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Quadrangulations of surfaces

Definition
A quadrangulation of a surface X is an embedding of a simple
graph G in ¥ such that every face is bounded by 4 edges.



Projective quadrangulations

» The (real) projective plane is the non-orientable surface
obtained from a unit disc by identifying all pairs of
antipodal points on the boundary.
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Projective quadrangulations

» The (real) projective plane is the non-orientable surface
obtained from a unit disc by identifying all pairs of
antipodal points on the boundary.

» Equivalently, by identifying all pairs of antipodal points in
the sphere.

» A projective quadrangulation is a graph embedded in the
projective plane so that the boundary of every face is a
4-cycle.



Edge- and face-width of embedded graphs

Edge-width Face-width
Minimum length of a non- Minimum number of points
contractible cycle in G that v and G have in

common, over all non-
contractible closed curves -y



Parity of cycles in quadrangulations

Observation
In every quadrangulation of a surface, homologous cycles have
the same parity.

Lemma
In every quadrangulation of the projective plane, the
non-bounding cycles are odd if and only if G is non-bipartite.
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Odd cycles in projective quadrangulations

Key property of the projective plane

Two non-contractible simple closed curves in the projective plane
intersect an odd number of times.

Corollary

If G is a non-bipartite projective quadrangulation, any two odd
cycles must intersect.
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Colouring projective quadrangulations

Ky Ks 3 Grotzsch graph

Theorem (Youngs 1996)

If G is a quadrangulation of the real projective plane P2, then
X(G) = 2 or x(G) = 4. Moreover, G is 4-edge-critical if and only
if G has no separating 4-cycle.



A question of Nakamoto and Ozeki

If G is a non-bipartite
projective quadrangulation, is
there a 4-colouring of G such
that one colour class has size

1 and another has size o(n)?
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A first approach

Weaker question

If G is a non-bipartite projective quadrangulation, is there an
odd cycle transversal of length o(n)?

The Koebe-Andreev-Thurston Theorem

» For every planar 3-connected graph, there is a
representation as the graph of a 3-polytope whose edges are
all tangent to the unit sphere S? C R2, and such that 0 is
the barycentre of the contact points.

» This representation is unique up to rotations and reflections
of the polytope in R3.

» In particular, in this representation every combinatorial
symmetry of the graph is realised by a symmetry of the
polytope.



Example

(picture by David Eppstein)



Upper bound on face-width via circle packing (1/2)

> Represent G as an antipodally symmetric quadrangulation
G of the sphere with 2n vertices.

» By the Koebe-Andreev-Thurston Theorem, there is a
3-polytope P whose edges are all tangent to the sphere,
such that the 1-skeleton of P is isomorphic to G, and the
polytope P is antipodally symmetric.

» This gives rise to an antipodally symmetric packing of
spherical caps C = (C, : v € V), where each C, is the
spherical cap consisting of all the points on the unit sphere
that are “visible” from v.

» Let p, be the spherical radius of C,,.
» A random plane through the centre of the sphere intersects

Y vey Sinp, caps.



Upper bound on face-width via circle packing (2/2)

> The cap C, has area 47 sin® £.

» The caps are disjoint, so ) . 47 sin? & <4r

> It follows that }_ ., sin p, < 2v/2n.

» Hence there is a plane thought the centre of the sphere
intersecting less than 2v/2n caps.

» These caps correspond to an antipodally symmetric
separator S C V of G of size less than 2v/2n.

» Identifying the antipodal points in S gives a subset S C V of
size less than v/2n such that G — S is planar.

» Since every cycle in G — S is even, S is an odd cycle
transversal of size at most \/271

» Hence fw(G) < v/2n.



What about edge-width?

» More detailed analysis gives:

Theorem
Let G be a non-bipartite projective quadrangulation on n vertices.

Then fw(G) < (1+ o(1)) % ~ 1.347/n.



What about edge-width?

» More detailed analysis gives:

Theorem
Let G be a non-bipartite projective quadrangulation on n vertices.

Then fw(G) < (1+ o(1)) % ~ 1.347/n.

» Using the fact that ew(G) < 2 fw(G) — 1:

Corollary
Let G be a non-bipartite projective quadrangulation on n vertices.

Then ew(G) < (2 4 o(1)) 2%1 ~ 2.694,/n.



A min-max theorem

Theorem (Lins 1981)

Let G = (V, E) be a graph embedded in the projective plane with
all faces bounded by an even number of edges. Then the length
of a shortest non-contractible cycle is equal to the maximum size
of a packing of non-contractible co-cycles.
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Theorem (Lins 1981)
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Let G = (V,E) be a graph embedded in the projective plane with
all faces bounded by an even number of edges, with a shortest
non-contractible cycle of length ¢ and a shortest non-contractible
cycle of length ¢* in its dual graph G*. Then |E| > (- (*.

