . , k} be a subset of local diagnoses and ΣJ =
⋃

i∈J
Σi. CPLC inductively compute the following languages:

• M1 = ∆1,

• Wi = ProjΣ{1,...,i}∩Σ{i,...,k}
(Mi),

• Mi+1 = Wi ⊗∆i+1.

It can be proved that ProjΣk
(Mk) is the globally consistent ver-

sion of ∆k. The computation of ∆ is avoided by the projection in

the second above. CPLC also implements a one-step lookahead in an

attempt to find the optimal sequence of local diagnoses.

2.5 Junction Tree Algorithm

A nice method to improve the precision of a decentralised diagnosis

is to perform local consistencies (LC). LC does not require to com-

pute the global diagnosis. In general, however, LC does not ensure

global consistency (GC). The equivalence between LC and GC has

been proved [13] in certain circumstances: two local diagnoses share

a connection if their alphabets intersect. Consider the graph of local

diagnoses where the nodes of the graph are the local diagnoses and

the edges are the connections between the local diagnoses. If this

graph forms a tree (or a forest), then LC implies GC.

It is rarely the case that the network forms a tree. However, it is

possible [7] to transform any network in a tree where each node is

a clique, i.e., a set of nodes from the original graph. This transfor-

mation is called a junction tree. An important measure of a junction

tree is the tree width, i.e., the size of the biggest clique. The optimal

tree is the one that minimises the tree width, and the tree width of the

original graph is the tree width of its optimal junction tree.

Diagnosis of DES by junction tree [8] transforms the network in

a junction tree, computes the local diagnosis of each clique, and per-

form the local consistency, starting from the leaves of the tree and

ending with the root. The root is then globally consistent.

3 Networks

A network in the physical sense is a set of interconnected compo-

nents. The most flagrant example is the Internet where computers are
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linked together through telecommunication channels. The electricity

grid is also another example of an important network that connects

generators, transformers and loads. At the abstract level, a network

is a graph in the mathematical sense [1].

Definition 3.1 (Graph). A graph G = 〈V, E〉 consists of a set of

vertices V (also called nodes) linked together by a set of edges E .

Each edge edg ∈ E is connected to a pair of vertices (veri, verj) one

on each side.

ver1

ver2

ver3

ver4

ver5

Figure 1. Example of a network with 5 vertices and 5 edges

The components of a network are represented as the vertices of

the graph and they are connected by edges according to some de-

fined rules. A network has an associated physical topology (struc-

ture), which describes which components is connected to which other

components. In the networks we deal with, it is assumed that no self-

loop exist and that the representative graphs are undirected with no

repeated edge. An example of a graph with five vertices is shown in

Figure 1.

3.1 Network Metrics

To compare inherent characteristics of various types of networks, we

need a set of metrics that is able to capture and quantify certain prop-

erties that are displayed by the networks. We describe three such met-

rics in this section.

3.1.1 Average Path Length

To explain what is meant by average path length, we first need to

define the concept of distance between two vertices.

Definition 3.2 (Distance between two vertices). The distance dij be-

tween two vertices labelled veri and verj is given by the total number

of edges that connect them through shortest linkages.

For example, for the graph represented in figure 1, the distance d12
between vertices ver1 and ver2 is equal to 2. Similarly, d12 = 1 and

d45 = 3.

Definition 3.3 (Average Path Length). The average path length of a

network is defined to be the average value of all distances over the

network:

avepath =
2

N(N − 1)

∑

i,j(i<j)

dij (1)

where N is the size of the network, i.e. the total number of vertices

in the network.

For the network shown in figure 1, the average path length is 1.6

given the respective distances between vertices as shown in table 1 :

Value dij

1 d12, d13, d23, d24, d15
2 d14, d34, d25, d35
3 d45

Table 1. Distances in example network

The average path length of a network gives an idea of how easily

nodes can be reached in the network. Generally, a short average path

length is more desirable as it means information passing between

nodes can be done faster.

3.1.2 Clustering Coefficient

The clustering coefficient of a network gives an idea of how isolated

or connected the network is.

Definition 3.4 (Clustering Coefficient). Let veri be a vertex in a

network, where veri has ki edges connecting it to ki other vertices

known as the neighbours of veri. The maximum number of edges

among those ki vertices is given by ki(ki − 1)/2. Let Ki be the ac-

tual number of edges existing between the ki vertices. The clustering

coefficient Ci of vertex veri is given by

Ci =
2Ki

ki(ki − 1)
(2)

The clustering coefficient of the whole network is the averaged

value of the clustering coefficients of all the vertices in the network

(0 ≤ C ≤ 1). C = 0 if and only if all vertices in the network are

isolated, i.e., have neighbours that are not connected to each other,

and C = 1 if each vertex is connected to every other vertex in the

network. The clustering coefficient is a measure of how likely it is

that the neighbours of a node in the network are connected to each

other.

We once again consider the example network in Figure 1 to illus-

trate. Table 2 shows the clustering coefficient values for the vertices

shown in Figure 1.

Vertex Number of Ki Ci

neighbours

ver1 3 1 1
3

ver2 3 1 1
3

ver3 2 1 1

ver4 1 0 0

ver5 1 0 0

Table 2. Clustering coefficients in example network

Hence, the clustering coefficient C of the network, given by the

average of all clustering coefficients in Table 2 is equal to ( 1
3
+ 1

3
+

1 + 0 + 0)/5 = 1
3

.
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3.1.3 Degree and Degree Distribution

We define here the concept of the degree of a vertex in an undirected

network.

Definition 3.5 (Degree). The degree of a vertex veri in an undirected

network is the number ki of the edges connecting it to its ki neigh-

bours.

In a directed network, we distinguish between incoming edges and

outgoing edges of a node. But this issue is irrelevant for undirected

networks.

Intuitively, a vertex of higher degree will have more significant

influence on the network because it is involved in more connections.

The average degree 〈k〉 of a network is the average value of vertex

degrees over the entire network.

In a network, every vertex has a degree value, some large and some

small. The distribution of vertices of certain degree could be of in-

terest to better understand the network. This distribution is called the

degree distribution of the network.

Definition 3.6 (Degree Distribution). The degree distribution of a

network is defined by a probability function Prob (k), which is the

probability that a randomly picked vertex will have degree k, assum-

ing each vertex has equal probability to be picked (uniform distribu-

tion).

Once more, we use the example given in Figure 1 to illustrate. The

degrees of each vertex is equivalent to its number of neighbours and

hence is given by Column 2 in Table 2. The average degree 〈k〉 of

the network is equal to ( 3+3+2+1+1
5

) = 5.

k Prob (k)
1 2/5
2 1/5
3 2/5

Table 3. Degree distribution in example network

3.2 Network Configurations

Next, we describe a few different types of physical topology for net-

works. These topologies are used as starting structures for systems

on which we test the performance of the two distributed diagnosis

algorithms. Understanding the relationship between the topology of

networks and the performance of our algorithm provides insight into

how best to design networks or how best to tackle operations on net-

works given their structures. We explore two types of regular net-

works (branching and ring networks) and two types of randomised

networks (random networks and small world networks). Regular net-

works are constructed in a predictable way whereas randomised net-

works have an element of randomness in their structure.

For comparison purposes, we consider a fully connected network.

A fully connected network is a type of regular network where there

exists an edge between any pair of vertices in the network. It has an

average path length given by avepathfull = 1 and a clustering coef-

ficient given by Cfull = 1, both values being self-evident from their

respective definitions 3.4 and 3.3. The total number of edges in a fully

connected network of size N (i.e. with N vertices) is
N(N−1)

2
[3].

We note that among all networks with the same number of vertices,

the fully connected network has the shortest average path length of

1, and the biggest clustering coefficient of 1.

3.2.1 Ring Network

In a ring network of size N , each node is connected to 2K nearest-

neighbours, where K > 0 is an integer. A ring network with K = 2
is shown in Figure 2.

Figure 2. Example of a ring network with ten vertices and K = 2

The clustering coefficient for a ring network is given by

Cring =
3(K − 1)

2(2K − 1
(3)

For large K (K → ∞), Cring → 3
4

.

The average path length of a ring network, given M number of

edges in the network, is given by

Lring =
M(M + 1) − 2(K − 1)(M −K + 1)

2M
(4)

For large M (M → ∞), Lring → ∞. Derivations for Cring and

Lring can be found in [3].

3.2.2 Branching Network

Figure 3. Example of a branching network with n = 3 and r = 2

A branching network has a tree structure where the vertices of the

tree are the actual nodes of the network. It can further be described

as an r-ary tree whereby each vertex which is not a leaf has exactly r
children. A 2-ary tree is more commonly known as a binary tree and

a 3-ary tree as a ternary tree. We consider the root of the tree to be of

order 0, and we write ρ = 0. The tree order is the partial ordering on
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the vertices of a tree with u ≤ v if and only if the unique path from

the root to v passes through u. The leaf vertices are considered to be

at layer η (ρ = q). An example of a branching networks is shown in

Figure 3.

The clustering coefficient for a branching network is given by

Cbranch = 0, self-evident from definition 3.4.

Let ρ represent a layer in a branching network. The number of

edges found in layer ρ is given by rρ+1. The average path length for

a branching network is given by

Lbranch =
1

(r − 1)(rq+1 − 1)

q−1
∑

ρ=0

rρ+1 (rq−ρ − 1
) (

rq+1 − rq−ρ
)

(5)

(Proof omitted due to space restrictions.) From equation 5, it is in-

teresting to note that for q = 1, i.e. for a star network, as r →
∞, Lbranch → r.

3.2.3 Random Network

p = 0 p = 0.1

p = 0.15 p = 0.25

Figure 4. Example of random networks with 10 vertices as p is increased

A random network is the opposite extreme of a regular network.

There is no predetermined structure to the graph and vertices are con-

nected with an element of randomness. The random network was in-

troduced by Erdös and Rényi in their seminal papers [5, 6]. A random

network consists of N vertices joined by edges which are placed be-

tween pairs of vertices chosen uniformly at random. Every possible

edge between any two vertices is present with probability p from

a uniform distribution, and absent with probability 1 − p. To con-

struct a random network, we start with N isolated vertices, where

N ≫ 1. Two vertices are randomly picked and then connected by

an edge with probability p from a uniform distribution. The vertices

are then put back to the pool and the process is repeated for a suit-

ably large number of steps. The procedure will yield approximately

pN(N − 1)/2 number of edges. Figure 4 illustrates some random

graphs generated from 10 isolated vertices with different values of p.

A significant result in [6] is that important properties of random

graphs emerge at certain values of p. For example, when p is larger

than a certain threshold pc ∼ lnN
N

, almost all random graphs gen-

erated in the above described way will be connected, whereas for

p < pc, almost all graphs generated were not connected networks

(i.e. contain isolated clusters).

The average degree of a random network of size N is given by

avedegRand = p(N − 1) (6)

The average path length satisfies

Lrand ∼
lnN

ln avedegRand
(7)

The clustering coefficient is given by

Crand = p ≈
avedegRand

N
(8)

The degree distribution in a random network follows a Poisson

distribution:

Prob (k) =
µk

k!
exp−µ

(9)

where µ is the expectation value, µ = pN ≈ avedegRand. The

proofs for equations (9) to (8) can be found in [3].

We note that when N is large, such random networks may have

a relatively small average path length because the growth of lnN
is much slower than that of N in equation (7). Also from equation

(8), a large scale random network (large N ) does not have prominent

clustering features.

3.2.4 Small-World Network

As mentioned previously, a ring network has a high clustering coef-

ficient and a large average path length. On the other hand, a random

network possesses a small clustering coefficient and displays short

average path length. There is a category of networks that is charac-

terised by both a high clustering coefficient and a short average path

length. This category is known as the small-world networks. They

were introduced by Watts and Strogatz in [14]. Since then, there have

been modified versions of th algorithm presented in [14] but we will

stick to the original version in this thesis when referring to small-

world networks.

p = 0 −→
Regular

−→ 0 ≤ p ≤ 1 −→
Small-world

−→ p = 1

Random

Figure 5. Transition from regular to small-world to random networks as
the value of p increases

A small-world network can be generated as follows [14]:

1. We start with a ring network with N vertices, each connected to

2K nearest neighbours.

