Counting planar Eulerian orientations

Nicolas Bonichon Joint work with Claire Pennarun, Mireille Bousquet-Mélou and Paul Dorbec

Egos meeting, Grenoble

Febuary 1st, 2016

- planar rooted maps (in a corner)
- with loops and multiple edges

- planar rooted maps (in a corner)
- with loops and multiple edges

A map *G* is called *Eulerian* if every vertex of *G* has even degree.

- planar rooted maps (in a corner)
- with loops and multiple edges

A map *G* is called *Eulerian* if every vertex of *G* has even degree.

A directed planar map G is called a *planar Eulerian orientation* (*PEO*) if every vertex of G has in-degree and out-degree equal.

- planar rooted maps (in a corner)
- with loops and multiple edges

A map *G* is called *Eulerian* if every vertex of *G* has even degree.

A directed planar map G is called a *planar Eulerian orientation* (*PEO*) if every vertex of G has in-degree and out-degree equal.

COUNTING EULERIAN MAPS

First numbers (with *m* edges): 1, 1, 3, 12, 56, 288, 1584, 9152... [OEIS A000257]

Formula [Tutte]:
$$E(m) = 3\frac{2^{m-1}.C_m}{m+2}$$
, where C_m is the m -th Catalan $= \frac{(2m)!}{m!(m+1)!}$.

PLANAR EULERIAN ORIENTATIONS

How many are there with m edges?

PLANAR EULERIAN ORIENTATIONS

How many are there with *m* edges? First idea: generate all orientations of each Eulerian map!

PLANAR EULERIAN ORIENTATIONS

How many are there with *m* edges? First idea: generate all orientations of each Eulerian map!

But counting the number of planar Eulerian orientations of a given map is #*P*-complete for undirected graphs [Mihail and Winckler 1996].

- add a loop at the root-vertex
- "split" the root-vertex in two + add a new edge
 (*i*-split: split giving *i* edges to the new vertex)

- add a loop at the root-vertex
- "split" the root-vertex in two + add a new edge
 (*i*-split: split giving *i* edges to the new vertex)

- add a loop at the root-vertex
- "split" the root-vertex in two + add a new edge
 (*i*-split: split giving *i* edges to the new vertex)

- add a loop at the root-vertex
- "split" the root-vertex in two + add a new edge (*i*-split: split giving *i* edges to the new vertex)

- add a loop at the root-vertex
- "split" the root-vertex in two + add a new edge (*i*-split: split giving *i* edges to the new vertex)

- add a loop at the root-vertex
- "split" the root-vertex in two + add a new edge
 (*i*-split: split giving *i* edges to the new vertex)
 ⚠ Legal split ⇔ correct orientation of the new edge

- add a loop at the root-vertex
- "split" the root-vertex in two + add a new edge
 (*i*-split: split giving *i* edges to the new vertex)
 ⚠ Legal split ⇔ correct orientation of the new edge

Two possible actions to generate a bigger map:

- add a loop at the root-vertex
- "split" the root-vertex in two + add a new edge
 (*i*-split: split giving *i* edges to the new vertex)
 ⚠ Legal split ⇔ correct orientation of the new edge

→ enough to get all planar Eulerian orientations.

Two possible actions to generate a bigger map:

- add a loop at the root-vertex
- "split" the root-vertex in two + add a new edge
 (*i*-split: split giving *i* edges to the new vertex)
 ⚠ Legal split ⇔ correct orientation of the new edge

→ enough to get all planar Eulerian orientations. Needed: appearance on the outer face + local orientation around the root-vertex

Decorated Grand-Dyck words: encode the orientation of the root-vertex and its appearance on the outer face.

COUNTING WITH GRAND-DYCK PATHS

m	Eul. maps	PEO	meanders	orient. Eul. maps
0	1	1	1	1
1	1	2	2	2
2	3	10	10	12
3	12	66	66	96
4	56	504	504	896

