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Theme 
 

 

 
This second national workshop is aimed at addressing important aspects of robot control 
architectures, with a specific emphasis on distribution, verification and validation, languages and 
modeling, and implementation of control architectures. It brings together researchers and 
practitioners from universities, institutions and industries, working in this field. It intends to be a 
meeting to expose and discuss gathered expertise, identified trends and issues, as well as new 
scientific results and applications around software control architectures related topics, through 
plenary invited papers. 

  

Theme 
 
Due to their increasing complexity, nowadays intervention robots, that to say those dedicated for 
instance to exploration, security or defence applications, definitely raise huge scientific and 
commercial issues. Whatever the considered environment, terrestrial, aerial, marine or even 
spatial, this complexity mainly derives from the integration of multiple functionalities: advanced 
perception, planification, navigation, autonomous behaviours, in parallel with teleoperation or 
robots coordination enable to tackle more and more difficult missions. 

But robots can only be equipped with such functions if an appropriate hardware and software 
structure is embedded: the software architectures will hence be the main concern of this 
workshop. 

As quoted above, the control architecture is thus a necessary element for the integration of a 
multitude of works; it also permits to cope with technological advances that continually offer 
new devices for communication, localisation, computing, etc. As a matter of fact, it should be 
modular, reusable, scalable and even readable (ability to analyse and understand it). Besides, 
such properties ease the sharing of competencies among the robotics community, but also with 
computer scientists and automatics specialists as the domain is inherently a multidisciplinary 
one. 

Numerous solutions have been proposed, based on the "classical" three layers architecture or on 
more "modern" approaches such as object or component oriented programming. Actually, almost 
every robot integrates its own architecture; the workshop will thus be a real opportunity to share 
reflections on these solutions but also on related needs, especially standardisation ones, which 
are of particular importance in military applications for instance. 

Hence, this second national workshop on control architectures of robots aims at gathering a large 
number of robotics actors (researchers, manufacturers as well as state institutions) in order to 
highlight the multiple issues, key difficulties and potential sources of advances. 
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MISSION MANAGEMENT SYSTEM FOR PACKAGE OF UNMANNED COMBAT AERIAL
VEHICLES

J. Baltié*, E. Bensana**, P. Fabiani**, J.L. Farges**, S. Millet***, P. Morignot*, B. Patin***, G.
Petitjean*, G. Pitois* and J.C Poncet*

* Axlog Ingéniérie, ** ONERA, ***Dassault Aviation

Abstract: This paper presents the development and the assessment of a mission
management system (MMS) for a package (group of aircraft assuming together a
common mission) of Unmanned Combat Aerial Vehicles (UCAV). The mission is carried
out in an environment including a safe area and a dangerous area, no-flying-zones, a
command and control centre, the terrain, threats and targets. The MMS architecture
presents reactive and deliberative layers. It includes a planner that distributes the plan
computation effort among the UCAV. This plan takes into account the co-ordination and
collaboration necessary for the package and its associated assets to implement the
mission. Simulation results indicate that the MMS is able to carry on missions, to activate
contingent behaviours, to decide whether or not to plan and to re-plan.

Keywords: Aircraft operations, architectures, autonomous vehicles, constraint satisfaction
problems, decomposable searching problems, management systems, distributed artificial
intelligence, planning, robotics, simulation.

INTRODUCTION

Some early tests with uninhabited aerial vehicles
carrying and delivering weapons were conducted in
the sixties and the seventies. However, Unmanned
Combat Aerial Vehicles (UCAV) have been widely
studied only since 1980. UCAV can be used for
locating, identifying and destroying enemy targets.
Multiple operators remotely operate currently one
UCAV. UCAV demonstrators such as X-45 (Wise,
2003), X-47A and NEURON are developed.
Nowadays, such studies as the NEURON
demonstrator project envision leveraging effects by
mixing these UCAV platforms with inhabited ones
like RAFALE. For example, the sketch on Figure 1
shows a RAFALE collaborating with a package of
two NEURON.

Such a vision lead researches towards an increase of
UCAV and package of UCAV autonomy. For
instance, Mehra et al. (2000) design a control scheme
that supports autonomous co-ordinated flight of
multiple UCAV. Other examples are the proposition
by Li et al. (2002) of a hierarchical control scheme
for a package of UCAV that provides path planning,
trajectory generation and formation keeping and the

development by Beard et al. (2002) of a target
assignment method for a package of UCAV.

Fig. 1. A RAFALE collaborating with a package of
two NEURON

UCAV decisional autonomy implies not only path
planning and target assignment functions but also
functions for planning and executing target and
weapon selection, system reconfiguration,
synchronisation actions, etc. Moreover, all those
functions have to be integrated inside an UCAV sub-
system dedicated to the management of the mission.
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Barrouil et al. (1999) defined the scope and goals of
what could a Mission Management System (MMS)
do inside a mixed air patrol. Grounded on this work
and European studies such as MISURE (Avalle and
Patin, 2007), this paper presents the development and
the assessment of a MMS giving decisional
autonomy to a package of UCAV. This MMS
includes a planner that allows on-line distributed
computation of a new plan when a disruptive event
occurs.

The first section of this paper is devoted to the
presentation of the requirements for the development
of the architecture. It includes the description of the
environment of the mission and the presentation of
the UCAV equipment the software has to interact
with. Then the problems linked with architectural
choices are addressed in the second section and the
global architecture of the MMS is provided. This
architecture includes reactive and deliberative layers
that are described in the third and fourth sections
respectively. The deliberative layer aims at solving, a
planning problem including target selection, target
assignment, weapon selection, path planning,
collaboration and co-ordination aspects for a package
of UCAV. Moreover, the problem is solved through
its distribution over the UCAV. The issue of control
of MMS computation time is addressed in the fifth
section. The sixth section gives some experimental
results about the plan computation and the MMS
behaviour. Finally some conclusions are presented.

1. ENVIRONMENT AND REQUIREMENTS

1.1 The system

The environment of the package is presented on
Figure 2. It includes a friend (or safe) area where the
normal traffic management rules apply and a foe (or
dangerous) area where the military authorities
provides the air orders, No Flying Zones (NFZ), a
Command and Control (C2) centre that supervises
the package and provides eventually new information
or new orders. It also includes the terrain, known and
unknown threats, primary targets to be processed by
the mission and secondary targets that are processed
on an opportunity basis. This environment is
dynamical and the perception of the environment by
the package is also dynamical: threats may be
discovered during the course of the mission. Tactical
assets like targets may also be redefined by the C2.

Each UCAV of the package get a specific payload
that may include several types of equipment:
• Weapons include bombs, missiles (WEAP) and

laser designators (LD). Some type of weapons
need to be guided using LD assets either on the
same or another vehicle. Some other need the
LD only to achieve a precision level.

• Localisation devices include satellite (GPS),
radio (RS) and inertial (IN) positioning systems.
The localisation information should be merged

to produce continuously an accurate localisation
of the aircraft.

• Flight management devices include engine
control (ENG), autopilot (AP), fuel level sensors
(FUEL) and flight control systems (FCS). They
are developed and should be organised in order
to provide relevant level of safety for such
aircraft.

• Communication devices implementing intra-
formation (IF), low bandwidth (LBW) and high
bandwidth (HBW) data-links. The IF data-link is
grounded on the medium frequency band and
provides highest discretion but presents a limited
range. The LBW data-link is grounded on lowest
frequency band and presents the highest range
but provides poor discretion. Finally the HBW
data-link is grounded on highest frequency band
and provides medium discretion but is dedicated
only to upload of image necessary to designate a
target by C2. The use of these links are
constrained by mission dependant characteristics
such as the will not to be seen or the safety of
the package.

• Auto-protection devices include missile approach
warners (MAW), radar warning receivers
(RWR), chaffs (CHAFF), flares (FLARE),
jammers (JAMM.) and active electronic counter
measures (ECM). There is also the capability to
control the Radar Cross Section (RCS) of the
aircraft.

• Sensors include synthetic aperture radars (SAR)
and electro-optical sensors (EO).

TARGET
[T03,T04� ]

FRIEND AREA

FLOT NFZ

NFZ

NFZ

[T01� ,T02� ]

[T
05

,T
06�

]

FOE AREA

Command 
and Control

Threats

Threats

Fig. 2. Environment of the package of UCAV

Moreover, each UCAV is subject to flight dynamic
constraints.  Those constraints include:
• Maximum altitude,
• Speed limits,
• Load factor limits and
• Fuel consumption.

Finally, constraints appear due to the package work.
Those constraints include:
• distance to respect in order to use discrete

communications,
• relative positions of aircraft to gain benefit of the

use of one auto-protection device,
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• synchronisation issues and relative angles when
laser designation is delivered by one aircraft and
used by another aircraft to deliver weapons.

1.2 The problem

A mission plan is defined before take-off and the
aims of the MMS are to follow the mission plan, to
ensure safety, to ensure survivability and to ensure
the success of the mission. Some requirements are
deduced from those aims:
• the plan must be applied,
• disruptive events must be detected and analysed,
• if needed, reactive actions must be carried out

and,
• if needed, the mission plan must be recomputed

on-line.

Moreover, the flight dynamic constraints of the
UCAV must be respected.

The package mission management problem includes
more than the replication by the number of UCAV of
a mission management problem for each agent. The
set of actions that can be performed by a package of
UCAV is larger than the one for a single UCAV. For
instance the package can split; some UCAV fly to a
convenient place to perform detection, identification
and localisation of targets and other UCAV fly to
another place to perform the strike itself. After the
action the package can merge.

2. ARCHITECTURAL CHOICES

2.1 Approach

As pointed out by Findeisen and Lefkowitz (1969),
there is two main ways of approaching control
hierarchies:
• Control hierarchies with several levels: The

system is decomposed in sub-systems. A
controller is developed for each sub-system
considering local criterion and local model.
Higher level controllers integrate actions of
lower level controllers in order to fulfil system
objectives.

• Control hierarchies with several layers: The
control problem is decomposed in sub-problems,
for instance: reaction, optimisation, adaptation,
auto organisation. Each sub problem is treated
by a suited technique and the integration is made
by the higher layers in order to solve the global
problem.

Figure 3 present the application of the two
approaches to the mission of a package UCAV. The
decomposition of the system considered here could
consist in splitting the mission in package and
environment. The package is decomposed in
different UCAV and the UCAV in different types of
equipment. The decomposition of the problem in
sub-problems highlights execution, disruptive event

detection, disruptive event analysis, reaction and
planning.

Mission

Package Environment

UCAV 1 UCAV n

Equipment type 1 Equipment type m

Execution
Disruptive event detection
Disruptive event analysis

Reaction
Planning

Level k

Level k+1

Layer l
Layer l+1

Fig. 3. Possible approaches to control hierarchies for
the mission of a package of UCAV

The approach considered is grounded on both
decompositions and also takes into account the fact
that each UCAV has its own on-board computer and
that there are communication constraints between
UCAV. This approach stems from preceding studies
(Riedel et al. , 2006; Avalle and Patin, 2007) where
its efficiency was shown.

2.2 Levels of the hierarchy

As shown on Figure 4, the control hierarchy is
organised in three levels that can be found on each
UCAV. Each level is able to work with the
corresponding level in the other UCAV. At the
higher level, the MMS component is distributed
among the UCAV and interacts with the other
architecture components. The group of UCAV
elaborates the different coupled plans using this
distributed component. At an intermediate level, a
component (TACSIT) is devoted to elaboration of a
tactical situation. It is also distributed among the
UCAV and merges different source of information to
create the shared tactical situation. MMS and
TACSIT have only information processing
capability.

MMS

FLIGHT COMM

TACSIT

SENSORS AUTOPROTWEAPONS LOC

Statuts
Data

Commands
On board computer(s)

MAW

RWR

JAMM.

CHAFF FLARE

EO SAR

RCSLDWEAP

GPS IN RS

FCSAP FUELENG

IF LBW HBW

Distributed among UCAV Specific to the UCAV

Fig. 4. Control hierarchy with three levels for the
mission of a package of UCAV

At the lower level architecture components are able
to control a specific part of the hardware of a specific
UCAV. The functions of lower level components are
localisation (LOC), flight management (FLIGHT),
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communication (COMM), self-defence
(AUTOPROT), sensor management (SENSORS) and
weapon management (WEAPONS). The details of
the equipment controlled by each component are
given in section 1.1. Equipment are only controlled
by these components. There is no direct control by
the MMS on the equipment.  The rationale behind
this decomposition is linked to the reality of the
industrial organisation where aeronautic companies
delegate components realisations to other companies.
It also must be stated that the functional description
of the lower level of the architecture is very similar
to real military aircraft functional description.

From a practical point of view components are
connected inside each UCAV through a software
bus. Flows of information required to be able to
implement a control of the package are numerous
and of different types:
• Commands from the MMS to the other aircraft

components,
• Status from the other aircraft components to the

MMS,
• Data exchanged between components and,
• One very important asset, data between one

UCAV communication component to another
UCAV one.

2.3 Layers of the MMS

Existing architectures for MMS of autonomous
vehicles are reactive or deliberative or both. Reactive
architectures are not able to support problem solving
but react quickly to events while deliberative
architectures are fully based on problem solving and
usually react slowly. The use of at least two layers to
allow both behaviours is common in the literature
since the work of Bresina and Drummond (1990).
Practical intelligence of an UCAV consists in a mix
of reactive and deliberative behaviours. The
architecture is designed according to three principles:
1. The on-line planning shall be activated only

when the current plan is invalidated by the
current situation.

2. The reactive level shall not only execute the plan
but also handle emergency situations.

3. Sensor inaccuracy is managed through pre-
defined behavioural procedures for inaccuracy
reduction.

Figure 5 presents the actual MMS architecture with
reactive and deliberative layers. This architecture is
organised using an underlying database that stores
information about:
• the vehicle and the other vehicles,
• the known threats in the environment,
• the targets of the mission,
• the plan to carry out the mission and
• the configuration parameters and thresholds.

When considering the MMS database, it must not be
confused with the TACSIT component. In fact, there
is no semantics linked to the tactical situation
described. It is influence map, list of objects, list of
path (foe and friends) and the like. The MMS

database is filled by its different parts interpreting
data issued of the TACSIT component and giving
sense to these data with respect to the concept
manipulated by the MMS and its planning part.

Reactive layer     
Deliberative layer

On-line planing process

PlatformMessages Messages

Plan

Observe &
compare

Predict

Pre-empt Act

Prepare Format

Database

Fig. 5. Mission management system architecture with
two layers

In this architecture, the purpose of the reactive layer
is to execute the plan and to implement contingent
behaviours for disruptive events that need quick
reaction. The purpose of the deliberative layer is to
determine if a new plan is needed and, in that case, to
compute it.

3. REACTIVE LAYER

The reactive layer includes the following functions:
“observe and compare”, “pre-empt” and “act”.

3.1 Observe and compare

The “observe and compare” function receives the
messages from the platform, from other platforms
and from C2 through the communication component.
It updates the database information according to
those messages and performs tests about the short-
term situation. It tests the possible disruptive events
such as unexpected exposure to a threat, approaching
missile, presence in a NFZ, loss of communication
and failure of a vehicle component. Most of the time,
this function does not send messages in direction to
“pre-empt” and “predict”. For the failure of a vehicle
component a message is sent to “predict”, for other
disruptive events a message is sent to “pre-empt”.

3.2 Pre-empt

The “pre-empt” function determines if necessary
contingent behaviours and their unit actions. This
function verifies the UCAV situation and uses a set
of rules to determine the suited contingent behavior.
If necessary, it computes the parameters of a
contingent behaviour and activates it. Finally, the
function computes the actions associated with the
active contingent behaviours. Four behaviours may
be activated by the function:
• The behaviour for new radar threat detection

implements update of the radar list and radar
locations, active electronic counter measure
under specified conditions, manoeuvre for
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avoidance or information gathering under other
specified conditions.

• The behaviour for approaching missile detection
implements unconditional use of active
electronic counter measures, chaff and flare
decoy and evasive manoeuvres.

• The behaviour for loss of communication
between neighbouring vehicles consists in
commanding the altitude of the vehicles to
different pre-determined flight levels in order to
ensure the absence of collision between them.
The secured altitude slots are attributed to each
aircraft at plan generation time, ensuring their
uniqueness for each aircraft of a formation.

• The behaviour for NFZ violation avoidance is
implemented in two parts. First, a modification
of current trajectory is computed, attempting to
avoid incoming NFZ, going round it by the
shortest way. If this fails or if the situation
evaluation reports that aircraft suddenly appears
to be inside a NFZ, solution consists in a fast
trajectory computing that will attempt to exit
NFZ by crossing the closest frontier point.

All behaviours have a date parameter, a timeout and
a homing way-point parameter. They are updated
each time the “pre-empt” component is activated.
This update can be null according to the current
aircraft situation, meaning that the system can return
to nominal plan execution. Otherwise, the
contingency ends once its associated timeout has
been passed out or when homing point is reached.
All behaviours, except loss of communication, have
a Boolean parameter indicating if the global path can
be modified. Finally, the behaviour for new radar
threat detection has an additional parameter
indicating the origin way-point.

Four types of information represent the behaviours:
• The warning processing information indicates

what should be done in terms of knowledge
management.

• The system management information indicates
what should be done in terms of auto-protection
actions.

• The flight plan modification information
indicates what should be done in terms of
navigation actions.

• The end of contingency information indicates
conditions for terminating the behaviour.

3.3 Act

The “act” function carries out the unit actions of the
“format” or of the “pre-empt” function. It also
determines if an action is correctly performed or not
and if it is performed in time. For this, the function
analyses the status of the sub-systems stored in the
database. When an action is assumed finished, it
triggers the next actions. In order to allow the flight
management component to perform trajectories with
appropriate turns, navigation actions are not treated
individually, but by couples of successive actions.

Whenever actions of the UCAV are linked to actions
of other UCAV they are to be done on conditions.
This  is the way to implement collaborative actions
such as fire to shooter sequences.

Actions are scheduled according to their execution
criteria:
• At a given instant,
• At a given location or,
• At an instant defined by the execution of another

action:
• Simultaneously,
• Immediately after or,
• After a given interval of time.

When actions of the plan and from “pre-empt” are
conflicting, it always gives the priority to pre-
emption actions. This mechanism corresponds to a
suppressor function in the sense of Brooks (1986).
Finally the function sends messages to the platform
sub-systems.

4. DELIBERATIVE LAYER

The deliberative layer includes the following
functions: “predict”, “prepare”, “plan” and “format”.

4.1 Predict

The “predict” function assesses the feasibility of the
on going plan and decides to compute a new plan or
not. Most of the time, this function does not send
message in direction to “prepare”. The feasibility of
the on going plan is assessed with respect to several
criteria:
• Probabilities of UCAV survival and of target

killing are updated and checked against a
threshold.

• The possibilities of fulfilling time constraints at
some waypoints and of having enough fuel to
finish the mission are checked.

It should be noted that the “predict” component faces
a dilemma. On one hand, deciding to re plan all the
time leads the agent to an erratic behaviour, always
starting the beginning of new unrelated plans, and
therefore not leading to any goal at all (too often
replanning). On the other hand, deciding to plan too
scarcely leads the agent to follow unusable plans,
since the behaviour of the agent does not adapt to
what actually happens in the environment (too scarce
replanning). The solution we propose for this
“predict” component is a medium term on the
previous spectrum, by using variables representing
states of the agent. When the mean of these variables
is above some threshold, then replanning decision is
taken and replanning occurs. This solution is not
satisfactory in principle, since it does not solves the
problem of the continuity of behaviour of the agent
over successive replanning activities. But at least it
provides a practical and simple (but not elegant)
solution, even if these variables and thresholds need
careful tuning for realistic replanning frequency to be
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adopted. Moreover, the occurrence of a replanning
request while replanning has to be managed. This
management is performed using priorities on
replanning reasons. If the priority of the reason of the
present replanning request is lower than the one of
the on going replanning, the request is ignored.
Otherwise, the on going replanning activity is
stopped and the replanning is started with a context
including the present request.

4.2 Prepare

The “prepare” function gathers and generates data
for the “plan” function. The data describes a
planning context for a package and includes:
• The time at which the plan should began because

problems are not stationary.
• The vehicles participating to be considered and

their predicted state in terms of geometry and
resources at the time at which the plan should
began. Three classes of vehicles are to be
distinguished:
• The vehicles participating to the

communication cluster in which the
planning is carried on.

• The vehicles not participating to the
communication cluster but presenting a plan
assumption.

• The vehicles not participating to the
communication cluster and assumed out of
order.

• Relevant characteristics of the environment
including threats, targets and NFZ. It includes
the description of the airspace threatened by
each threat.

• A graph, with nodes and edges, including
possible paths for acquisition, attack and return
to base. This graph is built in two steps. An
initial graph is deduced from the initial mission
plan by associating mission waypoints to graph
nodes and transitions between these waypoints
to graph edges. Nodes and edges are tagged
according to their strategic properties for
acquisition, shooting, etc. The second step is
done each time the component is activated. It
consists in the generation of different alternative
paths for each strategic action, including Return
To Base. These paths are generated using a
potential field algorithm in which threats and
NFZ are associated to repulsing potential while
targets and base airport are associated with
attractive potential.

• Time intervals and altitude constraints at
waypoints.

• The goal-action prototypes in terms of resources
to be used by the vehicles at specified places in
the space and at specified times in order to
achieve each goal.

4.3 Plan

The “plan” function allows a multi-UCAV
distributed planning. It can exchange directly
messages with other UCAV. It takes a planning

context given by “prepare” and provides a plan to
“format”.

The resulting plan includes for each vehicle
participating to the communication cluster a timed
sequence of actions. There are two kinds of actions:
• Navigation actions and
• Use of resources by vehicles in order to fill a

goal-action prototype.

Constraint programming approach: The planning
problem for the package involves different aspects:
selection of goals, selection of an action mode for
each goal, assignment of UCAV and their resources
to each selected action mode, path planning and
scheduling for each UCAV. Constraint programming
is a powerful approach for integrating those different
aspects. Indeed this approach is efficient for path
planning (Allo et al., 2002; Strady-Lécubin and
Poncet, 2003) as well as for planning problems
expressed by means of a propositional representation
(van Beek and Chen, 1999). Thus, the problem is
modelled using a constraint programming approach.
Variables are associated to UCAV and nodes. For
instance the Boolean variables Pi,j and Ii,j indicate
respectively that UCAV i will pass by node j and is
involved in a target attack at that node, Qk,i,j indicates
that it uses resource k. The integer variable Ti,j gives
the arrival time of the UCAV at the node. Other
variables are associated to UCAV and edges and to
goals. For instance, for a target o, the Boolean
variables Ao, Ao,j and Ao,j,m indicates respectively that
the target will be attacked, that the attack takes place
at node j and that it is done in mode m. The integer
variables Tobjo and Effo indicate the attack time and
efficiency respectively. Constraints describe
navigation possibilities and conditions for goal
achievement. In the model, the link between the path
planning and the propositional planning parts of the
problem is ensured by constraints of the type:

jiji PI ,, ≤          (1)

!≤
k

jikji QI ,,,          (2)

jiikjik IKQ ,,,, ≤          (3)

mjomk
i

jik ARQ ,,,,, ≥!          (4)
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m

mjo AA ,,, =!          (5)

o
j

jo AA =! ,          (6)

Equations 1 and 2 indicate that pre-conditions for an
UCAV to participate to an attack at a node are to
pass by that node and to have some resource to use at
that node. Equation 3 bound the resources usage by
zero if the UCAV does not participate and by the
available quantity, Kk,i, otherwise. Equation 4
indicates that the pre-condition for the package to
attack a target in a given mode is to have at least the
resource amount requested for that mode, Rk,m.
Equations 5 and 6 indicates that a single mode and a
single node are selected for the attack of the target.
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Distribution of the computation: The graph of
variables and constraints associated to a multi-
vehicle mission presents a star structure: the
variables associated to goal achievement are
connected by constraints to the variables associated
to the different UCAV but there is no direct
constraint between the variables of two UCAV. This
structure allows the decomposition of the initial
problem into a problem associated to each UCAV
and a goal achievement problem. The decomposition
of the initial problem has the advantage of permitting
the use of the computing resources of all UCAV.
Several techniques are available to conduct the
distributed search of a solution. The technique used
works in three steps:
1. Sets of solutions are searched for the problems

associated to each UCAV.
2. A co-ordination problem, including the goal

achievement problem and the selection of one
solution per set, is solved.

3. The solution is refined for each UCAV.

Implementation: This technique is implemented
using JADE (Bellifemine et al., 1999), a FIPA
compliant agent framework, and the CHOCO
(Laburthe, 2000) tree searching constraint solver.
Special attention has been given to the problem of
the control of the time spent by the solver to solve
the sub-problems; selection of variables to be
assigned, selection of values for those variables,
interruption of a tree search and time assignment to
each step of the resolution.

4.4 Format

The “format” function refines the macro actions of
the plan into sequences of unit actions. For instance
the macro action “launch bomb 1 on target 101 at
time t” is refined in the sequence of unit actions:
• “select resource type bomb 1 at time t-d” then
• “initialise selected resource with target 101

features at time t-e” then
• “ask to C2 go/no go at time t-f” then
• “if C2 answer is go fire bomb 1 at time t-g”.
Finally, “format” send a message to “act” to inform it
about the existence of a new plan.

5. EXECUTION AND COMPUTATION TIME

5.1 Activation logic

The activation logic of the MMS modules is
presented on figure 6. The MMS is activated every
0.1 seconds. For most of the cycles only three
functions are activated: “observe and compare”,
“predict” and “act”. For those cycles, the result of the
analysis of messages from the platform by “observe
and compare” and “predict” indicates that no pre-
emptive behaviour has to be activated and no new
plan has to be computed. The “act” function
continues carrying on actions of the current plan.

100ms 200ms 300ms 400ms 500ms 600ms

Observe and
Compare

Act

Pre-empt

Predict

Prepare

Format

700ms

Plan

Missile

NFZ

New 
plan

Fig. 6. Activation logic of the modules of the MMS

For cycles where “observe and compare” indicates
that a pre-emptive behaviour has to be activated, the
“pre-empt” function is additionally activated. This
function may remain activated for several
consecutive cycles until the behaviour is finished.
Meanwhile the “act” function applies the actions
issued from the behaviour. For instance, if the
disruptive event is the detection of a missile firing,
the function remains activated until the end of the
escape manoeuvre.

For cycles where “predict” indicates that a new-plan
has to be computed, the “prepare” function is
additionally activated. In the same cycle the “plan”
function is activated in the background. Several
cycles after the “plan” function provides a plan and
activates the “format” function just for a single cycle.

5.2 Taking into account constraints

Special attention is given to the way the computation
time constraints are taken into account. First,
different priorities are assigned to the input messages
and only a bounded number of messages are
processed at each cycle. Second, long processing is
performed over several cycles, for “predict”, or in a
separate thread, for “plan”. Moreover, “plan” solves
the co-ordination problem by searching first a
solution without attack. This solution is obtained
very quickly providing an almost anytime feature for
“plan”. The conjunction of those techniques ensures
that a computation time bound for a time cycle of the
mission management system can be predetermined.

6. EXPERIMENTAL RESULTS

Experimental results are given in the context of
suppression of enemy air defence and strike
scenarios.

6.1 Unit test of the planning function

In order to assess the performance of the planning
function, tests are conducted on a single Sun Blade
1500 computer. A planning request for four UCAV
with 4 targets conducts to the generation of 46
solutions for the first UCAV after 1.0 seconds, 46
solutions for the second UCAV after 1.6 seconds, 46
solutions for the third UCAV after 1.7 seconds and
138 solutions for the fourth UCAV in 2.4 seconds.
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Figure 7 illustrates the second step of the planning
method. A solution with no target attacked is found
in about 1.0 seconds. Then as resolution time
increases the efficiency of the solution, in terms of
average number of targets destroyed, is improved
and more targets are attacked. Finally the refinement
of the solution is given in 0.05 seconds for the first
UCAV, 0.09 seconds for the second UCAV, 0.14
seconds for the third UCAV and 0.24 seconds for the
fourth UCAV. Note that the resolution times for the
first and third step of the method are over estimated
because the tests are conducted using a single
computer. Finally, it can be observed that if
optimality is not required the computation time for
the co-ordination step can be reduced to few seconds.
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Fig. 7. Efficiency (%) of the solution of the co-
ordination problem in function of the
computation time

6.2 Simulation experiments

A simulation program was developed in order to test
the behaviour of the MMS for a complete mission
execution. In order to run these assessments there
was an incremental complication of the scenarios
starting from only one aircraft doing a flight path
without any action and ending with a complete eight
UCAV scenario including all the sequence of events
possible.

Figure 8 presents the result of an experiment
conducted with this program. It shows how the
package, here two UCAV, reacts to the introduction
of a new threat and a simultaneous failure in its
jamming capabilities.

The first step is the detection by different UCAV of
the package of the presence of the new threat. After
having localised this threat the package decides to
replan because of a too high probability of being
killed if it follows the original path. The second step
is then to prepare new segments on which the
package will be able to find a new path and
eventually assign actions. As there is no more
jammers usable and as the fuel consumption used to
avoid the new threat is compatible with the goal of
the mission without endangering more the package,
the solution kept is to go around this new threat
changing flight level in order to use the terrain as a
natural mask. This adaptation of the flight path to
avoid the threat leads to the adaptation of how to
attack the target because of the cooperation needs of

the two UCAV. The new plan is then applied at a
previously defined waypoint of application.

New 
Threat

Original path

New path

FLOT

FRIEND

FOE

New 
segments

Waypoint of 
application

Position 
when new 
threat 
detected

Fig. 8. Introduction of a new threat and package
reaction

More experiments were done during the project in
order to increase the complexity of the planning to be
done and their results demonstrate the capability of
the package integrating a distributed planing function
through a reactive and deliberative architecture to
achieve the goals specified. That is, the package is
able to carry on nominal missions as specified, to
activate the contingent behaviours on disruptive
events, to decide whether or not to plan and, if
necessary, to plan and to run in a bounded time.
Moreover data link requirements for the functions of
the MMS and performance of distributed planning
are assessed.

Figure 9 shows how complex a tactical situation can
become and what the planner had finally to manage
as well in the nominal situation than in the presence
of events.

Fig. 9. Complexity of a tactical situation
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CONCLUSION

The proposition of this architecture and a distributed
planning method for package missions contributes to
demonstrate the feasibility of vehicle intelligence and
autonomy. Indeed, with the integration of on-line
planning, disruptive events in absence of human
intervention do not conduct necessary to the abortion
of the mission.

However this area of application of robotic
architectures is not fully covered. Some research
directions are:
• Study of the link between the geometry of the

flight path and the actions.
• Study of the way of taking into account uncertainty

about the state of the vehicles and the
environment as distance from current date
increases.

• Study of the efficiency of other distributed
methods.

• Study of mixed initiative planning for fleets with
manned and unmanned vehicles.

• Study of the sustainability of the mission
consistency despite the ability of computing
several new plans while performing the mission.

• Study of the possibility of deriving proofs about
the frequencies of pre-emptive behaves and re-
planning activity.

• Study of the possibility of deriving proofs about
the architecture safety and about the planner
safety as a preliminary step to certification.
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Abstract
In this article, we present a generic framework for the functional ar-

chitecture of the closed-loop control of an engine or a system. Besides
its genericity, its main features are (1) a decomposition of the system
control into hierarchically organized modules, (2) an encapsulation of
control and data inside each module, (3) standardized communications
between modules via requests, reports about request execution, and in-
formation about the system state, (4) a standardized organization of
each module around the following four components: tracking of the re-
ceived requests, tracking of the emitted requests, tracking of the system
state, and decision-making upon request emission, and (5) a common
framework for the interaction between reactive and deliberative tasks
inside the module components and especially inside the state tracking
and decision-making ones.

We show how this framework can be applied to the control of an
autonomous satellite dedicated to Earth watching and observation.

1 The AGATA project

The architectural framework presented in this paper is one of the first results
of the AGATA project (Autonomy Generic Architecture: Tests and Appli-
cations, http://agata.cnes.fr). From mid-2004, this project brings engineers
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and researchers from CNES1, ONERA2, and LAAS-CNRS3 together around
the global objective of increasing spacecraft autonomy [CB05].

Most of the satellites and space probes that are today in operation are
permanently and tightly controlled by human operators in ground control
centers. Except for specific tasks, such as thermal, energy, attitude, teleme-
try, or telecommand control, for which a reactive control loop is necessary
onboard, they have no autonomous control capability. They cannot reconfig-
ure themselves autonomously after a subsystem failure. They cannot decide
and control autonomously orbital manoeuvres in case of a too large drift
from their reference orbit. In case of satellites or probes dedicated to ob-
servation of Earth, of other planets, comets, or asteroids, or of the universe
outside the solar system, they cannot decide autonomously on the observa-
tions they perform. In case of rovers at the surface of planets, they cannot
decide on the areas they explore.

For all these tasks, they must wait for decisions made on the ground
by human operators or at least under their supervision. The first difficulty
is that communication may not be permanently possible between satellites
and space probes, on the one hand, and their ground control centers, on
the other hand. This is the case with Earth observation satellites for which
visibility windows may be rare (about 10% of time) due to their low orbit
altitude. This is also the case with planet exploration probes or rovers when
they are hidden by the planet. The second difficulty is that communica-
tion and normal mission execution may be incompatible. This is the case
with planet exploration probes for which communication with Earth, on the
one hand, and planet observation, on the other hand, require incompatible
spacecraft orientations. The third difficulty is that the communication time
may be incompatible with the requirements in terms of onboard reactivity.
This is the case with planet exploration probes or rovers. For example, com-
munication takes some tens of minutes between Mars and Earth at the light
speed.

The result is a loss in terms of reactivity. In case of subsystem failure,
the whole system is unavailable until a communication be possible with the
ground control center, human operators make decisions, and send them to
the satellite or to the probe. In case of observation systems, observation

1CNES: Centre National d’Études Spatiales, French Space Agency, http://www.cnes.fr
2ONERA: Office National d’Études et de Recherches Aérospatiales, French Aerospace

Lab, http://www.onera.fr
3LAAS-CNRS: Laboratoire d’Analyse et d’Architecture des Systèmes du Centre Na-

tional de la Recherche Scientifique, Laboratory for Analysis and Architecture of Systems
of the French Research Center, http://www.laas.fr
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opportunities may be missed. This is the case with the satellites that are
currently under consideration for the surveillance of phenomena at the Earth
surface, such as forest fires, volcanic eruptions, pollutions, or floods. If they
are not equipped with autonomous decision-making capabilities in terms of
observation, they may miss important observation opportunities immedi-
ately after detection. This is also the case with planet exploration rovers.
If they are not equipped with autonomous decision-making capabilities in
terms of movement and observation, they may miss scientifically important
observation opportunities. To take another example, most of the images
taken today by optical Earth observation satellites (about 80%) are lost be-
cause of the presence of clouds. To put this right, cloud detection systems in
front of these satellites are currently under consideration, but autonomous
decision-making capabilities in terms of observation are necessary to take
into account onboard the information provided by these systems.