2. We choose a vertex and the edge that connects it to a nearest neigh-

bour in a clockwise (or anti-clockwise) sense.

3. This edge is reconnected with probability psw to a vertex cho-

sen uniformly at random over the entire ring, with duplicate edges

forbidden; otherwise we leave the edge alone (with probability

1− psw.

4. This process is repeated by moving clockwise (or anti-clockwise)

around the ring, considering each vertex in turn until one lap is

completed.

5. We then consider edges that connect vertices to their second near-

est neighbours clockwise (or anti-clockwise). These edges are also

rewired as before with probability psw.
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Q

Q1 Q2 Q3

e1

f1

e2 f2

e3

f3

Figure 6. Automaton for a component with three neighbours

6. We continue to circulate around the ring and proceed outward to

more distant neighbours after each lap until every edge in the net-

work has been considered once.

Since there are NK edges in the network, the rewiring process stops

after K laps. Three examples generated using this process, with dif-

ferent values of psw, are shown in figure 5. It can be observed that

for the case where psw = 0, the original ring stays unchanged. As

the value of psw increases, the graph becomes increasingly disor-

dered until for psw = 1 where all edges are rewired randomly and a

random network (as described in section 3.2.3 is obtained. One main

result of [14] is that for 0 < psw < 1, the graph displays small-world

properties, i.e. high clustering yet small average path length.

For large enough size N , the clustering coefficient of the small-

world network is given by

Csw(p) =
3(K − 1)

2(2K − 1)
(1− p)3 (10)

The average path length can be expressed as

Lsw(p) =
2N

K
f(2Np/K) (11)

where

f(x) =

{

c, x ≪ 1
lnx
x

x ≫ 1
(typically c = 1/4) (12)

The proof for equations 10 and 11 can be found in [10].

4 Experimental Setup

We implemented the distributed diagnosis algorithm JT [8] in Java

and compared it to CPLC [13]. Experiments were run on an Intel

Core 2D, 2.4 GHz, 2GB Linux machine.

Similarly to Su and Wonham’s experiments [13], we started with

generic local diagnoses. Essentially, each component may communi-

cate with any of its neighbours; when the communication takes place,

the two components must first exchange the message ei followed by

the message fi. Only after the communication has ended, can the two

components communicate with other components. This is illustrated

in Figure 6 for a component with three neighbours. For k neighbours,

a local diagnosis contains k+1 states and 2× k transitions. This au-

tomaton was chosen because it exhibits some synchronisation and

some concurrency.

5 Results

In this section, we present the results of the performance of our dis-

tributed diagnosis algorithm on a range of different graphs presented

in section 3 as their size and other properties are varied.

A

B

C D

E

AB AC AD AE

Figure 7. Example of a star network (left) and its junction tree (right)

5.1 Results on Branching Networks

Table 4 shows results obtained on branch networks with varying pa-

rameter values for q and r. We note that a star network is a special

case of a branching network where q = 1. The size of the largest

structure (synchronisation automaton) and the time for producing a

diagnostic result were recorded for each network for two cases: one

using CPLC, and two using JT.

q r n CPLC JT
largest struc time (s) largest struc time (s)

1 5 6 [7, 12] 0.115 [37, 122] 0.103
1 10 11 [8, 24] 0.463 [122, 442] 0.220
1 15 16 [17, 32] 1.174 [257, 962] 0.340
1 20 21 [16, 64] 3.132 [442, 1682] 0.417
1 25 26 [16, 64] 3.053 [667, 2602] 0.898
1 30 31 [16, 64] 5.210 [962, 3722] 1.566
1 40 41 [32, 160] 17.91 [1682, 6562] 4.150
1 50 51 [32, 160] 44.36 [2602, 10202] 10.11
2 2 7 [4, 6] 0.127 [10, 26] 0.157
3 3 40 [96, 512] 7.339 [17, 50] 0.362
4 2 31 [54, 270] 5.097 [10, 26] 0.091
4 3 121 [576, 4416] 1103 [17, 50] 1.324
4 5 781 [640, 5504] na [37, 122] 216.9
5 3 364 [256, 2048] na [17, 50] 18.83
6 2 127 [1458, 13122] 5820 [10,26] 1.415
7 2 255 [1296, 12096] 40488 [10,26] 6.148
8 2 511 [4374, 45198] na [10, 26]] 44.14

Table 4. Results on branching networks

A few interesting points emerge from the results on branching net-

works. Overall, JT performed better than CPLC, especially when the

network contains a large number of components. For networks con-

taining around 10 components or less, the difference in the diagno-

sis time between the two methods is negligible although the largest

structure in the JT method has a greater size.

For star networks (q = 1), the size of the largest structure is signif-

icantly larger in the JT method than in CPLC although the diagnosis

time is better in the former. This can be explained by the fact that in

CPLC, the ‘junction line’ is built on the graph of events rather than

the graph of components and a heuristic ordering procedure is used to

minimise the size of the synchronous automaton at every step. The

star shape of the network also means that the root node appears in

every cluster in the junction tree (figure 7), forcing multiple redun-

dant synchronisation with the root node during diagnosis. Because

the root node is the highest connected node, this creates large syn-

chronising structures. The number of states in the largest synchronis-

ing structure in a star network is actually given by n2 + 1.

Interestingly, for cases where q > 1, the size of the largest struc-

ture is more reasonable and depends on the value of the branching

factor r only (and not on q). This makes sense since r controls the

tree-width of the junction tree. On the other hand, q controls the

number and length of branches in the junction tree. As q increases,

for a fixed value of r, diagnosis time increases exponentially. Fig-

ure 8 which shows the diagnosis time against different values of q
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Figure 8. Diagnosis time(s) versus number of components for a branch
network configuration (r = 2)

for r = 2. For both algorithms, the diagnosis time increases expo-

nentially with the value of q, but diagnostic performance of the JT

algorithm is better by orders of magnitude.

In the case of CPLC, the size of the largest structure quickly

becomes unmanageable as q and r are increased. There are cases

where memory is exhausted before the computation is finished and

the largest structures reached are shown in red in table 4. In contrast,

for JT, the largest structure remains manageable and retains a fixed

value that dependents only on r and not on q.

5.2 Results on Ring Networks

Table 9 shows results obtained on ring networks with varying param-

eter values for n and k.

n k CPLC JT
largest struc time (s) largest struc time (s)

10 1 [4, 8] 0.264 [15, 50] 0.071
10 2 [36, 168] 0.893 [415, 2586] 0.916
10 3 [576, 4416] 11.13 [5714, 46954] 46.63
10 4 [6912, 69120] 497.7 [17148, 148896] na
20 1 [4, 8] 0.459 [27, 108] 0.098
20 2 [4, 8] 3.447 [528, 3470] 1.664
20 3 [576, 4416] 598.8 na na
30 1 [4, 8] 0.815 [27, 108] 0.324
30 2 [36, 168] 7.873 [528, 3470] 2.770
50 1 [4, 8] 0.815 [27, 108] 0.451
50 2 [36, 168] 20.00 [528, 3470] 6.360
100 1 [4, 8] 4.29 [27, 108] 0.749
100 2 [36, 168] 92.48 [528, 3470] 15.76
150 1 [4, 8] 5.452 [27, 108] 1.831
150 2 [36, 168] 203.4 [528, 3470] 24.21
200 1 [4, 8] 8.707 [27, 108] 4.035

2047 1 [4, 8] 2429 [27, 108] 4003

Table 5. Results on ring networks

The results show that for small values of k (k < 3), JT shows

better diagnostic time in general except when n is really large. How-

ever, when k > 3, CPLC produces faster diagnostic time. The largest

structure obtained with JT has more states and events than the equiv-

alent one obtained with the CPLC method in every ring network we

tested. In fact, in contrast to what is observed for branching networks,

the size of the largest structure in the CPLC method stays relatively

small. Moreover, where the computation exhausts memory for the JT

algorithm, CPLC is still able to produce a result without running out

of memory despite that the computation time is large. We also note

that the size of the largest structure shows a dependence on the value

of k, and not of n, both for the JT method and CPLC’s method.

Figure 9. Diagnosis time(s) versus number of components for a ring
network configuration (k = 2)

Figure 9 shows the diagnosis time for different values of n when

k = 2. In both cases, the diagnosis time increases exponentially with

the value of n although at a slower rate than for the branching net-

works in figure 8.

The results suggest that a combination of both methods, e.g. build-

ing a junction tree on the events of the system and using a heuristic

ordering strategy for synchronisation, might further improve results

on large networks that are highly connected.

5.3 Results on Random and Small-World Networks

Table 9 shows results obtained on small-world networks with varying

parameter values for nring , k and p (the seed value used to generate

p is kept constant with value 5 for all networks.

The number of starting components connected into a ring network

is given by nring . After applying the small-world transformation

where connections are rewired with probability p, the actual number

of components that are connected might be different. As it turned out

for the cases presented in table 6, all the resulting small-world net-

works except one (the one with nring = 200) kept the same number

of components as the starting ring networks they were built from.

Random networks are special cases of small-world networks where

p = 1.

nring k p CPLC JT
largest struc time (s) largest struc time (s)

10 1 0.1 [4, 8] 0.204 [24, 92] 0.043
10 1 0.5 [16, 64] 0.185 [12, 32] 0.029
10 1 1 [6, 14] 0.145 [7, 16] 0.047
20 1 0.1 [8, 24] 0.264 [26, 96] 0.052
20 1 1 [8, 24] 0.300 [217, 56] 0.097
50 1 0.1 [16, 64] 2.256 [30, 118] 0.297
50 1 0.2 [8, 24] 1.869 [29, 112] 0.313
50 1 0.3 [16, 64] 2.605 [33, 134] 0.204
50 1 0.4 [16, 64] 3.251 [25, 90] 0.326
50 1 0.5 [8, 24] 3.251 [25, 90] 0.326
50 1 0.6 [48, 256] 5.182 [43, 174] 0.223
50 1 0.7 [24, 104] 2.767 [32, 128] 0.264
50 1 0.8 [72, 408] 3.490 [21, 76] 0.205
50 1 0.9 [54, 270] 7.187 [17, 56] 0.239
50 1 1 [48, 256] 5.009 [13, 34] 0.204

100 1 0.1 [16, 64] 5.961 [36, 150] 1.061
100 1 0.2 [16, 64] 5.074 [24, 92] 0.554
100 1 1 [1024, 10240] 3295 [13, 36] 0.526

200# 1 0.1 [8, 24] 2.323 [21, 76] 0.254
# actual number of components after reconnection is 50

Table 6. Results on random and small-world networks

Both algorithms performed very well on random and small-world

networks with k = 1, although the JT method had faster diagnosis

time. We note that CPLC took a very long time to run for the case
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Figure 10. Diagnosis time(s) versus number of components for a
small-world network configuration (p = 0.1)

Figure 11. Diagnosis time(s) versus number of components for a random
network configuration (small-world algorithm with p = 1)

where (nring = 100, k = 1, p = 1) whereas the JT method com-

pleted in under a second. This is due to the fact that the structure of

the network is very close to a tree structure and the diagnosis result

obtained on it shows similarity with a case in a branching network

(q = 6, r = 2) with roughly the same number of components (see

table 4).

Figure 10 shows the diagnosis time for small-world networks for

the case where k = 1 and p = 0.1 using both the JT method and

CPLC. The diagnostic time for both methods was very good, even for

networks with a large number of components. The graphs dip when

nring = 200 because the number of components that are actually

connected in the network is 50. The algorithm employed to generate

small-world networks is stochastic. It so happened that every other

network generated retained a number of connected components equal

to nring .