Corollary



The edge-width of projective quadrangulations

Theorem (Esperet, S. 2015+)

Let G be a non-bipartite projective quadrangulation on n vertices.

Then ew(G) < 3(1++/8n—7).
Proof.

» Let C* be shortest non-contractible cycle in G*, of length /*.

» This gives rise to a cycle in the planar representation of G of
length 20* 4 2.

» Hence, ¢ < /* + 1.
» By Lins and Euler, {/({ — 1) < /(- ¢* <m =2n— 2.
> It follows that £ < 2(1+ /8n— 7). O



The (generalised) Mycielski construction M,(G)

Ml(C5)



The (generalised) Mycielski construction M,(G)

Ms(Cs)



The (generalised) Mycielski construction M,(G)




The (generalised) Mycielski construction M,(G)

NS
‘4';‘4;‘4'»&.
T

eve e ol




The bound is tight!

®@@

M; (Cs)

» The graph M (Cai+1) is a projective quadrangulation with
= k(2k + 1) + 1 vertices and odd girth ¢ = 2k + 1.

» Hence /({ — 1) =2n—2,s0 (= 3(1+/8n—7).



Graphs without two vertex-disjoint odd cycles

Theorem (Lovasz ~1990; Kawarabayashi and Ozeki 2013)
Let G be an internally 4-connected graph. Then G has no two
vertex-disjoint odd cycles if and only if G satisfies one of the
following conditions:
1. G — v is bipartite, for some v € V(G);
2. G — {e1, ey, e3} is bipartite for some edges ej, s, e3 € E(G)
such that e, ey, es form a triangle;
3. |V(G)| < 5;
4. G can be embedded into the projective plane so that every
face boundary has even length.

Theorem (Esperet, S. 2015+)

Let G be a 4-chromatic graph on n vertices without two
vertex-disjoint odd cycles. Then G contains an odd cycle of
length at most 5 (1 + v/8n— 7).



Related questions

Question (Erdés 1974)

Is there is a constant c such that every n-vertex 4-chromatic
graph has an odd cycle of length at most ¢/n?

v

Kierstead, Szemerédi and Trotter 1984: YES, ¢ < 8.
Nilli 1999: ¢ < /8
Jiang 2001: ¢ < 2
Gallai 1963: ¢ > 1

Ngoc and Tuza 1995, Youngs 1996: c > V2 (using
generalised Mycielski graphs).
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Open question (Esperet, S. 2015+)

Does every n-vertex 4-chromatic graph contain an odd cycle of

length at most 1 (1 + v/8n — 7)?



Back to face-width. . .

> Recall that every odd cycle in a non-bipartite projective
quadrangulation is an odd cycle transversal.

» So fw(G) < ew(G).

» Our bound on face-width using circle packing is better
(though not by much. . .)



Minimal graphs of given face-width

Definition

A (multi)graph G embedded in a surface is minimal with respect
to the face-width if contracting or deleting any edge decreases
the face-width.

Theorem (Randby 1997)

For any integer Ik, if a multigraph embedded in the projective
plane is minimal of face-width k, then it contains exactly 2k? — k
edges.



Face-width of projective quadrangulations

Theorem (Esperet, S. 2015+)
Let G be a non-bipartite projective quadrangulation on n vertices.

Then fw(G) < 1+ /n— 2.

Proof.
> Let G be a non-bipartite projective quadrangulation on n
vertices.
» By Euler’s formula, G has m = 2n — 2 edges.
> Let k be the face-width of G.

» Delete or contract edges of G until we obtain a (multi)graph
H that is minimal with face-width k.

» H has at most m = 2n — 2 edges by construction, and
exactly 2k? — k edges by Randby’s theorem.

>Hence2k2—k§2n—2andsok§i+\/@' .



Extension to graphs without two vertex-disjoint odd
cycles

» Using the characterisation of graphs without two
vertex-disjoint odd cycles:

Theorem (Esperet, S. 2015+)

Let G be a 4-vertex-critical graph on n vertices without two
vertex-disjoint odd cycles. Then G has an odd cycle transversal

ofsizeatmosti—{—\/n—i—‘r’.

» We were unable to extend it to all 4-chromatic graphs
without two vertex-disjoint odd cycles



The bound is almost sharp. ..

Theorem (Esperet, S. 2015+)

There are infinitely many values of n for which there are
non-bipartite projective quadrangulations on n vertices
containing no odd cycle transversal of size less than /n.
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Proof by picture
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Proof by picture
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Proof by picture
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Proof by picture
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Proof by picture
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Proof by picture
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A partial answer to Nakamoto and Ozeki’s question

Theorem (Esperet, S. 2015+)

Let G be a non-bipartite projective quadrangulation on n
vertices, with maximum degree A. Then G has an odd cycle
transversal of size at most v/2An inducing a single edge.