In all cases, autonomy can improve system dependability and global
mission return in terms of quantity, quality, and quick delivery of collected
data.

Studies about satellite and space probe autonomy have been active since
the nineties. One can cite the generic seminal work performed at NASA
Ames and JPL in the context of the DS-1 technological space probe
[MNPW98] and works performed at JPL in the context of the technologi-
cal Earth surveillance and observation EO-1 satellite [CST+05, CCD+05],
which demonstrated operationally the feasibility of onboard ground phenom-
ena detection and autonomous observation planning and replanning. One
can also cite works performed at MIT in the domain of autonomous failure
diagnosis and reconfiguration [WICE03]. In Europe, one can cite works in
the domain of autonomous Earth surveillance and observation [DVC05] and
in the domain of autonomous orbital manoeuvres [LCL+04] whose feasibility
has been operationally demonstrated in the context of the Demeter satellite.

On this basis, the goal of the AGATA project is to check off, to under-
stand, to adapt, to develop, and to combine all the technological pieces that
are necessary to the development of spacecraft autonomy. To progress in
this direction, its short-term objective is to develop a ground simulator of
an autonomous spacecraft which will demonstrate, at least in the context
of some specific missions, that the current technology allows a spacecraft to
be autonomously correctly controlled.
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2 A generic architectural framework

One of the first works in the AGATA project was to define what should be
the architecture of the software responsible for the control of an autonomous
satellite. For that, classical architectures used in robotics were considered.
Among them, one can cite the classical three-level planning-centered archi-
tectures independently developed at NASA-Ames [MNPW98] and at LAAS-
CNRS [ACF+98] and the execution-centered architecture developed at ON-
ERA [BL99]. But, we were especially interested in modular architectures
such as the GENOM architecture developed at LAAS-CNRS [FHC94] for
the hardware-software interface and the IDEA architecture developed at
NASA-Ames [MDF+02]. For the AGATA project, the result has been the
definition of a generic architectural framework whose main features are:

1. a decomposition of the system control into hierarchically organized
modules;

2. an encapsulation of control and data inside each module;

3. standardized communications between modules via requests, reports
about request execution, and information about the system state;

4. a standardized organization of each module around the following four
components: tracking of the received requests, tracking of the emit-
ted requests, tracking of the system state, and decision-making upon
request emission;

5. a common framework for the interaction between reactive and delib-
erative tasks inside the module components and especially inside the
state tracking and decision-making ones.

One must stress that, although this architectural framework has been
developed in the context of the specific AGATA project, its principles are
applicable far beyond the space domain, in fact for the architectural design
of any autonomous system.

It may be also important to stress that what is discussed in this paper
is a functional control architecture and not a software architecture. There
are certainly many ways of implementing such an architectural framework.
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3 Control decomposition into hierarchically orga-
nized modules

The first very simple idea is that, due to the increasing complexity of satel-
lites, it is not reasonable to try and build a unique software module responsi-
ble for the control of the whole satellite. As far as possible, independencies
must be exploited. This led us to the decomposition of the satellite con-
trol into a hierarchy of control modules, each one being responsible for the
control of a subsystem.

One can see in Figure 1 a possible decomposition of the control of a
satellite dedicated to Earth surveillance and observation. This satellite is
equipped with a permanently active detection instrument of wide swath,
able to detect phenomena at the Earth surface in front of the satellite, such
as forest fires, volcanic eruptions, . . . In case of detection, it is able to send
an alarm to the ground using the relay of geostationary satellites. Moreover,
the satellite is equipped with an observation instrument of narrow swath,
active on request and able to take images of the areas where phenomena
have been detected. Data produced by this instrument can be downloaded
to users on the ground when the satellite is within the visibility of a ground
station.

Starting from the top, one can see that the satellite control is, as usu-
ally in the space domain, decomposed into a platform control module and
a payload control module. Both modules are then decomposed into lower
level control modules, each one being responsible for the management of
one of the main functionalities in the satellite: orbit, attitude, energy, ther-
mal, telecommand, and telemetry control for the platform, and detection,
observation, and data downloading control for the payload. Going deeper,
each of these modules is itself decomposed into lower level control modules,
called monitors, each monitor being in charge of handling a set of hardware
equipments. For example, the GPS monitor is in charge of handling the
two GPS receivers present onboard and the thruster monitor in charge of
controlling the pool of thrusters that can be activated when one wants to
correct the satellite orbital trajectory. Following the ideas of the GENOM
architecture [FHC94], the monitors allow the control software to access the
hardware via a software interface which is independent from the precise hard-
ware configuration, for example independent from the number of redundant
equipments and from the one that is currently used.

In Figure 1, the arcs between modules represent possible requests emit-
ted from one module to another one. For example, the observation module
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Figure 1: Possible architecture of the control of an Earth surveillance and
observation satellite.
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can send requests to the sight mirror monitor responsible for directing ob-
servation to the right area on the ground, to the observation instrument
monitor responsible for triggering observation, and to the mass memory
monitor responsible for recording observation data. These arcs result in a
directed acyclic graph: no request loop.

But possible dependencies cannot be forgotten. One can see for example
that the observation and data downloading modules can both emit requests
to the mass memory monitor. These requests must be coordinated by the
higher level payload module in order to guarantee that onboard memory be
never overflown.

In Figure 1, we only represent the top-down flow of requests from high
to low-level modules and do not represent the opposite bottom-up flow of
information (reports about request execution and information about the
system state) from low to high-level modules. For example, the attitude
module gathers information coming from the sun tracker, star tracker, and
magnetometer monitors

As dependencies between emitted requests cannot be ignored, depen-
dencies between received information cannot be ignored too. For example,
conflicts between information coming from the sun tracker, star tracker, and
magnetometer monitors are managed by the higher level attitude module in
order to build an estimate of the satellite attitude.

4 Encapsulation of control and data in each mod-
ule

The second very simple idea is to reuse the principles of encapsulation that
are at the basis of object programming. In terms of control, that means that,
if a module M is in charge of the control of a satellite subsystem S, S cannot
be controlled from any other control module M ′ without a request to M .
Moreover, information about the state of S cannot be obtained without an
access to the data that are maintained by S.

For example, any request for a change in the satellite attitude must be
sent to the attitude module and to no other module, and any information
about the satellite attitude must be obtained from it and from no other
module.

We think that these principles, although they do not remove all the
possible conflicts in terms of requests or information, can greatly help to
limit and to manage them.
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5 Standardized communications between modules

On this basis, we think that it is possible to standardize the communications
between modules, taking into account the main three kinds of exchange that
are necessary between them:

1. control requests emitted from a module to a lower level one;

2. request reports emitted in the opposite direction from a module to a
higher level one;

3. information about the system state from a module to a higher level
one.

About requests, one must stress that they are not limited to basic com-
mands immediately and compulsorily executed. Some requests may be com-
plex, such as the regular observation of a ground area. Some are not im-
mediate, such as the observation of a ground area when the satellite will be
within its visibility. Some are not mandatory and must executed if possible,
such as observations which may conflict with each other. In this case, it may
be useful to associate with each request a priority degree which will guide
decision-making towards good choices.

About information, one must stress that actual communication mech-
anisms (systematic information, information on request, . . . ) and means
(message passing, shared memory, . . . ) depend on implementation choices.

6 Generic organization of each module

Beyond the communications between modules, we think that it is also possi-
ble to standardize the organization of each module and to propose a generic
organization built around four main components:

1. a received request tracking component responsible for receiving re-
quests from higher level modules and for tracking and reporting their
execution;

2. an emitted request tracking component responsible, in the opposite
direction, for emitting requests to lower level modules and for tracking
and reporting their execution;

3. a system state tracking component responsible for the tracking of the
state of the subsystem the module is responsible for;
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4. a decision-making component in charge of deciding upon the emission
of requests to lower level modules in order to answer requests received
from higher level modules.

To these main four components, it may be useful to add:

1. a supervision component in charge of initializing the module and of
managing its possibly different control modes;

2. a model component in charge of managing the data that represents
the model of the subsystem the module is responsible for; differently
from the system state which evolves over time, this model is assumed
not to change or to change at a far lower rate;

3. an information processing service component which gathers all the
data processing services naturally associated with the module, for ex-
ample the software responsible for orbit, eclipse, and visibility predic-
tion inside the orbit module.

Figure 2 shows the generic scheme of a control module at any level in
the module hierarchy.

7 Generic scheme of interaction between reactive
and deliberative tasks

An autonomous system must be always correctly controlled in a dynamic
environment, with possible changes in the system itself due for example to
subsystem failures or in its environment due for example to new observation
conditions or new observations to perform. As a consequence, its control
must be globally reactive: the control system must be able to react imme-
diately to any event.

Some of the tasks we identified in each control module can be considered
as reactive, such as received request tracking, emitted request tracking and,
in some cases, system state tracking and decision-making. By knowing the
maximum event rhythm or by imposing event buffering, we can guarantee
that each set of instantaneous events be managed before the following one.

However, some of these tasks cannot be considered as reactive, such
as, in some cases, system state tracking and decision-making, or any other
complex data processing task. For example, building a failure diagnosis, a
predictive resource profile, or an activity plan over a given temporal horizon
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Figure 2: Generic scheme of a control module.

may take a time much greater than the maximum event rhythm or than the
buffering rhythm. We refer to these tasks as deliberative.

The problem is to define what must be the temporal behavior of the
deliberative tasks and what must be their interaction with the reactive ones,
if we want them to be useful to the reactive control.

The generic scheme of interaction between reactive and deliberative tasks
we propose is summarized in Figure 3. See [LV07] for more details.

According to this scheme, reactive control tasks are in charge of the
interaction between the environment, on the one hand, and deliberative
reasoning tasks, on the other hand. The latter are never in direct inter-
action with the environment. Reactive control tasks receive changes from
the environment. They may react to them by immediately committing to
actions. Note that waiting may be a candidate action. Concurrently, they
may compute a deadline for deciding latter on the next action to perform.
Then, they may run deliberative reasoning tasks, by providing them with
relevant information about changes. On their side, deliberative tasks use
this information to produce what we call deliberations, which can be state
estimates, failure diagnoses, action proposals, or any other result useful for
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decision-making. We assume that deliberative tasks are designed to have
an anytime behavior, that is the ability to produce quickly a first result
and to improve on it as long as time is available for reasoning. When the
deadline occurs, reactive control tasks use the successive deliberations they
received from deliberative tasks to make the right decision. If they received
no deliberation, they make a reactive default decision.

This scheme requires only that reactive control tasks be able to compute
a deadline, to check deliberations before making decisions, to make decisions
even when no deliberation has been received, and to perform all of this
reactively.

TASKTASK

ENVIRONMENT REASONING

DELIBERATIVEREACTIVE

CONTROL
commitments

changes
runs / aborts

information

deliberations

Figure 3: Generic scheme of interaction between reactive and deliberative
tasks.

8 Conclusion

We are currently working on applying all these architectural principles to the
design and the implementation of a control architecture for an autonomous
satellite dedicated to Earth surveillance and observation, such as the one
that has been roughly described in Section 3.

The following scenario we will consider is an autonomous agile satellite
dedicated to Earth observation, equipped with an optical observation in-
strument and a cloud detection instrument in front of the satellite, able to
provide the module in charge of deciding upon observations with informa-
tion about the actual cloud cover, in order to avoid imaging clouds, as it is
too often the case with currently operational satellites.

Beyond these experiments, we hope that the architectural principles we
presented in this paper be applicable for the closed-loop control of many
other autonomous systems.
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Abstract: The development process of distributed real-time embedded systems (DRES) suffers significant 
limitations when addressing the antagonistic concerns of systems interoperability, flexibility, and reliability. In 
this paper, we first present a component-based development process and related architecture designed to enable 
DRES interoperability while improving developer productivity. We then describe the techniques this process 
uses in order to improve reliability of these systems. The component-based framework is illustrated by a 
practical use case. Lastly, we present research orientations addressing verification, validation, and certifiability 
on the one hand, and their ability to tackle with the always-growing flexibility requirements on the other hand. 

 
As real time embedded systems complexity is 
growing every year, industry software architects are 
facing major challenges in terms of development 
productivity. This issue is addressed by component-
based development methodologies, as proposed by 
the software engineering academic community [1]. 
Automatic deployment and configuration, code 
generation, code reuse, better testability and early 
validation, reduced time to market, easy tuning and 
mitigating integration risks are some of the benefits 
of component-based development (CBD). In mid 
1990, industry standards have been issued for 
applying CBD to large scale information systems 
(Sun’s Enterprise Java Beans – EJB [2], OMG’s 
CORBA Component Model – CCM [3]). 
Unfortunately, CCM and EJB frameworks are not 
directly applicable to distributed real time 
embedded systems: scarce computing and memory 
resources, hardware heterogeneity, real time 
constraints, performances and assurance issues 
make CCM and EJB irrelevant for development of 
DRE systems. Consequently, DRES software 
engineering community has performed extensive 
research for adapting component-based 
development to DRE systems. THALES has been 
involved at the OMG for defining a variant of CCM 
that may cover the technical requirements of 
embedded real time component-based frameworks. 
The reason of choosing CCM as a starting point 
was the suitability of OMG’s philosophy with the 
requirements of THALES’ clients in terms of 
interoperability and standard openness. Thus, the 
main challenge was to make CCM efficient, 
predictable and low footprint. Moreover, since non 
functional requirements of DRE systems are very 
versatile from one system to the other, it is crucial 
for a DRES component-based framework to be 
highly adaptable and configurable. Note that a 

naïve approach to adaptability may deeply impede 
interoperability. 

Research conducted by THALES during the last four 
years has led to a component framework that is 
usable and beneficial for industry-standard real time 
embedded systems. Ongoing research is performed 
for addressing more application domains, 
particularly safety-critical, mission-critical or 
security-critical certified applications requiring 
deep verification and validation on the one hand, 
and reconfigurable and multi-mission systems on 
the other hand. 

This paper will first present the outcome of 
THALES’ collaborative research effort performed 
during the last four years (section 1). The benefits 
of the resulting component-based framework, 
namely MyCCM, are illustrated on a real world 
program MyCCM is being applied to (section 2). 
Finally, an overview of current research activities is 
provided in section 3. 

1. Component-based 
Framework for 
Distributed RT/E 
Systems 

This section will first present the authors’ 
viewpoint on component-orientation, and then 
describe the principles and the outcome of adapting 
component-based development to real time 
embedded systems as performed in the scope of 
collaborative projects. 
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1.1. Component-Orientation 

Principles 
Component-orientation has been introduced to help 
managing the increasing complexity that 
Information Systems were facing and to increase 
the productivity of their development. A component 
is basically a piece of functionality that can be 
assembled with others in order to provide the full 
functional coverage of the system. Allowing to 
break down the whole system in smaller really 
independently manageable pieces, easier to develop 
and to reuse, makes it much cheaper to develop and 
integrate. 

To achieve that goal, components come with three 
main characteristics: 
• A self-described packaging format, so that 

components can be deployed and configured 
externally from the application. 

• The explicit description, by means of ports, of 
not only the services that the component is 
providing (as an object does), but also of the 
ones it requires for functioning, to be provided 
by other components; this allows the 
components being connected externally from 
the application. 

• The separation of the business logics (the 
components themselves) from the relevant1 
technical support that the infrastructure is 
providing to them and which is under the 
responsibility of the containers, parts of the 
infrastructure aiming at hosting the 
components.  

Even not always put forward, this “separation of 
concerns” is a key factor to master complexity and 
to allow an effective reuse, hardly achievable with 
only object orientation. Actually the two more 
important factors that prevent reuse are: 
• Inability to master the dependencies between a 

piece of software and others: component model 
– making this explicit – provides a way to 
tackle this. 

• Inability to master dependencies between a 
piece of software and its underlying 
infrastructure: Component/Container model 
offers a way of structuring this. As a side 
effect, this model allows to guarantee that the 
supported technical properties are enforced 
consistently across the application (e.g., the 
access control policy is guaranteed to be 
applied to all components) 

Of course, the work to build the appropriate 
containers is no more of the application developer’s 
responsibility. Component-based infrastructure 

                                                 
1 What is the relevant technical support depends on 
the application domain. 

(e.g., EJB – see below) are thus coming with the 
tooling allowing to automatically generate the 
containers, based on standardised descriptions. 

This model has been implemented as support for 
Information Systems. The first consistent 
implementation has been Sun's EJB (Enterprise 
Java Beans) which is a real success in this specific 
application domain. EJB offers support for 
technical services that are meaningful in this area 
(Persistence support, Transactional support and 
Security – to be understood as access control) and 
is built on top the Java infrastructure. 

CORBA CCM (CORBA Component Model) is a 
more generic and distributed specification of this 
model, even if still fully dedicated to Information 
Systems (it offers support for the same technical 
services as EJB). However, as the general trend of 
CORBA is to focus more on technical systems2, 
CCM is moving in the same direction. This move 
has already started at OMG, with newly adopted 
Lightweight CCM specification that defines a CCM 
profile compatible with embedded targets.  

With .NET, Microsoft has also adopted this model, 
even if the proprietary solution it proposes allows a 
slightly different, more intrusive and less 
structured, way of organising the software. 

Requirements 
analysis

Design / implementation Deployment

Functional 
characteristics

Non-functional 
characteristics

Component
assemblies

Component
places

Container
services

Placing components

Mechanisms selection
(known applicable patterns)

Component 
identification
(selection/creation) properties

System break-down
- interfaces
- interactions properties

Component 
assemblies
identification

uses

Figure 1: Impact of separation of concerns on 
development process 

Impacts on the Development 
Process 
Separating the functional properties from the non-
functional ones and building the whole system by 
means of assembly, deployment and configuration 
of components have huge positive impacts on the 
development process itself, whose main phases are 
featured on Figure 1: 

                                                 
2 Cf. all the new specification in the area: Real 
Time CORBA, Minimum CORBA – special profile 
for embedded systems, Fault Tolerant CORBA, 
Data Parallel CORBA... 
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• It allows a clean role separation: domain 
experts may focus their functional expertise 
while platform specialists may define and 
implement the best technical support. 

• Component reuse is made possible. 
• As technical support realisation is mainly 

achieved based on component configuration, 
main design choices (such as component 
localisation) can be delayed until the latest and 
therefore adjusted during the integration, 
making that costly phase much easier. 

1.2. Adaptation to Real-time 
and Embedded Systems 

All the positive impacts of component-orientation 
would be also very desirable for RT/E systems. 
However current implementations are not suitable 
for those systems since they don’t provide the 
relevant non-functional support nor the adequate 
interaction modes between components and are not 
meant to accommodate resource constraints, which 
are here of prime importance. 

THALES has therefore decided to adapt an existing 
standard component model to specific constraints of 
RT/E systems and to define a dedicated framework. 
As basis, OMG’s Lw-CCM has been selected and 
its adaptation initiated in the scope of two research 
projects (IST/COMPARE [7] and ITEA/MERCED 
[8]).  

One important characteristic of the RT/E area is the 
huge variety of its systems. Trying to provide in a 
unique framework a solution that would fit all the 
RT/E systems is not achievable, nor desirable. 
Therefore, rather than just adding the technical 
support that would allow to develop the use-cases 
parts of those projects, it has been decided to focus 
on extensibility and usability. 

Extensibility is achieved by providing the ability to 
plug within the container, technical support 
providers, called container services. For that 
purpose, has been defined an open architecture for 
the container with specification of dedicated 
interfaces to insert and configure the container 
services as well as a packaging format to enable 
their deployment. 

Usability for RT/E systems is primarily conditioned 
by the ability to get adequate interaction between 
components. Actually proper interaction support is 
crucial for it conditions the ability of designing 
components and the existing one was far from 
being enough. A new construct, named connector, 
has been introduced to capture the interaction style. 
Connectors can then be developed for as many 
interaction styles as needed. Connectors are actually 
made of fragments, which are considered as 
specific container services and can be deployed and 
configured as such.  

Usability also depends on the ability of the 
framework to accommodate stringent resource 
requirements. Key elements for that purpose are (i) 
the ability to tailor the containers at their minimum 
functional coverage by plugging in only what is 
strictly needed, (ii) the platform isolation provided 
by the containers, which allows the use of a huge 
variety of technical services (including small ones if 
needed) as well as (iii) the implementation of 
specific trade-offs to get the better use of the scarce 
resources. As a proof of concept of the ability to 
accommodate various platforms, two 
implementations of the framework have been 
developed during those research projects: the first 
one on top of RT-CORBA, the second one on top 
of OSEK-VDX. 

In the scope of these two projects, interaction 
support for the use-cases has been implemented, as 
well as some container services providing basic 
development facilities (tracing...) and timing 
properties enforcement (locking protocols and 
appropriate setting of POSIX scheduling 
parameters). 

1.3. MyCCM 
Based on these research results, THALES has started 
to industrialise a framework, called MyCCM (Make 
Your CCM). MyCCM building blocks are 
represented on Figure 2. 
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Figure 2: MyCCM building blocks 

 

The central part represents MyCCM runtime, that is 
mainly two folds: (i) infrastructure and its services 
mediated by the containers, which in return are 
hosting structures for the components,  and (ii) a 
tool called Administration, dedicated to 
deployment, configuration and connection of 
components – and later on, monitoring and control. 
On the right side is represented the container 
generation tool, which generates the containers and 
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component envelopes3 based on component 
description (IDL3 and XML files); on the left side, 
the packaging and assembly tool which prepares 
what the Administration needs as input, namely the 
component packages and the deployment plan. 

Adaptation to a particular domain 
As it can be seen, the framework is a combination 
of runtime support and associated tooling. Porting it 
to a given platform will affect not only the runtime 
support, but the generated code as well. Therefore 
attention has been paid to make the code generation 
mechanisms as flexible as possible. 

Besides porting to the target platform, adapting the 
framework to a specific domain consists just in 
selecting or defining and implementing proper 
container services and connectors. 

Real Time Issues 
Container services are used for configuring time 
and scheduling parameters of the application, while 
other services provide real time locking 
mechanisms. This way, the software architect 
addresses all the scheduling issues in configuration 
files. The corresponding activation model is 
illustrated on Figure 3: threads, that may be either 
periodic or “one shot” are associated to 
components entry points. One shot threads are 
meant for interrupt handling as well as any input 
I/O functions: where necessary, the architect 
connects one shot threads to a never ending 
incoming event handler encapsulated in the 
receiving component. 

MyCCM also enables the software architect to set 
the scheduling parameters of the threads handling 
the framework-supported communication 
mechanisms. Such communication threads may 
have either a (i) static scheduling configuration as 
given by the architect, a (ii) dynamic configuration 
where scheduling parameters are inherited from the 
calling activity or finally (iii) no-configuration – 
applicable only to components in the same address 
space – where the calling thread performs the local 
method invocation. MyCCM uses the underlying 
OS and middleware (POSIX and RT-CORBA for 
instance) for implementing these policies.  

                                                 
3 A component envelope is a generated piece of 
code allowing a user-written piece of code to be 
hosted by a container. What is generally called 
‘component’ is the business code (written by the 
application-developer) plus its envelope. 
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Figure 3 : Threads configurations 

2. A Practical Use Case 
Beyond experimentations and use case 
developments performed in the scope of research 
projects, MyCCM has been recently adopted by 
THALES for the development of an Infra-Red Search 
and Track (IRST) Signal Processor called 
ARTEMIS. 

2.1. The ARTEMIS Program 
ARTEMIS IRST system has been selected to equip 
the Future European Multi-Role Frigates 
(FREMM). It is mainly composed of three infra-red 
sensors – located around a mast – and a Signal 
Processor. Each sensor covers a third of the frigate 
horizon (120°). The three video streams are sent to 
the IRST Signal Processor (ISP) by a specific 
protocol on top of UDP. The ISP applies 
visualisation and tracking algorithms to incoming 
streams. Data processing is distributed on different 
single board computers. Each algorithm is 
encapsulated in a component that communicates 
either locally or remotely with its counterparts via 
the communication support of the component 
framework. For controlling and configuring the 
components, the framework relies on a free RT-
CORBA middleware, while high bandwidth data 
streams are handled by a fast, unreliable 
implementation of CCM event support. Finally, 
processed video and tracks are sent to the frigate's 
Combat Management System using a dedicated 
protocol. 

A module in a UML modeller enables the ISP 
software architect to design the application in a top 
down approach. Scheduling settings (priorities and 
periods) and parameters of components are defined 
in UML models as well. The software architect 
may also define functional validation scenarios, or 
target performance measurement scenarios in the 
UML modeller. CCM deployment and 
configuration descriptors are then produced for 
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each validation scenario. On-target execution of 
these scenarios is handled automatically by 
MyCCM deployment mechanisms. 

2.2. Benefits for the Software 
Architect 

Usage of a component framework such as MyCCM 
has good consequences on productivity of software 
development. Several factors contribute to 
increasing productivity. First, MyCCM 
development process is based on intensive code 
generation: configuration of scheduling parameters 
such as POSIX priorities and thread periods, 
priorities of RT-CORBA communication threads, 
data marshalling code and method dispatch, and 
configuration, deployment and connection of 
application components are simply generated from 
the architecture description provided as a set of 
UML models. With MyCCM, the program manager 
doesn’t have to provision development efforts for 
these tasks. Additional cost reduction resides in the 
dramatic simplification of internal communication 
protocols: with handcrafted communications, 
detailed specifications of datagram/stream formats 
are necessary; with a communication middleware 
such as CORBA, equivalent specifications are 
much more abstract, and consequently simpler. 
Specification of interfaces is done at operation 
level, with in/out parameters and exceptions, not at 
socket level. Moreover, generation of threading 
artefacts and deployment code makes a program 
relying on MyCCM clearly more productive than a 
regular CORBA or RT-CORBA application, for 
which only communication support is generated. 

Integration of MyCCM with modelling tools is 
another productivity factor. Indeed, the software 
architect is not meant to write complex architectural 
descriptors by hand: definition of application 
architecture, design, configuration and deployment 
is rather done in a UML-based GUI. The first 
benefit is that graphical models constitute a key 
communication support between team members. 
Moreover, model-to-descriptor generators may 
come with potentially intensive model verification, 
which leads to early discovery of model 
inconsistencies. 

Another productivity factor is easier testability: 
because MyCCM architecture enables the 
component developer to avoid platform 
dependencies, the functionalities of such platform-
independent components can be validated not only 
on target, but also on development host. 
Components might be specifically enveloped and 
compiled for either the host or the target by just 
modifying few parameters of the UML architectural 
description, so that a complete functional 
validation can be performed on host.  

Finally, integration costs and risks are significantly 
reduced by the late binding between application 
and the platform: when all software components are 
finally put together for final integration, it is almost 
inevitable that integration engineers have to fine 
tune the thread number and their associated 
parameters (period, priority…). With MyCCM, 
since all these parameters are in the models and not 
in the application code, engineers don’t have to 
deeply analyse component code for finding out 
where threads are created and configured. Another 
typical situation where this late binding property 
mitigates integration risks is when hardware 
happens to be ill dimensioned with regard to 
software execution times and system timing 
requirements. Application components only have to 
be re-targeted (in UML models) to the new 
hardware. MyCCM will take into account the new 
hardware environment by generating some other 
technical code, with no impact on component 
implementations. 

To sum up, component-based development might 
have very positive impact on productivity of 
software development. Still, our real-world 
experimentation with ARTEMIS program has not 
yet reached the point where productivity benefits 
might be factually assessed. This point will be 
reached by the end of all development and 
integration activities. 

2.3. Current Limitations 
There are key issues in DRES development that are 
not currently addressed by MyCCM. For instance, 
although MyCCM enables software architect to 
implement priority-based real time systems, no 
support is provided yet for taking advantage of RT-
CORBA support for real time network protocols. 
Network scheduling must be performed by other 
means. In today’s MyCCM, priority inversion may 
occur in network stacks. 

No support is provided either for proving that the 
system will meet its end-to-end requirements. This 
issue is generally referred to as schedulability. 
Another key issue is proving that the system is 
deadlock-free. Those two properties (schedulability 
and deadlock verification) are mandatory for high 
assurance systems, might they be mission-critical, 
safety-critical or security-critical. 

Yet another issue is that MyCCM only offers a 
programmatic support for reconfiguration: if 
needed, reconfiguration must be programmed by 
hand. A descriptive, framework-supported 
reconfiguration mechanism would contribute to 
further increase productivity. Last but not least, 
multi-mission systems have specific requirements 
on software architecture that are not currently 
addressed by MyCCM. 
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Next section will discuss these issues and provide 
the reader with insights about ongoing research 
activities on these topics. 

3. Ongoing Research 
Activities 

The two directions followed by our research 
activities are verification and validation on the one 
hand, and support for greater flexibility on the other 
hand. While verification and validation address 
safety-critical, mission-critical or security-critical 
systems, research on flexibility addresses context-
aware systems, fault tolerant systems, load balanced 
systems, autonomous systems and multi mission 
systems.  

3.1. Verification & Validation 
Worldwide academic community has performed 
extensive research towards verification of DRE 
systems. During the last decades, formal methods 
such as model checking, computational logics, 
schedulability algorithms and static code analysis 
have been foreseen to be able to provide the 
software architect with advanced tools and methods 
for verifying and validating DRE systems. Yet, 
these formal methods lack proper integration with 
the actual execution infrastructure, making them 
more difficult to use efficiently. Numbers of 
properties might be verified, although resource 
dimensioning is under particular focus in the DRE 
domain.  

Typical resources to be dimensioned are time, 
memory and energy. The following will focus on 
time. 

Several tools are available to analyse real time 
properties of the system. Some are based on model 
checking techniques (UPAAL [14] for instance ), 
others on algebraic methods inherited from Rate 
Monotonic Analysis, such as MAST [15] and 
Cheddar [17]. Not surprisingly, both methods have 
their respective limitations: model checking is 
subject to exponential state space explosion, while 
algebraic methods are not able to analyse all 
possible situations. 

Research has been conducted to integrate model 
checking techniques with component-based 
development [11, 12, 13]. University of Cantabria 
(Spain), THALES and ENST (among others) are 
currently performing research towards integration 
of CBD and algebraic methods. This requires the 
user to provide a characterisation of the temporal 
properties of each component, so that end-to-end 
execution times can be synthesised. Such end-to-
end execution times can finally be provided, 
together with other parameters such as periods, 

priorities and deadlines, to the scheduling analysis 
tool. 

As a matter of fact, these temporal characterisations 
might even be automatically generated by an on-
target performance measurement setting of the 
component framework, provided that a more 
abstract behavioural profile – omitting numbers – is 
available. For complex components, execution time 
measurement scenarios could be generated by static 
analysis of component code as developed at CEA-
List. 

Finally, on-target measurements may also be 
performed for OS, middleware and network 
traversal timings, provided that quantitative data 
flow descriptions are available. 

Other verifications might be performed besides 
schedulability analysis. Most notably, Ocarina [19] 
has been developed in order to enable the 
configuration of the middleware from an AADL 
[16] description. In parallel with the generation of 
the middleware code, a behavioural model of this 
middleware is generated into a well formed 
coloured Petri net in order to verify behavioural 
properties of the middleware thanks to model 
checking techniques. 

As another verification example, the AADL Error 
annex is used [18] to model possible faults, their 
probability of occurrence, and their propagation 
through the system. Automatically mapped into a 
stochastic Petri net, this allows analysing fault 
occurrence and propagation in terms of probability. 

THALES is currently involved in ITEA-SPICES4 
project, whose objective is to integrate such 
verification tools with component-based 
frameworks. SPICES strategy is to make all 
descriptors and tools input to be AADL models, so 
that users may apply various verification and 
simulation tools to their own AADL application 
models. The target outcome is a featured 
component framework connected the relevant 
verification tools for addressing safety-critical 
avionics applications. 

3.2. Flexibility 
Antagonistic with enforcing safety critical 
requirements, enhanced flexibility of the 
component framework will ease application 
developers and – as we will see – users of multi-
mission systems to handle variability of the 
environment, as well as variability of the system 
itself.  

                                                 
4 SPICES is an ongoing ITEA funded collaborative 
project. 
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Dynamic reconfiguration 
Many research activities have been performed to 
provide dynamic reconfiguration mechanisms, and 
use case examples are numerous: reduction of 
functionalities due to a battery or bandwidth 
limitation, recuperation of functionalities in case of 
fault recovery, fine tuning and debug of the 
application, load balancing, user requests, are 
typical examples that require reconfiguration 
mechanisms. 

A proper reconfiguration support in a component 
framework is made of both runtime mechanisms 
and description language. Regarding runtime 
mechanisms, component frameworks following 
Lw-CCM specification implement component 
instantiation and removal, component connection 
and disconnection. Openness of MyCCM container 
implies instantiation, removal and (dis-)connection 
capabilities of container services as well. 

Besides runtime support, expression of dynamic 
reconfiguration policies is the real issue. A 
distinction might be done between two 
reconfiguration categories, depending on whether 
the different configurations are statically 
enumerated and fully specified, or if on the 
contrary configurations are unknown or 
underspecified before actual occurrence of 
reconfiguration. The former case is referred to as 
pseudo-static reconfiguration, while the latter is 
simply called dynamic configuration. Each category 
might be better addressed by a specific description 
language for reconfiguration policies. Guarded state 
automaton would be suitable for pseudo-static 
reconfiguration, while more expressive language 
would be necessary for dynamic reconfiguration. 
Note that programmatic expression of 
reconfiguration policies is already available in 
MyCCM. Reconfiguration logics can be 
implemented in dedicated components behaving 
like deployment agents. A key benefit in stepping 
beyond this programmatic support is to verify and 
control reconfiguration policies, since 
reconfiguration is often subject to timing 
requirements as well. 

In [22], for example, the reconfiguration may be 
delayed depending on the time of service 
interruption that the reconfiguration process 
requires. Reconfiguration priority is another key 
parameter. For instance, the reconfiguration of a 
cell phone due to a low-battery signal should not 
impede the end user to receive or emit calls. At the 
opposite, if reconfiguration is due to the breakdown 
of a computing resource, the reconfiguration may 
be more important than the execution of some 
functional parts of the application. In the scope of 

Flex-eWare5 project, reconfiguration capabilities 
will be added to MyCCM framework. 