Both methods do not cope well when k > 1; memory is ex-

hausted before the algorithm terminates. Given that small-world net-

works can have characteristics of both branching networks (near-zero

clustering coefficient) and of ring networks (high clustering coeffi-

cient), when they display a fairly equal balance of both character-

istics, either diagnosis method struggles. This suggests an approach

that applies CPLC to parts of the network that have loops, and the

JT method to parts that are tree-like. Investigating how to implement

such an approach is material for future work.

6 Conclusion

We studied networks of different shapes and sizes and assessed the

performance of the JT and CPLC diagnosis algorithms on them. It

was confirmed that the shape of the network, defined by the relevant

network parameters, has a significant impact on performance. For ex-

ample, JT performs well on branching networks whereas CPLC per-

forms well on ring networks. Randomised networks can exhibit char-

acteristics of both branching and ring networks. Electricity networks

(our motivating application) display small-world characteristics [14]

but with a very near-tree structure by virtue of their design. Hence use

of the JT algorithm for diagnosis on such networks is justified. For

cases where portions of the network display high clustering (near-

ring structure), we could apply CPLC. The best way to implement

this dual-approach is an interesting area of future work. Another op-

tion to deal with near-ring portions of the network is to selectively

ignore some of the connections on the network when performing di-

agnosis without compromising accuracy of the results [11].
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Fault Diagnosis in Discrete-Event Systems:
How to Analyse Algorithm Performance?

Yannick Pencolé 1

Abstract. This paper addresses the problem of analyzing the per-
formance of algorithms that solve the fault diagnosis problem in
discrete-event systems in an experimental way. To achieve this pur-
pose, we define a set of metrics for algorithm comparison on one
hand. On the second hand, we propose an experimental platform
based on a tool called DIADES (Diagnosis of Discrete-Event Sys-
tems) to run experiments and measure different algorithms.

1 INTRODUCTION

Fault Diagnosis in Discrete-Event Systems is the problem of deter-
mining the set of fault events that have occurred in a dynamic event-
driven system usually based on a sequence of observed events. In the
literature, there are many works and algorithms to solve this prob-
lem either from the AI community or the Automatic Control commu-
nity. Most of these algorithms have been developed in order to solve
special cases of system by introducing some assumptions or special
properties (distributed systems [2, 12], coordinated systems [4], cen-
tralized diagnosis [15], decentralized diagnosis [12], distributed di-
agnosis [2], flexible diagnosis [11],...). The main drawback of these
methods is not really in the methods themselves but is the lack of a
generic method to experimentally compare these approaches to solve
the same problems. The kind of question raised by this paper is: given
one diagnosis problem, given the set of available algorithms that are
able to solve this problem, which one is experimentally the best?

This is not the first time that this question has been asked: the DXC
competition is definitely an attempt to answer the question [7]. How-
ever, in this paper, we adopt a complementary point of view. Instead
of analyzing one real system as DXC proposes, we want to analyze
algorithms on a specific class of systems (that is the class of discrete-
event systems) independently from a model of any underlying and
specific system. In the Model-Based diagnosis principle, there is a
clear distinction between the Model and the algorithm that runs the
Model [10]. Algorithm performance is affected by both the quality of
the model and the algorithm itself, however the way to measure this
performance is different. The quality of the model can be measured
by correctness and diagnosability analyses whereas the intrinsic per-
formance of an algorithm can be measured only by comparing it to
the optimal algorithm on the same model whatever the quality of this
model.

In order to find an answer to the previous question, it is first re-
quired to define what ’best’ means and a way to define why an algo-
rithm would perform ’better’ than another one: this is the first con-
tribution of this paper. We introduce a set of metrics for the specific

1 CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
Univ de Toulouse, France, F-31400 Toulouse, France, email: yan-
nick.pencole@laas.fr

problem of Fault Diagnosis in Discrete-Event Systems that can be
exploited to compare the algorithmic performances. The second con-
tribution of this paper is to propose a framework to define common
problems (benchmarks) that can be freely utilized by the community.
As opposed to many contribution on Model-Based diagnosis, we pro-
pose here to rely on randomly generated problems to measure the
algorithm performance: as explained above, we are interested here
in comparing the intrinsic performance of algorithms on the same
model, whatever the quality of that model.

This paper is organized as follows. Section 2 first recalls the for-
mal definition of the problem in the classical manner. Section 3 dis-
cusses the notion of performance of diagnosis algorithms that tend
to solve the problem. Section 4 introduces some metrics whose ob-
jective is to measure the performance of algorithms. Section 5 de-
scribes some simple experiments, it firstly describes how the studied
problem has been randomly generated by DIADES and secondly il-
lustrates the proposed metrics by comparing the performance of two
basic algorithms (’Forward breadth-first search’ and ’Forward depth-
first search’).

2 FAULT DIAGNOSIS PROBLEM
This section formally recalls the fault diagnosis problem on dynamic
discrete-event systems as defined for instance in [15].

2.1 Discrete-event system
A Discrete-Event System (DES) is a system whose behaviour is fully
characterised at any time by a sequence of events that has occurred
from an initial state. In this paper, the system is supposed to be a set
of N components Sys = {Comp1, . . . ,CompN} that are commu-
nicating with each other by synchronized events. There are many for-
malisms to represent such a system ([15], communicating automata
[9], process algebra [3], Petri nets [2]. . . ). Without loss of generality,
the formalism chosen in this paper is synchronized automata.

Definition 1 (Model of a component) The model of a component
Compi is an automaton A(Compi) = (Qi,Σi, Ti, q0i) where

• Qi is a finite set of states;
• Σi is the finite set of events;
• Ti ⊆ Qi × Σi × Ti is the finite set of transitions;
• q0i is the initial state.

A trace τ = e1 . . . ek of a component Compi is a possible se-
quence of events such that there exists a finite transition path from
state q0i in the automaton A(Compi): q0i

e1−→ q1 . . . qj−1

ej−→
qj . . . qk−1

ek−→ qk. Among the set of events Σi, two subsets are
distinguished:
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1. Σobs
i is the set of observable events: an observable event, once it

occurs, is supposed to be recorded by the diagnosis process;
2. Σint

i is the set of interacting events: if it occurs, an interacting
event occurs at least in two components simultaneously and thus
represents a communication between these two components.

No assumption is made about whether an interacting event is observ-
able or not, however, for the sake of simplicity here as it is not the
scope of the paper, we suppose that any interacting event e between
Compi and Compj (e ∈ Σint

i ∩Σint
j ) that is observable on Compi

(e ∈ Σobs
i ) is also observable on Compj (e ∈ Σobs

j ). Any interact-
ing event e is associated to a set of components that simultaneously
interact each other so any interacting event implicilty represents a
structural connection between these components. A connection be-
tween a set of components {Compj1

, . . . ,Compjl
} exists iff there

exists an interacting event e that belongs to every component of this
set and only to these ones. The set of connections between the com-
ponents is called the structural model of the system, also called the
topology . The model of the system results from the synchronised
product of the component model.

Definition 2 (Model of a system) The model of the system is the au-
tomaton M = A(Sys) = (Q,Σ, T, q0) where

• Q ⊆ Q1 ×QN is the finite set of global states;
• Σ =

⋃N
i=1 Σi is the finite set of events;

• T ⊆ Q× Σ×Q is the finite set of global transitions;
• q0 = (q01, . . . , q0N ) is the global initial state.

The (q1, . . . , qN )
e−→ (q′1, . . . , q

′
N ) belongs to T iff

1. e is not an interacting event and there exists one and only one
i ∈ {1, . . . , N} such that qi

e−→ q′i ∈ Ti and for any j ∈
{1, . . . , N} \ {i} qj = q′j ;

2. e is an interacting event and belongs to the components
{Compi1

, . . . ,Compik
} and for any j ∈ {i1, . . . , ik} qj

e−→
q′j ∈ Tj and for any j ∈ {1, . . . , N} \ {i1, . . . , ik},qj = q′j .

Finally, in the following Q and T will respectively denote the set
of global states and transitions that are reachable from the initial
state q0. Straightforwardly, Σobs denotes the set of observable events⋃N

i=1 Σobs
i and a global trace τ = e1 . . . ek of the system Sys is a

possible sequence of events such that there exists a finite transition
path from state q0 in M : q0

e1−→ q1 . . . qj−1

ej−→ qj . . . qk−1
ek−→

qk.

2.2 Diagnosis problem and solution
Now we are ready to define the classical Fault diagnosis problem on
DES.

Definition 3 (Fault) A fault is a non-observable event f ∈ Σ.

A fault is represented as a special type of non-observable event that
can occur on the underlying system. Once the event has occurred, we
say that the fault is active in the system, otherwise it is inactive.

Definition 4 (Diagnosis problem) A diagnosis problem is a triple
(SD,OBS,FAULTS) where SD is the global model of a system
Sys, OBS is the set of timed observations {(o1, t1), . . . , (om, tm)}
with ti ∈ R+, ti < ti+1, oi ∈ Σobs, and FAULTS is the set of fault
events defined over SD.

Informally speaking, (SD,OBS,FAULTS) represents the prob-
lem of finding the set of active faults from FAULTS that has oc-
curred relying on the model SD and the sequence of observations
OBS.

Definition 5 (Diagnosis Candidate) A diagnosis candidate is a
couple (q, F ) where q is a global state of M (q ∈ Q) and F is a
set of faults.

A diagnosis candidate represents the fact that the underlying system
is in state q and the set F of faults has occurred before reaching state
q.

Definition 6 (Solution Diagnosis) The solution ∆ of the problem
(SD,OBS,FAULTS) is the set of diagnosis candidates (q, F ) such
that there exists for each of them at least one global trace τ of SD
such that:

1. the observable projection of τ is exactly the sequence o1 . . . om
and the last event of τ is om;

2. the set of fault events that has occurred in τ is exactly F ;
3. the final state of τ is q.

Informally, candidate (q, F ) is part of the solution if it is possible
to find out in SD a behaviour of the system satisfying OBS which
leads to the state q after the last observation of OBS and in which
the faults F have occurred.

3 Diagnosis Algorithms

There exist many algorithms to solve the fault diagnosis problem pre-
sented above [15], [9], [18], [12], [16], [5], [6]. The purpose of some
of them is to perform off-line diagnosis (also called post-mortem di-
agnosis): they consider OBS as a fixed set of observations when the
algorithm starts and their objective is to find the solution of the prob-
lem. On the other side, some algorithms are so-called on-line in the
sense that when the algorithm starts, the underlying system is oper-
ating, at a given time OBS is partly known and the purpose of the
algorithm is not only to provide in the end the solution to the prob-
lem (SD,OBS,FAULTS) but also to provide through the operating
time of the system some diagnosis updates. Depending on the type of
algorithms used, some performance indicators defined below may be
pertinent or not to measure the performance of an algorithm. Perfor-
mance of on-line algorithms especially requires a set of performance
indicators related to time and diagnosis update capabilities that are
not pertinent in the case of off-line diagnosis algorithms. Before in-
troducing the performance indicators, a set of definitions related to
the result provided by any algorithms is required.

Definition 7 (Current Diagnosis) The current diagnosis of an op-
erating algorithm ALG at time t is the set of candidates that ALG
provides at time t if it is available, or the most recent set of candi-
dates provided by ALG before t.

Usually, off-line algorithms provide two set of candidates. The
first set is provided when the algorithm starts and usually consist of
(q0,∅) whereas the second set is provided when the algorithm ends.
However, some off-line algorithms may be incremental and thus pro-
vide more updates. On-line algorithms, as opposed to off-line algo-
rithms, must provide updated sets of candidates so the current diag-
nosis is changing over the time.
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Definition 8 (Final Diagnosis) The final diagnosis of an algorithm
ALG is the current diagnosis when the algorithm ends.

