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Boxicity

d-box: the cartesian product of d intervals [x, y1] X ... X [xg, vg] of R

Definition (Roberts 1969))

The boxicity of a graph G, denoted by box(G), is the smallest d such that G
is the intersection graph of some d-boxes.

The boxicity of a graph

=(V, ) is the smallest k for which there exist k
interval graphs G; = (V, ) 1<

< k, such that E = E; N ...N Ey.
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Subdivided K,

boxicity ©(log log n)
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f_(Theorem (E. 2015))

Graphs with Euler genus g have boxicity O(,/g log g), and some have boxicity
Q(vglog g).

.

f_[Theorem (E. 2015))

Graphs with Euler genus g without non-contractible cycles of length at most
40 - 28 have boxicity at most 5.

.
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BoOXICITY AND ACYCLIC COLORING

A proper coloring is acyclic if any two color classes induce a forest.

Theorem (E., Joret 2013))
If a graph G has an acyclic coloring with k colors, then box(G) < k(k — 1). ]

vertices
colored j or j  the rest
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k(k — 1) supergraphs of boxicity 1 (=interval graphs),

containing every non-edge of G
= box(G) < k(k — 1)
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Theorem (Kawarabayashi, Thomassen 2012))

If a graph G has Euler genus g, then there is a set A of O(g) vertices such
that G — A has an acyclic coloring with 7 colors.

acyclic col. with 7 colors O(g) vertices

@0@?@

box < 42 box = O(y/glogg) ?
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+ We may assume that all orange O(g) vertices

vertices have distinct blue neighborhoods
+ stable set instead of clique

= the graph has O(g*) vertices and is O(,/g)-degenerate

If a graph G with n vertices is k-degenerate, then box(G) = O(k log n).
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Theorem (Adiga, Bhowmick, Chandran, 2011))
box(G,) = Q(n) (consequence of Erdds, Kierstead, Trotter, 1991)

It follows that box(G,) = Q(\/glog g).
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Theorem (E. 2015))

Graphs with genus g, without non-contractible cycles of length at most 40 - 28,
have boxicity at most 7.

4 the neighbors of C

Boxicity 3 Boxicity 3 Boxicity 1
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Theorem (E. 2015))

For any proper minor-closed class F, there is an integer g = g(F) such that
any graph of F of girth at least g has boxicity at most 3.

Theorem (Galluccio Goddyn Hell. 2001))

For any proper minor-closed class F, there is an integer g = g(F) such that
any graph of F of girth at least g has a vertex of degree at most one or a path
with 5 internal vertices of degree 2.

Theorem (E. 2015))

There is a constant ¢ such that any graph of Euler genus g and girth at least
c log g has boxicity at most 3.
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OPEN PROBLEMS

@ What is the boxicity of K;-minor-free graphs? (somewhere between
Q(ty/logt) and t*(log t)?)

@ What is the boxicity of toroidal graphs? (somewhere between 4 and 6)

@ Is it true that locally planar graphs have boxicity at most 37

@ Is it true that if G has Euler genus g, then O(g) vertices can be removed
from G so that the resulting graph has boxicity at most 37 (it is true with 5
instead of 3)
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@ Outerplanar graphs have boxicity at most 2 (Scheinerman 1984).
#(G) =2 < G is outerplanar

@ Planar graphs have boxicity at most 3 (Thomassen 1986).
u(G) =3 < G is planar

o Graphs of Euler genus g have boxicity O(,/g logg) (E. 2015).
n(G)<g+3

o Graphs with treewidth k have boxicity at most k + 1 (Chandran, Sivadasan
2007). pu(G) < k+1

The relation with acyclic coloring yields box(G) < u(G)*(log 1(G))? for any graph
G

The random graphs seen earlier show that there are infinitely many graphs G with

box(G) > p(G)+/log u(G).
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