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Quadrangulations of surfaces
Definition
A quadrangulation of a surface Σ is an embedding of a simple
graph G in Σ such that every face is bounded by 4 edges.



Projective quadrangulations

I The (real) projective plane is the non-orientable surface
obtained from a unit disc by identifying all pairs of
antipodal points on the boundary.

I Equivalently, by identifying all pairs of antipodal points in
the sphere.

I A projective quadrangulation is a graph embedded in the
projective plane so that the boundary of every face is a
4-cycle.
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Edge- and face-width of embedded graphs

Edge-width Face-width
Minimum length of a non-
contractible cycle in G

Minimum number of points
that γ and G have in
common, over all non-
contractible closed curves γ

ew(G) = 5 fw(G) = 3



Parity of cycles in quadrangulations

Observation
In every quadrangulation of a surface, homologous cycles have
the same parity.

Lemma
In every quadrangulation of the projective plane, the
non-bounding cycles are odd if and only if G is non-bipartite.
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Odd cycles in projective quadrangulations

Key property of the projective plane
Two non-contractible simple closed curves in the projective plane
intersect an odd number of times.

Corollary
If G is a non-bipartite projective quadrangulation, any two odd
cycles must intersect.



Colouring projective quadrangulations

K4 K3,3 Grötzsch graph

Theorem (Youngs 1996)
If G is a quadrangulation of the real projective plane P2, then
χ(G) = 2 or χ(G) = 4. Moreover, G is 4-edge-critical if and only
if G has no separating 4-cycle.
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A question of Nakamoto and Ozeki

If G is a non-bipartite
projective quadrangulation, is
there a 4-colouring of G such
that one colour class has size
1 and another has size o(n)?



Example



A first approach

Weaker question
If G is a non-bipartite projective quadrangulation, is there an
odd cycle transversal of length o(n)?

The Koebe–Andreev–Thurston Theorem
I For every planar 3-connected graph, there is a

representation as the graph of a 3-polytope whose edges are
all tangent to the unit sphere S2 ⊂ R3, and such that 0 is
the barycentre of the contact points.

I This representation is unique up to rotations and reflections
of the polytope in R3.

I In particular, in this representation every combinatorial
symmetry of the graph is realised by a symmetry of the
polytope.



Example

(picture by David Eppstein)



Upper bound on face-width via circle packing (1/2)

I Represent G as an antipodally symmetric quadrangulation
G̃ of the sphere with 2n vertices.

I By the Koebe–Andreev–Thurston Theorem, there is a
3-polytope P whose edges are all tangent to the sphere,
such that the 1-skeleton of P is isomorphic to G̃, and the
polytope P is antipodally symmetric.

I This gives rise to an antipodally symmetric packing of
spherical caps C = (Cv : v ∈ Ṽ ), where each Cv is the
spherical cap consisting of all the points on the unit sphere
that are “visible” from v.

I Let ρv be the spherical radius of Cv.
I A random plane through the centre of the sphere intersects∑

v∈V sin ρv caps.



Upper bound on face-width via circle packing (2/2)

I The cap Cv has area 4π sin2 ρv
2 .

I The caps are disjoint, so
∑

v∈V 4π sin2 ρv
2 < 4π

I It follows that
∑

v∈V sin ρv < 2
√

2n.
I Hence there is a plane thought the centre of the sphere

intersecting less than 2
√

2n caps.
I These caps correspond to an antipodally symmetric

separator S̃ ⊆ Ṽ of G̃ of size less than 2
√

2n.
I Identifying the antipodal points in S̃ gives a subset S ⊆ V of

size less than
√

2n such that G − S is planar.
I Since every cycle in G − S is even, S is an odd cycle

transversal of size at most
√

2n.
I Hence fw(G) <

√
2n.



What about edge-width?
I More detailed analysis gives:

Theorem
Let G be a non-bipartite projective quadrangulation on n vertices.
Then fw(G) ≤ (1 + o(1))

√
πn√

3
≈ 1.347

√
n.

I Using the fact that ew(G) ≤ 2 fw(G)− 1:

Corollary
Let G be a non-bipartite projective quadrangulation on n vertices.
Then ew(G) ≤ (2 + o(1))

√
2πn√

3
≈ 2.694

√
n.
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A min–max theorem

Theorem (Lins 1981)
Let G = (V ,E) be a graph embedded in the projective plane with
all faces bounded by an even number of edges. Then the length
of a shortest non-contractible cycle is equal to the maximum size
of a packing of non-contractible co-cycles.

Corollary
Let G = (V ,E) be a graph embedded in the projective plane with
all faces bounded by an even number of edges, with a shortest
non-contractible cycle of length ` and a shortest non-contractible
cycle of length `∗ in its dual graph G∗. Then |E| ≥ ` · `∗.
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The edge-width of projective quadrangulations

Theorem (Esperet, S. 2015+)
Let G be a non-bipartite projective quadrangulation on n vertices.
Then ew(G) ≤ 1

2(1 +
√

8n − 7).