The final diagnosis of an algorithm is the final result and thus
should provide the solution of the problem.

3.1 Off-line algorithm performance
Since the underlying system Sys is real and has really emitted the set
of observations OBS, any diagnosis problem is associated to the real
trace τreal of the system and, as a consequence the real diagnosis of
the system.

Definition 9 (Real Diagnosis) The real diagnosis is the candidate
(qreal, Freal) associated to the real trace τreal.

Determining (qreal, Freal) or at least Freal is the main objec-
tive of any diagnosis algorithms but to reach this objective, there are
many obstacles. First, Definition 4 defines a model-based diagnosis
problem that relies on the existence of a sound model SD so that
τreal is assumed to be represented in the model SD. However, in
practice as described in [1], this may be not the case so the algorithm
may not be able to determine τreal as a possible trace which means
that (qreal, Freal) may not be representable in SD at all.

Definition 10 (Sound problem) The problem
(SD,OBS,FAULTS) is sound if τreal is represented in the
problem.

In other words, if the problem is sound, the solution diagnosis con-
tains the real diagnosis.

Definition 11 (Sound Algorithm) The algorithm ALG is sound
with respect to the problem (SD,OBS,FAULTS) if the solution di-
agnosis is contained in the final diagnosis.

A sound algorithm ALG always provides a superset of the solu-
tion diagnosis which guarantees that if the problem is sound, ALG
provides the real diagnosis.

Definition 12 (Accurate Algorithm) The algorithm ALG is accu-
rate with respect to the problem (SD,OBS,FAULTS) if the final
diagnosis is exactly the solution diagnosis.

An accurate algorithm is a particular sound algorithm that returns
the smallest superset of the solution diagnosis. An accurate algorithm
takes benefit of all the observations to refine the candidates and pro-
vide the smallest but still correct refinement.

Second, even if the real trace is represented in SD, the lack of
observable events may lead to many ambiguities, which means that
the diagnosability level of the algorithm is poor.

Definition 13 (Diagnosable problem) The problem
(SD,OBS,FAULTS) is diagnosable if the solution diagnosis
contains only one candidate.

Definition 14 (Fault-Diagnosable problem) The problem
(SD,OBS,FAULTS) is fault-diagnosable if the solution di-
agnosis contains only candidates as {(q1, F ), . . . , (qk, F )}.

In other words, if the problem is fault-diagnosable then the occur-
rence of the faults F are certain, only the state estimate is ambigu-
ous.

Property 1 If the problem is sound and diagnosable, the final diag-
nosis of any accurate algorithm on this problem is the real diagnosis.

This property provides the skeleton for the design of performance
indicators. An algorithm that optimally performs on a given problem
(SD,OBS,FAULTS) requires soundness and diagnosability analy-
ses on one hand as proposed for instance in [15], [14], [13], [1] and
accuracy analyses on the other hand, which is the main concern of
this paper.

3.2 On-line algorithm performance
An on-line algorithm must perform as well as an off-line when it
ends, which means that the above definitions and properties also
hold for on-line algorithms. However, the second challenge of on-
line algorithms is to propose diagnosis updates through time relying
on a flow of observations that leads to the full sequence of OBS. In
other words, on-line algorithms should solve a finite-set of diagno-
sis problems derived from the initial problem (SD,FAULTS,OBS).
At time ti, a new observation oi is received and the on-line algorithm
should then provide a diagnosis update at time ti that is the solution
of the problem (SD,FAULTS,OBSi) where OBSi = {(oj , tj) ∈
OBS ∧ tj ≤ ti}.

Definition 15 (Perfect On-Line Algorithm) An on-line algorithm
ALG is perfect iff ∀i ∈ {1, . . . , |OBS|}, the current diagnosis of
ALG at time ti is the solution of (SD,FAULTS,OBSi).

Such an algorithm is called perfect as there is no other algorithms
that can perform better: at any time, it provides the solution for the
available set of observations. Such an algorithm exists and is defined
in [Sampath95] and is called the diagnoser. The diagnoser for a given
system description SD and a given set of faults FAULTS is a de-
terministic finite-state machine obtained by a complete knowledge
precompilation: each state of the diagnoser provides the current di-
agnosis and each transition is labeled with an observable event of the
system. To solve the diagnosis problem with the diagnoser, the un-
derlying algorithm simply builds the unique transition path from the
initial state of the diagnoser (the initial diagnosis) associated to the
given sequence of observations OBS, the state ending this path pro-
vides the final diagnosis. For the observation (oi, ti) is the sequence
OBS, it is sufficient to trigger one transition to get a diagnosis up-
date, which is in constant time and almost instantaneous. Moreover,
by the construction of the diagnoser during the precompilation stage,
any diagnoser state reached by a transition path from the initial state
associated to the sequence of observations OBSi is the solution of
the problem (SD,FAULTS,OBSi).

Now, why not keeping using this diagnoser to solve any online
diagnosis problem if it is perfect? The reason is that the precompila-
tion may not be practically feasible: recalling that N is the number
of components in the system, the size of the machine to build is in
the worst case in o(22N ) and in o(2|FAULTS|).

4 PERFORMANCE METRICS
This section lists a set of performance metrics. These indicators are
generic in the sense that most of them compare any type of algorithm
results two by two. In particular, it does not necessarily rely on the
real diagnosis that is usually unknown unless further analyses on the
system are perform or the faulty scenario results from a simulation
in which faults have been injected [7]. If the real diagnosis ∆real is
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known then it can be utilized as any other diagnosis to measure the
performance of the available algorithms. As detailed in this section,
the proposed metrics, once they are applied on the real diagnosis
∆real, are equivalent to some metrics also proposed in [7].

4.1 Time-Independent generic metrics
Time-Independent metrics take into account two diagnoses (a set
of diagnosis candidates) ∆1 and ∆2 resulting from the diagnosis
problem (SD,FAULTS,OBS) and provide some ways to com-
pare them. Let ∆1 = {(qi1 , Fi1), . . . , (qil , Fil)} and ∆2 =
{(qj1 , Fj1), . . . , (qjk , Fjk )} be two diagnoses on a given diagnosis
problem (SD,FAULTS,OBS).

Definition 16 (Belief State Distance) The Belief State Distance
BSD(∆1,∆2) is:

|{q,∃(q, F ) ∈ ∆1 \∆2}|+ |{q,∃(q, F ) ∈ ∆2 \∆1}|.

The metrics BSD relies on the so-called Hamming distance: it
counts the number of differences between the two belief states
{qi1 , . . . , qil} and {qj1 , . . . , qjk} so it behaves as a distance that is
null iff {qi1 , . . . , qil} = {qj1 , . . . , qjk}. The same type of metrics
can be define to compare the fault candidates only.

Definition 17 (Fault Candidate Distance) The Fault Candidate
Distance FCD(∆1,∆2) is

|{F,∃(q, F ) ∈ ∆1 \∆2}|+ |{F,∃(q, F ) ∈ ∆2 \∆1}|.

When performing off-line diagnosis, we may not be interested in
estimating the current belief state as it is not necessary to provide
further diagnosis updates, in this case then, BSD is not the most im-
portant metrics to look at, but it is FCD as it is the one that only takes
into account the difference between fault candidates.

These previous two metrics compare the diagnoses as a difference
of information and has the advantage to be a mathematical distance
in order to measure how far from each other the diagnoses are. How-
ever, this distance does not compare carefully the common candi-
dates. Hence the introduction of the notion of accuracy and precision.

Definition 18 (Accuracy)

Acc(∆1,∆2) =
|∆1 ∩∆2|
|∆1 ∪∆2|

Acc(∆1,∆2) is a ratio that states the number of common candi-
dates in ∆1 and ∆2. It tends to 1 when ∆1 = ∆2, it tends to 0 if
no common candidate exists. This metrics can especially be utilized
when the diagnosis ∆real is known. Indeed, for any diagnosis ∆1,
Acc(∆1,∆real) is 0 if ∆1 does not contain the real candidate. It
can also be utilized when the theoretical solution (Definition 6) of
(SD,FAULTS,OBS) is known: any accurate algorithm providing
the diagnosis ∆′ is necessarily such that Acc(∆,∆′) = 1. Last but
not least, by analyzing Acc(∆,∆real), if it is zero, it also means that
the model is not sound and needs to be redesigned [1].

Definition 19 (Precision)

Prc(∆1,∆2) = min

(
|∆1|
|∆2|

,
|∆2|
|∆1|

)
.

The precision checks the ratio between the number of candidates.
If Prc(∆1,∆2) = 1, it means that ∆1 and ∆2 have the same preci-
sion. If the precision is lower than 1, the closer it is to 0, the higher
the difference of ambiguity is between ∆1 and ∆2. By comparing
a diagnosis ∆1 to the solution ∆ of (SD,FAULTS,OBS), we can
measure the precision level of the algorithm that provided ∆1. Two
cases hold:

1. |∆1| > |∆| means that the algorithm is not as precise as the ac-
curate algorithm. In this case, it means that the algorithm does not
take benefit of the full observability represented in SD. It may be
due to the fact the algorithm is computing an approximation of the
solution.

2. |∆1| < |∆| means that the algorithm only returns partial solu-
tions in the sense that even if the problem is sound, the solution
provided by the algorithm may be just wrong.

Precision and accuracy are complementary metrics, as precision
does not measure anything about common diagnosis. A less accurate
diagnosis may be more precise than a more accurate diagnosis. Ul-
timately, for a given sound problem (SD,FAULTS,OBS) and its
solution ∆, the objective is to design an algorithm that provides ∆′

such that BSD(∆′,∆) → 0, FCD(∆′,∆) → 0, Acc(∆′,∆) → 1
and Prc(∆′,∆)→ 1.

4.2 Time metrics
Definition 20 (Horizon) The Horizon HALG(i) is the time
duration required by the on-line algorithm ALG to solve
(SD,FAULTS,OBSi).

The Horizon of a perfect diagnosis algorithm is ∀i,H(i) =
0. The Horizon measures the capability of an on-line algorithm
to follow the flow of observations. For example, if HALG(i) >
ti+1, then ALG is not able to provide a final diagnosis
for the problem (SD,FAULTS,OBSi) before it has to solve
(SD,FAULTS,OBSi+1). The consequence is that ALG can have
cumulative delays which show that ALG has weak on-line perfor-
mances.

4.3 Reality metrics
In [7], other metrics are defined. As opposed to the one presented
above, they require the knowledge of the real diagnosis. Such met-
rics measure the quality of the couple (SD,ALG) as a whole, in the
sense that to improve the values measured by these metrics, either
SD or ALG or both must be improved. Especially, the improvement
of SD usually consists of improving the soundness of the model [1]
or the diagnosability of the model and the underlying system by sen-
sor placement [17],[13].

Definition 21 (False Positive) The number of false positive (FP) is
the number of faults in ∆ALG that are not in ∆real = (qr, Fr):

FP = |{f ∈ FAULTS, ∃(q, F ) ∈ ∆ALG ∧ f 6∈ Fr}|

FP usually indicates a lack of diagnosability.

Definition 22 (False Negative) The number of false negative (FN)
is the number of faults in ∆ such that:

FN = |{f ∈ Fr, ∀(q, F ) ∈ ∆ALG, f 6∈ F}|.

FN usually indicates a lack of soundness.
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5 FIRST EXPERIMENTS
In this section, we present a set of experiments about two basic al-
gorithms denoted FBFS (Forward Breadth-First Search) and FDFS
(Forward Depth-First Search) in order to show the effectiveness of
the presented metrics. As stated above, we are not concerned in this
section about the quality of the model SD,OBS such as diagnos-
ability and soundness that are out of scope of this paper and requires
simulated scenarios and a fault injection simulator to compute for
instance the accuracy of the algorithm with respect to the real di-
agnosis. In these experiments, SD is assumed to be sound (the real
trace is represented in the model). The purpose is to compare some
algorithms with each other on the same diagnosis problem and to
compare their performance.