Multi-mission support 
The objective of a framework-based support to 
multi-mission systems is to ease the configuration 
of a multi-mission platform system by an end user. 
Typical example is an Unmanned Aerial Vehicle 
(UAV) usually used to monitor forest fires that 
could be reconfigured in emergency for supervision 
of evacuation operations after an earthquake. In this 
case, the infrared camera must be replaced by a 
standard camera, and the system must be 
reconfigured. 

As part of Flex-eWare project, we will design a tool 
dedicated to ease configuration of multi-mission 
systems, based on ontology of the application 
domain. This tool helps the end user to select 
components providing and using consistent 
services. The correspondence of services is 
evaluated within the ontology, relying on semantic 
annotations attached to the services. This tool also 
supports the assembly of those components by 
generating the connectors for two components that 
are semantically equivalent but syntactically 
different. 

The following example constitutes a use case of 
such a tool: supposing that the two formerly 
mentioned cameras drivers have different interfaces 
(different operation names, parameters type, etc…). 
Note that if the cameras are done by different 
vendors, the probability of this scenario is high. 
Still, the platform integrator might have attached to 
these two camera drivers a common goal in the 
ontology, and equivalent concepts attached to 
interfaces as well. Then a mechanism of data 
representation may be generated to enforce the 
compatibility of those interfaces. 

Very few research works have been undertaken in 
order to tackle the flexibility issue in the field of 
DRES. These techniques, based on semantic 
representation of application domains have mainly 
been studied for information systems and web 
services. Indeed, a major issue when using such a 
technique is to guarantee that the behavioural 
properties that have been verified on the previous 
system will still be verified in its new 
configuration. In the case of critical systems, in 
which properties are very difficult to check, this 
issue constitutes an open issue. 

                                                 
5 Flex-eWare is a ANR (Agence Nationale de la 
Recherche) project focusing on flexibility of 
component-based systems 
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4. Conclusion 
As shown by the description of FREMM IRST use 
case, component-based frameworks are already 
applicable to industry-standard distributed real time 
embedded systems. Moreover, MyCCM internal 
design makes it easy to adapt to the non functional 
requirements of a particular application domain. 

State-of-the-art real time operating systems and 
communication middleware provide a level of 
performance that enable component frameworks to 
address highly constrained systems, such as 
vetronics and robotics.  

Although with positive impact, component 
frameworks will not solve all the issues of 
developing hard real time. No matter whether a 
component framework is used or not: what is hard 
is to come out with an application design globally 
satisfying the antagonistic constraints of 
predictability and resource usage optimisation. 
However, component frameworks have good 
consequences on productivity and potentially 
integrate verification tools with simulation 
capabilities in a consistent manner. In other words, 
component frameworks might become the working 
environment of real time embedded software 
architects. 
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Introduction
The increasing complexity of robotics systems and the developments of standard wireless 
communication  technologies  have  opened a  new field  for  the  development  of  distributed 
applications : autonomous system will rely more and more on cooperative and communicating 
agents.
Such distributed systems require new development techniques that have to be handled by 
engineers and researchers.
In the software development  field, some of the problems that have to be handled are the 
following :

• Quality of service for the communication channels
• Software maintainability concerning the communication protocols
• Localization of the agents
• Synchronization and timestamping of the data
• Data exchange latencies
• Distributed intelligence

RTMaps 3 introduced functionalities that simplify the development of distributed real-time and 
multi-sensor applications. These functionalities have been successfully demonstrated within 
several projects such as the PUVAME project (a PREDIT project leaded by INRIA Rhône-
Alpes  :  a  project  for  pedestrian  detection  and  collision  avoidance  on  public  transport 
vehicules  such  as  buses  or  tramways)  and  the  SACARI  interfaces  from the  LIMSI  (an 
immersive 3D environment for remotely controlling a semi-autonomous vehicle).

What is RTMaps ?

 
Figure 1 - The RTMaps Studio interface for modular graphical programming

The RTMaps software offers an easy connexion to any type of sensors and actuators, and also 
the capability to acquire, record, process and transmit data, in real time.
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In 2000, the Carsense European project, gathering industries (FIAT, BMW, Renault, Thales, 
Ibeo)  and  research  labs  (INRIA,  LIVIC...)  looked  for  a  digital  data  logger  and  chose  a 
solution developed by the «Centre de robotique de l’Ecole des Mines de Paris»: RTMaps. The 
objective was the perception of the objects around a moving vehicle. It was the first use of 
RTMaps. RTMaps is now adopted by important industrial groups (Renault, PSA, Valeo...) and 
by national and European projects (Arcos, Puvame, REACT...).

Time and measurement play an essential part in the industrial and robotics applications: hence 
RTMaps precisely timestamps every piece of data at its time of acquisition. This timestamping 
process  provides  a  complete  data  flow control  during  the  data  processing  and replaying. 
During the tests, situations and behaviours can be recorded and analyzed later. Reproducing a 
situation is thus possible. RTMaps makes easy the link between real and digital worlds.

Examples of supported sensors: Webcams, DV camcorders, FireWire DCAM digital cameras, 
analog and digital cameras, stereo-vision devices, GPS, inertial measurements units, radars, 
laser telemeters, CAN bus devices, analog and digital input/output devices, microphones…

The SDK (Software Development Kit) allows the user to create its own components in C++.

Each component runs in its own thread. The developer is released from the problems of data 
protection and inherent concurrent accesses of multithread applications. Many data exchange 
policies between components are integrated (circular buffers, unblocking, re-sampling, etc...), 
thus offering the behaviour fitting to each application type (recording, real time processing, 
data conversion, control...).

Distributed RTMaps

Figure 2 - Distributed RTMaps instances over a TCP/IP network

In order to allow quick and easy development of distributed applications, version 3 of RTMaps 
introduced functionalities aimed at :
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• Synchronizing the clocks of distant  RTMaps instances. This functionality enables to 
perform synchronized recordings on several computers, 

• Exchanging data between different RTMaps instances.

These functionalities will be helpful for :
• Increasing the available computing resources by distributing the different parts of an 

application on several computers : indeed, when developing complex applications, a 
single  computer  can  be  limited  in  resources.  These  limitations  can  come  from 
connectivity  (number of USB or  PCI slots  for  example),  CPU computation power 
(several  complex algorithms such as image processing,  neural networks algorithms 
etc… may not have enough time to run), bandwidth (when exploiting several high 
speed data sources such as cameras, a standard PCI bus can be overloaded, standard 
hard disks may not be able to record more than 50 MB/s also).

• Allowing distant  cooperative applications that  may exchange data and information 
between them: different sensors may be placed at distant locations and may not have 
the ability to be connected to a single PC due to cabling issues for example, or moving 
agents  may  need  to  establish  wireless  connections  between  them  or  with  the 
infrastructure.

Clock sharing
Data  timestamping  is  one  of  the  major  focus  when  developing  data  fusion  applications: 
knowing when such piece of data has been acquired, when such event has occurred, etc… is 
particularly  critical  when  exploiting  several  sources  of  data  within  a  same  data-fusion 
algorithm.
Latencies can be introduced while data pre-processing or data transmission/reception before 
the  data  fusion  step,  but  even if  the  different  data  sources  are  affected,  it  is  particularly 
important to preserve the timestamp of the origin of each peace of data in order to:

• Allow re-synchronization of the data flows for the data-fusion steps
• Allow extrapolation of a signal state in time
• Be able to discard some pieces of data when they are too old

RTMaps was made for dealing with such constraints when using multiple asynchronous data 
sources with the following functionalities :

• Sharing of the same timebase among all the components of a single diagram
• Integrated  multi-threaded  handling  of  the  different  components  for  dealing  with 

asynchronous data sources and events
• Double timestamping functionalities

A distributed application is also subject to such constraints, which are even more difficult to 
implement. Indeed, the clocks (or timebases) of the different distributed software modules 
have to be synchronized together so that it can be considered that a single clock is shared 
among all the computers.

Characteristics of a clock
A clock is a sort of service that can be queried at any time for the current time.
A clock can be characterized by a resolution, an offset to a parent clock and a drift to a parent 
clock. 

• the resolution is the smallest measurable amount of time of the considered clock
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• the offset of a clock is the time (in the parent clock timebase) when the clock starts 
running (this offset can be for example set so that an application clock starts at time 0 
when the application starts running).

• the drift  is  the difference of “time speed” between the parent  clock and the child 
clock. This drift can be due to the time measurement technology used by the child 
clock (quartz oscillators on which computer clocks are based, are provided with drift 
characteristics,  the  drift  of  quartz  oscillators  is  also  subject  to  change  with  their 
temperature for example), or to a controlled behaviour applied to the clock (such as 
rewind functions which end-up in a negative time speed, fast forward (2X, 4X, etc…), 
slow forward, pause (time speed = 0), etc…

Note: It can be considered that the “root” clock (the parent of all clocks) is the International  
Atomic Time (a time scale based on the definition of the second based on the Cesium 133  
radiation frequency), on which is based the UTC (Coordinated Universal Time) which differs  
from the IAT by a round number of seconds. The UTC time is the time base for the GPS  
system, itself using multiple atomic clocks.

Since the computer clocks (performance counter or system clock under Windows, and Real 
Time Clock or system clock under Linux for example) are not perfect, and may start with 
different offsets, there is a need to setup a new clock layer (let’s call it the “layer 2 clock”) on 
top of them in order to be able to get a synchronized clock distributed over several computers.
This layer 2 clock on each computer will have to:

• first adapt its offset on top of the computer’s parent clock so that all the layer 2 clocks 
can be coordinated at start.

• then permanently correct this offset due to the unknown drifts of the clocks of each 
computer between them.

Clocks architecture in RTMaps
In an  RTMaps distributed environment, one of the instances has to be chosen for being the 
Master, all the other instances will have to connect to this master as Slaves via TCP/IP.
The Master will impose its own clock among the network to all the connected slaves. It will 
have the ability to start or shutdown the applications as well as to change the evolution of 
time (rewinding, pausing, accelerating or slowing down, etc…).
The following pictures shows the 3 layers clocks architecture of an RTMaps based distributed 
system:
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Figure 3 - The 3 layers RTMaps clocks architecture

The computer clocks (layer 1) that RTMaps uses are usually based on the performance counter 
under Windows (the counter of the CPU cycles) or the RTC clock under Linux. This clock 
starts at 0 when the computer starts up.
They may have quite an important drift compared to a computer’s system clock but they offer 
the best resolution.

The RTMaps layer 2 clock handles an offset which is periodically updated on the RTMaps Slave 
computers in order to be synchronized to the RTMaps layer 2 clock of the Master system. By 
periodically correcting these clocks offset, it ensures a correction of the drifts of the layer 1 
clocks which cannot be measured.

The RTMaps layer 3 clocks are then based on clocks that are synchronized together, and that 
can then be considered as a single clock. So they have to share an offset and a time speed, 
dictated by the Master system, in order to remain synchronized even in replay mode (start, 
shutdown, fast-forward, pause, time jumps, etc…)

The synchronization protocol
 In order to synchronize the layer 2 clocks between them, the Slave computers periodically 
exchange  synchronization  frames  as  soon  as  they  are  connected  to  the  Master.  The 
synchronization protocol is an NTP-like protocol which is detailed below:

UTC (considered as the absolute clock)

Computer 1 clock (layer 1) Computer 2 clock (layer 
1)

RTMaps layer 2 clock RTMaps layer 2 clock

RTMaps layer 3 clock RTMaps layer 3 clock

periodic offset 
synch,
timespeed = 1X

offset +
quartz drift

offset +
quartz drift

offset offset

offset +
virtual timespeed

offset +
virtual timespeed

offset and 
timespeed synchs
when needed
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Figure 4 - Synchronization protocol

1. A first synch frame containing the emission time in the slave’s clock time base (t*
1) is 

emitted to the master.
2. The master receives the frame, queries for its own current time (t2) and appends it in 

the frame which is sent back to the slave.
3. The slave receives the answer from the master and queries its own current time again 

(t3).

If we consider that the travel time of the frame to reach the master is the same than the one 
spent to come back to the slave, then t*2 can be easily computed and the offset to apply to the 
slave clock also:

t*2 = (t*3 – t*1)/2

Δt = t2 – t*2

Now, the first assumption we made considering that the travel time of the synchronization 
frames was equal on the way to the Master and on the way back is not correct on a standard 
TCP/IP network where collisions can occur and prevent a frame from being sent at once on 
request.
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Figure 5 - Synchronization frame subject to TCP collision

In order to achieve correct synchronization anyway, it is possible to send N synchronization 
frames in a row, and discard every one of them but the one that performed the shortest travel 
time: then it is possible to assume that this particular frame has not been affected by any 
collision. The synchronization operation (the offset correction) can then be performed based 
on this particular synchronization frame, discarding the other ones.

Synchronization accuracy
Some measurements  have  been  performed on  two types  of  standard  TCP/IP  networks:  a 
100Mbits/s Ethernet network which is made of several desktop computers connected in an 
office LAN, and an ad-hoc Wi-Fi network with a WSA protection key.
The test computers were running Microsoft Windows XP SP2.
The synchronization frames were sent 10 times per second and only 1 out of 10 frames was 
kept  for  the  synchronization  operation  which  ended  up  in  an  offset  correction  once  per 
second.
The following charts present the offset that were applied each second on the slave’s layer 2 
clock:
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Figure 6 - Synchronization accuracy on a 100 Mbits ethernet LAN network

Figure 7 - Synchronization accuracy on a Wifi ad-hoc network with WSA encryption

It shows that on an Ethernet network, the achieved accuracy for the synchronization is around 
200 microseconds at worst. The synchronization on a Wifi network is less accurate due to 
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frames losses and lower quality of service, which may increase very much the variance of the 
synchronization frames travel time.
The other interesting point is the mean value of the offset that is equal to approximately 50 
µs/sec: this constitutes an estimation of the drift of the layer 1 clock of the Slave computer 
related to the layer 1 clock of the Master computer. Such a drift (5x10-5) is quite important for 
a standard oscillator: the specification of the quartz on which are based the system clocks of 
standard  PCs  mention  a  drift  of  approximately  10-6 related  to  the  absolute  UTC time  (1 
µs/sec).  This  is  due  to  the  fact  that  in  order  to  achieve  the  best  resolution  on  data 
timestamping, the  RTMaps layer 1 clock uses the performance counter (counter of the CPU 
cycles) instead of the system clock.

Synchronizing unconnected computers
Whenever  no  TCP/IP  connection  can  be  established  between  computers,  other 
synchronization methods can be setup, such as GPS based synchronization method.  RTMaps 
V3 components now have the ability to implement a complete clock.
On each diagram, when a component exposes the clock ability, it can be selected to run the 
RTMaps clock for the whole process.
A component can then perform GPS data acquisition along with the PPS signal acquisition in 
order to be accurately synchronized periodically directly with the UTC time, and provide this 
time to the whole RTMaps application.

Data flows communications
Data  exchange  between several  RTMaps instances  can be performed  independently  of  the 
Master-Slave(s) functionalities via specific Socket components.
Such components have the ability to serialize any RTMaps piece of data (images, CAN frames, 
stream data, numerical data, etc…) and send it to other instances of RTMaps via TCP, UDP or 
Multicast in order for it to be used within a distant application.
Socket components also have the ability to transmit the timestamps along with the pieces of 
data, so that if the RTMaps clocks are synchronized, the data timestamps are still coherent from 
one computer to another. Data fusion operations can then be performed correctly on the entire 
RTMaps network.

Application 

The PUVAME project

The PUVAME project (http://emotion.inrialpes.fr/puvame/) objective is to detect dangerous 
situations that may lead to collisions between pedestrians and public transport vehicles such 
as buses or tramways.
The developed system has to be able to detect dangerous situations thanks to the on-board 
sensors system and, if available, to match the information with infrastructure sensors systems 
such as infrastructure cameras that would be installed in dangerous areas such as crossroads 
or bus stops.

In  order  to be able to  develop such a  cooperative system between on-board systems and 
infrastructure systems, a Cycab from INRIA has been equipped with several sensors: 

• a FireWire DCAM camera, 
• a Sick LMS lidar, 
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• ultrasonic sensors (Microsonic Trans’o Prox)
whereas the experimentation site was equipped with 6 analog cameras installed on masts that 
could cover the entire site.

Figure 8 - The PUVAME experimentation system

Infrastructure system had to perform pedestrian detection, vehicle detection, and trajectory 
prevision of all the actors in order to compute a risk estimation.
The on-board system also performed its own risk estimation based on the on-board sensors 
informations. Based on the result of data fusion between the on-board system results and the 
infrastructure system results, reliable alerts could be delivered to the vehicle driver whenever 
dangerous situations occurred.

In order to be able to develop such a system in cooperation with different partners, there was a 
need to record the raw data in a synchronized way (both in vehicle and on the infrastructure) 
and to be able to playback the scenarios in order to develop the detection algorithms and the 
communication protocol.
In order to quickly setup such a distributed system, an RTMaps software has been installed in 
the 3 PCs (1 on-board, and 2 on the infrastructure). A Wifi connection has been setup between 
the  vehicle  and the  infrastructure  LAN, and the  vehicle  software  has  been set  as  Master 
whereas the infrastructure systems were setup as Slaves.
Figure  9  -  The  PUVAME playback  diagram -  synchronized  playback  of  6  infrastructure
cameras and on-board sensorspresents the RTMaps diagram which performs the synchronized 
playback of a PUVAME scenario: 3 Player components are placed on a single diagram, each 
of which replays a databases that has been recorded on one of the 3 datalogger PCs.
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The SACARI interface

The  SACARI  interface  (Supervision  of  an  Autonomous  Car  in  an  Augmented  Reality 
Interface), developed by the Venise3D team of the LIMSI laboratory at University Paris XI – 
Orsay, is an immersive environment aimed at allowing remote driving of a semi-autonomous 
vehicle.
The whole system will be constituted of the robotized vehicle itself, developed by the IEF 
laboratory, connected through Wifi to the remote driving room at the LIMSI.
This project involves technologies such as multi-modal interfaces, virtual-reality, augmented 
reality, multi-sensor perception and vehicle control.

   

A distributed environment based on RTMaps has been setup here for:
• in-vehicle sensors acquisition and transmission to the remote driving immersive room
• setup cooperation in the immersive room between multi-modal systems such as 3D 

display, head tracking and 3D mousse tracking, 3D audio rendering, voice recognition 
etc…

• transmission of commands to the robotized vehicle and semi-autonomous control of 
the vehicle.

More information can be found on 
http://www.limsi.fr/Scientifique/venise/ActionVenise/Sacari_presentation.html
http://www.limsi.fr/Scientifique/venise/ActionVenise/posterCGGM.pdf 
and on the Intempora website :
http://www.intempora.com/ENG/references/limsi/limsi_cnrs_venise.php?nav1=ref&nav2=proj
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Abstract 
 
Recently, ONERA was involved in the ISAACS European project. The aim of this project was to investigate new 
safety assessment techniques based on the use of formal design languages and associated tools. ONERA studied 
more specifically the applicability of the AltaRica language and the Cecilia OCAS environment to perform the 
safety assessment of some Airbus aircraft systems. In this paper, we first recall the methodology developed for such 
traditional embedded safety critical system. Then we discuss its applicability to robotics systems. 

 
Introduction 

 
During the last three years, ONERA was involved in the ISAAC (Improvement of Safety Activities on Aeronautical 
Complex Systems) European project (ref. 1, http://www.isaac-fp6.org/). This project aimed at developing safety 
assessment techniques based on the use of formal specification languages and associated tools. So called formal 
models are traditionally used to specify the expected normal behaviours of software based system. ISAACS partners 
investigated first how to generalize such models to deal with faulty behaviours of various kinds of systems. Then 
they proposed new tools or new uses of existing tools to check whether the generalized formal models met 
qualitative safety requirements. These tools provide not only interactive simulation capabilities but also take 
advantage of formal language features to support advanced capabilities such as model-checking or fault tree 
generation. The approach was validated on some existing aircraft systems.  
 
In this paper we first present how AIRBUS and ONERA tackled modelling and safety assessment of aircraft 
systems using the AltaRica language and a subset of the associated tools. Moreover, the concepts are illustrated by a 
case study inspired by the hydraulic system of the Airbus A320. 
Safety assessment based on formal models raised two main issues. The first issue is to get formal system models 
meaningful for safety analysis whereas models more often used are fault trees. ISAACS partners are interested in 
failure propagations in complex dynamic systems. So they consider formal notations for reactive systems, used to 
support system design such as Statechart (models are automata), Scade (models are equations between synchronous 
data flows) or dedicated to safety such as AltaRica (models mixing automata and equation concepts). To cope with 
failure propagations, system models can either be produced by system designers and then extended with failure 
modes specified by safety engineers, or can directly be produced by safety specialists using libraries. It is worth 
noting that formal models of failure propagations should have the correct granularity level to ease model 
exploitation. On one hand, advanced simulation capabilities have good performances when the analyzed model does 
not go into detailed arithmetic computations. On the other hand, a correct granularity is reached when the scenarios, 
leading to a failure condition, extracted by the tools are similar to what safety analysts would have envisioned if 
they had to design a fault tree. In order to get the appropriate granularity at first shot, we chose to define libraries of 
AltaRica components that focus on failure mode propagation and abstract details of nominal behaviours.  
The second issue is related to the choice of the adequate techniques for assessing qualitative safety requirement of 
complex dynamic systems. Interactive simulation facilities enable to perform a preliminary bottom up analysis since 
failures can be injected and their effects computed not only locally but at system or even aircraft level. This will be 
detailed later on. Top down analyses are guided by qualitative requirements such as “no single failure leads to the 
system loss”. We propose to use model-checkers to assess such kind of requirements. They perform “exhaustive” 
simulation to check whether a requirement is always met. Moreover, they can distinguish subtle temporal situations 
such as a transient loss of a function (during a recovery phase for instance) from a permanent one.  
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The paper has the following structure. First section describes one traditional safety critical aircraft system: a 
hydraulic system inspired by A320 system. We focus on its safety requirements and architecture. Section 2 
introduces the AltaRica language through examples. We explain the modeling philosophy used to build the 
hydraulic formal model at a satisfying granularity level for safety assessment. Section 3 deals with the benefit of 
advanced simulation capabilities to assess qualitative safety requirements on dynamic models. We show how the 
models were analyzed using interactive simulation facilities of Cecilia OCAS and SMV (Symbolic Model Verifier) 
model-checker. The last section discusses the applicability of such formal assessment techniques for robotic 
systems. 
 

Case-study Presentation 
 
The role of the hydraulic system is to supply hydraulic power to devices which ensure aircraft control in flight like 
the flaps, slats, or spoilers as well as devices which are used on ground like the braking system. As the loss of 
devices powered by this system could lead to the loss of aircraft control, the main safety requirement of this system 
is:  

A total loss of hydraulic power is considered to be catastrophic. The probability of occurrence of this 
failure condition should be smaller than 10-9 per flight hour and no single failure should lead to this failure 
condition. 

The hydraulic system is mainly composed of three independent sub-systems which generate and transmit the 
hydraulic power to the consumers. Three kinds of pumps were used in the model of an A320-like hydraulic system. 
The first one is the Electric Motor Pump (EMP) which is powered by the electric system, the second one is the 
Engine Driven Pump (EDP) that is powered by one of the two aircraft engines and the last one is the RAT pump 
that is powered by the Ram Air Turbine. The hydraulic system also contains other types of components such as 
tanks, valves and gauges.  

To meet its main safety requirement, the system is constituted of three channels: Green, Blue and Yellow. The Blue 
channel is made of one electric pump EMPb, one RAT pump and two distribution lines: prioritary (Pdistb) and non-
prioritary (NPdistb). When priority valve PVb is closed consumers connected to Npdistb do not receive hydraulic 
power. The Green system is made of one pump driven by engine 1 EDPg and two distribution lines Pdistg and 
NPdistg. The Yellow system is made of one pump driven by engine 2 EDPy, one electric pump EMPy and two 
distribution lines Pdisty and NPdisty. Moreover a reversible Power Transfer Unit (PTU) transmits pressure between 
green and yellow channels as soon as the differential pressure between both channels exceeds a given threshold.  

These components are controlled by crew actions and reconfiguration logics. The RAT is automatically activated in 
flight when both engines are lost. The EMPb is automatically activated when the aircraft is in flight or on ground 
when one engine is running. EMPy is activated by the pilot on ground. We assumed that EDPy, EDPg were 
activated whenever the corresponding engine was started. 
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Figure 1 − Hydraulic System Architecture 
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System Modelling in AltaRica 

 
The AltaRica Language:  AltaRica (ref. 2) is a formal language developed at LaBRI (Laboratoire Bordelais de 
Recherche en Informatique) for modelling both functional and dysfunctional behaviours of systems. Thanks to the 
language well defined semantics and syntax, safety assessments of AltaRica models can be analysed by numerous 
reliability or validation tools. Moreover, its capacity to realise compositional and hierarchical models is a great 
advantage when complex systems must be modelled. The development of AltaRica models is supported by Cecilia 
OCAS workshop (ref. 3) of Dassault Aviation that provides graphical edition and simulation facilities and integrates 
fault tree generators. We will now briefly describe this language. 
Each system component is modelled by a "node". A node is a mode automaton (ref. 4) defined by three well 
identified parts. First part is the declaration of the different kinds of node parameters: state, flow and event. States 
are internal variables which memorize current functioning modes (failure modes or normal ones). Flows are node 
inputs or outputs. Possible types of states and flows are integer interval, enumeration and boolean. Events are 
phenomena, which trigger transitions from an internal state to another. They can model pilot actions or the 
occurrence of failures, or reactions to input conditions (the key word "no_event" is used in this case). This particular 
event plays a significant role when modelling the impact of cascading failures in the system. 
 
The second part describes the automaton transitions. A transition is a tuple g |- evt -> e where g is the guard of 
the transition, evt is an event name and e is the effect of the transition. The guard is a boolean formula over state or 
flow variables. It defines the configuration in which the transition is fireable if the event evt occurs. The effect e is 
a list of assignations of value to state variables. So the transition part describes how functioning or failure states can 
evolve.  
 
The third part is a set of assertions. Assertions are atomic equalities or more structured equations using if-then-
else or case construction. They establish relations between the states and the flows of the component and so, 
describe how component outputs are determined by component inputs and current functioning mode. 
 
These concepts are illustrated by the following example. The component block has one input, one output flow 
ranging over the domain {no, low, ok, max}, one boolean internal state ok and one failure event. The 
transition means "if the system is ok and if failure occurs then the system is no more ok". The assertion means "if 
the system is ok then the output is equal to the input else the output value is no". We used here the case 
structure but we could use similarly an if then else structure. 
       
      node block 
       state  
        ok : boolean; 
       flow 
        input : {no, low, ok, max} : in; 
        output :{no, low, ok, max} : out; 
       event 
        failure; 
       trans 
        ok |- failure -> ok:= false; 
       assert 
        output = case {ok : input, 
        else : no}; 
      edon 
 
In a system model, instances of such nodes are interconnected by assertions which plug input-output flows. 
Hierarchy of nodes can be used to build complex components and structure the system model. 
 
Case-Studies Modelling:  The main step prior to model a system is to collect information on it (e.g. architecture, 
failure modes). We particularly paid attention to Airbus Functional Hazard Assessment document performed on 
aircraft functions that describes the failure conditions, effects and severity levels (i.e. catastrophic, hazardous, major 
or minor) and to the System Safety Assessment which demonstrates that safety objectives are met. In this section we 
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describe how to model a system using these documents as inputs and use the example of the hydraulic pipe as an 
illustration. 
 
Failure Modes:  Failure modes that could cause the loss of energy supply were modelled. We considered that all 
components could fail to generate, transmit or deliver energy. We also supposed that leaks could occur in pipes.  
Finally, blocked positions for valves and PTU were also considered. Table 1, hereunder, sums up the failure modes 
considered in our component libraries. 
 

Components Failure modes 
Pipe Leakage 

Reservoir Failed, leakage 
Pump Failed, overheat 
Valve Failed, stucked 

Consumer Failed, leakage 
PTU Failed, stucked 

Table 1 − Failure Modes of the hydraulic components 
 
Failure Propagation:  We have to know what kinds of information are exchanged between the components and how 
failures will be propagated through pipes. This information is really specific to each system. If we consider a 
hydraulic circuit pipe we cannot model a leakage only by considering the absence or the presence of fluid in the 
pipe. Indeed, the real consequence of a leakage is a sudden pressure decrease for all the components located 
downwards the faulty component and, at last, a lack of fluid in the circuit. As a result, a pipe must transmit the 
couple fluid/pressure in order to take into account and to correctly propagate the leakage information throughout the 
model. Moreover, as all the components (i.e. downwards but also upwards) have to be informed of such a failure, 
the fluid/pressure signal has to be bidirectional. 

 
Figure 3 − Pipe section 

 
In the component models, failure propagation will be modelled by assertions that constrain the values of flow 
variables. The following example shows in details the failure propagation in the pipe model. 
 
Example: 
      node pipe 
       flow 
        output_pressure : {max,ok,low,no} : out; 
        output_fluid : {yes,low,no} : out; 
        output_pressure_reverse_info : {max,ok,low,no} : in; 
        output_fluid_reverse_info : {yes,low,no} : in; 
        input_pressure : {max,ok,low,no} : in; 
        input_fluid : {yes,low,no} : in; 
        input_pressure_reverse_info : {max,ok,low,no} : out; 
        input_fluid_reverse_info : {yes,low,no} : out; 
       state 
        state_ : {ok,leakage}; 
       event 
        leak; 
       trans 
        (state_ = ok) |- leak -> state_ := leakage; 
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       assert 
        output_fluid = (case { 
        (state_ = ok) : input_fluid, 
        (state_ = leakage) and ((input_fluid = yes) or (input_fluid = low)) : low, 
        else no}), 
        input_fluid_reverse_info = (case { 
        (state_ = ok) : output_fluid_reverse_info, 
        (state_ = leakage) and ((input_fluid = yes) or (input_fluid = low)) : low, 
        else no}), 
        output_pressure = (case { 
        (state_ = ok) and not((input_fluid = no)) : input_pressure, 
        else no}), 
        input_pressure_reverse_info = (case { 
        (state_ = ok) and not((input_fluid = no)) : output_pressure_reverse_info, 
        else max}); 
       init 
        state_ := ok; 
      edon 
 
When a pipe is not leaking, output pressures and output fluid levels are equal to input ones. When a leak occurs, the 
fluid level decreases from yes to low until the reservoir is empty (the input fluid level is no). Moreover, while the 
pipe is not empty (fluid different from no), the leak increases the upwards pressure and decreases the downwards 
one. 
 
In Cecilia OCAS workshop, each node is associated to an icon and belongs to a library. Once the component library 
created, the system is easily and quickly modelled. Components are dragged and dropped from the library to the 
system architecture sheet and then linked graphically. The whole hydraulic system model is made of about 15 
component classes. 
 

Safety Assessment Techniques 
 
Formal Safety Requirements:  As stated in the case-study presentation section, the main safety requirement for the 
hydraulic system is: "Total loss of hydraulic power is classified catastrophic". We also considered two related 
requirements: "Loss of two hydraulic channels is classified major", "Loss of one hydraulic channel is classified 
minor". We associate with this set of safety requirements three qualitative requirements of the form "if up to N 
individual failures occur then the loss of N+1 power channels of hydraulic system  shall not occur" with N = 0,1,2.  
 
To model these qualitative requirements we first have to model the loss of N+1 power channels. Let N = 2, so we 
consider the total loss of hydraulic power. A first approach consists in using propositional formula 3_Hyd_Loss that 
would be true whenever the value of flow output_pressure of the distribution lines of the three hydraulic channels is 
equal to no. But this formula fails to adequately describe the failure condition. It could hold in evolutions of the 
system during a small period of time and then it would no longer hold as the hydraulic power is recovered due to 
appropriate activation of a backup such as the RAT for instance. The correct description of the failure condition 
should model the fact that hydraulic power is definitively lost. Hence we use Linear Temporal Logic (ref. 5) 
operators to model a failure condition. The following temporal formula models the permanent loss of hydraulic 
power: 
 
      Permanent_3_Hyd_Loss: F G 3_Hyd_Loss  
 
where F is the eventually (or Finally) operator, G is the always (or Globally) operator. Formula 
Permanent_3_Hyd_Loss can be read "eventually Hydraulic power is totally lost in all future time steps". So the 
general form of qualitative requirements we check is: 
 
      No_N+1_S_Loss: G upto_N_failures -> ~ F G N+1_S_Loss 
with N = 0,1,2 and upto_N_failures is a property that holds in all states of a system such that up to N individual 
failures have occurred.  
 
Graphical Interactive Simulation:  A Safety Engineer can check the effect of failure occurrences on the system 
architecture using Cecilia OCAS graphical interactive simulator.  The system architecture is depicted by a set of 
interconnected boxes that represent nodes of the AltaRica model. Icons are associated with a node state. For 
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instance, a green box is displayed if a distribution line delivers power and a red box is displayed otherwise. These 
icons help to rapidly assess the component current state. 
 

  
 

Figure 4 − Cecilia OCAS Graphical Simulator 
 
To observe more complex situation such as the loss of several channels, special nodes called "observers" are added 
into the model. An observer internal state only depends on the value of other components outputs.  
First, the simulator computes the initial state. Then, when the safety engineer selects a node the simulator proposes 
the set of events that can be performed at this step. This is the set of events with a guard that is true in the current 
state. The safety engineer chooses an event and the resulting state is computed by the simulator. As failures are 
events in the AltaRica model, the safety engineer can inject several failure events into the model in order to observe 
whether a failure condition is reached (such as loss of one or several power channels).   
 
Figure 4 shows the graphical user interface of Cecilia OCAS. The Hydraulic system is displayed in the right 
window. All basic icons represent a component (tank, pump, distribution line …) of this system. The left window 
displays a set of observers that show whether aircraft devices powered by the hydraulic system are available or not. 
At the top of this window, we designed a control panel similar to the aircraft panel with button components that are 
used to activate or inactivate components in the hydraulic system. 
 
Model-checking:  A model-checker as Cadence Labs SMV (ref. 6) performs symbolically an exhaustive simulation 
of a finite-state model. The model-checker can test whether the qualitative requirements stated as temporal logic 
formulae are valid in any state of the model. Whenever a formula is not valid, the model-checker produces a 
counter-example that gives a sequence of states that lead to a violation of the safety requirement.  
 