COUNTING WITH GRAND-DYCK PATHS

Eul. maps	PEO	meanders	orient. Eul. maps
1	1	1	1
1	2	2	2
3	10	10	12
12	66	66	96
56	504	504	896
288	4 216	4 210	9 216
1 584	37 548	37 378	101 376
9 152	350 090	346 846	1 171 456
54 912	3 380 520	3 328 188	14 057 472
339 456	33 558 024	32 786 630	173 801 472
2 149 888	340 670 720	329 903 058	2 201 485 312
13 891 584	3 522 993 656	?	28 449 964 032
8 ^m	?	?	16 ^m
_	1 3 12 56 288 1 584 9 152 54 912 339 456 2 149 888 13 891 584	1 1 1 2 3 10 12 66 56 504 288 4 216 1 584 37 548 9 152 350 090 54 912 3 380 520 339 456 33 558 024 2 149 888 340 670 720 13 891 584 3 522 993 656	1 1 1 1 2 2 3 10 10 12 66 66 56 504 504 288 4 216 4 210 1 584 37 548 37 378 9 152 350 090 346 846 54 912 3 380 520 3 328 188 339 456 33 558 024 32 786 630 2 149 888 340 670 720 329 903 058 13 891 584 3 522 993 656 ?

 $[\]rightarrow$ No general formula... Let's try to formalize a decomposition!

$$P_{\mathbf{w}} = \sum_{m>0} a_{\mathbf{w},m} t^m$$

with $a_{\mathbf{w},m}$ the number of PEO of size m with root of type \mathbf{w} .

$$P = 1 + \sum_{\mathbf{w} \in \{0,1\}^+} P_{\mathbf{w}}$$

$$P_{\mathbf{w}} = \begin{cases} \left(\sum_{a \mathbf{u} \bar{a} \mathbf{v} = \mathbf{w}} P_{\mathbf{u}} P_{\mathbf{v}} + \sum_{a \mathbf{v} = \mathbf{w}} P_{\mathbf{u} \mathbf{v}} \right), & \text{if } \mathbf{w} \text{ is balanced,} \\ 0 & \text{otherwise.} \end{cases}$$

$$P_{\mathbf{w}} = \sum_{m>0} a_{\mathbf{w},m} t^m$$

with $a_{\mathbf{w},m}$ the number of PEO of size m with root of type \mathbf{w} .

$$P = 1 + \sum_{\mathbf{w} \in \{0,1\}^+} P_{\mathbf{w}}$$

$$P_{\mathbf{w}} = \begin{cases} \left(\sum_{a \mathbf{u} \bar{a} \mathbf{v} = \mathbf{w}} P_{\mathbf{u}} P_{\mathbf{v}} + \sum_{a \mathbf{v} = \mathbf{w}} P_{\mathbf{u} \mathbf{v}} \right), & \text{if } \mathbf{w} \text{ is balanced,} \\ 0 & \text{otherwise.} \end{cases}$$

$$P_{\mathbf{w}} = \sum_{m>0} a_{\mathbf{w},m} t^m$$

with $a_{\mathbf{w},m}$ the number of PEO of size m with root of type \mathbf{w} .

$$P = 1 + \sum_{\mathbf{w} \in \{0,1\}^+} P_{\mathbf{w}}$$

$$P_{\mathbf{w}} = \begin{cases} \left(\sum_{a \mathbf{u} \bar{a} \mathbf{v} = \mathbf{w}} P_{\mathbf{u}} P_{\mathbf{v}} + \sum_{a \mathbf{v} = \mathbf{w}} P_{\mathbf{u} \mathbf{v}} \right), & \text{if } \mathbf{w} \text{ is balanced,} \\ 0 & \text{otherwise.} \end{cases}$$

$$P_{\mathbf{w}} = \sum_{m>0} a_{\mathbf{w},m} t^m$$

with $a_{\mathbf{w},m}$ the number of PEO of size m with root of type \mathbf{w} .

$$P = 1 + \sum_{\mathbf{w} \in \{0,1\}^+} P_{\mathbf{w}}$$

$$P_{\mathbf{w}} = \begin{cases} \left(\sum_{a\mathbf{u}\bar{a}\mathbf{v} = \mathbf{w}} P_{\mathbf{u}} P_{\mathbf{v}} + \sum_{a\mathbf{v} = \mathbf{w}} P_{\mathbf{u}\mathbf{v}} \right), & \text{if } \mathbf{w} \text{ is balanced,} \\ 0 & \text{otherwise.} \end{cases}$$

Lower bounds and upper bounds

 \rightarrow verify for $3 \le i \le \Delta - 3$ if *i*-split is legal (1-split and ($\Delta - 1$)-split are always legal)

Lower bounds and upper bounds

→ verify for $3 \le i \le \Delta - 3$ if *i*-split is legal (1-split and ($\Delta - 1$)-split are always legal)

