Edge- and face-width of projective quadrangulations

Louis Esperet, Matěj Stehlík

G-SCOP

Journées Graphes & Surfaces 3/2/2016

Quadrangulations of surfaces

Definition

A quadrangulation of a surface Σ is an embedding of a simple graph G in Σ such that every face is bounded by 4 edges.

Projective quadrangulations

The (real) projective plane is the non-orientable surface obtained from a unit disc by identifying all pairs of antipodal points on the boundary.

Projective quadrangulations

- The (real) projective plane is the non-orientable surface obtained from a unit disc by identifying all pairs of antipodal points on the boundary.
- Equivalently, by identifying all pairs of antipodal points in the sphere.

Projective quadrangulations

- The (real) projective plane is the non-orientable surface obtained from a unit disc by identifying all pairs of antipodal points on the boundary.
- Equivalently, by identifying all pairs of antipodal points in the sphere.
- A projective quadrangulation is a graph embedded in the projective plane so that the boundary of every face is a 4-cycle.

Edge- and face-width of embedded graphs

Edge-width Minimum length of a non- Minimum number of points contractible cycle in G

Face-width

that γ and G have in over all noncommon, contractible closed curves γ

Parity of cycles in quadrangulations

Observation

In every quadrangulation of a surface, homologous cycles have the same parity.

Lemma

In every quadrangulation of the projective plane, the non-bounding cycles are odd if and only if *G* is non-bipartite.

Parity of cycles in quadrangulations

Observation

In every quadrangulation of a surface, homologous cycles have the same parity.

Lemma

In every quadrangulation of the projective plane, the non-bounding cycles are odd if and only if *G* is non-bipartite.

Odd cycles in projective quadrangulations

Key property of the projective plane

Two non-contractible simple closed curves in the projective plane intersect an odd number of times.

Corollary

If *G* is a non-bipartite projective quadrangulation, any two odd cycles must intersect.

Colouring projective quadrangulations

 K_4

 $K_{3,3}$

Grötzsch graph

Colouring projective quadrangulations

 K_4

 $K_{3,3}$

Grötzsch graph

Theorem (Youngs 1996)

If *G* is a quadrangulation of the real projective plane P^2 , then $\chi(G) = 2$ or $\chi(G) = 4$. Moreover, *G* is 4-edge-critical if and only if *G* has no separating 4-cycle.

A question of Nakamoto and Ozeki

If *G* is a non-bipartite projective quadrangulation, is there a 4-colouring of *G* such that one colour class has size 1 and another has size o(n)?

Example

A first approach

Weaker question

If *G* is a non-bipartite projective quadrangulation, is there an odd cycle transversal of length o(n)?

The Koebe-Andreev-Thurston Theorem

- ▶ For every planar 3-connected graph, there is a representation as the graph of a 3-polytope whose edges are all tangent to the unit sphere $S^2 \subset \mathbb{R}^3$, and such that 0 is the barycentre of the contact points.
- ► This representation is unique up to rotations and reflections of the polytope in ℝ³.
- In particular, in this representation every combinatorial symmetry of the graph is realised by a symmetry of the polytope.

Example

(picture by David Eppstein)

Upper bound on face-width via circle packing (1/2)

- Represent *G* as an antipodally symmetric quadrangulation \tilde{G} of the sphere with 2n vertices.
- ▶ By the Koebe–Andreev–Thurston Theorem, there is a 3-polytope *P* whose edges are all tangent to the sphere, such that the 1-skeleton of *P* is isomorphic to G̃, and the polytope *P* is antipodally symmetric.
- ▶ This gives rise to an antipodally symmetric packing of spherical caps $C = (C_v : v \in \tilde{V})$, where each C_v is the spherical cap consisting of all the points on the unit sphere that are "visible" from *v*.
- Let ρ_v be the spherical radius of C_v .
- A random plane through the centre of the sphere intersects $\sum_{v \in V} \sin \rho_v$ caps.