We developed tools to translate a model written in Altarica into a finite-state SMV model. Thus, we were able to 
check that both system models enforced their qualitative safety requirements. All requirements were verified in less 
than ten seconds although the truth value of some formulae depended in each state on as much as 100 boolean 
variables. 
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Applicability of the approach to robotic systems 
 

Applicability scope of the approach with respect to traditional safety assessment process: The kinds of models and 
analysis presented before are devoted to a pivot step of the safety assessment process. Former analysis aim at 
identifying and classifying the failure conditions according to their criticality. The pivot step is used to demonstrate 
that a system architecture enable to meet safety requirements. Following steps deal with the verification of the 
hypothesis used to build the pivot models: are the considered failure modes the good ones? For quantitative part of 
the analysis, how representative are the considered failure rates? The verification process depends on the kind of 
system components. In the simplest case, it may consist in checking the compliance of the hypothesis with available 
data base. When considering software based component, it requires testing the software more or less heavily 
according to its criticality. Formal assessment techniques like the one presented before were primarily defined to 
perform such software verification. Nevertheless their application is today more or less successful according to the 
software complexity. The interested reader may consult for instance ref. 7 and ref 8 for further details. 
 
The case of robotic systems: In the following, we focus on the applicability of the pivot step previously detailed to 
robotic systems. According to our understanding, such systems consist in a physical devices (sensors, actuators, …) 
monitored and controlled by embedded software that are structured in a more or less sophisticated control 
architecture.  
We insisted in section 2 on building system models at the right granularity level with respect to the analysis 
purpose. The selected granularity level identifies the main functions provided by basic component and highlights 
how the quality of the function outputs depend on the quality of the function inputs, on the current (faulty or 
nominal) function modes and on protections inserted in the component. Such generic principles can be applied to 
model and assess simplest robot control architectures against safety requirements. 
In most sophisticated architectures where plans are computed on board, the applicability is not straightforward but 
seems still possible. In such architecture, a part of the policy used to control the robot may be implicitly defined by a 
plan generation module in order to cope with a numerous number of procedures. In this context, it is useless to enter 
into the details of the planning algorithms since one is interested only in finding dependencies between components 
that propagate failure. Nevertheless, these dependencies can be numerous depending on the combination of use of 
basic components generated by the planner. We already met a similar case when studying a highly reconfigurable 
aircraft electrical system (ref. 9). In such a case, one can left open the control of the devices piloted by plan. The 
analysis enables to find out bad plans (with our without combination of failures) that lead to critical situations. The 
proposal is to derive new safety requirements to avoid the generation of such plans. Then, the analysis can be 
conducted under these new requirements. 

 
Conclusion and Future Work 

 
Our experiment about traditional embedded safety critical systems shows that safety system modelling and analysis 
are possible and fruitful using a formal approach provided that models have the right level of detail. We have to 
observe that our models should not confine to failure propagation related with the functional analysis. They should 
also include failure propagations that could be related to system-level risks as specification errors, assumptions, 
synergistic considerations through-out the life-cycle, energy effects, …Previous works such as references 10 and 11 
present modelling approaches that, as ours, abstract nominal physical details and focus on failure propagation. 
However, the author main goal was to generate fault trees, so their models focus on system architecture and do not 
enable temporal analysis of highly dynamic reconfiguration mechanisms. Following our approach, we could state 
formally interesting qualitative and temporal safety requirements of aircraft systems and perform assessment 
analysis with interactive simulation and model-checking tools without performance problems.  
 
Nevertheless, as discussed in section 4, it is worth noting that this fruitful approach assists only one specific step of 
the safety assessment process. Moreover, if our paper gives a flavour of the use of model-checking techniques for a 
specific purpose, it does not pretend to give a comprehensive view of the available formal techniques and their uses. 
For instance, model-checking techniques are also used to generate plan in the robotic field (e.g. ref 12) or to validate 
the model for some model based planners. Future works at ONERA intends to build such a more comprehensive 
approach of the safety analysis for autonomous systems and more specifically unmanned vehicle like. Such a step is 
mandatory if one wants to use more widely drone submitted to stringent regulations. 
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Abstract

On-board FDIR (Fault Detection, Isolation and Recovery) is contem-
plated for autonomous satellite formations. Several FDIR strategies have
been specified using the Petri net - based software ProCoSA (for the dynamic
aspects) on the one hand, and the set theory - based Z specification language
(for the static aspects) on the other hand. ProCoSA enables to specify the
different state changes triggered by the different events within the formation;
Z enables to describe the relations and constraints (invariants) between the
state variables.
The paper focuses on a global specification including both the dynamic and
static aspects, through a formal link between ProCoSA and Z. The link is
implemented and allows some properties of the strategies to be checked.

1 Introduction

The autonomous formation flying of multiple spacecraft to replace a single large
satellite will be an enabling technology for a number of future missions. Potential
applications include synthetic apertures for surveillance and high-resolution inter-
ferometry missions, or for taking widespread field measurements for atmospheric
survey missions [Cra].Very precise autonomous coordination and control differen-
tiate formations from constellations. The challenge is to develop both the software
and the hardware to allow separate, unconnected spacecraft to function as if they
were a single, solid structure [Nas]. Spacecraft within a formation may be differ-
ent from one another and the different parts of one instrument may be distributed
among several spacecraft.
FDIR (Fault Detection, Isolation and Recovery) is the means to detect off-nominal
conditions, isolate the problem to a specific subsystem/component, and recover of
vehicle systems and capabilities [NAS05]. Formation flying brings a new concept
in FDIR, i.e. the formation has to be considered as an entity in itself. Indeed the
scientific mission is performed by the formation (and not by the individual space-
craft). Therefore specific FDIR strategies [CGL+06] have to be considered in order
to deal with formation specific failures e.g. instrument failure, problems with the
formation geometry, inter-spacecraft communication failures.
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In this paper, FDIR is considered as an operational function that contributes to the
autonomy of the system and whose main purpose is to maintain the availability of
each satellite of the formation for the mission. A global specification of FDIR con-
cepts including both the dynamic and static aspects, through a formal link between
ProCoSA and Z, is presented. The link is implemented and allows some properties
of the strategies to be checked. As an example, a typical anomaly that may affect
the formation integrity, namely a violation of the “Keep Out Zone”1 is considered
with a centralised centralised strategy.
The paper is organised as follows : after a short presentation of the Z notation,
the next section describes FDIR concepts for a satellite formation and their im-
plementation for a unique anomaly case by using Z specification language. Then
the centralised strategy we have designed is executed with a ProCoSA simulation
refined by Z data and constraint definitions. We explain the linking between Z
schemas and ProCoSA Petri nets for our case study. An analysis section presents
the interest to associate Z-modelling and ProCoSA simulation for a safety-critical
system like a satellite formation called Simbol-X.

Figure 1: Simbol-X mission (http://apc-p7.org/APC CS/Experiences/SIMBOLX/index.phtml)

2 Z-modelling of FDIR within a satellite formation

Z [Spi00, But01] is a formal specification language based on the set theory and
the predicate logic. The Z specification of a system consists of state variables, an
initialisation and a set of operations on state variables. Invariants, which represent
constraints which must always be satisfied, are associated with state variables. The
basic element of Z specification is the schema.

1Keep Out Zone (KOZ) is defined as a safety sphere around each satellite that another satellite
must not enter.
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2.1 Z-modelling of FDIR concepts

The first step is to model the main concepts that take part into the formation FDIR.
This is a static view of FDIR agents with their main constraints.

FDIR Regardless of the components implementing it, FDIR is considered as a
kind of operational function FONCTION OP, including non-empty finite sets of
functions for detection (detections) and recovery (reconfigurations), and dealing
with a fixed non-empty finite set of defaults (traite).

FDIR
FONCTION OP
detections : F1 DETECTION
traite : F1 DEFAUT
reconfigurations : F1 RECONFIGURATION

SIMBOLX We focus on a particular system called Simbol-X [Sim07], com-
posed of two satellites, sat1, sat2 within a formation, and a non-empty set of
ground stations, stationsol. This system is characterised by a set of operational
functions, fct ops in relation to each other (participe a).
The predicate part states that the formation is composed of one detector satellite
and one mirror satellite whose KOZ radius are specified, and the different oper-
ational functions are clearly distinct if they relate to either the formation or the
detector satellite or the mirror satellite.

SIMBOLX
sat1, sat2 : SATELLITE
formation : FORMATION
stationsol : F1 SOL
fct ops : F1 FONCTION OP
participe a : FONCTION OP ↔ FONCTION OP

formation.satellites = {sat1, sat2}
sat1.type = detecteur ∧ sat1.koz = 18
sat2.type = miroir ∧ sat2.koz = 15
〈formation.dispose de fop, sat1.dispose de fop,
sat2.dispose de fop〉 partition fct ops
dom participe a = fct ops
ran participe a = fct ops
∀ fct : FONCTION OP | fct ∈ fct ops • {(fct 7→ fct)} ∩ participe a = ∅

SATELLITE A satellite is a kind of FDIR actor (ACTEUR) characterised by a
type (detector or mirror), a koz radius and some operational functions (dispose de fop)
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such as a FDIR function (dispose de fdir), an intersatellite communication func-
tion (dispose de fcom sat), and a communication function with a ground station
(dispose de fcom sol).
The single constraint relates to a minimum value for the KOZ radius.

SATELLITE
ACTEUR
type : ROLE
koz : N1

chainefonctionnelle : F1 CHAINE FCT
dispose de fop : F1 FONCTION OP
dispose de fdir : FDIR
dispose de fcom sat : FCT COM SAT
dispose de fcom sol : FCT COM SOL

koz ≥ 5

SOL A ground station is a kind of actor (ACTEUR) characterised by some oper-
ational functions (dispose de fop) and a communication function with a satellite
(dispose de fcom sat).

SOL
ACTEUR
dispose de fop : F1 FONCTION OP
dispose de fcom sat : FCT COM SAT

FORMATION The formation is a kind of FDIR actor (ACTEUR), composed
of a non-empty finite set of satellites (satellites) characterised by a distance (dis-
tance), a status related to the KOZ, status vkoz which can take two values that are
normal for a normal status and en panne for a failure status, and some operational
functions (dispose de fop) such as a FDIR function (dispose de fdir).
The predicate part states properties concerning distance between both satellites for
a normal status.
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FORMATION
ACTEUR
satellites : F1 SATELLITE
distance : SATELLITE × SATELLITE 7→ N1

dispose de fop : F1 FONCTION OP
dispose de fdir : FDIR
status vkoz : ETAT V KOZ

dom distance ⊆ satellites× satellites
status vkoz = normal ⇔
(∀ sat1, sat2 : SATELLITE | (sat1, sat2) ∈ dom distance
• distance(sat1, sat2) > sat1.koz + sat2.koz)

As far as FDIR itself is concerned, several strategies have been defined [CGL+06]
and have been implemented with ProCoSA. Only a centralised strategy is dealt
with in this paper.

OPERATION A recovery operation is characterised by its type (nature), i.e.
reset, redundancy switch or movement operations.

OPERATION
nature : TYPE OPERATION

STRATEGIE FDIR An FDIR strategy has a type, type strat, i.e. centralised,
mixed or distributed. It concerns the relationship between a recovery operation
and an operation function, connects FDIR function to FDIR cases, implies FDIR
functions, intersatellite communications and communications with the ground, and
a non-empty set of defaults.
The invariant relationships stipulate that these functions are well associated to the
concerned satellites.
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STRATEGIE FDIR
type strat : TYPE STRATEGIE FDIR
reconfig : OPERATION ↔ RECONFIGURATION
satisfait : FDIR ↔ FDIR CAS
fdir sat : SATELLITE ↔ FDIR
com sat : SATELLITE ↔ FCT COM SAT
com satsol : SATELLITE ↔ FCT COM SOL
defauts : F1 DEFAUT

∀ sat : SATELLITE; fd : FDIR • (sat, fd) ∈ fdir sat
⇒ fd = sat.dispose de fdir
∀ sat : SATELLITE; fc : FCT COM SAT • (sat, fc) ∈ com sat
⇒ fc = sat.dispose de fcom sat
∀ sat : SATELLITE; fc sol : FCT COM SOL • (sat, fc sol) ∈ com satsol
⇒ fc sol = sat.dispose de fcom sol

S CENTR 1 This is one of the centralised FDIR strategies that we have de-
signed for satellite formations. This strategy is such as each satellite carries its
own detection function and only the detector satellite sat1 carries the recovery ca-
pabilities. Moreover, only sat1 communicates with the ground for FDIR.

S CENTR 1
STRATEGIE FDIR
SIMBOLX

type strat = centralisee
defauts ⊆ sat1.dispose de fdir.traite ∪ sat2.dispose de fdir.traite
fdir sat = {(sat1, sat1.dispose de fdir), (sat2, sat2.dispose de fdir)}
sat1.dispose de fdir.detections 6= ∅
sat2.dispose de fdir.detections 6= ∅
sat1.dispose de fdir.reconfigurations 6= ∅
sat1.dispose de fdir.reconfigurations ⊆ ran reconfig
sat2.dispose de fdir.reconfigurations ∩ ran reconfig = ∅
com sat = {(sat1, sat1.dispose de fcom sat), (sat2, sat2.dispose de fcom sat)}
com satsol = {(sat1, sat1.dispose de fcom sol)}

2.2 State evolution for a KOZ violation case

The initial values of the Simbol-X formation are given by the following Z schema:
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Init FORMATION
FORMATION
ΞSIMBOLX

status vkoz = normal
sat1.type = detecteur ∧ sat1.koz = 18
sat2.type = miroir ∧ sat2.koz = 15

Let us consider the operations due to a formation fault such as a KOZ violation.
This fault (ev fdir?) is detected when both satellites get closer.

PANNE V KOZ
ΞSIMBOLX
∆FORMATION
ev fdir? : DEFAUT

ev fdir? ∈ formation.dispose de fdir.traite
(sat1, sat2) ∈ dom distance
distance(sat1, sat2) > sat1.koz + sat2.koz
distance′(sat1, sat2) ≤ sat1.koz + sat2.koz

For the detector satellite and for the mirror satellite, the fault is respectively ex-
pressed by anom S1? and anom S2? and detected by their detection functions:

NORMAL2PANNE
ΞSIMBOLX
∆FDIR
anom S1? : DEFAUT
anom S2? : DEFAUT

anom S1? ∈ sat1.dispose de fdir.traite
anom S2? ∈ sat2.dispose de fdir.traite
sat1.dispose de fdir.detections ∩ detections′

6= detections ∩ sat1.dispose de fdir.detections
sat2.dispose de fdir.detections ∩ detections′

6= detections ∩ sat2.dispose de fdir.detections

To express intersatellite communication, we define a non-exhaustive enumerated
type of messages:

MESSAGE ::= messok | messperteISL | messperteRF | messalarme
| messreconf | messmanoeuvre | messsol | messcritique

The mirror satellite sends an alarm message to the detector satellite in order for it
to deal with this default and develop an operational strategy.

INFO2S1 =̂ [mess! : MESSAGE | mess! = messalarme]
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The KOZ violation requires a quick reaction of the formation. A high priority
recovery strategy is planned by the FDIR satellite, i.e. the detector satellite, for the
whole formation.

RECONF F
ΞSIMBOLX
∆STRATEGIE FDIR

reconfig = ∅
reconfig′ 6= ∅

A message stating the appropriate manoeuvre is sent by the detector to the mirror
satellite.

RECONF S2 =̂ [mess! : MESSAGE | mess! = messreconf ∧ mess! = messmanoeuvre]

The manoeuvre is finished when a normal state is recovered.

FIN MANOEUVRE
ΞSIMBOLX
∆FORMATION

status vkoz = en panne
status vkoz′ = normal

Therefore the KOZ violation processing is: first detection, then a manoeuvre exe-
cuted by both the satellites.

ViolationKOZ =̂ NORMAL2PANNE o
9 INFO2S1 o

9 RECONF F o
9

RECONF S2 o
9 FIN MANOEUVRE

3 ProCoSA simulation of KOZ violation

3.1 Petri nets

The simulation of KOZ violation with ProCoSA (figure 2) distinguishes three be-
haviours corresponding to the detector satellite state (etat S1), the mirror satellite
state (etat S2), and the FDIR satellite (FDIR S1), namely the detector satellite.
A KOZ violation fault affects both satellites and makes the state-Si (etat Si) Petri
nets pass from the nominal (normal) to the fault state (en panne) whereas FDIR S1
net passes from the nominal (nominal formation) to the detection state (D). For
etat S2, an additional fault state is introduced to take into account the sending of
an alarm message to the FDIR satellite if the intersatellite communication link is
available (COM OK S2 vers S1 2). Then FDIR S1 passes to state reactif S1

2COM OK S2 vers S1 and COM OK S1 vers S2 are two global places used in other Petri
nets modelling the intersatellite communication state. In this paper, we don’t focus on this aspect.
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meaning that a security reaction is performed for this type of fault whereas etat S1
passes to state reconf en cours. Indeed, as FDIR S1 carries all the FDIR knowl-
edge and algorithms, only FDIR S1 can perform a reaction, even if the fault is
detected on another spacecraft. FDIR S1 then passes to state att reconf S2 if the
intersatellite link is available (COM OK S1 vers S2) meaning that actions nec-
essary to recovery are expected from the mirror satellite. Thus each state-Si net
passes to state on-going reconfiguration (reconf en cours), before going back to
the nominal state. At last FDIR S1 goes back to the nominal state.

Figure 2: KOZ violation recovery simulated with ProCoSA

3.2 Linking Z schemas and ProCoSA Petri nets

As pointed out in [HH99, Xud01, PJ03], Z schemas are well suited to define data
structures, system constraints and functional processing whereas Petri nets are a
graph-based formal model for representing the control structures and dynamic be-
haviours of concurrent and distributed systems that cannot be explicitly described
in Z. Accordingly a relationship between Z and Petri nets offers a coherent formal-
ism of specification for designing reliable systems.

In this section, we present how to combine Z schemas and ProCoSA Petri nets
for the specification of FDIR in a satellite formation. The first step consists in
building a relevant Z model of a satellite formation. By analysing the require-
ment description of the system, we identify its main components (FORMATION,
SATELLITE, SOL) and functionalities (FDIR, OPERATION, STRATEGIE FDIR)
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which define the overall system structure. Then, the definition of Z-operations
(PANNE V KOZ, NORMAL2PANNE, INFO2S1, RECONF F, RECONF S2,
FIN MANOEUVRE) refines the model for the specific case of the KOZ violation.
Furthermore, ProCoSA simulation enables to link Z-operations to Petri net transi-
tions: one Z operation defines one Petri net transition. In the predicate part of a Z
operation schema, the pre-condition part which is expressed through non-dashed
variables is the guard specifying the enabling condition of the corresponding tran-
sition, whereas the post-condition part expressed through dashed variables defines
its firing result. Moreover, ProCoSA events and messages can be associated with
transitions and may respectively correspond to input and output variables in Z op-
erations. According to the rule stated above, the Petri net transitions panne v koz,
normal2panne, info2S1, reconf f, reconf S2, fin manoeuvre correspond to opera-
tion schemas described in the Z model. The transition reconf S1 is added to mean
that formation recovery strategy reconf f is composed of an internal S1 recovery
function. This recovery function is partially hinted in the reconfig variable of the
Z-operation called RECONF F. In fact, this transition is similar to reconf f, so it
corresponds to the same Z-operation RECONF F.

In our model, there is only an implicit relationship between local variables in Z
operation schemas and input or output places of a transition in ProCoSA Petri
nets. Some expressions relate to the system state before and after transition firing,
like the expression concerning detection functions in the predicate part of NOR-
MAL2PANNE Z operation schema.

Furthermore, the initial marking of the ProCoSA Petri nets is consistent with the
initial state schema in Z (Init FORMATION).

For a complete simulation, a new ProCoSA procedure will be developed to simu-
late the intersatellite distance variation and the Z property concerning the distance
and KOZ.

4 Analysis of Z-ProCoSA relationship

For consistency reasons, the two processes, i.e. the Z specification and the Pro-
CoSA simulation, were jointly carried out in order to fully benefit from the ad-
vantages of each method. Z provides the formal aspect for the specification of the
system, whereas ProCoSA allows to focus on dynamic aspects and the sequences
of the state variations. This has enabled a better understanding of the formation
behaviour faced with a KOZ violation anomaly by revealing not very precise re-
quirements, e.g. which satellite first operates the collision avoidance manoeuvre.

Thanks to data and constraint definitions, the Z specification has allowed to modify
an existing ProCoSA simulation of an FDIR centralised strategy that only took into
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account the state evolutions.
Conversely, the ProCoSA simulation also contributes to develop the Z model by
describing state changes and control flows between the various Petri nets, i.e. the
behavioural aspect. The causal relation or state sequence is represented graphi-
cally: normal state, then fault detection, at last recovery with manoeuvre.

Compared to other models [HH99, Xud01, PJ03], the complexity of the approach
seems lower and the Z-ProCoSA relationship analysis weakly relates to net places
and their corresponding Z schemas and confidently relies on ProCoSA property
analysis tool (place safety, detection of dead markings).

5 Conclusion

ProCoSA is suitable to take into account the behaviour of concurrent and dis-
tributed systems like FDIR for a satellite formation, whereas Z is well known for
data abstraction and functional specification. The idea is that the combination of
both formalisms leads to very reliable models.
The next steps in our work are the following:

• implement a hybrid simulation with discrete and continuous state variables,
e.g. to simulate the intersatellite distance variation and the Z properties con-
cerning the distance and KOZ ;

• refine the simulation by taking time into account, i.e. state duration, delay
between satellite operations and concurrence between both satellites ; thus,
we will test other FDIR strategies that need more time for converging or
involve ground stations.

• define a formal methodology applying proof checking that is based on com-
bined Z and Petri net specifications.

Appendix: ProCoSA

A Petri net < P, T, F, B > is a bipartite graph with two types of nodes: P is a finite
set of places; T is a finite set of transitions [DA05]. Arcs are directed and represent
the forward incidence function F : P × T → N and the backward incidence func-
tion B : P× T → N respectively. The marking of a Petri net is defined as function
M : P → N: tokens are associated with places. The evolution of tokens within
the net follows transition firing rules. Petri nets allow sequencing, parallelism and
synchronization to be easily represented. An interpreted Petri net is such that con-
ditions and events are associated with transitions.

ProCoSA [BGVBT06] is a software environment meant for controlling and moni-
toring highly autonomous systems. System autonomy is usually obtained by putting
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together various functions, among which: data analysis (sensor data, monitor-
ing data, operator’s inputs), nominal mission monitoring and control (vehicle and
payload control actions), decision (management of disruptive events, replanning).
These functions, which are often developed as separate subsystems, have to co-
operate in order to fulfil the autonomous system behaviour requirements for the
specified missions. More precisely, the needs are the following:

• off-line tasks: specification of the co-operation procedures between subsys-
tem software; subsystem coding for embedded operation;

• on-line tasks: procedure monitoring, event monitoring, and management of
the dialog with the operator.

ProCoSA includes the following components:

• EdiPet, a graphical interface for Petri nets which is used both by the devel-
oper for procedure design and by the operator for execution monitoring;

• JdP, the Petri net player, that executes the procedures, fires the event-triggered
transitions of the Petri nets and synchronises the activation of the associated
sub-system functions; a socket-based communication protocol allows data
to be exchanged with external subsystem software;

• Tiny, a Lisp interpreter dedicated to distributed embedded applications.

The Petri nets used by ProCoSA are interpreted Petri nets: triggering events such
as activation or event generation requests are attached to the transitions. Timers
can be programmed: a special activation request enables a timer variable to be
instantiated, which allows actions with a limited duration to be modelled.
The ProCoSA procedures are used to model the desired behaviours of the au-
tonomous system; the hierarchical modelling features offered by ProCoSA enable
to structure the whole application in a generic way: at the highest description level,
generic behaviours can be described, regardless of the characteristics of a given
vehicle; at the lowest level, they specify the sequences of elementary actions to be
performed by the vehicle or the payloads; this modular approach enables a quick
adaptation to system changes (e.g. taking into account a new payload).
An important feature of ProCoSA lies in the fact that there is no code translation
step between the Petri net procedures and their execution: they are directly inter-
preted by the Petri net player, thus avoiding any supplementary error causes.
ProCoSA finally includes a verification tool, which makes use of the Petri net anal-
ysis techniques to check that some ”good” properties are satisfied by the proce-
dures, both at the single procedure level and at the whole project level (that is to say
taking into account inter-net connections); the following properties are checked:
place safety (not more than one token per Petri net place), detection of dead mark-
ings (deadlocks), detection of cyclic firing sequences (loops).
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Abstract— Autonomous robots are complex systems that re-
quire the interaction/cooperation of numerous heterogeneous
software components. Nowadays, robots are critical systems and
must meet safety properties including in particular temporal and
real-time constraints. We present a methodology for modeling
and analyzing a robotic system using the BIP component frame-
work integrated with an existing framework and architecture,
the LAAS1 based on GenoM. The BIP componentization approach
has been successfully used in other domains. In this study, we
show how it can be seamlessly integrated in the preexisting
methodology. We present the componentization of the functional
level of a robot, the synthesis of an execution controller as well as
validation techniques for checking essential “safety” properties.

I. INTRODUCTION

A central idea in systems engineering is that complex
systems are built by assembling components (building blocks).
Components are systems characterized by an abstraction that is
adequate for composition and re-use. It is possible to obtain
large components by composing simpler ones. Component-
based design confers many advantages such as reuse of
solutions, modular analysis and validation, reconfigurability,
controllability, etc.

Autonomous robots are complex systems that require the
interaction/cooperation of numerous heterogeneous software
components. They are critical systems as they must meet
safety properties including in particular, temporal and real-
time constraints.

Component-based design relies on the separation between
coordination and computation. Systems are built from units
processing sequential code insulated from concurrent execu-
tion issues. The isolation of coordination mechanisms allows
a global treatment and analysis.

One of the main limitations of the current state-of-the-
art is the lack of a unified paradigm for describing and
analyzing the information flow between components. Such a
paradigm would allow system designers and implementers to
formulate their solutions in terms of tangible, well-founded
and organized concepts instead of using dispersed coordination

1LAAS Architecture for Autonomous System.

mechanisms such as semaphores, monitors, message passing,
remote call, protocols, etc. It would allow in particular, a
comparison of otherwise unrelated architectural solutions and
could be a basis for evaluating them and deriving implemen-
tations in terms of specific coordination mechanisms.

The designers of complex systems such as autonomous
robots need scalable analysis techniques to guaranteeing essen-
tial properties such as the one mentioned above. To cope with
complexity, these techniques are applied to component-based
descriptions of the system. Global properties are enforced by
construction or can be inferred from component properties.
Furthermore, componentized descriptions provide a basis for
reconfiguration and evolutivity.

We present an incremental componentization methodol-
ogy and technique for an already existing autonomous robot
software developed at LAAS. The methodology considers
that the global system architecture can be obtained as the
hierarchical composition of larger components from a small set
of classes of atomic components. Atomic components are units
processing sequential code that offer interactions through their
interface. The technique is based on the use of the Behavior-
Interaction-Priority (BIP) [2] component framework which
encompasses incremental composition of heterogeneous real-
time components.

The main contributions of the paper include:
• A methodology for componentizing and architecting au-

tonomous robot systems.
• Composition techniques for organizing and enforcing

complex event-based interaction using the BIP frame-
work.

• Validation techniques for checking essential properties,
including scalable compositional techniques relying on
the analysis of the interactions between components.

The paper is structured as follows. In Section II we illustrate
with a real example, the preexisting architecture (based on
GenoM [6]) of an autonomous robotic software developed at
LAAS. From this architecture, we identify the atomic com-
ponents used for the componentization of the robot software
in BIP. Section III provides a succinct description of the BIP
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component framework. Section IV presents a methodology for
building the BIP model of existing GenoM functional modules
and their integration with the rest of the software. Controller
synthesis results as well as “safety” properties analysis are
also presented. Section V concludes the paper with a state
of the art, an analysis of the current results and future work
directions.

II. MODULAR ARCHITECTURE FOR AUTONOMOUS
SYSTEMS

Autonomous robots are complex systems that require the
interaction/cooperation of numerous and quite different soft-
ware modules/components. This is usually achieved with the
proper architecture, methods and tools.

A. Preexisting Software Architecture

At LAAS, we have developed a framework, a global
architecture, that enables the integration of processes with
different temporal properties and different representations.
This architecture decomposes the robot system into three main
levels, having different temporal constraints and manipulating
different data representations [1]. This architecture is used on
a number of robot, in particular DALA, an iRobot ATRV, and
is shown on Fig. 1. The levels in this architecture are :

Execution controller (R2C)

Pos 
Y

Module 
X Functional Module Poster

Procedural 
executive

(open-PRS)

Planner and 
temporal executive

(IxTeT)

Execution control level

OR

Fonctionnal level

Decisionnal level

Antenna
PosPOM

PosVME

Science

Aspect Obs

Laser 
RF ScanCamera Im.

NDD Speed

PosRFLEX

Platine

Simulator
GAZEBO

Fig. 1. An instance of the LAAS architecture for the DALA Robot.

• a functional level: it includes all the basic built-in robot
action and perception capacities. These processing func-
tions and control loops (e.g., image processing, obstacle
avoidance, motion control, etc.) are encapsulated into
controllable communicating modules developed using
GenoM2. Each modules provide services which can be
activated by the decisional level according to the current
tasks, and posters containing data produced by the mod-
ule and for other (modules or the decisional level) to use.

• a decisional level: this level includes the capacities of
producing the task plan and supervising its execution,
while being at the same time reactive to events from the
functional level. The coexistence of these two features,
a time-consuming planning process, and a time-bounded
reactive execution process poses the key problem of their
interaction and their integration to balance deliberation
and reaction at the decisional level.

• At the interface between the decisional and the functional
levels, lies an execution control level that controls the
proper execution of the services according to safety
constraints and rules, and prevents functional modules
from unforeseen interactions leading to catastrophic out-
comes. In recent years, we have used the R2C [15] to
play this role, yet it was programmed on the top of
existing functional modules, and controlling their services
execution and interactions, but not the internal execution
of the modules themselves.

The organization of the overall system in layers and the
functional level in modules are definitely a plus with respect
to the ease of integration and reusability. Yet, an architecture
and some tools are not “enough” to warrant a sound and safe
behavior of the overall system.

In this paper the componentization method we propose will
allow us to synthesize a controller for the overall execution
of all the functional modules (which will be componentized)
and will enforce by construction the constraints and the rules
between the various functional modules. Hence, the ultimate
goal of this work is to implement both the current functional
and execution control level with BIP.

B. Componentization of GenoM Functional Modules

Each module of the LAAS architecture functional level is
responsible for a function of the robot. Complex modalities
(such as navigation) can be obtained by having modules
“working” together. For example in Fig. 1 (which only shows
the data flow of the functional level), there is an implicit
processing loop. The module Laser RF acquires the laser
range finder and store them in poster Scan, from which
Aspect builds the obstacle map Obs. The module NDD
(responsible for the navigation) avoids this obstacle while
producing a Speed reference to reach a given target from the
current position Pos produced by POM. Finally, this Speed
reference is used by RFLEX, which controls the speed of the

2The GenoM tool can be downloaded from:
http://softs.laas.fr/openrobots/wiki/genom
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robots wheels, and also produces the odometry position to be
used by POM to generate the current position.3

All these modules are built using a unique generic canvas
(Fig. 2) which is then instantiated for a particular robot func-
tion. We shall now describe this generic module, taking NDD
as an example of instance, and identifying the “components”
which are typeset in italic.

Each module can execute several services started on client
requests. The module can send information relative to the
executed requests to the client (such as the final report) or
share data with other modules using posters. E.g. the NDD
module provides six services corresponding to initializations of
the navigation algorithm (definition of parameters), launching
and stopping the path computation toward a given goal and a
permanent service (SetParams, SetDataSource, SetSpeed, Stop,
GoTo and Permanent). NDD also exports a poster (Speed)
containing the speed reference.

The services are managed by a control task responsible for
launching corresponding activities within execution tasks.

control 
poster

functional
poster

Control Task

Execution Tasks

activities

Functional 
IDSControl IDS

Posters interface

Request

Report

Services Interface

Fig. 2. A GenoM module organization.

Control and execution tasks share data using the internal
data structures (IDS). Moreover execution tasks have periods
in which the several associated activities are scheduled. It is
not necessary to have fixed length periods if some services are
aperiodic. Fig. 3 presents the behavior of an activity, inspired
from classical thread life cycle. Activity states correspond to
the execution of particular elementary code available through
libraries and dedicated either to initialize some parameters
(START state), to execute the activity (EXEC state) or to safely
end the activity leading to reseting parameters, sending error
signals, etc.

The component-based approach considers the functional
level as a hierarchical entity which is decomposed successively
into simpler components like modules, and further down to
atomic components like execution tasks, activities, etc.

3This particular setup will serve as an example throughout the rest of the
paper.

ETHER

START

EXEC IDLEFAIL

END

INTER

request(arg)/_ _/started

abort/_

abort/_

abort/__/interrupted

_/OK(ret)

_/failed

events :
   input / output

Fig. 3. Execution automaton of an activity.

Activity

Service

ExecutionTask

Module

Scheduler Activity
Poster

Timer

Control Task

Activity

Service

ExecutionTask

Poster

Fig. 4. A componentized GenoM module.

In order to formalize the componentization approach, we
propose the following decomposition:

Functional level ::= (Module)+
Module ::= (Service)+ . (Control Task) . (Poster)+
Service ::= (Execution Task) . (Activity)
Control Task ::= (Timer) . (Scheduler Activity)

where ”+” means the presence of one or more of the particular
component and ”.” means the composition of different compo-
nents. The componentized view of a GenoM module is shown
in Fig. 4.

The next section introduces the BIP framework which
has been used for the componentized implementation of the
functional level of the robot.

III. THE BIP COMPONENT FRAMEWORK

BIP4 [2] is a software framework for modeling heteroge-
neous real-time components. The BIP component model is
the superposition of three layers: the lower layer describes
the behavior of a component as a set of transitions (i.e a
finite state automaton extended with data); the intermediate
layer includes connectors describing the interactions between
transitions of the layer underneath; the upper layer consists of
a set of priority rules used to describe scheduling policies for

4The BIP tool-set can be downloaded from:
http://www-verimag.imag.fr/˜async/BIP/bip.html.
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interactions. Such a layering offers a clear separation between
component behavior and structure of a system (interactions
and priorities).