Simpler: consider it "done" for the first splits! \rightarrow generate lower/upper bounds

Lower bounds and upper bounds

 \rightarrow verify for $3 \le i \le \Delta - 3$ if *i*-split is legal (1-split and $(\Delta - 1)$ -split are always legal)

Simpler: consider it "done" for the first splits! \rightarrow generate lower/upper bounds

LOWER BOUNDS AND UPPER BOUNDS

→ verify for $3 \le i \le \Delta - 3$ if *i*-split is legal (1-split and $(\Delta - 1)$ -split are always legal)

Simpler: consider it "done" for the first splits! \rightarrow generate lower/upper bounds

Lower bounds and upper bounds

→ verify for $3 \le i \le \Delta - 3$ if *i*-split is legal (1-split and $(\Delta - 1)$ -split are always legal)

Simpler: consider it "done" for the first splits! → generate lower/upper bounds

Last orientations around the root-vertex \rightarrow legality of a split.

F(ull): we know the whole word L(ast): we know the last orientations

F(ull): we know the whole word L(ast): we know the last orientations

$$F_{1010}$$
 C_{001}

For $k = \Delta - 3$, four classes of orientations:

F(ull): we know the whole word L(ast): we know the last orientations

For $k = \Delta - 3$, four classes of orientations:

F(ull): we know the whole word L(ast): we know the last orientations

For $k = \Delta - 3$, four classes of orientations:

How are these classes generated?

$$\begin{split} L_{aab} = L_{bab} = F_{ab} + 2tPEO_{\Delta - 3}(L_{aab} + L_{bab}) + t((L_{aab} + L_{bab}) - F_{ab}) \\ + t((L_{aab} + L_{bab}) - F_{ab} - F_{\Delta = 4} + F_{aabb}) + t(PEO_{\Delta - 3} - 1) \\ L_{aaa} = t(L_{abb} + L_{aaa}) + 2tPEO_{\Delta - 3}L_{aaa} + tL_{aaa} \\ L_{abb} = t(L_{aab} + L_{bab}) + 2tPEO_{\Delta - 3}L_{abb} + tL_{abb} + t(L_{abb} - F_{aabb}) \\ PEO_{\Delta - 3} = L_{aaa} + L_{abb} + L_{aab} + L_{bab} + 1 \end{split}$$

$$\begin{split} L_{aab} = L_{bab} = F_{ab} + 2tPEO_{\Delta - 3}(L_{aab} + L_{bab}) + t((L_{aab} + L_{bab}) - F_{ab}) \\ + t((L_{aab} + L_{bab}) - F_{ab} - F_{\Delta = 4} + F_{aabb}) + t(PEO_{\Delta - 3} - 1) \\ L_{aaa} = t(L_{abb} + L_{aaa}) + 2tPEO_{\Delta - 3}L_{aaa} + tL_{aaa} \\ L_{abb} = t(L_{aab} + L_{bab}) + 2tPEO_{\Delta - 3}L_{abb} + tL_{abb} + t(L_{abb} - F_{aabb}) \\ PEO_{\Delta - 3} = L_{aaa} + L_{abb} + L_{aab} + L_{bab} + 1 \end{split}$$

→ Automating the process to produce a system of equations for all classes.

RESULTS

 $Computation\ with\ Maple\ packages\ combstruct\ and\ Newton GF.$

	growth	1	2	3	4	5	6
Eulerian maps	8 ^m	1	3	12	56	288	1 584
$\inf: k = \Delta - 1$	9.68^{m}	2	10	66	466	3 458	26 650
$\inf: k = \Delta - 3$	10.16^{m}	2	10	66	504	4 008	32 834
$\inf: k = \Delta - 5$	10.51^{m}	2	10	66	504	4 216	36 316
$\inf: k = \Delta - 7$	$\geq 10.69^{m}$	2	10	66	504	4 216	37 548
Eulerian orientations	?	2	10	66	504	4 216	37 548
$\sup: k = \Delta - 3$	12.95^{m}	2	10	66	504	4 234	37 998
$\sup : k = \Delta - 1$	13.06^{m}	2	10	66	506	4 266	38 418
Oriented Eulerian maps	16 ^m	2	12	96	896	9 216	101 376

OPEN QUESTIONS

- Is the generating function of planar Eulerian orientations algebraic?
- Can we find an other (simpler?) decomposition for PEO?

Thank you for your attention!