Upper bound on face-width via circle packing (2/2)

- The cap C_v has area $4\pi \sin^2 \frac{\rho_v}{2}$.
- The caps are disjoint, so $\sum_{v \in V} 4\pi \sin^2 \frac{\rho_v}{2} < 4\pi$
- It follows that $\sum_{v \in V} \sin \rho_v < 2\sqrt{2n}$.
- Hence there is a plane thought the centre of the sphere intersecting less than $2\sqrt{2n}$ caps.
- These caps correspond to an antipodally symmetric separator $\tilde{S} \subseteq \tilde{V}$ of \tilde{G} of size less than $2\sqrt{2n}$.
- Identifying the antipodal points in S̃ gives a subset S ⊆ V of size less than √2n such that G − S is planar.
- Since every cycle in G S is even, S is an odd cycle transversal of size at most $\sqrt{2n}$.
- Hence $fw(G) < \sqrt{2n}$.

What about edge-width?

More detailed analysis gives:

Theorem

Let *G* be a non-bipartite projective quadrangulation on *n* vertices. Then $\text{fw}(G) \leq (1 + o(1)) \sqrt{\frac{\pi n}{\sqrt{3}}} \approx 1.347 \sqrt{n}$.

What about edge-width?

More detailed analysis gives:

Theorem

Let *G* be a non-bipartite projective quadrangulation on *n* vertices. Then $\text{fw}(G) \leq (1 + o(1)) \sqrt{\frac{\pi n}{\sqrt{3}}} \approx 1.347 \sqrt{n}$.

• Using the fact that $ew(G) \le 2 fw(G) - 1$:

Corollary

Let *G* be a non-bipartite projective quadrangulation on *n* vertices. Then $\text{ew}(G) \leq (2 + o(1))\sqrt{\frac{2\pi n}{\sqrt{3}}} \approx 2.694\sqrt{n}$.

A min-max theorem

Theorem (Lins 1981)

Let G = (V, E) be a graph embedded in the projective plane with all faces bounded by an even number of edges. Then the length of a shortest non-contractible cycle is equal to the maximum size of a packing of non-contractible co-cycles.

A min-max theorem

Theorem (Lins 1981)

Let G = (V, E) be a graph embedded in the projective plane with all faces bounded by an even number of edges. Then the length of a shortest non-contractible cycle is equal to the maximum size of a packing of non-contractible co-cycles.

A min-max theorem

Theorem (Lins 1981)

Let G = (V, E) be a graph embedded in the projective plane with all faces bounded by an even number of edges. Then the length of a shortest non-contractible cycle is equal to the maximum size of a packing of non-contractible co-cycles.

Corollary

Let G = (V, E) be a graph embedded in the projective plane with all faces bounded by an even number of edges, with a shortest non-contractible cycle of length ℓ and a shortest non-contractible cycle of length ℓ^* in its dual graph G^* . Then $|E| \ge \ell \cdot \ell^*$.

The edge-width of projective quadrangulations

Theorem (Esperet, S. 2015+)

Let *G* be a non-bipartite projective quadrangulation on *n* vertices. Then $ew(G) \leq \frac{1}{2}(1 + \sqrt{8n-7})$.

Proof.

- Let C^* be shortest non-contractible cycle in G^* , of length ℓ^* .
- ► This gives rise to a cycle in the planar representation of G of length 2ℓ* + 2.

- Hence, $\ell \leq \ell^* + 1$.
- ▶ By Lins and Euler, $\ell(\ell 1) \leq \ell \cdot \ell^* \leq m = 2n 2$.
- It follows that $\ell \leq \frac{1}{2}(1 + \sqrt{8n-7})$.

 $M_1(C_5)$

 $M_2(C_5)$

 $M_3(C_5)$

 $M_4(C_5)$

The bound is tight!

- ► The graph M_k(C_{2k+1}) is a projective quadrangulation with n = k(2k + 1) + 1 vertices and odd girth ℓ = 2k + 1.
- Hence $\ell(\ell 1) = 2n 2$, so $\ell = \frac{1}{2}(1 + \sqrt{8n 7})$.