BIP allows hierarchical construction of compound compo-
nents from atomic ones by using connectors and priorities.

An atomic component consists of a set of ports used for
the synchronization with other components, a set of transitions
and a set of local variables. Transitions describe the behavior
of the component. They are represented as a labeled relation
between control states.

in

0<x

y:=f(x) out

x y

outin empty

full

Fig. 5. An example of an atomic component in BIP.

Fig. 5 shows an example of an atomic component with two
ports in, out, variables x, y, and control states empty, full.
At control state empty, the transition labeled in is possible
if 0 < x. When an interaction through in takes place, the
variable x is eventually modified and a new value for y is
computed. From control state full, the transition labeled out
can occur.

Connectors specify the interactions between the atomic
components. A connector consists of a set of ports of the
atomic components which may interact. An interaction of a
connector is any non empty subset of its set of ports. A
typing mechanism is used for the ports in order to determine
the feasible interactions of a connector and in particular to
model the two basic modes of synchronization, rendezvous
and broadcast.

Priorities in BIP are a set of rules used to filter interactions
amongst the feasible ones.

The model of a system is represented as a BIP compound
component which defines new components from existing com-
ponents (atoms or compounds) by creating their instances,
specifying the connectors between them and the priorities.

The BIP framework consists of a language and a toolset
including a front-end for editing and parsing BIP programs
and a dedicated platform for the model validation. The plat-
form consists of an Engine and software infrastructure for
executing simulation traces of models. It also allows state
space exploration and provides access to model-checking tools
like Evaluator [12]. This permits to validate BIP models and
ensure that they meet properties such as deadlock-freedom,
state invariants and schedulability.

The back-end, which is the BIP engine, has been entirely
implemented in C++ on Linux to allow a smooth integration of
components with behavior expressed using plain C/C++ code.

The following section describes the modeling and verifica-
tion of the functional layer of the robot in the BIP framework
and its integration within the LAAS framework.

IV. MODELING, VERIFYING AND INTEGRATING THE
FUNCTIONAL LAYER OF THE ROBOT DALA IN BIP

In modeling the functional layer of the robot in BIP, we have
used the hierarchical decomposition of the functional layer as
presented earlier in section II-B. Compound components are
created by composing sub-components (atoms or compounds)
using the connectors between them and priorities (if required),
to build the hierarchy of the complete system.

For example, a compound component modeling a generic
service is obtained from the atomic components execution task
and activity and the connectors between them, as shown in
Fig. 6.

ETHER IDLE

OKEXEC

trigger

controlinterfail

finish

start

start

finish

fail

inter

status status

statusstatus

ETHER SLEEP

EXEC

abort

start

finish

fail

inter

start

finish

fail

inter

trigger status

trigger status

status exec abort

exec abort

exec

Service

Fig. 6. BIP model of a service.

The left sub-component represents the execution task of
a service. It is launched by synchronization through port
trigger. The execution task then checks the validity of the
parameters of the request (if available) and will either reject
the request or start the activity by synchronizing with the
activity component (right sub-component). In each state, the
status of the execution task is available by synchronizing
through port status. The activity will then wait for execution
(i.e. synchronization on the exec port with the control task) and
will either safely finish, fail, or abort. Each of the transitions
control, start, exec, fail, finish and inter may call an external
function.

The service components are further composed with control
task and poster components to obtain the module components.

The full BIP description of the functional level of the robot,
which consists of several modules, is beyond the scope of this
paper. We rather focus on the modeling of the NDD module.

A. Modeling the NDD module in BIP

The NDD module contains six services, a poster and a
control task as sub-components and the connectors between
them, as shown in Fig. 7.

The control task wakes up periodically (managed by the
bottom-left component with alternating sleep and trigger tran-
sitions) and always triggers the Permanent service at the
beginning of each period. During a period, the services will
have authorization to execute through interactions with the
control task.

Moreover, the BIP formalism allows complex relations to
be defined, such as:
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setParams setDataSource setSpeed stopgoTo

perm
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Fig. 7. The NDD module.

• interruptions, as modeled by the connector joining
Stop.exec and GoTo.abort; if service Stop is executed,
the GoTo algorithm will be aborted;

• constraints, as modeled by the goTo connector (in blue);
service GoTo can be launched only if SetParams, Set-
Speed and SetDataSource have been already completed
(information available through their status port).

B. Executing and Monitoring the BIP model

The BIP tool-chain generates code from the BIP model,
which can be executed by the BIP engine. The code contains
calls to functions from libraries originally designed for GenoM
modules, which executes the real activities of the robotic
system. The code generated for the NDD module has been
integrated and executed in the robot simulation environment
of LAAS [9]. In particular, it was fully integrated with the
decisional layer by replacing the functional layer originally
modeled with GenoM with the one modeled in BIP.

There is a services interface in the architecture allowing
each GenoM module to have its requests called from the
decisional level. In the BIP model, each module (e.g. NDD,
RFLEX, ...) has an additional component to accept requests
and will synchronize with the corresponding ports of the
module (for example those of NDD shown in Fig. 7). Hence,
the requests sent by the decisional level are received by
the component and reports are sent by each service upon
completion according to the protocol used by GenoM modules.
Indeed, the decisional layer does not need any modification to
work with BIP.

The following section demonstrates how the methodology

enforces by construction the constraints and the rules between
the various functional modules.

C. Functional level Controller synthesis

In the LAAS architecture, a centralized controller (R2C)
is used to control the proper execution of the services and to
enforce the safety constraints and modules interactions. On the
contrary, in the BIP model, we have used separate controllers
for each service. The proper execution order and the safety
properties are enforced by the BIP connectors between the
controllers of different services. A BIP connector has guarded
actions associated to each of its possible interactions. Depen-
dency between the controllers of service in different modules
are modeled by connectors associated with guards which
represents either some valid execution condition or some
safety rule. The composite behavior of these local controllers,
synchronized by the connectors and restricted by priorities, is
equivalent to the behavior of the centralized controller.

As an example, we had to enforce a rule between the NDD
and the POM modules which states that the robot can navigate
using the GoTo service of the NDD module only if the module
POM has already executed successfully its Run service (which
updates poster Pos). The rule is enforced by constructing a
connector between port trigger of the Goto service and port
status of the Run service, and guarded by the status value.
The status value of the Run service is updated when Run has
been successfully executed.

The next section presents in detail the methods used for the
verification of the robotic system and their results.
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D. Verification of Safety Properties

The BIP tool-set can perform an exhaustive state-space
exploration of the system. Additionally, it can detect potential
deadlocks in the system. These features have been used to
verify some properties in the model of the robot and for
detection of deadlocks. Two kinds of properties have been
verified.

1) Safety properties: A safety property guarantees that
something unexpected will never happen. For the verification
of such properties, we used methods based on state-space
exploration. The basic idea is to generate all reachable states
and state changes of the system under consideration, and
represent this as a directed graph called the state-space. Two
different methods have been applied.

a) Model checking [16, 3]: We used the model-checker
tool Evaluator [12] which performs on-the-fly verification
of temporal properties on the state-space generated by the
BIP engine on exploration of the system. As an example,
we describe the usage of this method in verifying a safety
property of the NDD module. It is required that the GoTo
service is triggered only after a successful termination of
SetSpeed service. To ensure this, in the BIP model of NDD,
we need to guarantee that the interaction GoTo:trigger occurs
only after the occurrence of the interaction SetSpeed:finish.
We checked for violations of this property, i.e finding a
transition sequence in the state-space where GoTo:trigger is
not preceded by SetSpeed:finish. This safety property can be
expressed in branching-time µ-calculus [11] as the following:

µX.(<”SetSpeed:finish”>T or <¬”GoTo:trigger”>X)

The result obtained by Evaluator proves that the initializa-
tion property is preserved in the NDD module.

b) Verification using Observers [18, 14]: For a given
system S and a safety property P , we construct first an
observer for P , i.e. an automaton which monitors the behavior
of S and reports an error on violation of P . The verification
consists of exploring the state-space of the product system.
Such a method has been used to verify a timing property in
the NDD module. It is needed to verify that the total time taken
by all the services called within a period does not exceeds the
period.

ERROR

trigger

IDLE EXEC
trigger 
c := 0

tick
c < p
c := c+1

tick 
c >= pfinish

tick finish

tick

p c

Fig. 8. Observer for the control task period verification.

In BIP, it is possible to model time as symbolic time [2] by
using tick ports and clock variables in every timed component.

Time progress is by strong synchronization of all the tick
ports. The clock variables are incremented on a tick, to model
function execution times. Fig. 8 shows the observer component
used to verify the timing property of the NDD module. It has
a clock variable c and a parameter p representing the period
of the control task. It synchronizes with the control task and
tracks the cumulative time taken by the services triggered by
control task. If this time exceeds the period p, the observer
moves to the ERROR state. During exploration, if a global
system state, containing the ERROR state of the observer is
reachable, then the property is violated.

Such a method can also be used to verify timing properties
between several modules. The processing loop presented in
section II-B manages obstacle avoidance: obstacles detected
by the laser are added to the aspect map which is used by
NDD to compute a speed reference for RFLEX to control the
robot velocity. The following time constraint can be verified: it
should take less than a given time (e.g., a second depending on
the current robot velocity) between the detection of an obstacle
(data written in the Laser poster) and the speed reduction (the
execution of the RFLEX permanent service).

2) Deadlock freedom: This is an essential correctness prop-
erty as it characterizes a system’s ability to perform some
activity over its life time. The BIP toolset allow detection
of potential deadlocks by static analysis of the connectors
in the BIP model [7]. It generates a dependency graph and
for each cycle in this graph, a boolean formula is generated.
The satisfiability of the formula is then checked by the tool
minisat [4], where a solution corresponds to a potentially
deadlocked global state. Presence of an actual deadlock can
then be verified by reachability analysis of the deadlocked
states, starting from the initial state of the system. The analysis
for the NDD module found a potential deadlock for the state
where all services are in the EXEC state, all activities are in the
ETHER state, and the control task is in the Q0 state. However,
this state is unreachable, hence the deadlock is not possible.

V. STATE OF THE ART, CURRENT RESULTS AND
PROSPECTIVE

The design and development of autonomous robots and
systems is a very active research field. There are other archi-
tectures addressing similar problems: to provide an efficient,
reusable and formally sound organization of robot software.
CLARAty [13], used on various NASA research rovers, pro-
vides a nice object oriented hierarchical organization over two
layers, but there is no formal model of the component inter-
actions, nor modules canvas. IDEA [5], developed at NASA
Ames, has an interesting modular/component organization
with a temporal constraint based formalism. However, com-
plexity of constraint propagation is an obstacle for effective
deployment on real-time functional modules. RMPL [10, 19]
and its associated tools, propose a system based on a model-
based approach. The programmers specify state evolution
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with invariants expressed in an “Esterel like” language and
a controller maintaining them.

In [8], the authors present the CIRCA SSP planner for
hard real-time controllers. This planner synthesizes off-line
controllers from a domain description and then deduce
the corresponding timed automata to control the system
on-line. These automata can be formally validated with
model checking techniques. However, this work focuses on
the decisional part of the overall architecture. In [17] the
authors present a system which allows the translation from
MPL (Model-based Processing Language) and TDL (Task
Description Language) to SMV, a symbolic model checker
language. Compared to our approach, this does not address
componentization and seems to be more designed for the
high level specification of the decisional level.

The paper presents an approach integrating component-
based construction and validation of robotic systems. It shows
that a complex robotic system can be considered as the
composition of a small set of atomic components. The use of
BIP is instrumental for achieving this, as it provides powerful
constructs for coordinating components. The combination of
connectors to describe interactions between components, and
priorities to enforce scheduling policies, proves to be essential
for incremental modeling. The global model is obtained by
progressively composing its atomic components. It is possible
to identify in the global model all its atomic components and
their interactions. This allows in particular, to study the impact
of changes of a component’s behavior or structure on the
global behavior and its properties. The paper shows that it is
possible to combine standard verification techniques, based on
global state exploration, with structural analysis techniques for
deadlock detection. This is a very interesting work direction
that will be further investigated.

Another useful work direction is the online monitoring of
the functional level execution using observer components,
which would be able to generate feedback actions for the
decisional level which can be useful for error-recovery or
restarting of services.

Our work is based on the idea that componentization and
reasoned construction supported by an appropriate method-
ological framework and tools, are instrumental for coping
with system design complexity. It is possible to enforce by
construction some design requirements and avoid as much as
possible an a posteriori validation of the global system. We
will work towards achieving such a challenging goal in several
directions. These include the formalization of the componen-
tization methodology in particular regarding the interplay be-
tween atomic components and their coordination mechanisms.
Another important work direction is achieving constructivity,
that is guaranteeing some properties by construction or by
lightweight global analysis. Finally, the methods and tools
should be improved in particular to support incremental system
construction and analysis.
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Abstract. Emerging transport systems involve more and more fully automatic
parts that communicate together in order to optimise traffic and security. Such
systems are highly distributed, mobile and require physical constraints to be taken
into account. The communicating entities may be included in vehicles or the in-
frastructure ; they must comply with real time and real space constraints ; they
should also have some autonomous behaviour in case of e.g. network failure.
The systems designed should be proved reliable before being put in operation.
We propose to use formal specification and verification techniques for designing
these models, prior to any costly hardware implementation.

1 Introduction

Emerging transport systems involve more and more fully automatic parts that com-
municate together in order to optimise traffic and security. Such systems are highly
distributed, mobile and require physical constraints to be taken into account. The com-
municating entities may be embedded in vehicles or included in the infrastructure.

In such systems, distribution leads to a huge complexity and a strong need to de-
duce possible (good and bad) behaviours on the global system, from those known of its
actors. Moreover, at least part of these systems is embedded with intrinsic real-time and
real-space constraints. They are due to the critical, highly reactive environment where
both timing and positionning are critical issues.

For such systems, we know that classical development methods are not adequate
since the coverage of possible executions is too low [GL97]. This observation leads to
investigate the use of formal methods. However, these still lack user-friendly languages
and tools that can enable their use by non-specialists. Hence, even though major actors
in companies or institutions dealing with critical applications acknowledge the necessity
of using formal methods, they also agree on the fact they should be able to scale up:
today, only parts of systems are formally analysed.

Up to now, two main types of formal methods are available: algebraic approaches
and model checking. Algebraic approaches such as B [Abr96] allow for describing a
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system with axioms and then proving a property on the specification as a theorem to
be demonstrated from these axioms. These methods are very interesting since the proof
is parameterised. However, theorem provers that are required to elaborate the proof are
difficult to use and still require highly skilled and experienced engineers.

In contrast, model checking [CGP00,BBF+01] is the exhaustive investigation of
a system state space and can be automated very easily. This technique is theoretically
limited by the combinatorial explosion and can mainly address finite systems. However,
recent symbolic techniques3 scale up to more complex systems.

Thus, since formal verification techniques are getting more mature, our capability to
build even more complex systems also grows quickly. To catch up with problems com-
plexity and get significant results with formal analysis, we must cope with the complex-
ity at every stage of the process: from the specification phase to the verification itself.
The methodology to be applied makes a pragmatic use of formal methods, i.e. assump-
tions simplifying the system under study should be made, which are usually domain
specific. Hence, variations of the traditional (unified) process development approaches
are necessary.

This paper proposes to tackle the design methodology and techniques that can be
applied in order to handle very large systems throughout the modelling and verifica-
tion processes. Such techniques are here concerned with Intelligent Transport Systems
(ITS), i.e. mechanisms which provide driving assistance to a vehicle. This application
domain is particularly representative of tomorrow distributed systems including real-
time and real-space features, for which traditional programming approaches cannot
guarantee the required security, and must thus be adapted.

The paper is structured as follow. Section 2 presents ITS concerns and the related
verification problems. Then, section 3 describes the formal notations that we shall use
to model such systems. A design methodology is sketched in section 4. Section 5 ad-
dresses verification using appropriate model checkers. Finaly, section 6 shows the par-
allel between Intelligent Transport Systems and autonomous robots.

2 Intelligent Transport Systems

Intelligent Transport Systems (ITS) are highly critical since a failure can lead to dra-
matic consequences such as fatal accidents. They also involve a significant number of
partners that must thus cooperate in an efficient and secure manner. The agents of such
a system are road operators, infrastructure, vehicles and their drivers. Some of these
might be equipped with active embedded software while the others travel in the usual
fashion. Their reaction is then unpredictable and it is essential to obtain relevant and
often updated information from captors in order to take them into account.

Development of ITS is a challenge supported by research programs in Europe, USA
and Japan [Bis05].

In this section, some ITS issues are first illustrated through a simple example. Then,
major problems encountered during the formal specification are discussed.

3 The word symbolic is associated with two different techniques. The first one is based on state
space encoding and was introduced in [BCM92]. The second one relies on set-based represen-
tations of states having similar structures and was introduced in [CDFH91].
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2.1 ITS Example: Safe Insertion in a Motorway

A typical example of an ITS problem is the so-called black-spot, which is a dangerous
section in the motorway. It is basically a freeway entrance in which safe insertion should
be guaranteed. Figure 1 represents a motorway with two lanes: L1 (right lane) and L2
(left lane). An entrance to the motorway, L0, is connected to L1. Vehicles already on the
motorway use both lanes L1 and L2. Vehicles are supposed to carry an identity which is
a number. The notation Vi, j indicates that vehicle j is circulating on lane number i. We
aim at studying a cooperative insertion of vehicles arriving in the entrance lane L0.

Fig. 1. Safe Insertion in a motorway.

The vehicles on the insertion lane L0 must enter the motorway without violating the
following properties:

1. the distance between two vehicles in the same lane must be greater than a minimum
safe distance to let drivers react to sudden and maybe unexpected events;

2. V0, j vehicles must eventually get into the motorway;
3. Vi, j vehicles should not have to stop.

We propose the following strategy to ensure a safe motorway entrance:

(a) The motorway has a road-side center (RSC) enabling communication with vehicles
and which can compute commands related to safety or flow control.

(b) Vehicles receive their positions using satellite localisation technology [Blo05] which
may also be combined with ground installations and digitised maps). They periodi-
cally their position to the infrastructure. Subsequently, the infrastructure maintains
a dynamic map of all vehicles in its communication range.

(c) The infrastructure, vehicles behaviour and interactions operate the following inter-
action cycle:
(i) vehicles get their position;

(ii) they send this information to the infrastructure;
(iii) when the infrastructure has received all vehicles positions, it issues commands

w.r.t. a predefined strategy.

In order to simplify the problem, we assume that all vehicles are equipped with com-
munication devices and drivers follow the instructions issued by the road-side center.
Vehicles without the embedded equipment are considered and modelled differently.
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2.2 Modelling Issues for ITS

For such critical and reactive systems, both quantitative and qualitative properties should
be ensured.Quantitative properties express performance requirements while qualitative
properties allow for checking whether a faulty behaviour may occur.

Modelling and verifying such systems require:

– managing dynamic actors such as cars that enter and leave the black-spot;
– modelling of physical aspects;
– preserving a fair progression of the system so that actors perform actions at a similar

pace.

A qualitative analysis is a first step in the development process: it will ensure a
global correct functionning. Then, the specification can be refined so as to include tim-
ing or hybrid features, reflecting the actual real-time and real-space behaviour. Quanti-
tative analysis will determine whether the envisionned strategies satisfy physical con-
straints. In this paper, we will focus on the qualitative aspects.

2.3 Specification Issues

The first issue consists in selecting an appropriate specification formalism [HKP06].
Of course, the formalism should be able to capture the relevant aspects of the problem
under study, and allow for the necessary verifications. Moreover, a design methodology
will prove useful, to carry out verifications step by step on more amenable models.

The choice of a specification formalism and the design methodology are of utmost
importance for verification to be as successful as possible.

A very popular candidate for specification is UML [COTM05]. Even though, it is
useful for structuring a system and having a better view of the interactions between
components, UML is not suitable for formal analysis of the system behaviour. Normal-
isation efforts tends to counter this problem by giving a more precise semantics, but the
connection between diagrams is still too loose and leads to various interpretations.

Algebraic techniques such as B can be useful for the verification of behavioural
components as Siemens proved in the METEOR project [B]. However, it was also
known as a difficult technique to automate compared to model checking based ap-
proaches. Thus, this latter type of techniques seems better suited to provide more auto-
mated tools.

Many tools allow for model checking. They address different kinds of models. In a
first approach, we will focus on the verification of behavioural properties of the system,
i.e. qualitative analysis. Thus, we will be able to check that the chosen strategies are
relevant, indepently of real-time or real-space constraints. Therefore, a simple model
is selected, which is powerful enough for our modelling purposes and provides up-to-
date efficient analysis techniques, namely Symmetric Nets4. The CPN-AMI tool [cpn]
constitutes a complete spefication and verification environment for symmetric nets.

4 Symmetric Netswere formerly known asWell-Formed Nets, a subclass ofHigh-level Petri Nets.
The new name was chosen in the context of the ISO standardisation of Petri nets [HKPT06].
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In a further step of our modelling and verification process, the models will be
enhanced so as to capture the real-time and real-space aspects, i.e. perform quantita-
tive analysis. Model checking tools can handle time (e.g. UPPAAL [upp], based on
timed automata; or TINA [tin] based on Timed Petri Nets) or hybrid constructs (e.g.
HYTECH [hyt]). It will then be necessary to design a methodology which guarantees
a compatibility between the models designed for qualitative analysis and those derived
for quantitative analysis purposes.

The remainder of this paper will on behavioural properties. Therefore, section 3
presents the symmetric nets formalism.

3 Symmetric Nets

This section provides an informal presentation of Symmetric Nets as well as associated
analysis techniques. Formal definitions can be found in [CDFH91,GV03].

3.1 Formalism Basic Features

Symmetric Nets are Petri nets enhanced with high-level features: tokens can carry data.
Therefore, a data type is associated with each place, indicating the data type for tokens
sitting in that place. In contrast with Coloured Petri Nets [Jen92], only simple data and
manipulation functions are permitted, allowing for powerful analysis techniques. Finite
enumerated types, intervals, tuples are allowed and the basic functions are predecessor,
successor, selector (in a tuple) and “broadcast”. The latter function allows for generat-
ing one copy of each possible value in the data type. This is very convenient for e.g.
modelling network protocols where a station sends messages to all other stations on the
network.

Let us now illustrate Symmetric Nets (SN) by means of a small example. The Petri
net in figure 2 represents a class of threads (identified by an identity in type P) accessing
a critical resourceCR. Threads can get a value within the type Val from CR. Constants
PR and V are parameters for the system.

Class
   P is 1..PR;
   Val is 1..V;
Domain
   D is <P,Val>;

CR
<Val.all>

outCS

compute

InCSout
<P.all>

Mutex1

<p> <v>

<v>
<p, v>

<p, v>

<p>

<v>

Var
   p in P;
   v, v2 in Val;

Fig. 2. Example of a Symmetric Net.

The class of threads is represented by places out (typed after P) and compute. Place
compute (typed afterD=P×Val) corresponds to some computation on the basis of the
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value provided by CR. At this stage, each thread holds a value that is given back when
the calculus is finished. Place Mutex handles mutual exclusion between threads. Place
out initially holds one token for each value in P (the marking is then noted < P.all >)
and place CR holds one value for each value in Val (marking < Val.All >). Place
Mutex only contains one token with no value (like a black token in place/transition
nets).

Transitions represents evolution of the system. A transition is fired when all pre-
condition places hold a sufficient marking. For example, Transition inCS can be fired
if there is one token in out, one token in CR and one token in Mutex. When it fires,
variables p and v are bound to the values of tokens from place out and CR respectively
(placeMutex has no type, hence its tokens do not carry any data). When this transition
is fired, a token carrying the value of pair < p,v> is created in the postcondition place
compute.

3.2 From Symmetric Nets to Place/Transition Nets
A symmetric net can easily be unfolded into an equivalent place/transition net.

A SN-place is transformed into a set of PTN-places, one per possible value. The
place/transition net in figure 3 is the unfolding of the symmetric net in figure 2 with
P= [1..2] and Val = [1..2].

InCS_2_2InCS_1_2 InCS_2_1InCS_1_1

outCS_2_2outCS_1_2 outCS_2_1outCS_1_1

out_2 •out_1•

Mutex

•

CR_2
•

CR_1
•

compute_2_2

compute_1_2 compute_2_1

compute_1_1

Fig. 3. Unfolded P/T Net from figure 2.

Even large models can be handled, using decision diagram based techniques [KLPA06].
Then, structural properties of the model can be computed from the unfolded net.

They are formulas that can be computed without exploring the full state space [GV03],
and hold independently of the initial marking (in fact, it often intervenes in a constant
value only).

3.3 Symbolic Reachability Graph
One of the main analysis techniques is based on the state space (also called reachability
graph) exploration. It represents all concrete states and possible evolutions of the sys-
tem. Figure 4 presents the reachability graph for the Petri net of figure 2 with constants
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PR and V equal to 2. This state space has 5 states (the initial state is represented by
a double circle). When increasing the number of possible values, the size of the state
space will grow following the cardinality of the cartesian product P×Val.

  Mutex: <..>
  out: <.1.> + <.2.>
  CR: <.1.> + <.2.>

  out: <.2.>
  compute: <.1,1.>
  CR: <.2.>

  out: <.2.>
  compute: <.1,2.>
  CR: <.1.>

  out: <.1.>
  compute: <.2,1.>
  CR: <.2.>

  out: <.1.>
  compute: <.2,2.>
  CR: <.1.>

outCS
  p = 2
  v = 2

outCS
  p = 2
  v = 1outCS

  p = 1
  v = 2

outCS
  p = 1
  v = 1

InCS
  p = 2
  v = 2

InCS
  p = 2
  v = 1

InCS
  p = 1
  v = 2InCS

  p = 1
  v = 1

Fig. 4. Reachability Graph of the Net in Figure 2.

Similar to symmetric nets which are a compact representation of a system, the sym-
bolic reachability graph is a condensed reprsentation of the states in the system, par-
ticularly adapted to the analysis of symmetric nets. A state in the symbolic reachability
graph does not represent a concrete state but a set of concrete states that have a similar
structure. The symbolic reachability graph of our example is depicted in figure 5. It is
composed of only two nodes and does not grow when the types P and Val allow for
more values.

  out: <P_01>
  compute: <P_00,Val_01>
  CR: <Val_00>

  out: 1<><P_00> |P_00|=2 |Val_00|=2
  CR: <Val_00> |P_00|=2 |Val_00|=2

InCS outCS

Fig. 5. Symbolic Reachability Graph of the Net in Figure 2.

The definition of states in figure 5 must be read as follow. In the initial state, all
possible values in type P are stored in place out and all possible values in type Val are
stored in place CR. In the other state (when transition InCS fires), all possible values
of type P but one are in place out and all possible values of type Val but one are in
place CR. Place compute then contains one token composed with one value of type P
(the one that is not in place out) and one value of type Val (the one that is not in place
CR). Thus, this symbolic state represents all possible permutations of the pair of tokens
extracted from places out and CR when firing transition InCS.
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This symbolic technique is thus based on computed symmetries in the net [TMDM03].
It is successful when representing very large state spaces: there is an exponential gain
w.r.t. the construction of concrete states [HTMK+04]. This set-based representation is
very efficient, especially when systems are symmetric, which is the case in numerous
distributed and embedded systems.

Such a technique is well-suited for analysing Intelligent Transport Systems since
they present intrinsic symmetries as similar algorithms are supposed to be executed in
each car.

4 Modelling Methodology for ITSs

Considering that the specification formalism for Intelligent Transport Systems is Sym-
metric nets, we now aim at a suitable dedicated design method. Therefore, we will
consider the techniques that are optimal for this kind of systems.

4.1 Model Components and Abstraction Level

The whole ITS system to be modelled involves several components that interact via sev-
eral mechanisms. The communication can either be asynchronous (and is then modelled
by place fusion) or synchronous (corresponding to transition fusion).

It is thus necessary to enhance the symmetric nets formalism with both of these
communication mechanisms. They provide further advantages. In particular, several
designs of a same component can be tested without changing the models of the other
components, provided that all these designs communicate in the same manner with the
rest of the system. But they can operate different strategies or configurations.

This approach leads to a hierarchy of modules, which can have as many levels as
necessary. Analysing the system then starts by “flattening” the whole model into a single
symmetric net. It is also possible to take advantage of modular analysis techniques such
as [LP04].

Since the systems under study are complex, we also consider using refinement of
modules [LL01]. This approach allows for first designing an abstract model, analysing
it, and then include additional details in a consistent manner (so as to keep the analysis
results as much as possible). This process is repeated until the desired abstraction level
is obtained. A similar modelling approach will lead to include the real-time and real-
space features once the global functionning of the system is proved correct.

Finally, the specific problems identified in section 2.2 must be addressed.

4.2 Managing Dynamic Actors

The vehicles involved in the black-spot are dynamic: they can enter and leave the mo-
torway zone nder study. A natural way of modelling this aspect would be to create new
vehicles getting in and discarding vehicles getting out.

However, such an approach is not suitable for several reasons. First, that would
mean associating a new number with each new vehicle. The chosen formalism of sym-
metric nets permits only finite types, thus having a arbitrary high numbering of vehicles
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is not feasible. Moreover, let us assume that there is a maximum numbering of vehicles.
The states space of the system will be uselessly large when taking into account many
different vehicle numbers.

An approach to managing this dynamic aspect is then to consider that there can be
a limited number of vehicles on the black-spot. This is a reasonnable assumption since
the cars and motorway lengths are a physical limit. Moreover, the identity of vehicles
has no consequence on the functionning of the system. They must still be distinguished
to consider e.g. different positionning or driving strategies. Hence, when a vehicle gets
out of the system, its number can be reused by a new vehicle.

This technique also brings forward an interesting feature. The corresponding sys-
tem is not expected to deadlock. Thus, a deadlock may correspond either to a property
violation or to some mistake in the model itself.

4.3 Modelling Complex Functions

As mentionned in section 3.1, symmetric nets only offer a limited set of mathematical
functions to the system designer. This is required for keeping the mathematical structure
that enables the computation of symmetries in the specification, necessary for using the
symbolic reachability graph [TMDM03].

To cope with the modelling of complex functions (for example, computation of
braking distance according to the current speed of a vehicle), they can be discretised
and represented in a dedicated place of the Petri net. This approach is similar to sam-
pling and can be applied to arbitrarily complex functions, deterministic or not. However,
the discretisation of a function becomes a modeling hypothesis and must be validated
separately (to evaluate the accuracy of the sampling).

The main drawback of this technique is a loss in precision compared to continuous
systems that require appropriate hybrid techniques [CEF05]. If such a discretisation en-
ables the use of more user-friendly techniques, they must be checked. For example, if
we consider distances in our black-spot example, we must ensure that uncertainty re-
mains in a safe range. This means that our metrics must be compliant with the precision
to ensure, for example, that if V1,1 follows V1,2, the minimum distance guarantees that
no intersection between the associated volumes is possible.

Using the discretisation technique may be a preliminary to putting in operation more
complex formalisms such as timed or hybrid ones which will allow for quantitative
analysis of continouous models.

4.4 Fair Execution among System Components

The different actors in an ITS behave in parallel. Their actions should evolve at a simi-
lar pace. This aspect is not guaranteed by Petri net behaviour unless appropriate mech-
anisms are set. To avoid the progress of one component while the other components are
stopped, several techniques can be used:

– the addition of a timeline, as in Timed Petri nets [Jen92] changes the firing condi-
tions so that time can advance only if there is no enabled transition at the current
time anymore;
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– the state space construction could include a branching option that would discard
unsuitable sequences.

In the black-spot example, at each time slot, all vehicles should make a move and
the infrastructure take decisions, thus following the execution cycle described in sec-
tion 2.1.

5 Towards Analysis of Intelligent Transport Systems

As mentionned in section 4.2, ITSs include many components, namely the vehicles,
which have a similar behaviour. The vehicles identifiers are only used to track them
within the system. Therefore, this kind of system is highly symmetric: the diffrent ve-
hicles play the same role. Thus, the use of symmetric nets and the associated analysis
technique, i.e. the symbolic reachability graph (see section 3.3), is relevant.

Nevertheless, analysis remains quite difficult since currently implemented model
checkers are not sufficient. The ones that implements a concrete state space cannot
handle more than a few 108 states.

GreatSPN [gsp], a model checker implementing the symbolic reachability graph
was successfully used to analyse a middleware core having approximately 1018 concrete
states [HTMK+04], but it seems inadequate for the complexity of ITS systems when
discretisation is realistic and requires types with many values (in [BHKF06], only small
configurations could be analysed). Model checkers supporting a symbolic encoding of
the state space such as SVM [smv] present the same drawbacks.

A close examination of model checkers behaviour shows that current techniques
cannot scale up for these systems yet.

However, model checkers use new techniques that are promising for analysing ITSs:

– symbolic/symbolic techniques;
– distributed model checkers running on clusters of machines;
– handling stable markings;
– hierarchical encoding and modular techniques.

In the following subsections, we will sketch these.

5.1 Symbolic/Symbolic Techniques

The symbolic reachability graph, as described in section 3.3, allows for mastering the
complexity of large state spaces, similar to the encoding of states using decision dia-
grams [BCM92] (also called symbolic techniques). The term symbolic can thus have
sevral meanings. It can relate to:

– grouping of similar states represented by a single abstract one;
– adequate encoding of the states to have a better use of computer memory.

To illustrate the state encoding techniques, let us consider that a state in the system
is represented as a boolean vector defining the values of a set of variables. An action
in the system usually changes only part of the system state. Hence, we can consider a
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differential encoding of states. It is not necessary to encode once more the value of the
unchanged variables. Binary Decision Diagrams (BDDs) promote sharinf of common
parts in the system. The main drawback of this technique is that its efficiency is strongly
related to the ordering of variables.

BDDs are dedicated to systems using booleans, but many decision diagrams based
techniques were introduced so as to capture more elaborate models. Among them, Data
Decision Diagrams (DDDs) [CEPA+02] encode discrete values instead of binary ones.
It is a basis to support symbolic/symbolic techniques [TMIP04] that combine symbolic
encoding and symbolic reachability graph. Experiments show that this technique is
promising for the storage of very large state spaces.

5.2 Distributed Model Checking

The main problem of model checking is memory consumption. However, with diagram
decision based techniques, another problem arises. The principle of these techniques
is to trade memory against CPU. As a typical example, when a new symbolic state is
computed, it has to be compared with the existing ones. This requires all states to be
canonised in order to have a common and comparable representation.

