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Efficiency
complexity of the coding
and decoding procedure

Effective approach, encode separetely :
» Vertex coordinates

» Combinatorial structure (i.e. the planar triangulation here)
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Encoding - Poulalhon, Schaeffer (2003)

1010011001000000001100 ~~ 4n bits (n bits 1) ~» 3,25n bits

. 1w10w10wO...
WAHIWEIW OPTIMAL !

Also : linear, bijective, counting, sampling
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~» Generalization to higher genus triangulated surfaces
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Euler's formula in genus g : n—m+f =2-2g

Genus | Triangulation
Plane 0 m=3n—06
Torus 1 m = 3n

-

“Middle paths” creates non-contractible cycles
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Euler's formula in genus g : n—m+f =2-2g

Genus | Triangulation
Plane 0 m=3n—06
Torus 1 m=3n
Double torus 2 m=3n+6
g =3n+6(g—1)

bk

Theorem

Triangulation on a surface —
orientation of the edges such that d*(v) =0 mod 3

Theorem

Triangulation on a surface g > 1 =

orientation of the edges such that d*(v) =0 mod 3, d*(v)

>0
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Characterization

Plane : Schnyder wood <= 3-orientation

Higher genus : Schnyder wood <= (0 mod 3)-orientation ?
False ! c

®

<<
T

Theorem
Schnyder wood <= (0 mod 3)-orientation and
~v(C) = 0 mod 3 for any cycle

Homology ~~ Check « only for a base
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Theorem
Homologous orientations of a map on an orientable surface
+ Fix a face ~~ distributive lattice
=—> Universality !
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Generalization of Poulalhon-Schaeffer to the torus

Obstructions:

~+ Minimal orientation
~» Starting point not in the strict interior of a triangle
~» Orientation with no oriented non-contractible cycle in the dual

~v = 0 for any non-contractible cycle

Theorem Despré, Gongalves, Lévéque (2015)
Applied on the minimal ~p-Schnyder wood, Poulalhon-Schaeffer

algorithm outputs a toroidal spanning unicellular map. o
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2 6 3
5 ;
7
4
3 2
5
1 4
2 6 3

00110110000000100000010000~~ 4n bits (n bits 1) ~~ 3,25n bits

Optimal, linear and bijective !
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To do

» Counting, sampling, etc.

> Bijections for other toroidal maps : d-angulations,
3-connected maps, 4-connected triangulations, etc.

> Higher genus : What is the generalization of ~ property ?

Conjecture

Triangulation on a surface g > 1 —

orientation of the edges such that d*(v) =0 mod 3, d*(v) >0
and no oriented non-contractible cycle in the dual.
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