5.1 Algorithm descriptions
The algorithms to run these first experiments have been chosen for
their simple description and not for their efficiency. The aim here is
to show how the metrics are able to characterize the behaviour of
algorithms. As explained in Section 2.2, the starting point of both
algorithms is N automata and their synchronization law which im-
plicitly represent SD, a given set of faults FAULTS to diagnose and
the sequence of observations OBS = {(o1, t1), . . . , (om, tm)}.

5.1.1 Forward breadth-first search: FBFS

The principle of the FBFS algorithm is to start from an initial belief
state I2 and searches with help of a Breadth-First Search (BFS) strat-
egy the set of traces of the global model M that can emit OBS and
extracts from them the diagnosis candidates. Note that by construc-
tion this algorithm is sound as the BFS guarantees it will find out the
complete set of traces. The search space (similar to the behavioural
space in [9]) is recursively defined as follows. For each candidate of
(q, F ) ∈ I, we associate the state s = (q, F, 0) where 0 means that
no observation has occurred. Then, let s = (q, F, k) be a state of
the search space then s′ = (q′, F ′, k′) is a state of the search space
iff there exists a transition q e−→ q′ in M and one of the following
condition holds:

1. e is observable, F = F ′ and k′ = k + 1;
2. e ∈ FAULTS, F ′ = F ∪ {e} and k′ = k;
3. e is neither faulty nor observable and F = F and k′ = k.

The set of states s′ defined as above is denoted next(s, e). Finally
FBFS is simply defined as follows by the use of a queue (First In
First Out):

FBFS(M,FAULTS,OBS,I): output D
do

for(s=(q,F,0) : (q,F) in I)
push(queue,s);
visited(s) <- true;

endfor

while(not empty(queue))
s=(q,F,k) <- pop(queue);
if(k=m) then insert((q,F),D);
else

2 In Section 2.2, we supposed the initial belief state is {(q0, ∅)} however,
here, for the sake of generality, we do not make any assumption about it, it
can be any set of diagnosis candidates.

for(s’ : next(s,e), e event of M)
if ((e = o_k or not_observable(e))

and not (visited(s’)))
then

push(queue,s’); visited(s’) <- true
endif

endfor
endif

endwhile
done

5.1.2 Forward depth-first search: FDFS

The principle of the FDFS algorithm is similar to the one of FBFS
except that the search strategy relies on a Depth-First Search. As for
its counterpart, this algorithm is sound. The main difference is the
use of a stack (Last In First Out) instead of a queue.

FDFS(M,FAULTS,OBS,I): output D
do
for(s=(q,F,0) : (q,F) in I)

push(stack,s);
visited(s) <- true;

endfor

while(not empty(stack))
s=(q,F,k) <- pop(stack);
if(k=m) then insert((q,F),D);
else

for(s’ : next(s,e), e event of M)
if ((e = o_k or not_observable(e))

and not (visited(s’)))
then

push(stack,s’); visited(s’) <- true
endif

endfor
endif

endwhile
done

5.2 Generation of the Diagnosis Problem
In this paper, as opposed to usual Model-Based Diagnosis papers, we
decide to run experiments on a purely random Diagnosis Problem.
In order to generate this problem, we develop a random generator
for Diagnosis Problem with help of the DIADES tools developed in
CNRS-LAAS [8]. The generation of the illustrating model is in three
stages.

1. Topology generation: the topology (see Section 2.1) is randomly
chosen with help of the tool generate topology. The topol-
ogy of this example has been generated by fixing the number of
components to 10.

2. Component generation: for each component of the topology, the
behaviour of this component (see Definition 1) is randomly gener-
ated with help of the tool des generate that takes as input the
previously generated topology and thus generates a set of 10 au-
tomata (see Table 1) and their synchronization model (see Section
2.1). Most importantly, des generate generates automata that
are globally consistent in the sense that the global model exists and
each local transition of each automaton belongs at least once to the
global model. The size of the global model is big enough so that
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Diades (with its tool global model) was not able to compute
it due to lack of computational resources (memory resources) 3, it
has given up after building 185 000 states and 1 000 000 transi-
tions (theoretically, the number of states for this example is lower
than 1010 which the number of states in the free product of the 10
automata).

3. To finally define FAULTS and OBS, we use the tool simulate
that takes as input the set of 10 automata and randomly generates
a scenario of a fixed observable size. The scenario utilized in the
following example consists of a sequence of 10 observations. To
define FAULTS, we selected a set of 9 non-observable events as
faults.

Comp StateNb TransNb Comp StateNb TransNb
C0 7 16 C1 20 46
C2 5 15 C3 20 45
C4 9 22 C5 8 12
C6 15 31 C7 5 17
C8 18 42 C9 8 23

Table 1. Size of the randomly generated automata for this example

5.3 First Results

This subsection presents some experiments that illustrate perfor-
mance metrics introduced in Section 4.1 and the way to use them
for comparing the behaviour of diagnosis algorithms to each other.
Figures 1, 2, 3, 4 present the behaviour of the metrics of Section
4.1 with the algorithms FBFS and FDFS for the diagnosis prob-
lem (SD,FAULTS,OBS) that is described in the previous section.
For every Figure, there are three curves. For a given metrics m, the
thick curve represents m(∆FDFS(t),∆) where ∆ is the solution of
(SD,FAULTS,OBS) (see Definition 6) and ∆FDFS(t) is the partial
diagnosis (a set of candidates) that FBFS is able to provide at time
t. The thin plain curve represents m(∆FBFS(t),∆) and finally the
dashed curve represents m(∆FDFS(t),∆FBFS(t)).

Figure 1 illustrates the Belief State Distance. At time 0, the dis-
tance between the initial diagnosis (q0,∅) and the solution is in this
case 230. At time 50, FDFS starts to produce new candidates that
improves the BSD as it is getting closer to the solution. The FDFS
curve really shows the overall behaviour of a DFS strategy, when the
BSD is stable for a while, it means that FDFS keeps backtracking.
As opposed to FDFS, FBFS takes longer to provide the first candi-
dates and the final solution.

This difference can be clearly seen on
BSD(∆FDFS(t),∆FBFS(t)) that keeps growing from time 40
to time 80 which shows that FBFS and FDFS are drastically dif-
ferent algorithms. FBFS accelerates the computation of candidates
in the end whereas DFS provides candidates with a more stable
speed.

Figure 2 illustrates the Fault Candidate Distance. As opposed to
BSD,FCD is very small at initial time. It is due to the fact that the
initial diagnosis (q0,∅) has an empty set of fault candidates whereas
the solution diagnosis contains 9 fault candidates only (but many pos-
sible states associated to them). FDFS provides the correct fault can-
didates at time 30, whereas FBFS provided them at time 50.

3 At present, the way the tool global model is implemented is far from
being optimal.
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Figures 3 and 4 respectively describe the overall accuracy met-
rics and precision metrics (embedding belief states and fault can-
didates). As noticed by analyzing BSD and FCD, the accuracy of
FDFS clearly improves earlier than the accuracy of FBFS. Both
accuracy tend to 1 which results from the fact that both algorithms
are sound on the given problem. Finally, Acc(∆FDFS(t),∆FBFS(t))
also tends to one that shows both algorithms converge on the same
solution. As far as the precision is concerned, the behaviour is
rather similar to accuracy where FBFS and FDFS are compared
to the solution ∆. The most interesting metrics is in this case
Prc(∆FDFS(t),∆FBFS(t)) which measures the relative precision of
both algorithms over time. Due to the fact that the strategies of FBFS
and FDFS are drastically different the behaviour of the relative pre-
cision is rather erratic till it converges to 1.
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6 CONCLUSION
In this paper, we discuss the problem of evaluating the performance
of diagnosis algorithms that solve the Fault-Diagnosis problem from
an experimental point of view. For this special problem, there is a
clear distinction between the model part (a set of automata or any
equivalent representation) and the algorithm that solves the problem.
That is the main reason of introducing a set of proper metrics for al-
gorithms only and for introducing a framework to randomly generate
models as it is proposed with the tool DIADES. Of course the ex-
periments presented here are very preliminary and we expect in the
very close future to generate a full set of benchmarks and to analyze
more sophisticated algorithms with the ones developed in our previ-
ous work [12],[16] as a priority. The model generator we are using
defines a set of parameters (number of nodes, connectivity, number
of states, number of observable events, . . . ) that should be interesting
to play with in order to generate very different type of DES models
and thus sees how algorithms perform on them. There will be two
main objectives, that, we actually believe, are essential for the MBD
community:

1. to have a clear understanding about how the available diagnosis
algorithms scale on the same problems;

2. and more importantly, to have a better understanding about how
to improve the efficiency of the algorithms by closer comparative
analyses of one another.
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Computing Manifestations of
Max-Size Min-Cardinality Ambiguity Groups

Alexander Feldman and Johan de Kleer and Gregory Provan 1

Abstract. The application of Model-Based Diagnosis to systems

that are under-observed (e.g., sensor-lean systems) is severely hin-

dered by the ambiguity of the diagnostic result. In the worst-case,

even in very restricted frameworks such as the one presented in this

paper, an observation may lead to an exponential number of diag-

noses. This is the case even if we impose a minimality criterion such

as cardinality-minimal diagnoses. To solve this problem researchers

have proposed a number of information gathering approaches such as

probing and active-testing. There is little literature however, on eval-

uating the performance of these information-gathering algorithms. In

this paper we analyze a new class of observations that maximize the

size of the minimal-cardinality (MSMC) ambiguity group. We show

a probing framework for which these observation lead to worst-case

probing sessions. We exhaustively compute these MSMC initial ob-

servations for a benchmark of 74XXX digital circuits.

1 Introduction

Model-Based Diagnosis (MBD) aims to compute, given a model

SD and an observation α, diagnoses, minimal under some minimal-

ity criterion, e.g., the minimal-cardinality set of faulty components.

Since the model SD is known a priori, much work has been devoted

to optimizing the inference process by pre-processing SD. However,

little work has focused on how α affects the inference process. This

paper focuses on how α affects the cardinality and minimality prop-

erties of diagnoses. We define a metrics, MSMC, which addresses

diagnostic ambiguity (or indistinguishability of diagnoses).

Prior work on probing [3] is multi-valued in it does not restrict

the variables domains to Boolean values. This makes the proposed

approach very useful in practical situations, however it makes the

analysis of algorithmic performance more difficult. In this paper we

propose a strictly propositional framework that allows more intuitive

presentation of assumptions, and analysis of algorithms and proper-

ties.

The contributions of this paper are as follows. (1) We define a new

class of MSMC observation vectors that are worst-case scenarios for

a class of information gathering algorithms and probing in particu-

lar. (2) We provide a formal framework for the evaluation of probing

algorithms. (3) In the proposed framework, we show a probing al-

gorithm that uses a myopic one-step look-ahead to compute optimal

probe variables. We show that MSMC observation vectors are worst-

case scenarios for this probing algorithm. (4) We compute MSMC

properties for a class of 74XXX benchmarks.

The majority of existing MBD research as well as this paper con-

sider only realistic cases in which the original “injected” faults do

1 University College Cork, email: a.feldman@ucc.ie, dekleer@parc.com,
g.provan@cs.ucc.ie

not change their location. An interesting alternative to this is a case

proposed by de Kleer that we call “The MBD Game”. The board of

this game is a digital circuit. In the beginning of the game the antag-

onist “injects” a fault that stays hidden from the protagonist. In each

turn of the game, the protagonist proposes a measurement (a probe),

the antagonist gives the value of this measurement and changes the

location of the fault so the protagonist does not find it. The goal of the

protagonist is to minimize the number of probes before finding the

fault while the antagonist aims at the opposite (maximizing the num-

ber of probes). In a subsequent game the protagonist and antagonist

change roles and the winner is the one who uses a smaller number of

probes to uniquely determine all faults.