So, distributing a model checker on a cluster of machines has advantages [KP04]:

– states are generated in parallel using a hash function which distributes states on
machines;

– it takes advantage of the CPU and memory available in the whole system.

Initial results are promising and this is a currently active research area. SPIN model
checker has already been experimented in a parallel setting [LS99,BFLW05]. A dis-
tributed version of GreatSPN has been recently implemented, which provides a supra-
linear acceleration factor for many examples [HKTM07]. However, even though the
distributed generation of the state space has been implemented, analysing properties on
those is still to be developped further.

5.3 Management of Stable Marking

The discretisation technique presented in section 4.3 generates places with a large mark-
ing which remains constant. Most model checkers do not handle such cases, and the
stable marking is represented once per generated state, leading to a huge and useless
memory consumption.

Model checkers using a symbolic encoding of states, such places should be detected
since their marking is highly shared by all states in the system. An a priori analysis
of the specification can easily detect such configuration and provide hints for a more
appropriate encoding technique.

5.4 Hierarchical Encoding and Modular Techniques

Symbolic encoding of a state space (concrete or symbolic) relies on the sharing of
state patterns in the state space of a system. Recent work investigates a hierarchical
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representation that could increase the sharing of such patterns on a larger scale. For
that purpose, new representations, such as Set Decision Diagrams (SDD) [CTM05]
are being investigated. In favourable cases (i.e. when the system exhibits very regular
symmetries), the results are impressive. E.g. it is possible, using a recursive folding of
the dining philosophers problem [phi], to store the state space for to 210000 philosophers
within 512 Mbytes of memory, as reported in [TM04]. The intrinsic high symmetry in
ITSs should allow for similar results.

An additional and complementary investigation axis is modular analysis [LP04].
Since the methodology applied for specifying large systems includes design by com-
ponent, this kind of analysis techniques is suitable. The idea consists in representing
the state space using not a single graph, but several: one per component, representing
the component local behaviour and local states, plus a synchronisation graph which ex-
plicits the synchronisations between the different components and the global states to
achieve those.

Combining modular and symbolic techniques should permit to handle very large
systems such as ITSs.

6 Towards Autonomous Robots

Autonomous robots are meant to evolve within an environment which may have unex-
pected behaviour. This can be due to e.g. unknown terrain to explore, other agents (e.g.
robots handled by another system, animals), . . . ‘Moreover, the human control on such
robots is rather minor. In order for autonomous robots to take into account the charac-
teristics of the environment, it is necessary for them to get information via sensors. This
allows for having an abstract vision of the current situation. Thus, as for ITSs, mod-
elling autonomous robots requires both real-time and real-space concerns to be taken
care of.

Thus, the approach developped here for ITSs can be used to tackle autonomous
robots verification as well. The analogy could be relating the robots themselves to the
vehicles and the interacting humans to the infrastructure. The map of the environment
for ITSs is rather simple and it may be more complex for robots. However, there is often
an intended route which can initially be modelled using simple data and symmetric nets
and can later be further refined when taking into account the space and time aspects.

7 Conclusion

Emerging transport systems involve more and more fully automatic parts that com-
municate together in order to optimise traffic and security. Such systems are highly
distributed, mobile and require physical constraints to be taken into account. The com-
municating entities may be included in vehicles or the infrastructure ; they must comply
with real time and real space constraints ; they should also have some autonomous be-
haviour in case of e.g. network failure. The systems designed should be proved reliable
before being put in operation.

In this paper, we have shown how the design methodologies and current analysis
techniques can handle such very large systems. The different approaches have their own
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advantages and are complementary. Therefore, our efforts will focus on their combina-
tion. An obvious necessity emerging from preliminary analysis is to consider design
and analysis issues in parallel so as to capture and handle the relevant problems in a
consistent and efficient manner. In particular, domain specific features have to be taken
into account at a very early stage.
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Abstract. Scalability of architecture, programming model 

and task control management will be a major challenge for 

MP-SOC designs in the coming years. The contribution 

presented in this paper is HS-Scale, a hardware/software 

framework to study, define and experiment scalable 

solutions for next generation MP-SOC. Our architecture, 

H-Scale, is a homogeneous MP-SOC based on RISC 

processors, distributed memories and an asynchronous 

network on chip. S-Scale is a multi-threaded sequential 

programming model with dedicated communication 

primitives handled at run-time by a simple Operating 

System we developed. The hardware validations and 

experiments on applications such as MJPEG and FIR filters 

demonstrate the scalability of our approach and draws 

interesting perspectives for distributed strategies of task 

control management. 

1. Introduction 

“MP-SOC is not just coming: it has arrived”1. The OMAP 

platform [2] with the recent 34302 system is one of many 

existing designs to date. If MP-SOC [3] is a reality, the 

increasing number of general purpose or dedicated 

processors on a single chip brings several issues to address: 

architecture scalability, programming models, task control 

management and debug are those referenced in [1]. 

IP core reuse has driven industrial system designers for 

obvious productivity and performance reasons. One major 

drawback is that these solutions are poorly scalable in terms 

of software and hardware. Although being aware of these 

economic constraints, we strongly believe that an 

alternative is possible from a basis of a scalable hardware 

and software framework. 

The work presented in this paper aims at exploring and 

defining principles which grant both hardware and software 

scalability. The H-Scale architecture is based on a NPU 

(Network Processing Unit), which is essentially a 

programmable RISC processor, a small memory and a 

routing unit. The communication infrastructure is based on 

an asynchronous packet switching network-on-chip which 

allows connecting the NPUs in a mesh-based fashion. The 

S-Scale is a multi-threaded procedural programming model 

with communication primitives. Implementations carried 

out show that the HS-Scale framework guarantees any 

application to be executed regardless the target platform 

features (number of NPUs) and the chosen mapping. 

Moreover, several experiments conducted on thread 

duplications suggest some strategies to automate the task 

control management and distribute it over the system. 

In the following, Section 2 tackles the issues at stakes 

regarding MP-SOC design and programming. Section 3 

presents and details the intrinsic hardware principles. 

                                                 
1 Grant Martin, Design Automation Conference, 2006 [1] 
2 Superscalar ARM CortexA8 core, IVA2+ accelerator for H264 video, 

Image Signal Processor, 2D/3D Graphics accelerator 

Section 4 is devoted to the programming model and more 

generally the software part of the framework which includes 

the online management mechanisms. Section 5 presents the 

hardware realizations, particularly the FPGA prototype and 

its debugging interface and provides some performance 

figures of this realization. Section 6 gives application results 

on a FIR filter and a MJPEG decoder.  

2. Related works 

During the last decades, improvements in microprocessor 

design and compilers were mainly aimed at improving 

Instruction Level Parallelism. It has nevertheless been stated 

that trying to further increase ILP is not the best choice, D. 

Patterson refers it to as the “ILP wall” [6]. Thread (or 

Task3) Level Parallelism (TLP) enables significant speedups 

and proves more flexible than ILP. TLP is now supported 

by a growing spectrum of programming environments 

through programming models, libraries, etc.  

From an architecture point of view, a MP-SOC may be 

either homogeneous, i.e. all the processing elements are the 

same (e.g. for server applications), or heterogeneous (CMP, 

or Chip Multi Processing, e.g. for embedded applications). 

One typical example of a heterogeneous MP-SOC system is 

a cell phone (for instance, those based on an OMAP 

platform). One of the toughest aspects in heterogeneous 

MP-SOC is that software modules have to interrelate with 

hardware modules. For instance, the authors of [4] advocate 

the use of high level programming for the abstraction of 

HW-SW interfaces. Their programming model is made of a 

set of functions (implicit and/or explicit primitives) that can 

be used by the SW to interact with HW. In the 

reconfigurable computing domain, alternative approaches 

have also been investigated, as the original one in [5] where 

a scalable programming model (SCORE) is associated to a 

homogeneous scalable reconfigurable architecture. The 

model allows indifferently computing a set of tasks in time 

or in space, following the resources available: the advantage 

is that software is reusable for any generation of component 

based on that model. 

There are two major programming models deriving from the 

memory architecture: SMP (Symmetric Multi Processing) 

where all the processors have a global vision of the memory 

(shared memory) and AMP (Asymmetric Multi Processing) 

where the processors are loosely coupled and have generally 

dedicated local memory resources. Procedural sequential 

programming (e.g. C) is generally the basis of MP-SOC 

systems as it stands on compilers that are widely available 

and because “Everybody knows C…”. As MP-SOC 

provides resources to compute several tasks concurrently, 

multi-threaded programming models have to be examined. 

With multi-core processor architectures, libraries such as 

open MP (SMP model) and MPI (Message Passing 

Interface) (AMP model) provide an interface to the 

                                                 
3 Thread and task are interchangeable within the scope of the presented work 
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programmer for execution directives inside the source code. 

Using this kind of library is currently not realistic for MP-

SOC designs for the overhead they imply. 

Task control management is also an issue to consider. 

Threads can be handled at execution time (dynamically on a 

single processor) by an operating system or at design time 

(statically) by complex scheduling techniques. A part of the 

MP-SOC community focuses on static task placement and 

scheduling in MP-SOC. Indeed, having a complex 

operating system in memory taking care of run-time 

mapping is often not feasible for a SOC, because of the 

restricted memory resources and associated performance 

overhead. Moreover, these systems are often heterogeneous 

and dedicated to a few tasks, and a single but efficient 

scheduling of tasks may be more adapted. For instance in 

[7], the authors summarize the existing techniques (ILP 

based or heuristics) and have developed a new framework 

based on ILP solvers and constraint programming to solve 

at design time the task allocation/scheduling problem. 

There are also contributions for the improvement of local 

performances in [8] and for energy savings in [9]. 

3. H-Scale architecture model 

3.1. System overview 

One of the leading principles of our approach relies in the 

exploration of massive parallelism for embedded MP-SOC; 

we target scalability of both hardware and software and 

expect performance to emerge from multitude and not from 

the intrinsic performance of the processing tile. For that 

reason, the main concerns regarding the processing element 

architecture are flexibility and compactness. 

Figure 1 shows a system-level overview of the H-Scale 

architecture and the surrounding components it is supposed 

to be connected to. As illustrated in this figure, our 

contribution is a homogeneous MP-SOC as a component of 

a heterogeneous system. It is based on a scalable 

architecture with distributed memory (AMP model). It is 

made of a regular arrangement of processing elements (PE) 

interconnected by a packet-switching communication 

network. As we assume that the HS-Scale architecture is a 

component of a realistic system, some of the PE of this 

architecture is responsible of establishing the 

communications with the rest of the system (interface PEs). 

Host CPU

BUS INTERFACE

RAM

BUS INTERFACE

DMA Engine Peripheral Peripheral

HS-Scale Interface PEs

…
 

Figure 1: system-level overview 

3.2. Network Processing Unit 

The architecture we present is made of a homogeneous 

array of PE communicating through a packet-switching 

network. For this reason, the PE is called NPU, for Network 

Processing Unit. Each PE, as detailed later, has 

multitasking capabilities which enable time-sliced 

execution of multiple tasks. This is implemented thanks to a 

tiny preemptive multitasking Operating System4 which runs 

on each NPU. The structure of the NPU is depicted in figure 

2. It is built around two main layers, the network layer and 

the processing layer. 

Network layer

Processing layer

Network layer

Processing layer

CPU RAM

UART NITimer

Task1

µkernel

…
Task n

Task1

µkernel

…
Task n

 

Figure 2. Network Processing Unit 

The Network layer is essentially a small routing engine (XY 

routing). Packets are taken from incoming ports, then either 

forwarded to outgoing ports or passed to the processing 

layer. It is compliant with the communication infrastructure 

presented below. When a packet header (the first flit) 

specifies the current NPU address, the packet is forwarded 

to the network interface (NI in figure 2). The network 

interface buffers incoming data in a small hardware FIFO 

and simultaneously triggers an interrupt to the processing 

layer. 

The processing layer is based on a simple and compact 

RISC microprocessor, its static memory (no cache) and a 

few peripherals (timers, one interrupt controller, UART) as 

shown in figure 2. A multitasking OS implements the 

support for time-multiplexed execution of multiple tasks. 

The microprocessor we use has a compact instruction set 

comparable to a MIPS-1 [10]. It has 3 pipelines stages, no 

cache, no Memory Management Unit (MMU) no memory 

protection support in order to keep it as small as possible. 

3. 3. Communication infrastructure 

For technology-related concerns, a regular arrangement of 

processing elements (PEs) with only neighboring 

connections is favored. This helps in a) preventing using 

any long lines and their associated undesirable cross-talk 

effects in deep sub-micron CMOS technologies b) 

synthesizing the clock distribution network since an 

asynchronous communication protocol between the PEs 

might be used. Also, from a communication point of view, 

the total aggregated bandwidth of the architecture should 

increase proportionally with the numbers of PEs it 

possesses, which is granted by the principle of abstracting 

the communications through routing data in space. The 

Network-on-Chip paradigm (NoC) enables that easily 

thanks to packet switching and adaptive routing. 

f0f1f2f3f4fn-1 adn

Target address

#flits in the payload

Payload (n flits)

…                            

 

Figure 3: Packet format 

The communication framework of H-scale is derived from 

the Hermes Network-on-chip, refer to [11] for more details. 

                                                 
4 Operating System are often refered to as microkernels in the area of SOC, 

mainly because of their very limited memory footprint 
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The routing is of wormhole type, which means that a packet 

is made of an arbitrary number of flits which all follow the 

route taken by the first one which specifies the destination 

address. Figure 3 depicts the simple packet format used by 

the network framework constituted by the array of 

processing elements. Incoming flits are buffered in input 

buffers (one per port). Arbitration follows a round-robin 

policy giving alternatively priority to incoming ports. Once 

access to an output port is granted, the input buffer sends 

the buffered flits until the entire packet is transmitted. 

Inter-NPU communications are fully asynchronous, and are 

based on the toggle-protocol. As depicted in figure 4, this 

protocol uses two toggle signals for the synchronization, a 

given data being considered as valid when a toggle is 

detected. When the data is latched, another toggle is sent 

back to the sender to notify the acceptance. This solution 

allows using completely unrelated clocks on each PE in the 

architecture. 

 

Figure 4: The asynchronous toggle protocol 

4. S-Scale programming model 

Our goal is to provide a complete scalable solution which 

assumes first that the architectural model is scalable, but 

also the programming model. Our model is based on 

distributed memories (AMP) and allows computing 

multiple tasks in time (single processor), and in space 

(multi-processor). For a given application any possible 

mapping scenario between computing in time and 

computing in space is supported. 

4.1 Multi-Threaded Procedural model, with 

Communication Primitives 

S-scale is a mixed model composed of a Sequential 

Procedural Programming basis, a Multi-threaded support 

and Communication Primitives for inter thread 

communications. 

A process is an instance of a program in memory. It 

consists generally of several functions. When these 

functions may be scheduled separately, they are called 

threads. On multiprocessor machines, it is more natural to 

program applications with multiple threads since they have 

the possibility to be executed on several processors. The 

threads in our model are described in C language, the most 

famous and widely used sequential and procedural language 

for programming embedded systems.  

Since threads may be time-sliced, which means they can 

run in arbitrary bursts as directed by the operating system, 

the property of confluence (same result yielded regardless 

thread execution order) must be guaranteed. The underlying 

programming style for ensuring the synchronization of the 

computation in our approach is Kahn Process Networks 

(KPN) [12]. KPN is a distributed model of computation 

where processes are connected to each other by unbounded 

FIFO channels to form a network of processes. KPN can be 

represented functionally by a Petri net as depicted figure 5. 

Reading from a channel is blocking: the single token in the 

place P forbids that the process is executed before the place 

FIFO IN is filled with data. Writing is non-blocking: when 

the data has been written to the FIFO OUT, place P is filled 

with its initial marking again allowing new data to be read. 

A set of communication primitives has been derived from 

this formalism for ensuring confluence of application 

execution regardless thread execution order. 

 

Figure 5. KPN Model of a single task computation 

4.2 Communication primitives 

They essentially abstract communications so that tasks can 

communicate with each other without knowing their 

position on the system (either on the same NPU or a 

different one). The communication primitives were derived 

from 5 of the 7 layers of the OSI model as shown on figure 

6. 

 

Read_Socket()

Application

Transport

Network

Data Link

Physical

Router Router

Router Router

Write_Socket()

Send_Data() Receive_Data()

Send_Packet() Receive_Packet()

Encapsulate() Decapsulate()

XY Routing

Application

Transport

Network

Data Link

Physical

 
Figure 6. Communication Protocol and Communication 

Functions on 5 OSI layers 

Firstly, communication management between tasks is 

insured by two dedicated functions.  In order to route the 

packets, these functions use a dynamically updated routing 

table. Read_Socket() and Write_Socket() read and write to 

software FIFO supervised by the operating system. These 

functions allow transparent data communications between 

tasks either locally or remotely: the routing is done 

following this dynamic routing table. When the task is local, 

the writing of data is done on a local software FIFO. When 

the task is remote, the operating system must insure that 

there is enough space for the remote software FIFO to avoid 

deadlocks on the network. This is done thanks to dedicated 

functions. As soon as the OS gets a positive answer, he can 

start encapsulating and sending the data packets to the 

remote task (Encapsulate(), Send_Data()) while the remote 

task can deencapsulate and receive the data packets and 

write them to its local software FIFO (Decapsulate(), 

Receive_Data()). 
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4.3 Operating System 

In order to schedule tasks on a single processor, to handle 

communications between local and remote tasks with the 

communication primitives described above, it is necessary 

to use an Operating System offering these functionalities. 

After checking the literature and existing embedded OS 

(uClinux, eCos, etc.), it appeared that our memory 

restrictions (less than 100kB for data and program on one 

NPU) were too strong to use these costly solutions. 

Therefore, we have developed a lightweight operating 

system which was designed for our specific needs. Despite 

being small, this OS does preemptive switching between 

tasks and also provides them with the communication 

support for tasks interactions (communication primitives). 

Figure 7 gives an overview of the operating system 

infrastructure and the services it provides.  
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Figure 7: Operating System overview 

 

The interrupts manager may receive interrupts from 

hardware: UART, Timer and FIFO In. When this happens, 

it disables the interrupts and save the processor context. 

Following the type of interruption, it reads from UART, 

schedules the tasks (timer) or use a communication 

primitive (interrupt from the FIFO). Afterwards, it restores 

the processor context and enables again the interrupts. The 

scheduler is the core of the OS but is quite simple. Each 

time a timer interrupt occurs, it checks if there is a new task 

to run. In the positive case, it executes this new task. Else, it 

has two possibilities: either there is no task to schedule then 

just runs an idle task, or there is at least one task to 

schedule. This way, each task is scheduled periodically in a 

round robin fashion (there is no priority management 

between tasks). 

 
Figure 8: FIR example 

4.4 Programming Example 

In the following, we give a very simple example on how to 

program our architecture with the proposed programming 

model. It shows how from a classical C code of a 2-TAP 

FIR filter we introduce thread directives based on our 

communication primitives. This is just an illustration of 

what a programmer could do with this model and would not 

make sense “in the real world” to improve the performances 

of such an algorithm. However, it demonstrates the 

scalability of the programming model. 

The figure 8 illustrates the filter with two representations: 

the first one is a simple data-flow graph and the other one is 

a KPN process networks with Petri net. 

On a classical processor, the C-code could look like that: 
 

int main() 

{ 

  int data_in,r1,r2,r1p=0,a0=1,a1=2,data_out; 

  data_in=0;    

  while(1) 

    { 

     r1=data_in*a0;  // Compute 1
st
 tap  

     r2=data_in*a1;  // Compute 2
nd
 tap 

     data_out = r2 + r1p; 

     r1p = r1; //Delay 

     data_in++; // data increment 

    } 

  return 0; 

}  

With our programming model, it is possible to fork the 

process in 3 different threads as shown below: 
 

Type_task thread1(void) 

{ 

  int data_in=0; 

  while(1) 

    { 

  write_socket(21, &data_in, 1, 1); 

       write_socket(31, &data_in, 1, 1); 

        

       data_in++; // data increment 

  } 

  return 0; 

} 

 

Type_task thread2(void) 

{ 

  int data_in, r1 ,a0 = 1, zero=0; 

  /*Data synchronization*/ 

  write_socket(31, &zero, 1, 1);   

  while(1) 

    { 

  read_socket(21,&data_in,1,1);  

     r1 = data_in * a0; // Compute 1
st
 tap                 

        write_socket(32, &r1, 1, 1);  

    } 

  return 0; 

}  

 

Type_task thread3(void) 

{ 

  int data_in, r1 ,r2 ,a1 = 2, data_out; 

  while(1) 

    { 

  read_socket(31, &data_in, 1, 1); 

  read_socket(32, &r1, 1, 1); 

     r2 = data_in * a1; // Compute 2
nd
 tap                   

 data_out = r2 + r1;   

    } 

  return 0; 

}  
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One can notice that the functions Write_socket() and 

Read_socket() are used to establish communication 

channels between the three tasks. The parameters represent 

the socket identifiers (21, 31, …) which are used in the 

routing tables of the NPU, the address of the data block and 

the number of data in the block. 

 
Figure 9: 3 functionally equivalent mappings on 1, 2 or 3 NPUs, 

with the same C program 

By the way, this program can be mapped (statically) to the 

architecture on a single or multiple NPU indifferently as 

depicted figure 9, i.e. with the same functionality since the 

communication primitives of the OS ensure task 

interactions. 

5. Validations 

5.1. Hardware Prototype 

A complete synthesizable RTL level description of the NPU 

has been developed. It has allowed us to validate the 

hardware prototype, estimate areas and power 

consumptions (post place and route, with AMS 0.35µ 

design kit), and improve the design. Any instance of the H-

Scale MP-SOC system may be easily generated with our 

generic parameters, and then evaluated with CAD Tools 

(Encounter Cadence flow). 
 

# NPU 1 2 4 (2*2) 9 (3*3) 

Area (mm²) 18.22 36.63 73.61 165.30 

Power Cons. (mW/MHz) 2.56 5.14 10.34 23.26 

Table 1: Area and Power consumption5 scalability 

Table 1 summarizes these evaluations. The hardware 

prototype has been placed and routed with a 64KB local 

memory, which actually represents in a single NPU 87% of 

the total area. In the 13% remaining, the Processor 

represents 54% (1.2 mm²), the router 38% (0.85 mm²) and 

the rest (UART, interrupt controller, Network Interface, 

etc.) about 7%. The power consumption has been evaluated 

thanks to simulation database dump (vcd files) and Cadence 

tools. It has been then optimised with Gated Clock 

insertion. The power consumption repartition figure is 

slightly the same compared to the area. The table above 

clearly shows the scalability of area and power 

consumption of our H-Scale System (the very low overhead 

is due to the wires needed to interconnect the NPU). 

5.2. FPGA Prototype 

RTL Simulations are too slow for significant applications 

such as MJPEG performed on streams of data. We decided 

                                                 
5 Average power consumption performed on NPUs running the OS and 

several tasks  

then to use a Xilinx Development Kit to synthesize and 

validate our design. 6 NPUs could be fitted on a XC2VP30 

FPGA from Xilinx. A NPU occupied 2151 slices on the 

FPGA which is rather small. 

 

Figure 10: FPGA prototyping board and its debugging 

interface 

Debugging on the prototype takes place thanks to a UART 

interface between one interfacing NPU and the workstation; 

some additional services were added to the NPU kernel for 

feeding back debugging information directly to the PC 

(figure 10). 

5.3. Software Tool Chain 

 
Figure 11: Software flow 

Figure 11 depicts the software flow used in our framework 

to port an application from its original C-code to the HS-

Scale MP-SOC. A thread partitioning is first done by the 

programmer. This can be helped by the original procedure 

partitions (function calls) and profiling tools. The 

communication primitives are then used to elaborate the 

communications between the threads. Then, a hand-made 

mapping of each thread is performed on the H-Scale 

instance and a routing table is derived. The final C-code is 

composed of each thread C-code, and then is compiled with 

the OS C file, allowing thus generating the binaries to load 

into the memories of the NPU. 
 

OS Min. Time  

(cycles) 

OS Max. Time 

(cycles) 

Communication 

Primitives (KB) 

Total OS 

Size (KB) 

325 373 2.73  5.75  

Table 2: Operating System Time and Memory costs 

Table 2 is provided to give an overview of the overhead 

issued by our Operating System. In terms of time penalty, 

each time the OS is invoked (each time an interrupt 

happens), it requires between 325 and 373 cycles to perform 

its job. The effective time penalty regarding applications 

performances will be analysed in the next section. In terms 

of memory overhead, it requires 5.75 KB, which represents 

less than 10% of the 64KB memories we used in our 

experiments. The communication primitives represent 

almost half of the total memory required by our OS. 

6. Application Results 

6.1. FIR  

In order to evaluate the overhead introduced by the OS we 

carried out some experiments for the FIR application. This 

application has a very high communication over 
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computation ratio which reveals a much too fine task 

granularity. Hence, both the kernel scheduler and its 

communication primitives are highly solicited and therefore 

tend to slowdown the computation. Table 3 shows the FIR 

performance results for different task mappings, with and 

without operating system. The results are given for the 

processing of 10.000 input samples. 

 

 w/o OS With OS 

# NPU 1 1 1 3 

# Threads 1 1 Local 3 Local 3 Remote 

Cycles 550634 553992 5982187 2036976 

Tp (MB/s) 7.09  7.05 0.669 1.92  

Table 3: Throughput (Tp) Performance of a 2-TAP FIR Filter 

Comparing the results of the two first columns of Table 3 

shows that both in terms of processing time and Throughput 

(Tp) the overhead remain below 1%. As expected, when the 

FIR algorithm is split into several tasks running 

sequentially on the same NPU, the communication 

overhead highly degrades the performance (column 3). 

Distributing the processing among several NPUs (column 

4) shows the benefit of using task-level parallelism; without 

however matching the performance of the single task 

implementation. 

6.2. MJPEG 

In order to evaluate the performance of HS-Scale for 

realistic applications, we have implemented a MJPEG 

decoder. We naturally chose to use a traditional task 

partitioning as depicted in figure 12 with both a task-level 

dataflow description and a functional Petri net equivalent. 

The first step of the processing is the inverse variable length 

coding (IVLC) which relies on a Huffman decoder. This 

processing time for that task is data dependent. The two last 

tasks of the processing pipelines are respectively the inverse 

quantization (IQ) and the inverse discrete cosine transforms 

(IDCT). The atomic data transmitted from task to task is a 

8x8 pixel block which has a size of 256 bit.  

 

Figure 12: MJPEG Data-Flow and Petri Net Representation 

a. From Simple pipeline implementation to multi-threads 

Table 4 summarizes the performance figures obtained for 

several implementations of the MJPEG decoder. Similarly 

to the FIR implementation, the operating system 

communication primitives induce a performance overhead 

when the decoder is splitted into 3 tasks (Table 4, column 

2). Distributing the processing on 2 NPUs (Table 4, column 

4) immediately pays nevertheless with a significant increase 

in the throughput. The fully distributed implementation 

exhibits no performance improvement, which is due to the 

fact that the critical task in the processing pipeline already 

fully employs the processing resources of a given NPU. 

 

 w/o OS With OS 

# NPU 1 1 1 2 3 

# Threads 1  1 

Local  

3 

Locals  

2 Locals,  

1 Remote 

3 

Remotes 

Tp (KB/s) 229  228 161 244 246 

Table 4: MJPEG Throughputs (Tp) comparisons 

b. From multi-threads, to thread Replication 

Many applications such as dataflow applications present 

tasks that exhibit different and potentially time-changing 

computational loads over time. Data compression 

algorithms for instance always feature a variable-length 

coding task that can be very demanding in performance 

depending on processed data. In such scenarios, allocating 

hardware resources at run-time may help better meeting 

performance requirements without the traditional over-

dimensioning problem of static allocation. The principle 

developed in this section relies in a multi-graph description 

of the same application; the processors are then responsible 

to switch from one graph to another depending on run-time 

requirements. 

Figure 13.a depicts a synthetic task graph. A profiling may 

show that task2 is (i) the most demanding and (ii) exhibit 

data-dependent computational load. Replicating it helps in 

increasing the performance which would lead to the 

scenarios depicted on Figure 13.b and Figure 13.c. In such 

cases, of course all three instances of task 2 would be hosted 

on a dedicated processor. The experiments conducted 

implement the automated replication strategy based on a 

multi-graph description of the application. Strategies 

enabling run-time replication may either be simple (fork() 

and join() in this case) or more difficult, therefore requiring 

programmer attention. 
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 Figure 13: Initial application task graph(a) and replica-

tion of task 2 (b and c). 

In the case of the MJPEG application the replication is 

permitted by the absence of inter-block dependencies in the 

MJPEG application Table 5 shows the performances 

achieved for replications of some tasks. As clearly 

suggested by the throughput values, the IVLC task is the 

critical one in our case since duplicating and triplicating it 

(columns 5 and 6) significantly increase the performance. 

Allocating a fourth NPU to this task does not further 

improve the performance meaning that another task then 

became the critical step in the processing pipeline. 

 

 

 

w/o 

Duplic. 

IQ 

Duplic. 

IDCT 

Duplic. 

IVLC 

Duplic. 

IVLC 

Triplic. 

# NPU 3 4 4 4 5 

# Threads 3 

Remote  

4 

Remote  

4 

Remote  

4 

Remote 

5 

Remote 

Tp (KB/s) 246  220  241 332 432 
 

Table 5: MJPEG comparisons with or without thread 

duplications 
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c. Load balancing 

As mentioned previously, many applications feature highly 

asymmetric computational load for their constituting tasks. 

Similarly to the process explained above, where demanding 

tasks are replicated, we have statically observed the 

potential benefits of merging several sub-critical tasks onto 

the same processor. This results in time-sliced execution of 

those tasks. Figure 14 schematically explains that principle, 

where task2 fully exploits the processing resource of a 

given processor (since it has been identified as critical) and 

task3 and task4 are executed onto a single processor. 
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Figure 14 – Principle of load balancing. 

Implementing such a mechanism at run-time implies to 

migrate tasks; which translates in a performance over-head 

directly proportional to the task code and state to migrate. 

The testbench used in this case is similar in every respect to 

the previous one but a single additional FIR task was 

moved from NPU to NPU. Table 6 shows the 

corresponding results, where one can see how much the 

performance of each application is affected depending on 

the task mapping. Assigning the FIR filter to the NPU 

hosting the critical IVLC task (column 3) yields to a 

significant slowdown of both applications (40% for the 

FIR, 46% for the MJPEG). Contrarily, assigning the FIR 

task to one of the other NPUs hosting the sub-critical tasks 

marginally affects the performance of both applications 

(columns 3 and 4). The FIR was also assigned for IVLC-

duplicated versions of the MJPEG decoder; likewise a 

similar slowdown is observed only when the FIR is 

assigned to one of the NPU hosting a critical task. 

 
 

# NPU 1 3 3 3 

# Threads FIR 1 Local  1 with IVLC 1 with Iquant 1 with IDCT  

Tp (MB/s)  3.8  4.0 5.7 6.0 

# Threads MJPEG 1 Local  3 Remote  3 Remote 3 Remote  

Tp (KB/s)  122  134 245 246 

Table 6: MJPEG and FIR simultaneous execution performance 

results 

 

 

 

 

 

 

 

 

 

7. Conclusion and Perspectives 

A scalable hardware and software framework has been 

proposed and detailed throughout this paper. Based on a 

regular arrangement of homogeneous processing units 

endowed with multitasking capabilities our architecture is 

capable to support an almost unlimited number of task 

mapping combinations. The tiny and efficient OS combined 

to the packet-switching communication architecture we use 

gives the programmers a huge flexibility at reasonable cost. 

We have highlighted through some examples that in the 

case of multiple applications, some mappings may allow to 

map additional applications at almost no cost. 

Regarding the performances obtained in the results section, 

our current work aims now at extending the OS 

functionalities to automate the task mapping, migration and 

duplication (dynamic and continuous task mapping) for 

achieving run-time adaptability.  
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Abstract. An open issue in robotics is to explain and compare very different solutions for control decomposition proposed by
robot architects. This paper presents a domain specific modelling language dedicated to overcome this problem. The underlying
goal of this work is to promote the communication of robot architects’ expertise. The paper starts from a reflexion on the state
of the art in research on control architectures. It results from this the report that to compare control architectures, it is necessary
to be focused on the decision process organization by abstracting from technological features. A conceptual model for robotic
architectures, defining domain terminology and concepts used in the description of decision process organization, is presented.
Then, the language used to model organization of the decision process is defined via a meta-model. Finally, the use of the
language is illustrated with the description of architectural solution of Aura.
keywords: robot control architecture, domain specific modelling language, decision process decomposition

1. Introduction

According to [10], a robot is ”a machine that physically interacts with its environment to reach an objective assigned
to it. It is a polyvalent entity able to adapt itself to variations of its working conditions. It has perception, decision and
action functionalities [...] It also has, at various level, the ability to cooperate with man.” A robot can be decomposed
into two part (1) an operative - or mechanical - part including physical elements, sensors, actuators, etc, (2) a controller
part in which decision are taken and reactions computed. The controller part is a complex composition of software and
hardware pieces putting in place robot decisional process.

The design of controller is a very complex task. One important factor of this complexity is that design process
involves a great variety of expertises in automatics, informatics, telecommunications, electronics, mechanics, etc. As
intelligent robotics becomes an industrial challenge, the need of powerful methodologies, languages and tools now
arises as a very important issue to reduce the complexity of the design of robot controllers. In this frame, the notion of
architecture, as an artifact that describes a modular decomposition and main properties of the controller of a given robot,
is certainly becoming as important as it is today in software engineering. An architectural solution for robot control, or
control architecture solution, is a solution for decomposing design of controllers in a more or less generic way: the same
solution can be used and specialized for the design of more than one robot controller, in a more or less restrictive way
according to a given set of operational requirements associated to this solution.

To date, expressing architectural solutions is always made ”by hand” in most of research or industrial papers, without
formalization or standardisation, unlike it is done in software engineering with the used of UML [14]. Without a common
language for designing robot control architectures , it so very difficult to understand, to communicate and to compare
the different solutions. It is also a barrier for the adoption of robot control design patterns as solutions of specific robot
control problems, like design pattern [12] are used in software engineering to express reusable software design solutions.
UML could be used to design control architectures, but it does not support any domain abstractions, which leads each
robot control designer to redefine new abstractions and terminology. The consequences would be that (1) concepts and
terminology would not be compatible, making human understanding and solutions comparison very difficult, (2) users
would reinvent the wheel for each of their design, wasting a considerable amount of time, (3) graphical representations of
models would not emphasis the characteristics of domain expert ”way of doing”, making the communication of models
more difficult. Furthermore, UML class and component diagrams, focus on software aspects. But a controller is an hybrid
software/hardware (electronic) system and a same control architecture solution can be implemented in very different
ways depending on the responsibilities granted to software and hardware parts.