Proof.
I Let C∗ be shortest non-contractible cycle in G∗, of length `∗.
I This gives rise to a cycle in the planar representation of G of

length 2`∗ + 2.

I Hence, ` ≤ `∗ + 1.
I By Lins and Euler, `(`− 1) ≤ ` · `∗ ≤ m = 2n − 2.
I It follows that ` ≤ 1

2(1 +
√

8n − 7).



The (generalised) Mycielski construction Mr(G)

M1(C5)



The (generalised) Mycielski construction Mr(G)

M2(C5)



The (generalised) Mycielski construction Mr(G)

M3(C5)



The (generalised) Mycielski construction Mr(G)

M4(C5)



The bound is tight!

M1(C3) M2(C5) M3(C7)

I The graph Mk(C2k+1) is a projective quadrangulation with
n = k(2k + 1) + 1 vertices and odd girth ` = 2k + 1.

I Hence `(`− 1) = 2n − 2, so ` = 1
2(1 +

√
8n − 7).



Graphs without two vertex-disjoint odd cycles

Theorem (Lovász ~1990; Kawarabayashi and Ozeki 2013)
Let G be an internally 4-connected graph. Then G has no two
vertex-disjoint odd cycles if and only if G satisfies one of the
following conditions:

1. G − v is bipartite, for some v ∈ V (G);
2. G − {e1, e2, e3} is bipartite for some edges e1, e2, e3 ∈ E(G)

such that e1, e2, e3 form a triangle;
3. |V (G)| ≤ 5;
4. G can be embedded into the projective plane so that every

face boundary has even length.

Theorem (Esperet, S. 2015+)
Let G be a 4-chromatic graph on n vertices without two
vertex-disjoint odd cycles. Then G contains an odd cycle of
length at most 1

2(1 +
√

8n − 7).



Related questions

Question (Erdős 1974)
Is there is a constant c such that every n-vertex 4-chromatic
graph has an odd cycle of length at most c

√
n?

I Kierstead, Szemerédi and Trotter 1984: YES, c ≤ 8.
I Nilli 1999: c ≤

√
8

I Jiang 2001: c ≤ 2
I Gallai 1963: c > 1
I Ngoc and Tuza 1995, Youngs 1996: c >

√
2 (using

generalised Mycielski graphs).

Open question (Esperet, S. 2015+)
Does every n-vertex 4-chromatic graph contain an odd cycle of
length at most 1

2(1 +
√

8n − 7)?



Back to face-width. . .

I Recall that every odd cycle in a non-bipartite projective
quadrangulation is an odd cycle transversal.

I So fw(G) ≤ ew(G).
I Our bound on face-width using circle packing is better

(though not by much. . . )



Minimal graphs of given face-width

Definition
A (multi)graph G embedded in a surface is minimal with respect
to the face-width if contracting or deleting any edge decreases
the face-width.

Theorem (Randby 1997)
For any integer k, if a multigraph embedded in the projective
plane is minimal of face-width k, then it contains exactly 2k2 − k
edges.



Face-width of projective quadrangulations

Theorem (Esperet, S. 2015+)
Let G be a non-bipartite projective quadrangulation on n vertices.

Then fw(G) ≤ 1
4 +

√
n − 15

16 .

Proof.
I Let G be a non-bipartite projective quadrangulation on n

vertices.
I By Euler’s formula, G has m = 2n − 2 edges.
I Let k be the face-width of G.
I Delete or contract edges of G until we obtain a (multi)graph

H that is minimal with face-width k.
I H has at most m = 2n − 2 edges by construction, and

exactly 2k2 − k edges by Randby’s theorem.

I Hence 2k2 − k ≤ 2n − 2 and so k ≤ 1
4 +

√
n − 15

16 .



Extension to graphs without two vertex-disjoint odd
cycles

I Using the characterisation of graphs without two
vertex-disjoint odd cycles:

Theorem (Esperet, S. 2015+)
Let G be a 4-vertex-critical graph on n vertices without two
vertex-disjoint odd cycles. Then G has an odd cycle transversal

of size at most 1
4 +

√
n − 15

16 .

I We were unable to extend it to all 4-chromatic graphs
without two vertex-disjoint odd cycles



The bound is almost sharp. . .

Theorem (Esperet, S. 2015+)
There are infinitely many values of n for which there are
non-bipartite projective quadrangulations on n vertices
containing no odd cycle transversal of size less than

√
n.



Proof by picture
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A partial answer to Nakamoto and Ozeki’s question

Theorem (Esperet, S. 2015+)
Let G be a non-bipartite projective quadrangulation on n
vertices, with maximum degree ∆. Then G has an odd cycle
transversal of size at most

√
2∆n inducing a single edge.


