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Boxicity

d-box: the cartesian product of d intervals [x1, y1]× . . .× [xd , yd ] of R

The boxicity of a graph G , denoted by box(G ), is the smallest d such that G
is the intersection graph of some d-boxes.

Definition (Roberts 1969)
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Boxicity

d-box: the cartesian product of d intervals [x1, y1]× . . .× [xd , yd ] of R

The boxicity of a graph G , denoted by box(G ), is the smallest d such that G
is the intersection graph of some d-boxes.

Definition (Roberts 1969)

The boxicity of a graph G = (V ,E ) is the smallest k for which there exist k
interval graphs Gi = (V ,Ei ), 1 ≤ i ≤ k , such that E = E1 ∩ . . . ∩ Ek .



Graphs with large boxicity

Kn minus a perfect matching



Graphs with large boxicity

Kn minus a perfect matching



Graphs with large boxicity

Kn minus a perfect matching



Graphs with large boxicity

Kn minus a perfect matching

boxicity n/2



Graphs with large boxicity

Subdivided Kn

boxicity Θ(log log n)



Graphs with small boxicity

Outerplanar graphs have boxicity at most 2 (Scheinerman 1984).

Planar graphs have boxicity at most 3 (Thomassen 1986).

Graphs of Euler genus g have boxicity at most 5g + 3 (E., Joret 2013).

Graphs with treewidth k have boxicity at most k + 1 (Chandran, Sivadasan
2007).

Graphs with maximum degree ∆ have boxicity O(∆ log2 ∆) and some have
boxicity Ω(∆ log ∆) (Adiga, Bhowmick, Chandran 2011).

Graphs with Euler genus g have boxicity O(
√
g log g), and some have boxicity

Ω(
√
g log g).

Theorem (E. 2015)

Graphs with Euler genus g without non-contractible cycles of length at most
40 · 2g have boxicity at most 5.

Theorem (E. 2015)
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Boxicity and acyclic coloring

A proper coloring is acyclic if any two color classes induce a forest.

If a graph G has an acyclic coloring with k colors, then box(G ) ≤ k(k − 1).

Theorem (E., Joret 2013)

the rest
vertices

colored i or j

k(k − 1) supergraphs of boxicity 1 (=interval graphs),

containing every non-edge of G

⇒ box(G ) ≤ k(k − 1)
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Boxicity of graphs on surfaces

If a graph G has Euler genus g , then there is a set A of O(g) vertices such
that G − A has an acyclic coloring with 7 colors.

Theorem (Kawarabayashi, Thomassen 2012)

acyclic col. with 7 colors O(g) vertices

K K

=

∩
box ≤ 42 box = O(

√
g log g) ?



Boxicity of graphs on surfaces

O(g) vertices

K



Boxicity of graphs on surfaces

O(g) vertices

K



Boxicity of graphs on surfaces

O(g) vertices

K

+ We may assume that all orange
vertices have distinct blue neighborhoods



Boxicity of graphs on surfaces

O(g) vertices

S

+ We may assume that all orange
vertices have distinct blue neighborhoods

+ stable set instead of clique



Boxicity of graphs on surfaces

O(g) vertices

S

+ We may assume that all orange
vertices have distinct blue neighborhoods

+ stable set instead of clique

⇒ the graph has O(g 4) vertices



Boxicity of graphs on surfaces

O(g) vertices

S

+ We may assume that all orange
vertices have distinct blue neighborhoods

+ stable set instead of clique

⇒ the graph has O(g 4) vertices and is O(
√
g)-degenerate



Boxicity of graphs on surfaces

O(g) vertices

S

+ We may assume that all orange
vertices have distinct blue neighborhoods

+ stable set instead of clique

⇒ the graph has O(g 4) vertices and is O(
√
g)-degenerate

If a graph G with n vertices is k-degenerate, then box(G ) = O(k log n).

Theorem (Adiga, Chandran, Mathew 2014)
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Lower bound

Consider the following
random bipartite graph Gn:

n vertices n vertices

each edge
with

1
log n

with high probability,

Gn has at most 2n2

log n edges

and then genus at most 2n2

log n + 2

probability

box(Gn) = Ω(n) (consequence of Erdős, Kierstead, Trotter, 1991)

Theorem (Adiga, Bhowmick, Chandran, 2011)

It follows that box(Gn) = Ω(
√
g log g).
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Graphs with genus g , without non-contractible cycles of length at most 40 · 2g ,
have boxicity at most 7.

Theorem (E. 2015)
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R

=

∩ ∩ C

N
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Graphs with large girth

For any proper minor-closed class F , there is an integer g = g(F) such that
any graph of F of girth at least g has boxicity at most 3.

Theorem (E. 2015)

For any proper minor-closed class F , there is an integer g = g(F) such that
any graph of F of girth at least g has a vertex of degree at most one or a path
with 5 internal vertices of degree 2.

Theorem (Galluccio Goddyn Hell. 2001)

There is a constant c such that any graph of Euler genus g and girth at least
c log g has boxicity at most 3.

Theorem (E. 2015)



Open problems

What is the boxicity of Kt-minor-free graphs? (somewhere between
Ω(t
√

log t) and t4(log t)2)

What is the boxicity of toroidal graphs? (somewhere between 4 and 6)

Is it true that locally planar graphs have boxicity at most 3?

Is it true that if G has Euler genus g , then O(g) vertices can be removed
from G so that the resulting graph has boxicity at most 3? (it is true with 5
instead of 3)
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The Colin de Verdière invariant

µ(G ) relates to the multiplicity of the second largest eigenvalue of the adjacency
matrix of G , where the entries corresponding to the edges of G can take any
positive value (+ extra conditions).

Outerplanar graphs have boxicity at most 2 (Scheinerman 1984).
µ(G ) = 2⇔ G is outerplanar

Planar graphs have boxicity at most 3 (Thomassen 1986).
µ(G ) = 3⇔ G is planar

Graphs of Euler genus g have boxicity O(
√
g log g) (E. 2015).

µ(G ) ≤ g + 3

Graphs with treewidth k have boxicity at most k + 1 (Chandran, Sivadasan
2007). µ(G ) ≤ k + 1

The relation with acyclic coloring yields box(G ) ≤ µ(G )4(logµ(G ))2 for any graph
G .
The random graphs seen earlier show that there are infinitely many graphs G with
box(G ) ≥ µ(G )

√
logµ(G ).
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