2 Related Work

To the best of our knowledge, we are the first to define the notion of

an MSMC observation vector.

Early work [3] aimed at diagnostic convergence by computing

a probe sequence for reducing diagnostic entropy using a myopic

search strategy. This paper complements this work by providing a

strict probing framework in which we can show worst-case scenar-

ios.

Probing is not the only way to perform diagnostic information

gathering. Another approach is active testing [8] in active testing one

computes a set of optimal control settings that lead to observations

of small cardinality-minimal ambiguity groups. The MSMC frame-

work presented in this paper is also a bound on the performance of

this class of algorithms.

The material presented in this paper shows an approach to evalu-

ating the performance of the information gathering part of diagnos-

tic algorithms in worst-case scenarios. The international diagnostic

competition DXC [4] has similarly evaluated algorithms. The main

goal there, however, is the comparison of different diagnostic algo-

rithms and not stress-testing under worst-case conditions. This work

may facilitate similar diagnostic competitions in the future by allow-

ing algorithms to compete on difficult observation vectors.

A problem that is related to MSMC is that of computing obser-

vations leading to cardinality-minimal diagnoses of maximal cardi-

nality. These observations are called MFMC observations and are

studied in [6].

3 Concepts and Definitions

Our discussion continues by formalizing some MBD notions. This

article uses the traditional diagnostic definitions [3], except that we

use propositional logic terms (conjunctions of literals) instead of sets

of failing components.

26/33



Central to MBD, a model of an artifact is represented as a Well-

Formed Propositional Formula (Wff ) over some set of variables. We

discern subsets of these variables as assumable and observable.2

Definition 1 (Diagnostic System). A diagnostic system DS is de-

fined as the quadruple DS = 〈SD, COMPS, IN, OUT, INT〉,
where SD is a propositional theory over a set of variables V ,

COMPS ∪ IN ∪ OUT ⊆ V , COMPS is the set of assumables,

IN is the set of primary inputs, OUT is the set of primary outputs,

and INT = V \ {COMPS ∪ IN ∪OUT∪}. The set of observables

OBS is defined as OBS = IN ∪OUT.

Throughout this article we restrict SD to propositional theories de-

rived from Boolean circuits. We assume that SD 6|=⊥, i.e., SD is

not faulty (does not lead to diagnoses) when there is no observation.

We also assume that the sets IN, OUT, and COMPS are disjoint.

Further, we assume that the model SD is acyclic, testable, and con-

nected, i.e., starting from a primary input in IN we can always reach

a primary output in OUT, thus defining direction of each connection

(we will illustrate this with an example).

The internal variables of SD are all variables in V that are neither

assumables nor primary inputs nor primary outputs, i.e., V \ {IN ∪
OUT ∪ COMPS}.

Let COMPS = {hi} for i = 1, 2, . . . , n. We use positive assign-

ments hi = True, or simply positive literals hi, to denote healthy

components; conversely, we use negative assignments hi = False,

or negative literals ¬hi, to denote faulty components. Other authors

use different mnemonics for this: some denote faulty components

with “ab” for abnormal, while others denote healthy components us-

ing “ok”.

Not all propositional theories used as system descriptions are of

interest to MBD. Diagnostic systems can be characterized by a re-

stricted set of models, the restriction making the problem of comput-

ing diagnosis amenable to algorithms like the ones presented in this

article. We consider two main classes of models.

Definition 2 (Weak-Fault Model). A diagnostic system DS =
〈SD, COMPS, IN, OUT, INT〉, OBS = IN ∪ OUT, belongs to

the class WFM iff for COMPS = {h1, h2, . . . , hn}, SD is equiv-

alent to (h1 ⇒ F1) ∧ (h2 ⇒ F2) ∧ . . . ∧ (hn ⇒ Fn) and

COMPS ∩ V ′ = ∅, where V ′ is the set of all variables appearing in

the propositional formulae F1, F2, . . . , Fn.

Weak-fault models are sometimes referred to as models with igno-

rance of abnormal behavior [2], or implicit fault systems. Alterna-

tively, a model may specify the faulty behavior for its components

[14]. In the following definition, with the aim of simplifying the for-

malism throughout this article, we adopt a slightly restrictive repre-

sentation of faults, allowing only a single fault mode per assumable

variable. This can be easily generalized by introducing multi-valued

logic or suitable encodings [12, 5].

Definition 3 (Strong-Fault Model). A diagnostic system DS =
〈SD, COMPS, IN, OUT, INT〉, OBS = IN ∪ OUT, belongs to

the class SFM iff SD is equivalent to (h1 ⇒ F1,1) ∧ (¬h1 ⇒
F1,2) ∧ · · · ∧ (hn ⇒ Fn,1) ∧ (¬hn ⇒ Fn,2) such that 1 ≤ i, j ≤
n, k ∈ {1, 2}, {hi} ⊆ COMPS, Fj,k ∈ Wff , and none of hi

appears in Fj,k.

Membership testing for the WFM and SFM classes can be per-

formed efficiently in many cases, for example, when a model is rep-

resented explicitly as in Def. 2 or Def. 3.

2 In the MBD literature the assumable variables are also referred to as “com-
ponent”, “failure-mode”, or “health” variables. Observable variables are
also called “measurable”, or “control” variables.

3.1 A Running Example

We use the Boolean circuit shown in Fig. 1 to illustrate many no-

tions and algorithms in this article. The subtractor, shown there,

consists of seven components: an inverter, two or-gates, two xor-

gates, and two and-gates. The expression h ⇒ (o⇔ ¬i) models

the normative (healthy) behavior of an inverter, where the variables

i, o, and h represent input, output and health respectively. Simi-

larly, an and-gate is modeled as h ⇒ (o⇔ i1 ∧ i2) and an or-

gate by h ⇒ (o⇔ i1 ∨ i2). Finally, an xor-gate is specified as

h⇒ [o⇔ ¬ (i1 ⇔ i2)].

h2
d

h6
y

p h1

h3
h4j

i

h5

h7

x

m

k

b

l

Figure 1. A subtractor circuit

The above propositional formulae are copied for each gate in Fig. 1

and their variables renamed in such a way as to properly connect the

circuit and disambiguate the assumables, thus obtaining a proposi-

tional formula for the Boolean subtractor, given by:

SDw = {h1 ⇒ [i⇔ ¬ (y ⇔ p)]}∧
{h2 ⇒ [d⇔ ¬ (x⇔ i)]}∧
[h3 ⇒ (j ⇔ y ∨ p)] ∧ [h4 ⇒ (m⇔ l ∧ j)]∧
[h5 ⇒ (b⇔ m ∨ k)] ∧ [h6 ⇒ (x⇔ ¬l)]∧
[h7 ⇒ (k⇔ y ∧ p)]

(1)

A strong-fault model for the Boolean circuit shown in Fig. 1 is con-

structed by assigning fault-modes to the different gate types. We will

assume that, when malfunctioning, the output of an xor-gate has the

value of one of its inputs, an or-gate can be stuck-at-one, an and-gate

can be stuck-at-zero, and an inverter behaves like a buffer. This gives

us the following strong-fault model formula for the Boolean subtrac-

tor circuit:

SDs = SDw ∧ [¬h1 ⇒ (i⇔ y)] ∧ [¬h2 ⇒ (d⇔ x)]
(¬h3 ⇒ j) ∧ (¬h4 ⇒ ¬m) ∧ (¬h5 ⇒ b)
[¬h6 ⇒ (x⇔ l)] ∧ (¬h7 ⇒ ¬k)

(2)

For both models (SDs and SDw), the set of assumable variables is

COMPS = {h1, h2, . . . , h7} and the set of observable variables is

OBS = {x, y, p, d, b}, where IN = {x, y, p} are the primary inputs

and OUT = {d, b} are the primary outputs.

Note that each component in SDw or SDs has inputs and an out-

put. For example, the inverter which is associated with h6 has x as

its input and its output is l. The and-gate h4 has two inputs: l and j
and one output m.

2
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3.2 Diagnosis and Minimal Diagnosis

The traditional query in MBD computes terms of assumable vari-

ables which are explanations for the system description and an ob-

servation.

Definition 4 (Health Assignment). Given a system DS =
〈SD, COMPS, IN, OUT, INT〉, an assignment ω to all variables in

COMPS is defined as a health assignment.

A health assignment ω is a conjunction of propositional literals. In

some cases it is convenient to use the set of negative or positive lit-

erals in ω. These two sets are denoted as Lit
−(ω) and Lit

+(ω),

respectively.

In our example, the “all nominal” assignment is ω1 = h1 ∧ h2 ∧
· · ·∧h7. The health assignment ω2 = h1∧h2∧h3∧¬h4∧h5∧h6∧
¬h7 means that the two and-gates from Fig. 1 are malfunctioning.

What follows is a formal definition of consistency-based diagno-

sis.

Definition 5 (Diagnosis). Given a diagnostic system DS =
〈SD, COMPS, IN, OUT, INT〉, OBS = IN ∪ OUT, an observa-

tion α over some variables in OBS, and a health assignment ω, ω is

a diagnosis iff SD ∧ α ∧ ω 6|=⊥.

There is a total of 96 possible diagnoses given SDw and an ob-

servation α1 = x ∧ y ∧ p ∧ b ∧ ¬d. Example diagnoses are

ω3 = ¬h1∧h2∧· · ·∧h7 and ω4 = h1∧¬h2∧h3∧· · ·∧h7. Trivially,

given a weak-fault model, the “all faulty” health assignment (in our

example ωa = ¬h1 ∧ · · · ∧ ¬h7) is a diagnosis for any instantiation

of the observable variables in OBS (see Def. 2).

In the MBD literature, a range of types of “preferred” diagnosis

has been proposed. This turns the MBD problem into an optimization

problem. In the following definition we consider the common subset-

ordering.

Definition 6 (Minimal Diagnosis). A diagnosis ω⊆ is defined

as minimal, if no diagnosis ω̃⊆ exists such that Lit
−(ω̃⊆) ⊂

Lit
−(ω⊆).

Consider the weak-fault model SDw of the circuit shown in Fig. 1

and an observation α2 = ¬x ∧ y ∧ p ∧ ¬b ∧ d. In this example, two

of the minimal diagnoses are ω⊆
5 = ¬h1∧h2∧h3∧h4∧¬h5∧h6∧h7

and ω⊆
6 = ¬h1 ∧ h2 ∧ · · · ∧ h5 ∧ ¬h6 ∧ ¬h7. The diagnosis ω7 =

¬h1∧¬h2∧h3∧h4∧¬h5∧h6∧h7 is non-minimal as the negative

literals in ω⊆
5 form a subset of the negative literals in ω7.

Definition 7 (Subset-Minimal Ambiguity Group). The subset-

minimal ambiguity group of a system description SD and an obser-

vation α, denoted as Ω⊆(SD∧α), is defined as the set of all minimal

diagnoses of SD ∧ α.

Note that the set of all minimal diagnoses characterizes all diagnoses

for a weak-fault model, but that does not hold in general for strong-

fault models [2]. In the latter case, faulty components may “exoner-

ate” each other, resulting in a health assignment containing a proper

superset of the negative literals of another diagnosis not to be a diag-

nosis. In our example, given SDs and α3 = ¬x∧¬y∧¬p∧ b∧¬d,

it follows that ω⊆
8 = h1 ∧ h2 ∧ ¬h3 ∧ h4 ∧ · · · ∧ h7 is a diagnosis,

but ω9 = h1 ∧h2 ∧¬h3 ∧¬h4 ∧ · · · ∧h7 is not a diagnosis, despite

the fact that the negative literals in ω9 ({¬h3,¬h4}) form a superset

of the negative literals in ω⊆
8 ({¬h3}).

