Contact System of Segments for Planar Graphs.

Daniel Goncalves

18 Janvier 2016



Bipartite Planar Graphs
2 Slopes & 2-Orientations
Prescribing Shapes
(New) Proof

3-Colorable Planar Graph

Future Work



Bipartite Planar Graphs
2 Slopes & 2-Orientations



Theorem (Hartman et al. '91, and de Fraysseix et al. '94)

Every bipartite planar graph has a contact system by horizontal
and vertical segments.




Theorem (Hartman et al. '91, and de Fraysseix et al. '94)

Every bipartite planar graph has a contact system by horizontal
and vertical segments.




Theorem (Hartman et al. '91, and de Fraysseix et al. '94)

Every bipartite planar graph has a contact system by horizontal
and vertical segments.

Folklore ?

These representations are in bijection with 2-orientations
(i.e. orientation of inner edges s.t. V inner v, d*(v) = 2).



Theorem (Hartman et al. '91, and de Fraysseix et al. '94)

Every bipartite planar graph has a contact system by horizontal
and vertical segments.

Folklore ?

These representations are in bijection with 2-orientations
(i.e. orientation of inner edges s.t. V inner v, d*(v) = 2).



Theorem (Hartman et al. '91, and de Fraysseix et al. '94)

Every bipartite planar graph has a contact system by horizontal
and vertical segments.

Folklore ?

These representations are in bijection with 2-orientations
(i.e. orientation of inner edges s.t. V inner v, d*(v) = 2).



Theorem (Hartman et al. '91, and de Fraysseix et al. '94)

Every bipartite planar graph has a contact system by horizontal
and vertical segments.

Folklore ?

These representations are in bijection with 2-orientations
(i.e. orientation of inner edges s.t. V inner v, d*(v) = 2).



Theorem (Hartman et al. '91, and de Fraysseix et al. '94)

Every bipartite planar graph has a contact system by horizontal
and vertical segments.

Folklore ?

These representations are in bijection with 2-orientations
(i.e. orientation of inner edges s.t. V inner v, d*(v) = 2).



Further Properties

Theorem (Felsner & Knauer)

The set of G's 2-orientations is connected by flipping oriented Cy's.



Further Properties

Theorem (Felsner & Knauer)

The set of G's 2-orientations is connected by flipping oriented Cy's.




Further Properties

Theorem (Felsner & Knauer)

The set of G's 2-orientations is connected by flipping oriented Cy's.




Further Properties

Theorem (Felsner & Knauer)

The set of G's 2-orientations is connected by flipping oriented Cy's.




Further Properties

Theorem (Felsner & Knauer)

The set of G's 2-orientations is connected by flipping oriented Cy's.




Further Properties

Theorem (Felsner & Knauer)

The set of G's 2-orientations is connected by flipping oriented Cy's.

Proof
» Consider two 2-orientations

» Differently oriented edges induce an Eulerian:
Vv dT(v) =d (v).



Further Properties

Theorem (Felsner & Knauer)

The set of G's 2-orientations is connected by flipping oriented Cy's.

Proof
» Consider two 2-orientations
» Differently oriented edges induce an Eulerian:
Vv dT(v) =d (v).
» Induction on nb of cycles



Further Properties

Theorem (Felsner & Knauer)

The set of G's 2-orientations is connected by flipping oriented Cy's.

Proof
» Consider two 2-orientations
» Differently oriented edges induce an Eulerian:
Vv dT(v) =d (v).
» Induction on nb of cycles
» Induction on nb of inner faces
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Setting Shapes
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» Ratios allow proving realizability of a solution.
» V contact system, 3 a corresponding vector (r, ..., rg).
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Theorem (Chalopin and G. '09)

Planar graphs are intersection graphs of segments.

Conjecture (West '91)

Every planar graph has a model in which there are only four
possible slopes.

Open Problem (de Fraysseix et al.)

Does every planar graph G have a model in which there are only
X(G) possible slopes?
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Eulerian Triangulations

Theorem (G. and de Visme '14)

Every Eulerian triangulation has a 3-slope contact system, with
degeneracies.

Two types of faces = +/— face sizes.

Perf. matching in Bip(M).

Closed under Cg flips, but entries in M are positive.
Followed by “Disambiguition Step”.

vV v v VY
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Contact Systems on the Torus

Bipartite Quadrangulations:
> n vertices & n faces & 2n edges.

» One face size is set to avoid scaling.
» One vertex constraint is unnecessary.

But:
> |s there perf. matching in Bip(M) ?
> Are they connected by flipping C4's ?

Probably not
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Contact Systems of Homothetic Triangles

» Pb: 3sides # +/- possibility



Thanks !
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