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CoOUNTING EULERIAN MAPS

First numbers (with m edges): 1, 1, 3, 12, 56, 288, 1584, 9152... [OEIS
A000257]
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PLANAR EULERIAN ORIENTATIONS
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How many are there with m edges?
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How many are there with m edges?
First idea: generate all orientations of each Eulerian map!



PLANAR EULERIAN ORIENTATIONS
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How many are there with m edges?
First idea: generate all orientations of each Eulerian map!

But counting the number of planar Eulerian orientations of a given
map is #P-complete for undirected graphs [Mihail and Winckler 1996].
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(GENERATION OF PLANAR EULERIAN ORIENTATIONS
Two possible actions to generate a bigger map:
e add a loop at the root-vertex

e "split" the root-vertex in two + add a new edge
(i-split: split giving i edges to the new vertex)
A\ Legal split < correct orientation of the new edge

A

— enough to get all planar Eulerian orientations.
Needed: appearance on the outer face + local orientation around the
root-vertex



GRAND-DYCK ENCODING

Decorated Grand-Dyck words: encode the orientation of the
root-vertex and its appearance on the outer face.
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GRAND-DYCK ENCODING




CouNTING WITH GRAND-DYCK PATHS

m | Eul. maps | PEO | meanders | orient. Eul. maps
0 1 1 1 1

1 1 2 2 2

2 3 10 10 12

3 12 66 66 96

4 56 504 504 896



CouNTING WITH GRAND-DYCK PATHS

m Eul. maps PEO meanders | orient. Eul. maps

0 1 1 1 1

1 1 2 2 2

2 3 10 10 12

3 12 66 66 96

4 56 504 504 896

5 288 4216 4210 9216

6 1584 37 548 37378 101 376

7 9152 350 090 346 846 1171 456

8 54 912 3 380 520 3328 188 14 057 472

9 339 456 33 558 024 32786 630 173 801 472

10 2149888 | 340670720 | 329903 058 2201 485 312

11 13 891 584 | 3 522993 656 ? 28 449 964 032
growth 8" ? ? 16™

— No general formula... Let’s try to formalize a decomposition!



TUTTE-LIKE DECOMPOSITION

Pw == Z aw’mtm

m>0

with aw,;; the number of PEO of size m with root of type w.
P=1+ ) Py
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with

P = (Zuuﬁv:w PuPy+Y jv=w Puv)’ if w is balanced,
v 0 otherwise.
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TUTTE-LIKE DECOMPOSITION

Pw = Z aw,mtm

m>0

with aw,, the number of PEO of size m with root of type w.

P=1+ Y Py
we{0,1}+

with

. (Zuuﬁvzw I [ Syp— Puv), if w is balanced,
i 0 otherwise.
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LOWER BOUNDS AND UPPER BOUNDS

— verify for 3 <i < A -3 if i-split is legal
(1-split and (A —1)-split are always legal)

Simpler: consider it "done" for the first splits! — generate lower/upper
bounds

forbidden

to be checked

lower bound upper bound

Last orientations around the root-vertex — legality of a split.
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A LOWER BOUND: GENERATING PEOj_3

F(ull): we know the whole word e
(ull) N

L(ast): we know the last orientations

Fioo Lo
For k= A -3, four classes of orientations:
Lom Lin Lo Loo
AN AN
N TN\
N\ VAN
Ly Lo Lon L

How are these classes generated?



A LOWER BOUND: GENERATING PEOj_3

Lasb+ L - Fyy,
~Ts + F
b4 aabb

Peo,, - Lasa+ Lasb + Laap + Loy +4



A LOWER BOUND: GENERATING PEOj_3

Laap = Lypay = Fap + 2LPEOA-3(Lgap + Lpap) + £ ((Lagp + Lpap) — Fap)
+t((Lggp + Lpap) = Fap — Fa=4 + Fagpp) +t(PEOp_3 - 1)
Laaa = t(Lapp + Laga) + 2tPEOA_3Lgaq + tLaga
Lapp = t(Lagp + Lpap) + 26PEON-3Lapp + tLapp + £ (Lapp — Faapp)
PEOA_3=Lgaa+Lapp + Lagp + Lpap + 1



A LOWER BOUND: GENERATING PEOj_3

Laap = Lpay = Fap + 2tPEOA-3(Lggp + Lpap) + £ ((Lagy + Lpap) — Fap)
+t((Lgap + Lpap) — Fap — Fa=a + Fpapp) + t(PEOp_3—1)
Laaa = t(Lapp + Laga) + 2tPEOA_3Lgaq + tLaga
Lapp = t(Lagp + Lpap) + 26PEON-3Lapp + tLapp + £ (Lapp — Faapp)
PEOA_3=Lgaa+Lapp + Lagp + Lpap + 1

— Automating the process to produce a system of equations for all
classes.



REesurrs

Computation with Maple packages combstruct and NewtonGF.

growth | 1| 2 | 3 4 5 6

Eulerian maps 8" 113 |12 56 | 288 1584
inf:k=A-1 9.68™ | 2110 | 66 | 466 | 3458 | 26650

inf: k=A-3 10.16™ | 2 | 10 | 66 | 504 | 4008 | 32834

inf: k=A-5 1051 | 2| 10 | 66 | 504 | 4216 | 36316
inf:k=A-7 =10.69™ | 2 | 10 | 66 | 504 | 4216 | 37548
Eulerian orientations ? 210 | 66 | 504 | 4216 | 37548
sup: k=A-3 1295™ | 2| 10 | 66 | 504 | 4234 | 37998
sup: k=A-1 13.06™ | 2 | 10 | 66 | 506 | 4266 | 38418
Oriented Eulerian maps 16™ 2|12 | 96 | 896 | 9216 | 101376




OPEN QUESTIONS

o Is the generating function of planar Eulerian orientations
algebraic?
e Can we find an other (simpler?) decomposition for PEO?



Thank you for your attention !
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