Definition 8 (Number of Minimal Diagnoses). Given a system de-

scription SD and an observation α, the number of minimal diagnoses,

denoted as |Ω⊆(SD∧α)|, is defined as the size of the subset-minimal

ambiguity group Ω⊆(SD ∧ α).

Continuing our running example, |Ω⊆(SDw ∧ α2)| = 8 and

|Ω⊆(SDs ∧ α3)| = 2. The number of non-minimal diagnoses of

SDw ∧ α2 is 61.

Definition 9 (Cardinality of a Diagnosis). The cardinality of a diag-

nosis ω, denoted as |ω|, is defined as the number of negative literals

in ω.

Diagnosis cardinality gives us another partial ordering: a diagnosis is

defined as minimal cardinality iff it minimizes the number of nega-

tive literals.

Definition 10 (Minimal-Cardinality Diagnosis). A diagnosis ω≤ is

defined as minimal-cardinality if no diagnosis ω̃≤ exists such that

|ω̃≤| < |ω≤|.

The cardinality of a minimal-cardinality diagnosis computed from

a system description SD and an observation α is denoted as

MinCard(SD∧α). For our example model SDw and an observation

α4 = x∧y∧p∧¬b∧¬d , it follows that MinCard(SDw∧α4) = 2.

Note that in this case all minimal diagnoses are also minimal-cardi-

nality diagnoses.

A minimal cardinality diagnosis is a minimal diagnosis, but the

opposite does not hold. There are minimal diagnoses that are not

minimal-cardinality diagnoses. Consider the example SDw and α2

given earlier in this section, and the two resulting minimal diagnoses

ω⊆
5 and ω⊆

6 . From these two, only ω⊆
5 is a minimal-cardinality diag-

nosis.

Definition 11 (Minimal-Cardinality Ambiguity Group). The

minimal-cardinality ambiguity group of a system description SD and

an observation α, denoted as Ω≤(SD∧α), is defined as the set of all

minimal-cardinality diagnoses of SD ∧ α.

Counting the number of diagnoses in Ω≤(SD∧ α) gives us the final

definition for this section.

Definition 12 (Number of Minimal-Cardinality Diagnoses). The

number of minimal-cardinality diagnoses, denoted as |Ω≤(SD∧α)|,
is defined as the cardinality of Ω≤(SD ∧ α).

Computing the number of minimal-cardinality diagnoses for the run-

ning example results in |Ω≤(SDw∧α2)| = 2, |Ω≤(SDs∧α3)| = 2,

and |Ω≤(SDw ∧ α4)| = 4.

4 Observation Vector Optimization Problems

Consider the set of diagnoses in a subset-minimal ambiguity group

Ω⊆(SD ∧ α). We can construct a distribution of the subset-mini-

mal diagnoses in Ω⊆(SD∧ α) by counting the number of diagnoses

with cardinality 0, 1, 2, . . . and computing how frequently each car-

dinality appears in Ω⊆(SD ∧ α). The distribution of the diagnosis

cardinalities in Ω⊆(SD ∧ α) is denoted as eΩ⊆(SD ∧ α). Note that
eΩ⊆(SD ∧ α) can be arbitrary, i.e., we can construct a system de-

scription SD and an observation α resulting in any eΩ⊆(SD ∧ α).

In this paper, SD is fixed, and the main focus of our work is how
eΩ⊆(SD ∧ α) changes for various instantiations of the observation

α. In particular we are interested in computing observations α that

optimize certain parameters defined on the distribution eΩ⊆(SD∧α).

Figure 2 shows eΩ⊆(SD∧α) for a weak-fault model of the 74182
combinatorial circuit (part of the 74XXX/ISCAS85 benchmark, see

3
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Figure 2. An example distribution of the cardinalities of the subset-
minimal ambiguity group for a given observation α. Other observations lead

to different distributions. All problems are defined as computing an
observation vector (showing all possible observation vectors for this

example would add another dimension to the figure) that optimizes certain
properties of this distribution. These properties are indicated by arrows.

Sec. 6) and an arbitrary observation α. In addition to that, Fig. 2

illustrates a number of observation vector optimization problems.

From the seven observation vector optimization problems shown

in Fig. 2, two are of practical significance to MBD: MFMC and

MSMC. We next formally define those.

Problem 1 (MFMC Observation). Given a system DS = 〈SD,

COMPS, IN, OUT, INT〉, compute an observation α (defined as

Max-Fault Min-Cardinality (MFMC) observation) such that ω is a

minimal-cardinality diagnosis of SD ∧ α and |ω| is maximized.

In addition to an MFMC observation, we also refer to an MFMC di-

agnosis of a model SD. This refers to any of the minimal-cardinality

diagnoses ω≤ of SD ∧ α where α is an MFMC observation. The

cardinality of this diagnosis is denoted as MFMC (SD) and, next to

the associated MFMC observations, this is a key model property we

seek to compute.

Problem 2 (MSMC Observation). Given a system DS = 〈SD,

COMPS, IN, OUT, INT〉, compute an observation α (defined as

Max-Size Min-Cardinality ambiguity group (MSMC) observation)

such that |Ω≤(SD ∧ α)| is maximized.

We denote |Ω≤(SD ∧ α)| where α is an MSMC observation as

MSMC (SD).

Fig. 2 also illustrates some MBD problems that are less often en-

countered in practice. The min-fault max-cardinality problem, for ex-

ample, is to compute the following observation. First, consider the

subset-minimal ambiguity group of each different observation (there

are 2|OBS| different observations). Second, take the observation that

minimizes the number of faults in the maximum-cardinality diagno-

sis in each subset-minimal ambiguity group.

A related problem that is not illustrated in Fig. 2 is the max-size

subset-minimal ambiguity group. The problem is to compute an ob-

servation α that maximizes the size of the subset-minimal ambiguity

group.

5 Probing

Probing aims to minimize the expected number of diagnoses that re-

sult from the possible set of outputs that may occur from the mea-

surement of a given internal (probe) variable.

5.1 Computing the Expected Number of MC
Diagnoses

We will compute the expected number of diagnoses for a set of ob-

servable variables M (M ⊆ OBS). The initial observation α and

the set of MC diagnoses D = Ω≤(SD, α) modify the probability

density function of subsequent outputs (observations), i.e., a subse-

quent observation α′ changes its likelihood. The (non-normalized) a

posteriori probability of an observation α′, given a function Ω≤ that

computes the set of MC diagnoses and an initial observation α, is:

Pr(α′|SD, α) =
|Ω∩(Ω≤(SD, α), α′)|

|Ω≤(SD, α)|
(3)

The above formula computes the probability of a given a priori set

of diagnoses restricting the possible outputs, i.e., we assume that the

probability is the ratio of the number of remaining diagnoses to the

number of initial diagnoses. In practice, there are many α for which

Pr(α′|SD, α) = 0, because a certain fault heavily restricts the pos-

sible outputs of a system (i.e., the set of the remaining diagnoses in

the numerator is empty).

The expected number of remaining MC diagnoses for a variable

set M , given an initial observation α, is then the weighted average of

the intersection sizes of all possible instantiations over the variables

in M (the weight is the probability of an output):

E≤(SD, M |α) =

X

α′∈M∗

|Ω∩(D, α′)| · Pr(α′|SD, α)

X

α′∈M∗

Pr(α′|SD, α)
(4)

where D = Ω≤(SD, α) and M∗ is the set of all possible assignments

to the variables in M . Replacing (3) in (4) and simplifying gives us

the following definition:

Definition 13 (Expected Minimal-Cardinality Diagnoses Intersec-

tion Size). Given a system ATS and an initial observation α, the

expected remaining number of MC diagnoses E≤(SD, OBS|α) is

defined as:

E≤(SD, OBS|α) =

X

α′∈OBS∗

|Ω∩(Ω≤(SD, α), α′)|2

X

α′∈OBS∗

|Ω∩(Ω≤(SD, α), α′)|
(5)

where OBS∗ is the set of all possible assignments to all variables in

OBS.

The expected number of remaining MC diagnoses for one variable

simplifies the expression in (5) to:

E≤(SD, v|α) =
p(SD, v, α)2 + q(SD, v, α)2

p(SD, v, α) + q(SD, v, α)
(6)

where

p(SD, v, α) = |Ω∩(Ω≤(SD, α), v)| (7)

and

q(SD, v, α) = |Ω∩(Ω≤(SD, α),¬v)| (8)

4
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Algorithm 1: Probing framework

Input: DS, a diagnostic system,

DS = 〈SD, IN, OUT, COMPS, INT〉
Result: p, number of probes, R ∈ Z

Local variables: α, observation term

ω≤, cardinality-minimal diagnosis

z, probe variable

l, literal

1 〈α, ω≤〉 ← INJECTFAULT(DS)
2 p← 0

3 while |Ω≤(SD, α)| 6= 1 do

4 z ← COMPUTEPROBE(SD, α, INT)

5 l ← EVALUATEPROBE(SD, α, ω≤, z)
6 α← α ∧ l
7 INT← INT \ z
8 p← p + 1

9 return p

5.2 Probing Algorithm

Algorithm 1 shows a generalized procedure for the evaluation of the

performance of probing algorithms. It can be generalized to evaluate

the performance of any information gathering procedures (such as

active testing [7]), to include probing costs, etc.

Algorithm 1 starts by generating an observation α that leads to a

cardinality-minimal diagnosis ω≤. This is done by a call to the IN-

JECTFAULT subroutine in line 1. Algorithm 1 needs a diagnostic

engine that can count the number of cardinality-minimal diagnoses

(line 3). The probing algorithm is called in line 4. The probing algo-

rithm returns a variable (probe) that will be “measured”. The “mea-

sured” values of probe z is computed by the EVALUATEPROBE aux-

iliary subroutine in line 5. Methods such as Binary Constraint Prop-

agation (BCP) [10] or SAT solvers are suitable for calculating the

value of z given the observation and the injected cardinality-minimal

fault. Algorithm 1 evaluates the performance of probing algorithms

in terms of the number of probes p.

The following assumptions are made when designing Alg. 1:

Monotone |Ω≤(SD, α)|: We restrict ourselves to such system de-

scriptions SD such that if α and β are two observations such that

α ⊇ β then it holds that |Ω≤(SD, α)| ≥ |Ω≤(SD, α)|. We can

proof that this holds for “well-formed” system descriptions and

weak-fault models. The idea is to construct a system of Boolean

equations B in the following manner. First, the propositional Wff

in SD is converted to a Boolean equation in a straightforward man-

ner and the latter is added to B. Second, for each literal li ∈ α,

an equation of the form li = 1 or li = 0 (depending on the polar-

ity of li) is appended to B. A system of Boolean equations B′ is

constructed from SD and β in an analogous way. The solutions of

B and B′ are the implicants of SD ∧ α and SD ∧ β, respectively.

Observe, that, due to the fact that α ⊇ β, the equations in B′ are

a superset of these in B and both are over the same set of vari-

ables. But S(B′) ≤ S(B), where S(X) denotes the number of

solutions in a system X. The above holds also when the solutions

of B and B′ are ordered according to their cardinality. Hence, if

a diagnosis with a cardinality smaller than the smallest cardinality

diagnosis in B′ exists, it is in B.

Non-ambiguous fault: Given a diagnostic system DS = 〈SD, IN,

OUT, COMPS, INT〉we assume that there exists an observation

α and an instantiation over a set of variables P ⊆ INT such that

|Ω≤(SD, α)| = 1. This is easily achievable if SD ∈WFM and

if INT = V \ {IN ∪OUT ∪ COMPS}.
No “don’t cares” and well-formed SD: We require all SD to be

models of well-formed digital circuits. A well-formed digital cir-

cuits is constructed from standard AND, OR, NAND, or NOR

gates of two or more inputs, from XOR gates, buffers, and in-

verters. There are no “hanging” wires, each output is connected to

the input of another gate or two a primary output. A well-formed

circuit does not use any feedback.

