Contact System of Segments for Planar Graphs.

Daniel Gonçalves

18 Janvier 2016

Bipartite Planar Graphs

2 Slopes & 2-Orientations Prescribing Shapes (New) Proof

3-Colorable Planar Graph

Future Work

Bipartite Planar Graphs

2 Slopes & 2-Orientations

Prescribing Shapes (New) Proof

3-Colorable Planar Graph

Future Work

Every bipartite planar graph has a contact system by horizontal and vertical segments.

Every bipartite planar graph has a contact system by horizontal and vertical segments.

Every bipartite planar graph has a contact system by horizontal and vertical segments.

Folklore ?

Every bipartite planar graph has a contact system by horizontal and vertical segments.

Folklore ?

Every bipartite planar graph has a contact system by horizontal and vertical segments.

Folklore ?

Every bipartite planar graph has a contact system by horizontal and vertical segments.

Folklore ?

Every bipartite planar graph has a contact system by horizontal and vertical segments.

Folklore ?

Theorem (Felsner & Knauer)

Theorem (Felsner & Knauer)

Theorem (Felsner & Knauer)

Theorem (Felsner & Knauer)

Theorem (Felsner & Knauer)

Theorem (Felsner & Knauer)

The set of G's 2-orientations is connected by flipping oriented C_4 's.

Proof

- Consider two 2-orientations
- Differently oriented edges induce an Eulerian:

$$\forall v \ d^+(v) = d^-(v).$$

Theorem (Felsner & Knauer)

The set of G's 2-orientations is connected by flipping oriented C_4 's.

Proof

- Consider two 2-orientations
- Differently oriented edges induce an Eulerian:

$$\forall v \ d^+(v) = d^-(v).$$

Induction on nb of cycles

Theorem (Felsner & Knauer)

The set of G's 2-orientations is connected by flipping oriented C_4 's.

Proof

- Consider two 2-orientations
- Differently oriented edges induce an Eulerian:

$$\forall v \ d^+(v) = d^-(v).$$

- Induction on nb of cycles
- Induction on nb of inner faces

Bipartite Planar Graphs

2 Slopes & 2-Orientations Prescribing Shapes (New) Proof

3-Colorable Planar Graph

Future Work

Sometimes faces & segments are degenerated!

- Sometimes faces & segments are degenerated!
- ► Given a 2-orientation ⇒ Necessary conditions.

- Sometimes faces & segments are degenerated!
- ► Given a 2-orientation ⇒ Necessary conditions.

- Sometimes faces & segments are degenerated!
- ► Given a 2-orientation ⇒ Necessary conditions.

$$F_{1} + F_{2} = 0 -F_{2} + F_{3} + F_{4} = 0 -F_{4} + F_{5} - F_{6} = 0 F_{3} + F_{5} = 2$$

F₁

 F_2

F₆

 F_4

- Sometimes faces & segments are degenerated!
- ▶ Given a 2-orientation ⇒ Necessary conditions.

- Sometimes faces & segments are degenerated!
- ▶ Given a 2-orientation ⇒ Necessary conditions.

- Sometimes faces & segments are degenerated!
- ► Given a 2-orientation ⇒ Necessary conditions.

Bipartite Planar Graphs

2 Slopes & 2-Orientations Prescribing Shapes (New) Proof

3-Colorable Planar Graph

Future Work

▶ \exists solution *F* because det(*M*) \neq 0

$$det(M) = \sum_{\sigma} sign(\sigma) \prod_{i} M_{i,\sigma(i)}$$

▶ \exists solution *F* because det(*M*) \neq 0

$$det(M) = \sum_{\sigma} sign(\sigma) \prod_{i} M_{i,\sigma(i)}$$

▶ \exists solution *F* because det(*M*) \neq 0

$$det(M) = \sum_{\sigma} sign(\sigma) \prod_{i} M_{i,\sigma(i)}$$

▶ \exists solution *F* because det(*M*) \neq 0

$$det(M) = \sum_{\sigma} sign(\sigma) \prod_{i} M_{i,\sigma(i)}$$

► $\exists \sigma \text{ s.t. } 0 \neq \prod_i M_{i,\sigma(i)} \text{ (i.e. } \exists \text{ matching in } Bip(M) \text{).}$

▶ \exists solution *F* because det(*M*) \neq 0

$$det(M) = \sum_{\sigma} sign(\sigma) \prod_{i} M_{i,\sigma(i)}$$

► $\exists \sigma \text{ s.t. } 0 \neq \prod_i M_{i,\sigma(i)}$ (i.e. \exists matching in Bip(M)).

• The set of perf. matchings in Bip(M) is connected by C_4 -flips.

