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Theorem (Hartman et al. ’91, and de Fraysseix et al. ’94)

Every bipartite planar graph has a contact system by horizontal
and vertical segments.

Folklore ?

These representations are in bijection with 2-orientations
(i.e. orientation of inner edges s.t. ∀ inner v , d+(v) = 2).
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Further Properties

Theorem (Felsner & Knauer)

The set of G ’s 2-orientations is connected by flipping oriented C4’s.

Proof

I Consider two 2-orientations
I Differently oriented edges induce an Eulerian:

∀v d+(v) = d−(v).
I Induction on nb of cycles
I Induction on nb of inner faces
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Square faces (by Felsner)

I Sometimes faces & segments are degenerated!

I Given a 2-orientation =⇒ Necessary conditions.

F1 +F6 = 2
−F1 +F2 = 0

−F2 +F3 +F4 = 0
−F4 +F5 −F6 = 0

F3 +F5 = 2

F3 −F4 −F5 = 0
F1 +F2 +F4 −F6 = 0
F1 +F2 +F3 −F5 −F6 = 0
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I ∃ solution F because det(M) 6= 0

det(M) =
∑
σ

sign(σ)
∏
i

Mi ,σ(i)

I ∃σ s.t. 0 6=
∏

i Mi ,σ(i) (i.e. ∃ matching in Bip(M)).

I The set of perf. matchings in Bip(M) is connected by C4-flips.
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I Ratios allow proving realizability of a solution.

I ∀ contact system, ∃ a corresponding vector (r1, . . . , rF ).

I ∀(r1, . . . , rF ) ∈ (R+)F , ∃ a corresponding contact system.
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Theorem (Chalopin and G. ’09)

Planar graphs are intersection graphs of segments.

Conjecture (West ’91)

Every planar graph has a model in which there are only four
possible slopes.

Open Problem (de Fraysseix et al.)

Does every planar graph G have a model in which there are only
χ(G ) possible slopes?
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Eulerian Triangulations

Theorem (G. and de Visme ’14)

Every Eulerian triangulation has a 3-slope contact system, with
degeneracies.

I Two types of faces =⇒ +/− face sizes.

I Perf. matching in Bip(M).

I Closed under C6 flips, but entries in M are positive.

I Followed by “Disambiguition Step”.
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Contact Systems on the Torus

Bipartite Quadrangulations:

I n vertices & n faces & 2n edges.
I One face size is set to avoid scaling.
I One vertex constraint is unnecessary.

But:

I Is there perf. matching in Bip(M) ?
I Are they connected by flipping C4’s ?

Probably not
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Contact Systems of Homothetic Triangles

I Pb : 3 sides 6= +/- possibility
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Thanks !
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