That is why a domain specific modeling language for designing control architecture solutions is required. This paper
presents a first attempt to define such a language. The difficulties to overcome are (1) the complexity and diversity
of robot software controllers from both a structural and a behavioral point of view that makes it complex to find the
right abstractions, (2) the difficulty to find the right separation of concerns in order to improve human understanding
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and expertise reuse, (3) the need to bridge the gap imposed by cultural and historical differences of practices in the
community.

Section 2 presents a global reflexion on state of the art in control architecture design and make a synthesis of
important concepts and practices. Section 3 starts from this synthesis and defines the proposed modeling language with a
meta-model. Section 4 then illustrates the use of the language on Aura Architectural solution. Finally, section 5 concludes
this paper and provides some perspectives.

2. Reflexion on the State of the Art in Robot Control Architectures

2.1. Challenge, Problem and Direction

Currently, the global challenge in robotics development is to express very different human expertise into identified soft-
ware (and even hardware pieces) and to integrate all theses pieces in a cohesive manner into control architecture. This
integration is not limited to expertise in robotic fields as control, navigation, vision, world modeling or artificial intel-
ligence, but also concerns various ”non-functional” domains as security, transactions, persistence and so on. Moreover,
the emergence of service robotics will involve the necessity to express a large set of ”business” domains, like medicine,
human security, defense, etc. Managing each of independently already requires a high degree of expertise, but the emerg-
ing robotic industry will require managing them simultaneously for a given system. This challenge can be related to two
complementary problems : domain engineering for the management of domain expertise and separation of concerns for
expertise integration.

Historically, software engineering aims at providing solutions for software analysis, design, development, deploy-
ment and testing. But generally these solutions are centered on programmer’s, software architect’s or software project
manager’s points of view, like for example in object, aspect, or component paradigms. Even if software frameworks
encapsulate specific domain expertises, they only provide a solution usable by programmers, but not by most of domain
experts. Consequently, we see two main problems in the use of well-known software engineering approach: they don’t
provide to domain experts an adequate frame to apply their expertise to a given problem nor to reuse their solutions; most
of them don’t provide techniques at an adequate domain abstraction level to merge solutions from different domains of
expertise into a global software system. In the frame of robotic systems design and development, this issue is a really
important one since robot control architecture designers cannot all be software engineers.

The management of domain expertise at an adequate level of abstraction is the intended goals of the Domain Spe-
cific Languages (DSLs) approach [20]. The main idea of this pragmatic approach is to provide high-level languages to
domain experts to describe solutions of domain problems. One advantage is that, thanks to the degree of abstraction of
a DSL, empirical or formal rules can be checked on models in order to validate or to verify various domain properties.
Another property of DSLs is sometime to allow for automatic code generation from solution models. The present paper
investigates in that promising direction by defining the conceptual basis of a DSL for robot architects, but without consid-
ering analysis or code generation, only description of solutions being the subject of this work. In a DSL design, the first
step, which is mandatory before being able to define language syntax and semantics that matches domain terminology,
is the domain analysis. It consists to define common concepts to understand and communicate domain expertise. It cor-
responds, in our context, to the definition of common concepts usable by robot architects to explain control architecture
solutions. To define domain concepts, next subsection gives a global overview of current methodological practices and
their related issues.

2.2. Current Practices and Issues in Control Architectures

When studying current practices two main issues emerge: the diversity of control design methodologies [18] and the
different levels of abstraction in the description of control architecture solutions.

This latter issue is discussed first. When looking at research papers on control architectures, one can notice that
descriptions made are really different, uneasily comparable (if possible) and sometime quite ”fuzzy”. This report is
certainly the first motivation of the present work. There are two factor for explaining this report. The first factor is
the language or graphical conventions used to describe control architectures. Some authors use standard description
languages like for instance UML class, component and deployment diagrams (for example [11]), which, as said earlier,
limits the vision of the architecture to a specific implementation paradigm and does not really well captures the domain
expertise. Many others use ”ad-hoc” description features, which capture domain expertise at a greater abstraction level
but which are often not well defined nor comparable. The second factor is certainly the merging of implementation
detail with control decomposition details in the description, which impacts greatly in the diversity of terminologies and
concepts. Many proposals are close to specific frameworks. For example CLARATy [29][28] is closed to a locomotion
and navigation framework, LAAS [1] and ORCCAD [25] are close to specific execution frameworks and Chimera [27],
OROCOS [24] and MirpaX [16] are close to communication frameworks. With so deep differences among proposals in
their technological foundations, it is obviously difficult to denote recurrent (shared) concepts in all of them.

From this first report, the intuitive solution is to provide a domain language to allow the description of key design
concepts without binding these concepts with underlying technologies, with implementation languages or paradigms or
even with specific algorithms. The chosen direction should then be ”abstraction”, as in software engineering few years
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ago with the use of models written in a standard language [14] and of design patterns [12]. The direct consequence of
this report is to differentiate the notion of robot control architecture from the notion of robot software architecture. As a
first attempt to define these two notions, this paper proposes general definitions:

• The robot control architecture is a model of a robot controller that captures the decomposition of robot decisional
process, its perception and action capabilities into interacting pieces of different levels of decisional complexity
and of different responsibilities within each level.

• The robot software architecture is a model of the software system embedded in the robot, that defines the robot
control architecture realization with software artifacts and interfaces it with robot hardware architecture.

So, regarding the previous conclusions, if the use of standard software modeling languages seems to be really useful
to describe robot software architectures they are not adapted to describe robot control architectures. In the same time a
language for designing robot control architectures is needed to avoid ”ad-hoc” models and to allow for a better under-
standing, a better communication and a better comparison of robot architects’ design solutions.

The other issue, regarding robot architects’s practices, is the management of the diversity of control design method-
ologies. A classification of these methodologies, proposed in [18], has emerged along robotic history and defines four
approaches: reactive, deliberative, hybrid and behavior-based.

Historically, the two main approaches for control architecture decomposition, defined since the 1980’s, are deliber-
ative and reactive approaches. The deliberative approach, also called hierarchical proposes a decomposition of a con-
troller into a set of hierarchical layers, each one being a control and “decision-making system”. A layer directly con-
trol the direct lower layer and is under control of its direct upper layer. The higher the layer is the more important are
the decisions for the course of robot mission. The lower the layer is the more time constraints are strong in order to
preserve robot reactivity (its ability to compute and apply adequate reactions in a time compatible with physical con-
trolled system). Lower layers are responsible for simple control and reflex decisions like for example control law appli-
cation loops or environment observation loops. Higher layers are involved in high-level and complex decisions such as
planning. Classically, deliberative architectures are three layered [13], but some ones define a greater number of layers
like NASREM [3] and 4D/RCS [2]. Quickly speaking, the deliberative approach proposes a functional decomposition of
robot decisional process from complex and long-term decision to simple and short-term ones. The main advantage of
this approach is an interesting way to separate decisional concerns and the drawback can be a bad reactivity: the upper is
the layer that makes the decision in response of a given stimuli, the higher the reaction time because information has to
cross all lower layers to be handled. The reactive approach proposed by example in Brooks’ subsumption architectures
[7], proposes a decomposition of a controller into set of reactive autonomous entities, often called reactive behaviors
because they implement behaviors of the robot specialized for a given finality (e.g. ”reaching the nearest heat source”).
Each reactive behavior define a Perception - Decision - Reaction cyclic process, where Perception is the mechanism that
recovers sensor data, Decision is the mechanism that computes the adequate reaction and Reaction is the mechanism that
apply to actuators the computed reaction. Interactions are not restricted to occur within a hierarchical schema: sensors
data are simultaneously available to several reactive behaviors that decide of reactions and propagate them to actuators.
The complexity is that many reactive behaviors can generate, at the same time, contradictory reactions. Reactive archi-
tecture so integrate an arbitration mechanism that allow the robot to adopt a coherent global behavior according to its
mission objectives. Arbitration consists in recovering behaviors’ reactions and synthesizing them in a global reaction
that is actually applied to actuators. This arbitration is realized in different way, achieved by different types of interac-
tions, for example with a complex vote protocol in DAMN [23] or with subsumption links in subsumption architectures
[7]. The global behavior, issued from such a partially uncontrolled arbitration of behaviors is viewed as emergent. So,
quickly speaking, the reactive approach proposes an multi-agent decomposition of robot decisional process. The main
advantage is reactivity and adaptability according to physical world variations and the main drawback is an architectural
and implementation complexity induced by the management of reactions arbitration.

To mix advantages of both approaches (understandability, manageability of architectures and reactivity of the result-
ing controller) the hybrid (for example CLARATy[29] or LAAS [1] architectures) and behavioral-based [19] approaches
have been proposed. They are supposed to combine hierarchical decisional process decomposition and the ability to react
quickly to environment stimuli. This is achieved in so many different ways that it is obviously complicated to list them
all.

Nevertheless, a precise study of the domain shows that (1) each control architecture is based on a personal interpreta-
tion (by the authors) of the chosen approach and (2) that the distinction between all these approaches can be really fuzzy.
First of all, the distinction between deliberative and reactive approaches, that seems to be clear can be attenuated by the
fact that lower layer of deliberative architectures contain reactive behaviors (i.e. control law application loops) and by
the fact that reactive architectures can be arranged according to a set of hierarchical layers representing different levels of
decision complexity [7]. What primitively differentiate these architectures is the underlying decomposition ”philosophy”
(functional and multi-agent).

Another example is the difference between reactive and behavioral-based approaches that is really thin since it
mainly relies on a criterion (”the behavior-based can store representations while reactive cannot” [18]) that can be
considered as subjective (in fact, only the life time of the representation differs).

One more example is the difference between hybrid architectures like Aura [4], 3T [5] or ARM-GALS [17] on
the one hand and LAAS[1], CLARATy [29] on the other hand. In fact, the first ones are hybrid in the sense that their
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lower layer is organized around reactive behaviors coordinated with an arbitration mechanism (like reactive or behavior-
based approaches) and this layer is under the control of a decisional layer in charge of complex decisions (resulting in
reconfigurations of reactive layer). The second ones are more or less organized as deliberative architectures but according
to the authors with a greater uncoupling between layers which is a quite subjective criterion. Fortunately this criterion
can be specified thanks to architectures, for example ORCCAD [6] or LIRMM [22] architectures, that clarify in a more
or less explicit way this point: architectures are viewed as hybrids because they have a layered style that allows for
direct interactions (under given conditions) between non adjacent (not directly in relation) layers, allowing so sensing
or reaction information to cross frontiers between layers in order to improve reactivity. To conclude on that point, the
difference between hybrid architectures is important when considering the control design within the lower layers: the
former approach being based on a multi-agent decomposition, the latter being rather based on a functional one.

The final example is the difference between hybrid architectures like IDEA [21] or Chimera [26] and other hybrid ar-
chitectures, that lies in the decomposition of the control architecture into control sub-systems that incorporate the control
of specific parts of the controlled robotic system. This organization is viewed as hybrid because (1) each subsystem en-
capsulates both reactive and deliberative capabilities and so can be viewed as a hierarchically layered architecture (even
if it is not explicit in papers) and (2) subsystems are independent from each other and coordinate in a complex way, being
so considered as autonomous interacting agents. This organization is, in a limited way, generalized in LIRMM [22] but
also in CLARATy [29] where each subsystems is in turn incorporated into a more global layered system that controls the
whole robot: subsystems are then under the control of a higher decisional layer. This approach has the benefit to render
more intuitive the decisional process decomposition because it couples it with the decomposition of morphological and
infrastructural (hardware) attributes of the controlled sub-system.

As a conclusion for this subsection, the intuitive direction to follow for a language for communicating architectural
solutions is to provide common concepts that on one hand abstract from these subtle differences between approaches
and on the other hand allow all existing control design methodologies to be used.

2.3. Commonalities

Defining the right abstractions to design control architecture solutions requires in the first time to focus on commonalities
between proposed architectures. Commonalities are identified in different ways. The first (and rather classical in domain
analysis) way is to consider as ”common” the concepts that are the most recurrent in (since there is no concept shared
by all) control architectures. The second is to consider as ”common” the concepts that are explicitly used in really few
architectures but that are in fact really useful and always applicable for control architecture decomposition. The last way
consists in identifying recurrent variations in control architectures and generalizing them into a concept that can capture
all possible variants.

The most easy to find recurrent concept is the one of layer. The layer concept exists in a huge number of archi-
tecture, initially in deliberative architectures, but also in most of hybrid, reactive and behavior-based architectures. Un-
fortunately, one have to admit that nearly each author has its own vision of what is exactly a layer. For example, in
subsumption architectures [7] layers are abstractions of reactive behavior roles (e.g. robot movements, robot integrity,
etc.), and in LAAS architectures [1] they separate AI decision-making mechanisms from control law modules. What is
important in the concept of layers, is that a layered organization separates decisional concerns in a clear way, whatever
the precise meanings of layers are. The layer is so the vector of a hierarchical decomposition of decisional process.

Another recurrent concept is the one of activity or task. An activity or task denotes a part of the decisional process
with specific decisional, control and perception responsibilities. The terms activity or task are not standards since many
other terms are often use, like for example real-time task and real-time procedure [6], reactive behavior [7], genom
module [1], module [9], agent [21], port-based object [26], Motor or perception Schema [4], depending on authors
point of view that is influenced by implementation or methodological concerns. Sometimes activities are not explicit in
the architecture, even if they exists, for example CLARATy architecture hides control and perception threads inside its
object-oriented design. In fact this latter point is also true for nearly all layered architectures, since upper ”decisional” or
”deliberative” layers are made of entities (often explicitly drawn) that are responsible of AI-based planning [1] [29] or
environment representation and navigation [4] mechanisms. These entities can also be viewed as activities of higher level
of decision. One important property is that activities are arranged into layers according to their decisional complexity.

As reported in the previous subsection, some architectures propose a decomposition of control architectures into
systems. The concept of system, as a part of the decisional process that incorporates the control of specific parts of the
controlled robot, explicitly exists in a really limited number of architectures and under different names and forms like
IDEA agents [21] or Robotic Resource [22]. This concept also exists in other architectures but without being explicitly
defined. The advantages of this concept are that (1) it is useful for decomposing decisional process (cf. previous subsec-
tion) and (2) it can be generalized in such a way that it is applicable for all architectures. The generalization consists in a
systemic organization of control architectures: a system can potentially be decomposed into subsystems that are systems
responsible of the control of sub-parts of the controlled physical part of robot. Sub-systems being systems they can in
turn be decomposed in such a way. Since there can be a single system for decomposing the control architecture of a given
robot (i.e. no systemic decomposition) and that an entire robot team can be viewed as a system itself decomposable into
subsystems (one for each robot), the concept of system can be easily applied to all control architectures. One can notice
that the systemic organization is orthogonal to the hierarchical one: each subsystem can incorporate both reactive and
long-term decision-making activities and so can itself be layered.
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Another useful but rather exceptional concept is the knowledge concept, that helps to identify the data and know-how
used in a control architecture. If never mentioned as with the term knowledge this concept explicitly exists in architectures
using object-oriented models in their description, more precisely CLARATy [29] and LIRMM [9] architectures. Object-
class hierarchies represent the knowledge used in the architecture, for example robot physical properties knowledge or
environment knowledge. The functional layer of CLARATy partially merges knowledge with activities while these two
aspects are clearly separated respectively in object class and Petri-net modules in LIRMM proposal. The advantages of
this concept are that (1) it is useful for qualifying more precisely the responsibilities of activities by explicitly defining
what type of information they use and (2) it implicitly exists in all architectures. Indeed, whatever the activity taken into
account in any architecture, it uses a specific knowledge of the robot and the environment. For example, any control
activity is based on a representation of the robot morphology and kynodynamics. Of course, this representation is in
most of time completely hidden in the architecture design. Another related aspect is knowledge specialization, effec-
tive in CLARATy thanks to class specialization mechanism. Knowledge specialization helps to define different levels of
knowledge refinement and to qualify more precisely at which level of refinement an activity works.

One thing that emerges when studying the different architectural solutions proposed along history is the huge di-
versity of interactions used. Nearly each architecture use a specific set of interaction protocols, of different degrees of
abstraction according to their implementation. Interactions are the most recurrent variations that can be found between
control architectures. Since its impossible to list all possible interactions (more especially as new ones could be defined
in the future), a concept generalizing them is necessary in a domain language for control architecture description. Inter-
action partly influence the control design methodology. For example, specific protocols, like subsumption links [7] or
vote protocols [23], are used in reactive and behavior-based architectures to put in place arbitration mechanisms; layered
architectures use different event notification protocols to make sensing activities communicate with upper layer activities
[9]. If interactions can be explicitly represented, it would certainly be useful for a better understanding of the design
methodology used for a given control architecture solution.

3. A Control Architecture Modeling Language

The proposed modeling language focus on the control control architecture -i.e. the decomposition of robot decisional
process, and does not take into account implementation aspects -i.e. robot software and hardware architectures.

3.1. Concepts, Terminology and Graphical Conventions

One important thing to take into account when designing a domain specific language is that it has to be complete, mini-
malist and easily readable. Complete, because each domain solution has to be expressible with the language. Minimalist,
because the minimal set of concepts has to be provided to express solutions. Easily readable because a quick understand-
ing of a solution is necessary. This is a big challenge in itself because the right balance has to be chosen between a great
variety of precise domain concepts on one hand and a restricted set of generic domain concepts that can be more easily
learn on the other hand.

3.1.1. Main Concepts

First, we define four main concepts: Knowledge, Activity, Coordination, System. To this end, the term task is used, and it
has to be understood in the general meaning, -i.e. the fact of doing something.

Knowledge: a Knowledge entity identifies a structured piece of information about the world within which the robot
controller evolves. It can directly refer to the physical world (environment, robot body) or to a concept bound up to this
physical world like a ”phenomenon” or an ”event”. It can also refer to a know-how of the robot relative to this world, i.e.
a way of detecting/solving problems relevant to this world (e.g. criteria defining singular configurations of the robot).
Finally, the control architecture being itself part of the robot world, a Knowledge entity can also explicitly refer to (parts
of) it, to get for instance a form of introspection.

Activity: an Activity entity is responsible for the achievement of a task that plays a role in the robot decisional process,
using a set of Knowledge entities. For example, an Activity entity (activity for short) can refer to the observation of the
environment state, of the robot (body) state, or even of the controller state. It can also refer to: low-level control of the
robot, like the application of a control law, medium-level control as control context commutation, and high-level control
like planning. Finally, it can also refer to a learning activity (creating or refining knowledge) whatever the level of control
is concerned. An activity uses (internally) Knowledge entities to elaborate its decisions. For example, an activity defining
a control law application uses knowledge on environment and robot morphology to compute actuator commands.

Coordination: a Coordination entity is responsible of the way a set of activities interact by exchanging or sharing
knowledge. For example, it can express collaboration, i.e. an interaction type defining how different tasks are distributed
among activities to achieve a more complex task. This is the most common case of Coordination entities, for instance
command execution requesting or event notification. It can also express competition, i.e. an interaction type defining
how several activities achieve the same task. This the the type used in many behavior-based or reactive architectures, for
instance vote protocols or subsumption links. A same activity can be involved in more that one coordination. Knowledge
entities that are exchanged or shared during coordination depends on the nature of the interaction. For example, in an
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Figure 1. Some graphical conventions for representing Knowledge entities

event notification, Knowledge entities can represent specific states of the observed physical system (environment or robot
body).

Systems: a System entity is an abstraction of the control of a physical (mechanical) entity (morphologically dis-
tributed or not). For example, a System entity (system for short) can refer to the control of a robot’s part (e.g. the arm
or the vehicle of a mobile robot), to the control of the (entire) robot (e.g. the mobile robot) or even to the control of a
robot team. It is responsible of the way a set of Activity and Coordination entities, concerning this physical entity, are
organized in order to achieve a set of tasks. This organization is done with a hierarchy of layers. A layer is an abstraction
that symbolizes a ”level of decision complexity” whatever the complexity of the decision is (from ”simple” reactive
decisions to ”complex” deliberative decisions). A system organizes its internal activities by associating each of them to
a layer according to its relative decision complexity in the system. A system also defines relations between its internal
control architecture and infrastructure elements, like sensors and actuators. An infrastructure element is an abstraction
that represents primitive part of the robot that provides to systems inputs (sensors), outputs (actuators) or both (physical
communication links) or abstract composition of that parts (e.g. all actuators of the arm) by which the system retrieves
information from the world within which the robot evolves.

3.1.2. Knowledge

A Knowledge entity is quite complex to detail without more specialization. At the highest level of abstraction, the only
thing that can be said is that it contains a model synthesizing the type of knowledge and data representing the parame-
terization of this model for a given context. ”Model” means any form of representation of the knowledge, being it math-
ematical formulas, empirical models, declarative models like CSP, biologically inspired models like neural networks,
geometrical models, etc.

Since Knowledge entities are used to qualify other entities, its specialization to more precise domain abstractions
is a way to improve easy understanding of models. In this way, the work done by Brugali and Salvaneschi in stable
aspects of robot development [8] provides a good terminological basis that is extended here. So, knowledge entities can
be arranged following three categories: Embodiment, Situatedness and Intelligence.

The Embodiment refers to the consciousness of having a body that allows the robot to experience the world directly.
In this category, we find Knowledge entities like that representing the Body or Infrastructure of a robot, or some of their
parts. The Body Knowledge entities allow for representing the electro-mechanical devices of robot operative part. Body
entities can be themselves associated with other Knowledge entities of the Embodiment category. For instance a Body is
associated to Morphologies and Kinodynamics [8] that are physical properties of robot body. A Morphology knowledge
entity represents shape of a Body, its physical components and their structural relationship. For example, a robot can
have a humanoid morphology, an animal-inspired or a human-vehicle inspired morphology. A KinoDynamics knowledge
entity represents the kinematic (position and velocity) and dynamic (acceleration, force) constraints that limit the relative
movement of the robot’s body in the environment (morphological constraint like links and joints, physics law like gravity,
etc.). The Infrastructure entities allow for representing the electronic-communications devices of robot controller part.
Infrastructure entities represent elements like Sensors and Actuators or even more complex composite elements. Body
and Infrastructure entities can themselves be decomposed into smaller part. For example, a rover robot entire Body can
be decomposed into an Arm, a Vehicle and a Camera. Knowledge on embodiment can be so modularized.

The Situatedness refers to evolving in a complex, dynamic and unstructured environment that strongly affects the
robot behavior. In this category, there are Knowledge entities like that representing the Environment. The environment
is viewed as a continuum of physical configurations, but from a decisional point of view it is a discrete spatial-temporal
milieu that is made up of any kind of dynamic or static elements such as people, robots, equipments, buildings, animals,
mountains, etc., and hosts all their (potential) mutual Interactions. It can be decomposed into sets of Environment entities
that represent any spatial part of it. Interactions are knowledge entities that represent interactions that can occur between
the robot and the environment. Contrary to [8] the concept of Interaction is here limited to interactions governed by
physic’s laws (movement in environment, objects grasping, physical quantities measurement, etc.). In this category, there
are also Knowledge entities like that representing the Phenomena. A Phenomenon refers to something that can occur
in the environment, which is directly perceptible (thanks to specific Interactions) or estimable by the robot. To describe
these entities we need others ones like those representing Places in the environment (the ”where”), Objects (the ”what”)
and Time (the ”when”).

The Intelligence refers to the ability of the robot to adopt adequate and useful behaviors while interacting with the
dynamic environment. In this category, we can find Behaviors and Actions. Briefly, an Action denotes a capability of
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the robot (or part of it) to act in order to obtain a given result (e.g. a given effect on the environment). For example,
an Action can represent the fact of ”reaching a given place at a given time”. The expected result of Actions can be
represented by Objectives (e.g. the place and time). Behavior denotes an abstract representation of the way the robot
behaves when realizing Actions according to the possible robot-environment Interactions. For instance, a Behavior can be
”being attracted by the nearest heat sources”, it is defined thanks to Actions like ”reaching a given place”, ”detecting heat
sources” and ”defining nearest reachable source” and according to Interactions like ”heat measurement”, ”movement
in room” and ”environment perceiving”. Knowledge entities of this category can also represent Strategies associated
to each System. A knowledge entity representing a Strategy contains an action planner and for each action defines the
behavior(s) to be selected (and if necessary merges) to reach its objective. Behavior is the result of the activation of
a set of coordinated Activities (or a single one). So, to allow the precise description of Strategies, Knowledge entities
can also represent the Activities and Coordination used to give concrete expression to the Strategy, to allow the robot to
reason on. This conceptual decomposition of Intelligence is partially detached from [8] proposal, to put in adequacy the
organization of knowledge entities with other main domain concepts.

Figure 1 shows some graphical conventions used to describe Knowledge entities. The different types of Knowledge
entities are represented using different symbols to clarify their intrinsic differences. To this point, concepts allows only
to model the ”passive” characteristics of robot controller architecture, not the ”active” ones.

3.1.3. Activity and Coordination

”Active” characteristics are expressed thanks the Activity and the Coordination entities. An Activity is an entity of any
level of decision that puts in place Perception-Decision-Reaction cycles. Graphical conventions to represent them and
their properties are represented in figure 2.

It receives Perceptions (required pieces of information, or significant phenomena notification) from other activities
or from the infrastructure (sensors). Each Perception of an activity is associated with one or more knowledge entities of
any level of abstraction, from simple sensor data to complex computed robot or environment states. It contains a Decision
mechanism that computes Reactions. This mechanism is of any level of abstraction, from simple control law computation
to a high-level planning or supervisory control mechanism. The Decision mechanism handles activity internal knowledge
(Body and Environment for instance) and knowledge coming from Perceptions to determine the adequate Reactions to
adopt. Reactions represent the way an activity wants its decision to be realized by (eventually) others activities or by the
infrastructure (actuators). Each Reaction is associated with one or more knowledge entities of any level of abstraction,
from simple actuator data to a high-level order (e.g. an Objective). The Decision mechanism can be influenced by
Intentions it receives. An Intention represents a goal that an activity intends to accomplish -i.e. a goal influencing its
Decision. An Intention is associated to knowledge entities representing, for instance, the desired state of the robot Body,
related or not to the Environment, or a desired Behavior. The Reaction emitted by an activity can be viewed as an
Intention by the activity that receives it. The Decision mechanism can also emit Observations. An Observation represents
an interesting state of: decisional process, body or environment. For instance, an activity that detects an obstacle in the
environment can transmit the corresponding Observation associated with corresponding knowledge entities representing
the obstacle. An emitted Observation can be viewed as a Perception by activities that receive it. Like for knowledge
entities, activities could be categorized into more specific entities like for instance, Environment Observers or Body
Motion Planners, and so on, but this specialization should take place at the moment when a consensus on decisional
process decomposition will be accepted.

Intentions, Observations, Reactions and Perceptions are exchanged by activities thanks to Coordination entities. A
Coordination entity is an entity of any level of abstraction, that imposes a protocol for knowledge exchange or share
between a set of activities. It can represent various interactions like simple event notifications and resource request
on time interval as the one used in CLARATy, specific subsumption or inhibition links, as well as a complex vote
protocol like in DAMN. In fact, it depends on the protocol and on the nature of Intentions, Observations, Perceptions and
Reactions taken into account by the Coordination. Graphical conventions to represent Coordination entities are presented
in figure 2. Intentions, Observations, Perceptions and Reactions are optional features for both activity and coordination
entities (even if using none of them makes no sense).
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3.1.4. System

Systems are entities used to describe control architectures. Each System contains a set of coordinated activities and share
with some of them some of their inputs and outputs (i.e. Intentions, Observations, Perceptions and Reactions). So a
System can be considered itself as a decision-making system just as activities and can coordinate with other activities
and/or Systems. Inside Systems, activities are organized according to a layered approach. The number and the precise
semantics of each layer (decisional, reactive, executive, functional, etc.) is let undetermined to allow a maximal flexibility,
main hierarchical organization criterion being the ”decisional complexity” (increasing from down to up) and real-time
constraints (increasing from up to down).

Systems being used to describe the control architecture of an identified piece of the robot, they are in relation with
Body Knowledge entities they are responsible of. These latter are useful to ”reason” about the robot body while systems
are useful to exploit it. For example a Manipulator System control a robot Arm. System being able to contain other
systems, the control of the robot or group of robots can also be described recursively. For example, the system controlling
a rover robot can be composed of one system controlling its arm (Manipulator System) and another one controlling
its vehicle (Locomotor System), like in CLARATy. All activities contained in a System participate to the control of the
same part of the robot Body. A System can also explicitly refers to the Infrastructure of the Robot Body to associate its
Intentions, Observations, Perceptions and Reactions with related Infrastructure elements, and more particularly Sensors
and Actuators. For example, the Manipulator System refers to joints sensors and actuators of the arm and put them in
relation with its Perceptions and Reactions. Graphical conventions for representing systems and robot infrastructure are
presented in figure 3. This figure represents a System containing two Subsystems, where Subsystems contains two layers
(layers are differentiated by dotted lines) and the System contains three layers, including the two preceding layers and
an upper layer. Activities contained in subsystems interact with sensors and actuators of a more global infrastructural
element (e.g. arm sensing and actuating infrastructure).

3.2. Language Meta-model

Now that concepts have been defined, this section presents the modeling language meta-model which reifies these con-
cepts at the modelling level.

3.2.1. Reifying Concepts

The diagram of figure 4 shows the way main concepts are reified into the meta-model. Interesting things to denote in this
diagram are:

• All control architecture entities are generalized into an Entity abstract class, in turn specialized into two abstract
class Knowledge entity and Decisional Entity. This latter class is a generalization of all entities used in decisional
process decomposition.

• A composite pattern is used to describe relations between Activity, Coordination and System entities allowing so
”recursive” decomposition of architecture into coarse-grained Systems.

• A Decisional Entity uses internally a set of Knowledge Entities (association with the used role).
• All types of inputs and outputs of Decisional Entities are generalized into a Interaction Point abstract class.

According to the diagram, a same Interaction Point can be shared by more than one Decisional entity, for example
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a same Reaction can be shared by an Activity and its containing System (than in fact exports this Reaction outside
its limits). In consequence it can have more than one source and more than one target.

• An Interaction Point exchanges a set of Knowledge Entities and a same Knowledge Entity can be exchanged by
any number of Interaction Points.

• A System contains a set of hierarchically ordered layers (according to the lower-upper relation) and layers can be
defined across many Systems.

• An Activity is associated to a unique layer that corresponds to its ”decisional level” and a layer can contain many
activities.

The meta-model does not precise the way Models, Protocols and Decision are described. Their string description
attribute is added to allow for a description in a natural language, which of course is not formal but, in a first time, the
most simple solution is preferred.

This diagram shows that Knowledge Entities are shared by the other entities. This is explained by the fact that a same
knowledge can be use in many parts of the robot control architecture. For example knowledge on robot body is used in
all activities that put in place control loops. This can be compared to a kind of separation of concerns since Knowledge
Entities can be viewed as aspects that crosscut the decisional process decomposition. This is taken into account in the
language by differentiating knowledge representation concern from decisional decomposition one: Knowledge Entities
are modeled in a first dimension and Decisional Entities in a second one. This two dimensions are related to each other
with links (represented in decisional dimension) between Knowledge and Decisional Entities (relations where Knowledge
entities play used and exchanged role), which represents aspects weaving.

3.2.2. Details on Knowledge Entities

Relations between the different types of Knowledge Entities are described in the diagram of figure 5. With the purpose of
conciseness, the diagram does not precise all meta-classes, like Time, Places, Objects, Morphologies and Kinodynamics,
but they can be deduced from previous discussions.

The diagram focuses on structural relationships between Knowledge Entities that are according to previous defini-
tions.

• A Body evolves in a set of Environments, it can support a set of Infrastructure elements and it participates to a set
of Interactions. A Body can be decomposed into smaller Bodies as well as Infrastructure.

• An Environment can be decomposed into a set of more spatially restricted Environments.
• A Phenomenom occurs within an Environment and is detected thanks to a set of Interactions.
• An Interaction occurs within Environments.
• A Behavior is activable according to a set of possible Interactions and can be observed when the robot realizes a

given set of Actions.
• An Action commands a Body and has, as goals, a set of Objectives.
• An Objective references the target Environement to express its spatial localization.
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Figure 6. Meta-model : diagram defining entities used in detailed architecture description

• A Strategy plans a set of Actions to realize, and according to this set it activates a set of Behaviors.

This relations in the meta-model will be traduced by links between Knowledge Entities instances in a control archi-
tecture model. These links will be stereotyped with << ... >> label. For instance for links between Body and Environ-
ment, the stereotype <<evolvesin>> will be used. Composition links between Knowledge Entities in the meta-model are
traduced by composition links in a model.

3.2.3. Complete Control Architecture Description

Since a precise description of control architectures, like it is presented in figure 3, has to be possible, the relation between
Decisional Entities and Physical Infrastructure Elements have to be described. This is the purpose of the diagram of
figure 6. This part of the meta-model more specifically details Systems according to their relation with operative part they
control and physical elements they use to control it.

The relation between a System and the robot operative part it controls it expressed according to the controller relation
between Body and System meta-classes. A constraint, that is not expressed in the diagram, is that all Decisional Entities
it contains participate to the control of the same Body or sub-parts of it. To describe the way a System controls a Body,
the diagram introduces the abstract class Infrastructure Device that is itself specialized into four concrete classes :

• Communication Device (square with C label cf. fig. 3) that represents a device that the robot uses to communicate
with human operators or other robot, for instance a Wifi device.

• Sensor (square with S label cf. fig. 3) that represents a physical sensor, for instance a joint position sensor.
• Actuator (square with A label cf. fig. 3) that represents a physical actuator, for instance a joint position command

actuator.
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• Composite Device (represented with a white rectangle around other devices in figure 3) that represents a set
of simpler devices that can be grouped according to a given infrastructure decomposition. For instance, it can
represent all joint sensors and all joint actuators of a same robot arm or all devices of a robot.

All Infrastructure Devices support a set of Interaction Points (restricted to Perceptions for Sensors and Reactions for
Actuators by which they can interact with Decisional Entities. A Composite Device just supports the set of Interaction
Points of its contained Infrastructure Devices. A System so exploits a given set of Infrastructure Devices by putting in
relation its Interaction Points with theirs. For example, a Manipulator System exploits (at least) the Composite Device
that represent the sensors and actuators of arm. It has to be noticed that an Infrastructure Device can be used by many
Systems (of course it has to be done with care). Finally, diagram shows that an Infrastructure knowledge entity refers to
a corresponding Infrastructure Device.