▶ \exists solution *F* because det(*M*) \neq 0

$$det(M) = \sum_{\sigma} sign(\sigma) \prod_{i} M_{i,\sigma(i)}$$

► $\exists \sigma \text{ s.t. } 0 \neq \prod_i M_{i,\sigma(i)}$ (i.e. \exists matching in Bip(M)).

• The set of perf. matchings in Bip(M) is connected by C_4 -flips.

▶ \exists solution *F* because det(*M*) \neq 0

$$det(M) = \sum_{\sigma} sign(\sigma) \prod_{i} M_{i,\sigma(i)}$$

► $\exists \sigma \text{ s.t. } 0 \neq \prod_i M_{i,\sigma(i)}$ (i.e. \exists matching in Bip(M)).

• The set of perf. matchings in Bip(M) is connected by C_4 -flips.

$$\blacktriangleright \forall F_i \text{ set } \frac{width(F_i)}{height(F_i)} =: r_i$$

$$\blacktriangleright \forall F_i \text{ set } \frac{width(F_i)}{height(F_i)} =: r_i$$

$$\blacktriangleright \forall F_i \text{ set } \frac{width(F_i)}{height(F_i)} =: r_i$$

Ratios allow proving realizability of a solution.

$$\blacktriangleright \forall F_i \text{ set } \frac{width(F_i)}{height(F_i)} =: r_i$$

- Ratios allow proving realizability of a solution.
- ▶ \forall contact system, \exists a corresponding vector (r_1, \ldots, r_F) .

$$\blacktriangleright \forall F_i \text{ set } \frac{width(F_i)}{height(F_i)} =: r_i$$

- Ratios allow proving realizability of a solution.
- ▶ \forall contact system, \exists a corresponding vector (r_1, \ldots, r_F) .
- ▶ $\forall (r_1, \ldots, r_F) \in (\mathbb{R}^+)^F$, \exists a corresponding contact system.

Bipartite Planar Graphs

2 Slopes & 2-Orientations Prescribing Shapes (New) Proof

3-Colorable Planar Graph

Future Work

Theorem (Chalopin and G. '09)

Planar graphs are intersection graphs of segments.

Theorem (Chalopin and G. '09)

Planar graphs are intersection graphs of segments.

Conjecture (West '91)

Every planar graph has a model in which there are only four possible slopes.

Theorem (Chalopin and G. '09)

Planar graphs are intersection graphs of segments.

Conjecture (West '91)

Every planar graph has a model in which there are only four possible slopes.

Open Problem (de Fraysseix *et al.*)

Does every planar graph G have a model in which there are only $\chi(G)$ possible slopes?

Theorem (G. and de Visme '14)

Every Eulerian triangulation has a 3-slope contact system, with degeneracies.

Theorem (G. and de Visme '14)

Every Eulerian triangulation has a 3-slope contact system, with degeneracies.

• Two types of faces $\implies +/-$ face sizes.

Theorem (G. and de Visme '14)

Every Eulerian triangulation has a 3-slope contact system, with degeneracies.

- Two types of faces $\implies +/-$ face sizes.
- Perf. matching in Bip(M).
- Closed under C_6 flips, but entries in M are positive.

Theorem (G. and de Visme '14)

Every Eulerian triangulation has a 3-slope contact system, with degeneracies.

- Two types of faces $\implies +/-$ face sizes.
- Perf. matching in Bip(M).
- Closed under C_6 flips, but entries in M are positive.
- ► Followed by "Disambiguition Step".

Bipartite Planar Graphs

2 Slopes & 2-Orientations Prescribing Shapes (New) Proof

3-Colorable Planar Graph

Future Work

Bipartite Quadrangulations:

Bipartite Quadrangulations:

• n vertices & n faces & 2n edges.

Bipartite Quadrangulations:

- n vertices & n faces & 2n edges.
- One face size is set to avoid scaling.

Bipartite Quadrangulations:

- n vertices & n faces & 2n edges.
- One face size is set to avoid scaling.
- One vertex constraint is unnecessary.

Bipartite Quadrangulations:

- n vertices & n faces & 2n edges.
- One face size is set to avoid scaling.
- One vertex constraint is unnecessary.

But:

• Is there perf. matching in Bip(M) ?

Bipartite Quadrangulations:

- n vertices & n faces & 2n edges.
- One face size is set to avoid scaling.
- One vertex constraint is unnecessary.

But:

- Is there perf. matching in Bip(M) ?
- ► Are they connected by flipping *C*₄'s ?

Bipartite Quadrangulations:

- n vertices & n faces & 2n edges.
- One face size is set to avoid scaling.
- One vertex constraint is unnecessary.

But:

- Is there perf. matching in Bip(M) ?
- ► Are they connected by flipping C₄'s ?

Probably not

Contact Systems of Homothetic Triangles

Contact Systems of Homothetic Triangles

▶ Pb : 3 sides \neq +/- possibility

Thanks !