Graphs without two vertex-disjoint odd cycles

Theorem (Lovász ~1990; Kawarabayashi and Ozeki 2013)

Let *G* be an internally 4-connected graph. Then *G* has no two vertex-disjoint odd cycles if and only if *G* satisfies one of the following conditions:

- 1. G v is bipartite, for some $v \in V(G)$;
- 2. $G \{e_1, e_2, e_3\}$ is bipartite for some edges $e_1, e_2, e_3 \in E(G)$ such that e_1, e_2, e_3 form a triangle;
- **3.** $|V(G)| \leq 5;$
- 4. *G* can be embedded into the projective plane so that every face boundary has even length.

Theorem (Esperet, S. 2015+)

Let *G* be a 4-chromatic graph on *n* vertices without two vertex-disjoint odd cycles. Then *G* contains an odd cycle of length at most $\frac{1}{2}(1 + \sqrt{8n-7})$.

Related questions

Question (Erdős 1974)

Is there is a constant *c* such that every *n*-vertex 4-chromatic graph has an odd cycle of length at most $c\sqrt{n}$?

- ▶ Kierstead, Szemerédi and Trotter 1984: YES, $c \le 8$.
- Nilli 1999: $c \leq \sqrt{8}$
- ▶ Jiang 2001: $c \le 2$
- ▶ Gallai 1963: *c* > 1
- ► Ngoc and Tuza 1995, Youngs 1996: c > √2 (using generalised Mycielski graphs).

Open question (Esperet, S. 2015+)

Does every *n*-vertex 4-chromatic graph contain an odd cycle of length at most $\frac{1}{2}(1 + \sqrt{8n-7})$?

Back to face-width...

- Recall that every odd cycle in a non-bipartite projective quadrangulation is an odd cycle transversal.
- So $fw(G) \leq ew(G)$.
- Our bound on face-width using circle packing is better (though not by much...)

Minimal graphs of given face-width

Definition

A (multi)graph *G* embedded in a surface is *minimal* with respect to the face-width if contracting or deleting any edge decreases the face-width.

Theorem (Randby 1997)

For any integer k, if a multigraph embedded in the projective plane is minimal of face-width k, then it contains exactly $2k^2 - k$ edges.

Face-width of projective quadrangulations

Theorem (Esperet, S. 2015+)

Let *G* be a non-bipartite projective quadrangulation on *n* vertices. Then $\text{fw}(G) \leq \frac{1}{4} + \sqrt{n - \frac{15}{16}}$.

Proof.

- ► Let *G* be a non-bipartite projective quadrangulation on *n* vertices.
- By Euler's formula, *G* has m = 2n 2 edges.
- Let *k* be the face-width of *G*.
- Delete or contract edges of G until we obtain a (multi)graph H that is minimal with face-width k.
- ► *H* has at most *m* = 2*n* − 2 edges by construction, and exactly 2*k*² − *k* edges by Randby's theorem.

• Hence $2k^2 - k \le 2n - 2$ and so $k \le \frac{1}{4} + \sqrt{n - \frac{15}{16}}$.

Extension to graphs without two vertex-disjoint odd cycles

 Using the characterisation of graphs without two vertex-disjoint odd cycles:

Theorem (Esperet, S. 2015+)

Let *G* be a 4-vertex-critical graph on *n* vertices without two vertex-disjoint odd cycles. Then *G* has an odd cycle transversal of size at most $\frac{1}{4} + \sqrt{n - \frac{15}{16}}$.

 We were unable to extend it to all 4-chromatic graphs without two vertex-disjoint odd cycles

The bound is almost sharp...

Theorem (Esperet, S. 2015+)

There are infinitely many values of *n* for which there are non-bipartite projective quadrangulations on *n* vertices containing no odd cycle transversal of size less than \sqrt{n} .

Theorem (Esperet, S. 2015+)

Let *G* be a non-bipartite projective quadrangulation on *n* vertices, with maximum degree Δ . Then *G* has an odd cycle transversal of size at most $\sqrt{2\Delta n}$ inducing a single edge.