Algorithm 2 shows a simple greedy approach to compute the optimal

probe variable based on the expected cardinality-minimal intersec-

tion size.

The computational performance of Alg. 2 is dominated by the

complexity of the diagnostic engine that counts the remaining num-

ber of cardinality minimal diagnoses in lines 2 and 3. Assuming that

this number decreases monotonically improves the complexity sig-

nificantly.

Algorithm 2: Probing algorithm

Input: SD, a system description

Input: α, an observation

Input: INT, a set of probe variables

Result: an optimal probe variable z ∈ INT

Local variables: p, q, number of diagnoses

E, E⋆, reals, expected number of diagnoses

v, candidate probe variable

1 foreach v ∈ INT do

2 p← |Ω∩(Ω≤(SD, α), v)|

3 q ← |Ω∩(Ω≤(SD, α),¬v)|

4 E = p2+q2

p+q

5 if E⋆ < E then

6 E⋆ ← E
7 z ← v

8 return z

We can see that the number of probes k required for the uniquely

(non-ambiguous) isolation of a fault can be an arbitrary value 0 ≤
k ≤ |INT|. There are circuits such as n chained buffers (or inverters)

for which Alg. 2 can isolate a single-fault in k = log n calls. In the

worst-case, Alg. 2 needs to probe each probe variable.

We can see that the performance of Alg. 2 is determined by SD
and the injected fault ω≤ injected by Alg. 1. As SD is given, the

only variable that Alg. 1 can modify is the initial set of cardinality-

minimal diagnoses. It is straightforward to show then that a worst-

case scenario for Alg. 2 is when INJECTFAULT(DS) returns an

MSMC fault.

6 Experimental Results

This section discusses some results from an implementation of the

algorithms described in the previous sections.

6.1 Experimental Setup, Simplification Results and
Bounds

We have experimented on the medium-sized circuits from the

74XXX family [11]. Table 1 provides a summary of the 74XXX

5
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circuits. The number of inputs, outputs and components are given in

the third, fourth, and fifth column of Table 1, respectively.

Table 1. 74XXX circuits

Name Description |IN| |OUT| |COMPS|

74182 4-bit CLA 9 5 19

74L85 4-bit comparator 11 3 33

74283 4-bit adder 9 5 36

74181 4-bit ALU 14 8 65

c6288 32-bit multiplier 32 32 2 416
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Figure 3. n-bit parallel multiplier (n = 2k). For c6288, n = 32.

In addition to the 74XXX circuits we have also considered a vari-

ation of the c6288 multiplier, part of the ISCAS85 benchmark. De-

spite the large number of components, c6288 has very regular struc-

ture: it is composed entirely of Boolean adders and and-gates as

shown in Fig. 3 (the high-level structure of c6288 and Fig. 3 are due

to the reverse-engineering efforts of [11]). Inspecting the reverse-

engineered c6288 allowed us to construct similar smaller multipliers

that have between 1 and 32 outputs. The smallest of them is amenable

to an exhaustive approach. The regular structure of c6288 allows us

to analytically hypothesize about the MFMC/MSMC properties of

c6288 and the whole family of multipliers that have the same high-

level structure. For example, one can show experimentally that for

an n-bit multiplier having the structure of Fig. 3, it always holds that

MFMC
≤ = n.

6.2 Solving the 74XXX Models Exhaustively

We first tried to exhaustively enumerate the space of all input/output

assignments. For 74182, 74L85, and 74283 the size of this space

is 16 384 (14 observable variables), while for 74181, it is 4 194 304
(22 observable variables). We used two state-of-the-art complete di-

agnostic solvers: HA∗ [9] and NGDE [1].

By using HA∗ in combination with cones [13] we computed

all minimal-cardinality ambiguity groups for the 74XXX models.

74182 was the only circuit for which we could compute all sub-

set-minimal ambiguity groups (these are different from the cardinal-

ity-minimal ambiguity groups). We recomputed all diagnoses with

NGDE, which is a completely independent implementation by one

of the authors of this paper, and the HA∗ and NGDE results match.

Furthermore, NGDE did not use cones for 74XXX, while HA∗ did,

thus independently verifying the correctness of the MFMC/MSMC

values, and the correct implementation of the algorithms for comput-

ing minimal diagnoses.

The exhaustive search results of the small circuits are shown

in Table 2. We can see that for 74182, 74L85, and 74283,

MFMC (SD) = |OUT|, and for 74181 the MFMC value is

smaller than the number of outputs |OUT|. The MSMC value

for the 74XXX models grows quickly with increasing model size

(|COMPS|).

Table 2. Properties of 74XXX subset-minimal diagnoses

Optimization Problem 74182 74L85 74283 74181

min-fault max-cardinality 1 1 − −
max-fault max-cardinality 14 10 − −
min-cardinality-range 0 0 − −
max-cardinality-range 9 8 − −
MFMC 5 3 5 7

MSMC 400 468 9 132 42 112

Figure 4 is a two-dimensional histogram of the minimal-cardinal-

ity ambiguity groups of the 74XXX models. Figure 4 plots on the

z-axis the number of observation vectors leading to a minimal-cardi-

nality ambiguity group of size |Ω≤(SD ∧ α)| (y-axis) and minimal

cardinality |ω| (x-axis). We can see that there are no observations

leading to low minimal-cardinality and high ambiguity group size

and vice versa. We can also see that, in general, an increase in MFMC

leads to an increase in MSMC. Furthermore, MFMC/MSMC obser-

vation vectors are relatively rare and the MSMC observation vectors

are not always MFMC observation vectors (consider, for example,

the histogram of 74181 in Figure 4) and vice-versa.

There are 36 MSMC observation vectors for 74182, for example.

Of those, 18 observations lead to a minimal-cardinality diagnosis of

cardinality 4 and 18 observations lead to a minimal-cardinality diag-

nosis of cardinality 5. All MSMC observations lead to nearly MFMC

diagnoses. As it is visible from Fig. 4, MFMC observations lead to

multiple values for the sizes of the minimal-cardinality ambiguity

groups. In 74182, for example, there are 7 MFMC observations that

lead to a unique minimal-cardinality diagnosis.

Given a system DS, we denote as g(DS) the probability density

function of the minimal-cardinalities of the diagnoses of all obser-

vations in DS. Figure 5 shows a histogram of the true minimal-

diagnosis cardinalities for the four 74XXX circuits for which we

have exhaustively determined g(DS), fitted by a normal distribution.

Figure 5 shows the number of observations per minimal-cardinal-

ity. We noticed that a normal distribution fits the empirical data well

in Fig. 5 (the standard error for 74182, 74L85, 74283, and 74283
is 154, 244, 100, and 18 955, respectively). This is explained as fol-

lows. Given an observation α leading to a k-fault minimal diagnosis,

we associate a nominal-diagnosis observation αn, which may dif-

fer from α only in the OUT sub-vector. The number of OUT-values

in which α and αn differ is called the distance of α, D(SD, α). If

n = |OUT| is the number of output variables in SD, then starting

from any nominal observation αn, there are nCk ways to select a

distance-k vector α, each of which corresponds to a diagnosis. In the

case where each such diagnosis is a minimum cardinality diagnosis,

g(SD) is binomially-distributed.

To understand better why the distribution of the minimal-cardi-
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Figure 4. Number of observation vectors vs. cardinality and number of minimal-cardinality diagnoses bivariate histograms for 74XXX
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Figure 5. 74XXX minimal-cardinalities distribution

nality diagnoses of many circuits can be approximated with a bi-

nomial distribution, consider WFM of the two synthetic circuits

shown in Fig. 6. Both circuits consists of buffers only, where each

...

i1 o1

i2 o2

hn

in on

h2

h1

(a) Circuit containing n separate
buffers

...
...

i2

i1 o1

o2

in
hn

on

h1 h′′
1

h2 h′′
2

h′′
n

z1
h′
1

z2

(b) Converging and diverging cir-
cuit

Figure 6. A model with a binomial minimal-cardinality distribution (left)
and a model with one nominal minimal-cardinality diagnosis and one single-

fault minimal-cardinality diagnosis (right)

buffer is modeled as h ⇒ (o ⇔ i). Both circuits have the same

input and output variables (IN = {i1, i2, . . . , in}, and OUT =
{o1, o2, . . . , on}). The distributions of the minimal-cardinality diag-

noses, however, are very different. The model of the circuit shown in

Fig. 6(a) has one nominal behavior (health assignment in which all

health literals are positive) and n single faults (health assignments

in which there is exactly one negative literal). The same circuit has
n(n−1)

2
double faults,

n(n−1)(n−2)
6

triple faults, etc. Any observation

for the model of the circuit shown in Fig. 6(b), however, leads either

to nominal behavior or to the single fault ¬h′
1. As we have seen in

Fig. 5, the distributions of the 74XXX circuits resemble more the

distribution associated with Fig. 6(a). The density mass of all distri-

butions shown in Fig. 5 are skewed to the left and the amount with

which a distribution is skewed to the left depends on the masking
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phenomenon demonstrated in Fig. 6(b).

Although the above model is an approximation, it provides use-

ful bounds on MFMC errors. Let m be the number of bits in the

output assignment that differ from the nominal output value. For the

74XXX and ISCAS85 benchmarks, the fraction of “m-flips” result-

ing in minimal-cardinality diagnoses of cardinality smaller than m is

relatively small and does not vary significantly for different m.

Figure 7 shows a histogram of the minimal-cardinality ambiguity

group sizes for all 74XXX circuits. We can see that when increasing

the minimal-cardinality ambiguity group size, the number of obser-

vation vectors decreases rapidly. This depends on the model topol-

ogy, and is less prevalent in 74182. The MSMC value of 74181, for

example, is 42 112, and as is visible from Fig. 7, there are relatively

few observations leading to such large ambiguity groups.
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Figure 7. 74XXX minimal-cardinality ambiguity group sizes distribution

Table 3 shows the MFMC and MSMC values of several small mul-

tipliers (see Fig. 3). We have created two types of fault-models: in

Type I models we have assigned only one health variable to each

half-adder or full-adder (i.e., all the gates in an adder fail simultane-

ously), and in Type II fault-models we have associated an assumable

with each logic gate (as everywhere else in this paper). The 2-bit

multiplier consists only of a single and-gate, hence all MFMC and

MSMC values are trivially 1. For Type I fault-models we can see that

the MFMC value of an n-bit multiplier is n/2+1 (n = 2k, k ∈ N
+).

For Type II multipliers the MFMC value of an n-bit multiplier is n.

Table 3. MFMC and MSMC values of small multipliers

Type I Type II

bits (|OUT|) MFMC MSMC MFMC MSMC

2 1 1 1 1

4 3 6 4 9

6 4 58 6 3 969

8 5 845 − −

7 Conclusions

This paper has defined a class of MSMC observation vectors which

are the worst-case for the fault ambiguity (or indistinguishability).

The MSMC of real-world systems is an important property quantify-

ing the diagnosability of a model, as it shows the maximum number

of cardinality-minimal diagnoses that can be returned by observing a

set of variables.

We have shown a probing algorithm for which an MSMC obser-

vation vector results in the largest number of steps for reducing the

initial set of cardinality-minimal diagnoses to a single candidate.

Computing MSMC-related properties of models of real-world ar-

tifacts is important for (1) assessing the performance of MBD and

information gathering algorithms and (2) better understanding the

diagnosability properties of the design.

Computing MSMC is a difficult counting problem and its com-

plexity is hypothesized to be at least the complexity of counting the

number of cardinality-minimal diagnoses entailed by a system de-

scription and an observation. As a result algorithms that can compute

MSMC must utilize properties of the model, such as structure and hi-

erarchy, in order to provide results for systems of practical size.

We have computed MSMC values for the 74XXX models. As a

future work we plan to design more efficient MSMC algorithms and

to apply them to a class of larger benchmarks.
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