3.2.4. Genericity, Refinement and Variability

Now that all primitive structures of the language used to describe control architectures have been defined, this subsection
states the management of control architecture solutions description. To describe architectural solutions, mechanisms
allowing to deal with different degrees of genericity-specialization are necessary Mechanisms introduced in the language
are defined in the diagram of figure 7. These mechanisms are all defined thanks the Cardinality class, inspired from UML
[14] cardinalities.

Individually, a Cardinality just represents minimal and maximal amounts, where maximal amount can be infinite
number (using * value). When a Cardinality is associated to an Entity, this means that this Entity can be refined, in an
architecture that conforms to the solution, as many times as allowed by the Cardinality maximal and minimal value. So,
Cardinality is used to deal with the genericity of control architecture solutions. For example, when considering a team
of robots where each robot has the same control architecture, the architectural solution is expressed with a single System
and its associated Cardinality that expresses the minimal and maximal number of team members. If no Cardinality is
explicitly associated to an Entity, this means that this latter has a [1..1] cardinality. When a cardinality is associated to
an Entity having a composite relation with other Entities (e.g. System, Body, etc.), this Cardinality is applied to all its
internal description, allowing so to express a possible duplication of the Entity internal structure. For example, when a
cardinality is associated to a System, this means that each of its contained Activity and Coordination can be duplicated
as many times as specified by the System’s Cardinality. Cardinalities can also be associated with Interaction Points,
meaning these points can be duplicated and refined when their source and or target Entity are refined.

Variability in a model allows the user to express different possible choices in its design. In feature models [15] used
to express product lines, variability is expressed in two ways : optional features and group features. An optional feature
corresponds to a feature that can or not be present in the resulting product. A group feature corresponds to a possible
choice between a set of feature. In the present work, optionality means that an Entity is present or not in a refined control
architecture. It is expressed with a [0..1] cardinality applied on this Entity or Interaction Point and can be extended to
[0..n] cardinalities, whatever n value is. In a first time, the language only incorporate description feature for optionality
and does not deal with group cardinalities. When an optional entity disappears in a refinement all its interaction points
(for decisional entities) or relations (for knowledge entities) disappear. Furthermore, when a Coordination has only one
possible participating entity in a refinement, it disappears.

Refinement is expressed in the meta-model with the generalization-specialization relationship on Entity and Inter-
action Point classes (cf. fig. 7), that is similar to the UML class specialization feature. This relation allow to refine a
set of Entities to adapt an architural solution to a control architecture of a given robot. So the refinement is restricted
according to cardinality. When a Knowledge Entity is refined, its relations with other Knowledge entities are themselves
specialized with relations between related specialized Knowledge Entities. By default, in an architectural solution, all
relations supports a [0..*] cardinality, meaning they are optional but can be duplicated many times.

4. Example

This section presents the use of the modeling language for the description of Aura Architectural solution. This example
is defined according to a personal understanding and interpretation of Aura solution, based on its related bibliography.
This is an important precision: since only the authors deeply know Aura, their initial viewpoints could be unintentionally
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Figure 8. Aura Architectural Solution : Knowledge dimension (a)

not respected. So these examples should be seen as an illustration of the use of the modeling language rather than a
”definitive” opinion on the way Aura architectures are designed.

Aura is a generic and abstract control architecture solution which merges a reactive approach for low-level control
design with a hierarchical ”deliberative” approach for high-level control design. It has been chosen because Aura is a
very complex and general architectural solution which integrates preoccupations like teleoperation and learning.

The example mainly refers to [4]. The architectural solution is decomposed in two dimensions : the knowledge
dimension presented in figures 8 and 9 and the decisional dimension presented in figure 10. The relations between these
two dimensions are expressed thanks to numbers in parenthesis associated to knowledge entities (cf. fig. 8 and 9) and
used in decisional entities (cf. 10).

4.1. Knowledge Dimension

The knowledge dimension decomposes (cf. fig. 8) the generic knowledge entities used in the Aura architectural solution.
Human orders are abstract mission objectives given by human operators. The Human Order knowledge can be refined
many times to describes different types of mission objectives. The Global Map is a global representation of static ele-
ments of the environment. It is decomposed into Local Areas, representing for instance things like rooms or corridors.
The Local Area knowledge can be refined many times to describes these different types of Local Area if it is of impor-
tance. The Spatial Path is an objective that defines the path the robot has to follow in the environment. It is decomposed
into a set of Spatial Objectives representing important places where the robot has to accomplish specific objectives. The
Spatial Objective entity can itself be refined into specific objectives for specific Local Areas. Three generic knowledge
entities are used to represent interactions: Moving In Environment, Interacting with Objects and Measuring Quantities.
All these interactions occurs in Local Area, except Moving In Environment that also occurs within Global Map (i.e. go-
ing from one local area to another). A set of phenomena are detected thanks to these interactions: Spatial Point Reached
and Spatial Point Unreachable detected thanks to Moving In Environment, Action on Object Fail and Action on Object
Success thanks to Interacting with Objects, Environment Stimuli thanks to Measuring Quantities. Figure 8 shows that
Interacting with Objects interaction and related phenomena are optional, in the sense that Aura Robot does not necessar-
ily have means to manipulate objects nor have for mission to transport object in the environment. Other Interactions and
phenomena are not considered to be optional (they have to be refined at least one time in a control architecture).

Figure 8 defines three types of actions: Moving to Spatial Objective which consists for the robot to go from current
point to a spatial objective, Following Operator Commands which consists for the robot to be teleoperated, Acting on
Objects which consists to make an action on an object to obtain a given result (e.g. catching an object, throwing it in
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a bin, etc.). All actions are considered to be optional except Moving to Spatial Objective, because Aura is initially a
solution for robot mobility. Two knowledge entities generalize all behaviors of robot: Movement in Environment Behavior
that generalizes behaviors like ”approaching spatial point” or ”obstacle avoidance” and Acting on Objects Behavior
like ”catching nearest waste”. For reason of conciseness of the model, relations between interactions and behaviors
are not represented. For example, Acting on Objects Behavior should be linked with a <<possible>> relation with all
three interactions. All actions commands a unique Robot Body because Aura does not propose a decomposition of the
knowledge of robot operative part into smaller controlled parts. The Robot Body supports a Robot Infrastructure itself
composed of sensing and acting infrastructural elements and optionally a remote control infrastructural element. Control
strategies are defined in figure 9. As the decomposition of knowledge of Aura architectural solution has been understood
there are two categories of strategies represented by two generic knowledge entities: Action Planning Strategy defines an
action planner and Behavior Activation Strategy defines a way a set of behaviors are activated and merged.

Next subsection shows the way all these entities are used in the decisional process decomposition of Aura architec-
tures.

4.2. Decisional Dimension

The decomposition of robot architectures into subsystems does not exist in Aura: each robot is associated to a single
system. System decomposition arises as soon as a group of collaborative robots is considered, each system (i.e. robot)
being attached on its own infrastructure (cf. fig. 10). Robot system is decomposed into five layers, two reactive layers
and three deliberative layers.

At the top layer there is the Mission Planner activity, in charge of collecting user intentions (i.e. mission long term
goals and constraints) represented with Human Order (3) knowledge entity. At the layer below, the Spatial Reasoner
activity receives requests from the Mission Planner to define the Spatial Path (4) (sequence of Spatial Objectives(5)) the
robot must or can follow to achieve Human Order (3). Once a path is defined the Plan Sequencer activity is invoked to
define the sequence of actions (6-8) required to follow the path and to achieve Human Order (3). For example, if the
Human Order is to clean a building, the first action sequence would be: ”go to room 1” (6), ”collect waste”(8) and ”put
waste in the bin” (8) if the Spatial Path path is ”room1, room2, room3, etc.”. The action sequence corresponds to a state
diagram where states are actions to perform and transitions are action changes. Transitions are associated to specific
phenomena (14-17) that enable the state change. The planning itself is defined according to a given Action Planning
Strategy (12) and according to Global Map and Local Area knowledge.

The activity entities of the deliberative layers interact around a Long Term Environment Memory Sharing coordina-
tion entity to consult and update Global Map and Local Areas knowledge (1,2).

Once a sequence of actions has been defined, the Plan Sequencer invokes the Schema Controller activity of the
Reactive Action Execution Layer to realize each action (6-8). To this end the Schema Controller defines a Behavior
Activation Strategy for each action to realize. Schema Controller interacts with Perception Schemas and Motor Schemas
activities of the Reactive Control Layer. Perception Schemas activities are responsible of the production of Stimuli (18)
or other action execution related phenomena (14-17) from sensors data. Stimuli are phenomena that contain partial
instantaneous representations of the environment (1,2) or robot body (11). Other phenomena (14-17) are representing
interesting state of actions execution. Perception Schemas can also produce long term Environment (1,2) representations
(e.g. map of a room, update of the Global Map). Motor Schema activities put in place specific behaviors (9,10). Each
Motor Schema activity is viewed as a control low, computed using stimuli (18) and Robot Body (11), to obtain a given
behavior (9,10), as for example ”obstacle avoidance”. Schema Controller activity coordinates Perception Schemas and
Motor Schemas in different ways. First, it translates the action execution request into a composition of Schemas (cf.
Composition Selection): Motor Schemas are activated according to the behavior they represent ; Stimuli generated by
Perception Schemas are redirected to Motors Schemas following a predefined Behavior Activation Strategy (13) and
Perception Schemas can be configured with a Spatial objective (5). Second, some Perception Schemas are activated to
generate action execution status (cf. Action State Notification). Schema Controller uses these phenomena to know if the
current action has been (or cannot be) realized. It can then reply to the Plan Sequencer to indicate if the action succeeded
or failed; if the action failed it tries to re-plan a sequence of actions or it indicates the Spatial Reasoner that the path
cannot be followed. Perception Schemas can also interact with the higher-level activities by updating the Long Term
Environment Memory. Finally, the Schema Controller sums and balances the commands to motors generated by activated

2nd National Workshop on control Architectures of Robots - May 31 - June 1st - Paris

121



Motors Schemas

LongTerm 
Environment

Memory Sharing
Updating/Consulting 

Environment Map

Perception Schema Motor Schema
(1,2,5,11,
14-22)

Motors Schemas
Schemas Controller 

Motors Schemas
Plan Sequencer

(1,2,3,4,5,12, 
6-8,14-17)

Creating plans of actions

(1, 2)

Motors Schemas
Spatial Reasoner

(1,3,4)
Finding path in the environment 

and spatial learning

Motors Schemas
Mission Planner

(3)Interface with human operator
and mission plan recognition

Request/ Reply

(3)

Request/ Reply

(3,4)

Request/ Reply

Activating and 
waiting for reply (5,6-8,14-17)

Commands 
Arbitration

Summing and 
ponderating 
commands 

Composition 
Selection

Selecting and 
composing 
perception 
with motors

(5,9,10,1
3,18)

(9-11,
13, 23)

Reactive 
Control 
Layer

Reactive 
Action

Execution
Layer

Action
Planning

Layer

Path
Planning

Layer

Mission 
Planning

Layer

Computing stimuli 
action states and environment 

static  representation
Computing actuators 

commands from stimuli

Execute actions by 
activating behaviors

A S

AnyActuator (23) AnySensor (22)
Remote Communication

Device (24)

(5,6-8,13,
14-17)

(5,9,10,11,
18,23, 24)

C

[1..*]
[1..*]

[1..*]Aura Robot Controller
(11)

[0..1]

[0..1]

(3)

(3,4)

(3)

(3,4)

(1)

(1,2)
(1,2)

(1,2)

(5, 6-8)

(5, 6-8)

(3)

(14-17)

(14-17)

[0..1]

(1,2)

[0..1]

[0..1]

(22)

(23)

(6-8)

(14-17)

(14-17)(18)

(5)
[0..1]

[1..*] [1..*]

(23)[1..*]
[1..*]

(18)

[0..1]

(9-11,13)

[0..1]
[0..1]

(5) Notifying new 
states of current 

actions

ActionState 
Notification

(6-8,
14-17)

[1..*]

[0..*]

(5,9,10,13)

(3)

(5)

(5)

(6-8)

(6-8)

[0..1]

[0..1]

[0..1]

[0..1]

[0..1]

[0..1]

(14-15)

(14-15)

[1..*]

Robot Infrastructure
Device (25)

Figure 10. Aura Architectural Solution : Decision dimension

Motor Schemas (cf. Command Arbitration) according to the respective importance of behaviors in the chosen Behavior
Activation Strategy. Once done, the command vector is applied to robot’s motors. Human machine interaction can take
place in many ways in an Aura architecture. Human can send Human Order to the Mission Planner at the top most level,
it can directly send Spatial Objectives to the Spatial Reasoner, it can send actions to execute to the Plan Sequencer and
finally it can directly interact with a specific Motor Schema to control robot movements.

5. Conclusion

This paper has argued on the necessity to define a dedicated language for communicating and understanding architectural
choices in robotics. It proposed such a modeling language that embeds conceptual and terminological properties of
the domain. It allows expressing architectural specificities by providing adequate abstractions and by promoting the
importance of control organization thanks to different abstract types of entities: System, Activity, Coordination and
Knowledge. An example of use of this model have been developed on a well-known architecture.

Future work aims for the design of decision mechanisms of Activity entities and that of protocols of Coordination
entities. Simple concepts and terminologies have to be defined to easily express their respective properties. In the same
way, more detail should be integrated to the different Knowledge entities types, to describe more precisely their respective
models.

Another important point is a better understanding of genericity and refinement mechanisms. The refinement mecha-
nism and cardinalities’ impact on refinement should be formalized to avoid ambiguities. It would also be usefull to pro-
vide a way to describe alternative possibilities. In that sense, feature models [15] is a good source of inspiration because
it provides structures, like group features and include/excluse constraints, to deal with it.
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The short term goal of this work is to propose a precise frame to compare existing control architecture solutions and
to highlight their advantages and limitations. In a longer term, the goal is to find commonalities and variations between
all the main designs proposed in the domain.
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ABSTRACT. Model Driven Engineering (MDE) raises the level of abstraction of the 
development life cycle by shifting its emphasis from code to models and model 
transformations. According to the well-known principle of separation of concerns, MDE 
advocates the isolation of business concerns from their technical achievement. The idea is 
that the business concerns can be modeled independently from any platform concerns. 
Therefore, business models are not corrupted by technical concerns. In this way, the main 
part of the development becomes an activity upstream, dedicated to business concerns 
through the elaboration of the application model that abstracts away technical details, i.e., 
the so-called Platform-Independent Model (PIM). The transformation of a PIM into a 
Platform-Specific Model (PSM) is then achieved when introducing into the PIM the technical 
considerations depending on the chosen platform. We applied MDE to develop software 
systems for Aibo which is one of several types of robotic pets designed and manufactured by 
Sony. The objectives was (1) to analyze advantages provided by models in this specific 
robotic context, (2) to measure the maturity of MDE provided technologies and (3) to 
highlight the limitations of the approach . We present in this paper the approach we follow 
for applying MDE for Aibo and we present the results we obtained. 
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1. Introduction  

Model Driven Engineering (MDE) raises the level of abstraction of the 
development life cycle by shifting its emphasis from code to models and model 
transformations. According to the well-known principle of separation of concerns, 
the MDE advocates the isolation of business concerns from their technical 
achievement. The idea is that the business concerns can be modeled independently 
from any platform concerns. Therefore, business models are not corrupted by 
technical concerns. This is strongly anticipated as a way of simplifying the 
construction of systems. In this way, the main part of the development becomes an 
activity upstream, dedicated to business concerns through the elaboration of the 
system model that abstracts away technical details, i.e., the so-called Platform-
Independent Model (PIM). The transformation of a PIM into a Platform-Specific 
Model (PSM) is then achieved when introducing into the PIM the technical 
considerations depending on the chosen platform. 

The MDE approach is quite often applied for large scale industrial systems. 
Indeed, MDE standards such as UML (Unified Modeling Language) and on-the-
shelf transformations such as “UML to EJB” have been defined to specify and to 
build those large systems. However, the MDE approach has been defined to specify 
and to build any systems, whatever their size and their business domain. Standards 
such as the MOF (Meta Object Facility) and technologies such as model 
transformations and model validation can be used to define domain specific 
modeling language that can be used to build any. 

In order to check if MDE can really be used to build systems other than large 
scale industrial systems, we tried to apply it to build software systems for Aibo 
which is one of several types of robotic pets designed and manufactured by Sony. 
Aibo is a reactive system that can move, see, hear and speak. Aibo software can be 
developed in order to make Aibo react (move and speak) when it receives events 
(hear and see). Building software for Aibo is a complex task as (1) Aibo is a 
complex platform with a lot of joins and sensors and (2) no industrial development 
environment is provided by Sony. Moreover, Aibo should be considered more as a 
family of robotics pets rather than a single robot. Each member of the family has its 
specificities. Aibo software should be then reusable as much as possible for all 
members of the Aibo family. For all these reasons, we considered that Aibo was an 
ideal platform to check if MDE principles can be applied to build all kinds of 
systems. 

The next section of this paper presents MDE concepts used to define domain 
specific modeling languages. Based on those concepts, section three of this paper 
presents how we applied MDE for Aibo. Then our conclusion is presented in section 
four.  
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2. MDE Approach 

This section presents the MDE principles and core concepts. Despite its relative 
youth, the MDE approach defines a long list of acronyms (MDA, PIM, PSM, CIM, 
MOF, EMF, QVT...) and slightly adapts the meaning of some existing concepts 
(model, transformation, meta-model...) to its needs. Moreover, different 
implementations of the MDE approach exist: « Software factories » from Microsoft 
[Greenfield 04], MDA (Model Driven Architecture) by OMG [Soley 02], EMF( 
Eclipse Modelling Framework) which is the MDA approach of Eclipse [Budinsky 
03],  MIC (Model Integrated Computing) from the DARPA [Frake 97] ... Each of 
them defining their own vocabulary and techniques, it is  still a challenge to reach a 
general consensus on the MDE core concepts.  

Therefore, we present the definitions that reach a large agreement in the MDA 
community. These definitions are based on the works made by the french group 
« AS MDA » [AS MDA 06].  

2.1 Models, meta-models and meta-metamodels 

The notion of model is quite old and has been defined before MDE.  “A model 
represents reality for a given purpose; the model is an abstraction of reality in the 
sense that it cannot represent all aspects of reality.” [Rothenberg89]. It is a set of 
statements about something which is under study (the system). For instance, a map 
of the world is a model of the world. Depending on the authors, this relationship 
between a system and a model is called either, « RepresentationOf », 
« RepresentedBy », « Describes »...  As stated by J.M. Favre, it is very important to 
understand that this relation is actually defined between systems: being a model or a 
system under study is a relative notion, not an intrinsic property of an artefact. In 
fact these notions are roles that a system can play with respect to another system 
[Favre 04]. It is obvious to consider the map of a world as a system and make a 
model of it (for instance, a sketchy drawing of this map).  

Figure 2.1: Relationship between system, models and meta-models 

In MDE, another relationship is required for the models: they must  conform to a 
meta-model.  A meta-model is a precise specification of the considered concerns the 
model will represent. A meta-model of the map of the world could be the legend of 
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the map.  In other words, a meta-model could be seen as a way to define the sets of 
possible models (a model of a set of models). A rough analogy with the language 
theory could be that a meta-model is one possible representation of the grammar of 
a language.  

In each trend of the MDE, there is an attempt to define a meta-metamodel: a 
common language for defining meta-models. In MDA, they define a four-level 
modeling stack (sometimes called MDA pyramid) where: 

! M0 is the real world, 

! M1 is the model level, 

! M2 is the meta-models levels, UML is a meta-model. In the next section of 
this article, a meta-model of the AIBO language will be presented. 

! M3 is the meta-metamodel, it is self-defined and called MOF (Meta Object 
Facility).  

A rough analogy with the language theory has been established in figure 2.2.  
The Extended Backus Norm Form (EBNF) could be seen as a meta-metamodel as it 
can define the grammar of different languages.  

 

Figure 2.2 : MDA pyramid, adapted from [Bezivin 04] 
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MDA and other MDE trends facilitate the definition of  DSL (Domain Specific 
language [Czarnecki 00]). It consists basically in defining a consistent meta-model 
and, thanks to the normalized  MDA infrastructure, a model editor (textual and, in 
certain case, graphical) could be generated. The models are stored in an XMI format 
(an XML variant) and could be exchanged between MDE tools. 

2.2 The notion of Platform 

The MDA guide [MDA03] provides a generic definition of the  platform concept 
“A platform is a set of subsystems and technologies that provide a coherent set of 
functionality through interfaces and specified usage patterns, which any application 
supported by that platform can use without concern for the details of how the 
functionality provided by the platform is implemented“. This is a very large high-
level definition that leaves a wide scope for interpretation. There are actually several 
undergoing works in order to precise the notion of platform [Paulo 04] [Delatour 05].  

A practice exists for differentiating the platforms which are dependent on a 
technology (the PSM: Platform Specific Model) and those which are independent 
(the CIM: Computational Independent Model and the PIM: Platform Independent 
model). This notion of « Platform independence » is difficult to define and is quite 
relative. ! "#$! %&'(&)*(&+)! ,$(-$$)! .! /01! .)%! .!/21!&'!)+(!*3$.45*6(!
.)%!-&33!,$!%$7$)%$)( on whether one wants to consider different sets of target 
platforms. Although often used, these notions of PIM and PSM should be more 
clarified 

2.3 Model transformation 

In MDE, the translation from a PIM to a PSM is generally described as a 
transformation. A transformation consists in generating a set of target models from a 
set of source models. Target and source models must conform to meta-models. The 
transformation itself is a model that conforms to a meta-model. There is a huge 
variety of transformation languages [Czarnecki 03]. 

One can use traditional languages. For instance, a transformation could be 
written in Java using a library in order to facilitate the manipulation of the models. 
Several libraries have been defined in order to manipulate elements from model 
repositories (JMI for MDR, a MOF compliant repository, EMF for Eclipse 
framework...).  

One can use dedicated transformation languages. There are a lot of different 
approaches, from declarative or imperative paradigm, based on graph grammar 
theory, based on template approach...  In MDA, the QVT (Query, Views and 
Transformations) language [QVT 05] has been normalized in order to specify 
transformations. To the best of our knowledge, there is no implementation of QVT, 
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currently some transformation languages implement parts of it, but none are totally 
compliant. 

Model transformations are not restricted to the translation of a PIM to a PSM, 
and a huge variety of transformations could be imagined (from the refinement of a 
PIM to the code generation).  Thanks to the MDE facility for importing and 
exporting existing models (stored for instance in various textual format or in XML 
form),  it is possible to  define a transformation from a specification model to a 
validation model (for instance, in a petri net formalism). Therefore, it is possible to 
use the validation tools developped outside the MDE world. For a researcher, it is a 
gain of time that will be profitably invested in the definition of transformation rules. 
Indeed, developing its own transformation and parsing technology to different 
everchanging file format could be a time consuming activity, Moreover, the MDE 
community is starting to share their meta-models and transformations, available in 
meta-model zoos and transformation zoos.  

3. MDE for Aibo  

3.1. Approach 

The figure 3.1 presents the MDE approach proposed to build Aibo Software.  

Three meta-models have been built (M2 layer): 

! The Robot meta-model defines concepts used to specify robots 
characteristics (joins and sensors). Thanks to this meta-model, models 
of the different members of the Aibo family can be elaborated. This 
meta-model has been used to elaborate the model of the ERS-7 member 
of the Aibo family. The ERS-7 is the last member manufactured by 
Sony and is the robot we used for running our software. For sake of 
simplicity, we won’t present this meta-model in this paper. The 
complete meta-model is available in [AiboDev 06]. 

! The Validation meta-model defines concepts used to specify Aibo 
consistent and inconsistent states and transitions. For instance, if Aibo 
is seated, it should not be allowed to walk. This meta-model is used to 
elaborate different validation models that contain inconsistent states and 
different strategies (transitions) to gain consistent states. For instance, if 
Aibo is seated and has to walk, it should stand up first. For sake of 
simplicity again, we won’t present this meta-model in this paper. The 
complete meta-model is available in [AiboDev 06] 

! The Behavior meta-model defines concepts used by developers to 
specify the Aibo software they want to build. This meta-model can be 
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considered as the Aibo programming language. This meta-model is 
detailed in the following section. 

 

In this approach, two kinds of users have been identified. One user is responsible 
of the elaboration of the robot models and the validation models. This user 
customizes the MDE environment for Aibo. This user is called the framework level 
user (M1: framework in figure 1). The other user is the Aibo developer. He/she 
elaborates models of the behaviors of Aibo. Those models have to be consistent 
with the robot models and the validation models. For instance, the behavior model 
cannot target joins and sensors which are not specified in the robot model. The 
behavior models cannot specify inconsistent behaviors (identified in the validation 
models). 

Once the behavior model is completely elaborated, it can be automatically 
transformed into code thanks to predefined templates. The code generation step is 
presented in the following section. 

 

Robot ValidationBehavior

AiboERS-7

MyScript

Consistency

M2

M1

Framework

Util

M0

URBI Code

 

Figure 3.1: MDE Approach for Aibo 
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3.2. The Aibo meta-model 

The figure 3.2 presents a simplification of the Aibo Behavior meta-model. The 
whole meta-model is available in [AiboDev06].  

Basically, this meta-model defines that a Aibo behavior is a kind of sequential 
script composed of blocs of Aibo actions. Aibo actions are linked to joins and 
sensors of the Aibo robot model. For instance, the “walk” is specified as a bloc 
composed of several Aibo actions making Aibo moves its legs in order to walk. 
Blocs can be controlled by classical control blocs (if, loop, while, etc.). It should be 
noted that, for sake of simplicity, only the Loop meta-class is presented in figure 2.  

Events received by Aibo are considered as condition of the “if” statement. For 
instance, when a developer wants to specify how Aibo react when it see its ball, 
he/she has to use the “if” statement with a kind of “ballVisible” condition. Pre-
defined event that can be used in condition are specified in the robot models. 

 

Figure 3.2: Simplification of the Aibo behavior meta-model 

In order to validate this meta-model, three behaviors have been considered. 
Those behaviors are representative enough of behaviors developers usually want to 
specify: 

! A dance. There are several dance competitions with Aibo. The dance 
behavior mainly consists in playing a song and chaining different dance 
steps. 

! A defense. Aibo is sometime used as a defense pet. The defense behavior 
mainly consists in moving in a place looking if somebody moves and then 
bark.  
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! A labyrinth escape. Aibo can evolve in unknown places. Therefore, it has 
to know how to escape all places. There are several labyrinth escape 
algorithms. We choose one consisting in running parallel to walls. 

 
All those behaviors have been completely modeled thanks to our meta-model, see 
[AiboDev06] for models of those behaviors.  

3.3. Aibo to URBI transformation 

There are few programming languages targeting the Aibo platform. The best one 
is probably URBI (Universal Real-time Behavior Interface) [URBI07] which is a 
scripting language specially dedicated to robots.  

Programming with URBI is quite easy as it provides primitives for controlling 
joins and sensors of the robot. Moreover, URBI provides real-time primitives 
allowing actions to be performed in specific time frames. 

URBI code generation from Aibo models can be seen as a kind of Model-to-Tex 
transformations (cf. section 2). To realize this transformation, a set of rules have 
been defined. Each transformation rule concerns a specific meta-class of the Aibo 
Behaviour meta-model, and targets a specific URBI primitive. The complete set of 
these transformation rules can be downloaded from [AiboDev 06]. 

The rules definition is not of particular interest since the Aibo behavior meta-
model is script oriented and really fits to URBI. Thanks to them, URBI code can be 
automatically generated. 

The rules have been validated on the three models of the behaviors presented in 
the last section. For each model a complete URBI code has been generated. This 
code was then deployed and run into Aibo ERS-7. 

4. Conclusions and perspectives  

The objectives of our study was (1) to analyze advantages provided by models in 
this specific robotic context, (2) to measure the maturity of MDE provided 
technologies and (3) to highlight the limitations of the approach. 

In robotic we have used models in order to specify the robot characteristics, the 
consistent and inconsistent states of the robot and its behaviors. Thanks to the 
definition of the three corresponding meta-models we were able to specify links 
between them and to develop automatic operations (validation and code generation). 
We can say that MDE definitively are useful and offer advantages all specific 
domains. 

Even if we have not presented the realization in this paper, the whole approach 
has been completely prototyped. EMF (Eclipse Modeling Framework) has been 
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used to realize editors for each meta-model. Thanks to those editors, user can 
graphically elaborate models. The validation module has been developed in Java 
and the code generation with MofScript [MofScript07]. The prototype realized 
clearly shows that MDE technologies are completely mature. 

Even if code can be completely and automatically generated from models, we 
are not completely sure if it is better to elaborate an Aibo behavior model rather than 
directly write URBI code. Indeed, our Aibo behavior meta-model is maybe to much 
script oriented. This is, for us, the clear challenge of applying MDE: define the ideal 
domain meta-model. 
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Abstract
Robotic Urban Search And Rescue (Robotic USAR) involves the location, extrication,

and initial medical stabilization of victims trapped in confined spaces using mobile robots.
Such rescue operations raise several issues. Part of them are studied in the AROUND
project. The AROUND (Autonomous Robots for Observation of Urban Networks after
Disaster) project aims at designing an automated observation system for disaster zone in
developing countries like Vietnam. The idea is to deploy a large number of autonomous
mobile robots able to self-organize in order to collect the information in impacted urban
sites and to dynamically maintain the communication links between rescuers.

Robots involved in rescue operations have to be reactive while smart enough to deal
with complex situations. Hybrid agents seem to be valuable architectures for controlling
such robots. Such architectures combine a fast reactive layer with a more deliberative one
dealing with long term planning. However, most existing models of hybrid agents commit
in early design stages to some particular software agent architecture. The resulting robots
fit then only a restricted application context. They quickly become inappropriate when
the execution context changes.

One possible change in the execution context is the use of robots with different ca-
pabilities and resources. The same missions can be performed differently (reactively or
in a more deliberative way) according to robots resources. Therefore, it is interesting to
be able at deployment-time to tune agents “hybridity”, i.e. switch some tasks from the
reactive layer to the deliberative one or vice versa. That is adapting the agent architecture
statically between two rescue operations.

Robot’s control architecture should not only bear static adaptation, but it should also
allow dynamic adaptation. Robots controlled by such an architecture has to react to the
evolution of their environment (evolution of resources, robot failures, ...) in order to be
as efficient as possible.

In this paper we present our on-going work on component-based adaptive hybrid agent
architectures. Our approach relies on the InteRRaP hybrid agent model which is extended
with reflective capabilities. The resulting adaptive architecture will be experimented to
control robots within the AROUND project.

Keywords: Adaptation, Agent Architectures, Software Components, Mobile Robots,
Resource Awareness

1 Introduction

1.1 Context: Robotic Urban Search and Rescue

Robotic Urban Search and Rescue involves the location, extrication, and initial medical stabi-
lization of victims trapped in confined spaces using mobile robots. The idea of using robots to
aid human rescue after a major natural or human induced disaster is not new: the first exam-
ples were about wildfire rescue [KN83] and after the Oklahoma city bombing in 1995 [Mur04],
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but it was only after the New York WTC attack in 2001 that robots have been used in real sit-
uation. Such rescue operations raise several interesting issues. Part of them are studied in the
AROUND project. The AROUND (Autonomous Robots for Observation of Urban Networks
after Disaster) project aims at designing an automated observation system for disaster zone
in developing countries like Vietnam. The idea is to deploy a large number of autonomous
mobile robots equipped with sensors that enable them to make raw observations. They will
also serve as a support for a dynamically deployed communication network between the rescue
teams (see figure 1). Their tasks are then twofold:

• Reconnaissance: (a) to collect information about the number and location of casu-
alties, dangerous situations (gas leaks, live wires, overhanging walls, unsafe structures)
or anything which might endanger rescuers and survivors; (b) to determine the possi-
bility of access to the casualties in an unstructured environment about which little sure
information exists.

• Covering: (a) to explore, in a "smart" way, as much terrain as they can once they have
been deployed; (b) respect the communication constraints and stay in touch with others
in order to transmit the perceptions (if we assume that some are "connected" to servers)
and to act as relays in a communication network between possibly distant rescue teams.

Buildings

Rescuer team

Rescuer team

Robots

Communication
links

Initial 
deployment 

Figure 1: AROUND project

AROUND robots should be able not only to coordinate their behaviors in order to solve
theirs tasks, but also adapt to the continously changing situation. One way to take into
account coordination and adaptation in the design of the robot controller is to use a software
agent architecture. Multiagent Systems (MAS) research is the study of the collective behavior
of a group of possibly heterogeneous agents with potentially conflicting goals. Agents are now
well known effective abstractions in order to model and build complex distributed applications,
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like robotic ones. Agents have their own thread of control (autonomy) and their own internal
goals (intentions), thus localizing not only code and data, but also invocation. In the multi-
agent vision, the application developer simply identifies the agents suitable to solve a specific
problem, and they organize themselves to perform the required functionality. In our context
of Multi-Robot Systems (MRS), we would like to associate an agent with each autonomous
robot. Although work in both MAS and MRS deals with multiple interacting entities, it
is still an open question as to whether techniques developed in the MAS community are
directly applicable to the embodied MRS community. In MRS, the resources of the robot and
the environment heavily influence the performance of the system and, therefore, cannot be
completely ignored.

1.2 Motivation for Adaptation

Adaptation is generally one of the most desirable properties prescribed to agent in the MAS
community. The aim of adaptation is to approximate an optimal behaviour with respect to
available resources. This is correlated to the bounded rationality principle drawn initially
by Herbert Simon [Sim55] that differ from the classic perfect rationality approach by taking
into account the available limited resources used by the agent. In [Zil95], three levels of
adaptation are distinguish : (1) resource-adapted systems, that are pre-configure to a specific
domain, (2) resource-adaptive systems, that are able to react to resource modifications and
(3) resource-adapting systems, that explicitly manage and represent resources.

Robots involved in rescue operations have to be reactive while smart enough to deal with
complex situations. Hybrid agents seem to be valuable architectures for controlling such
robots. A such architecture combines a fast reactive layer with a more deliberative one dealing
with long term planning. However, most existing models of hybrid agents commit in early
design stages to some particular software agent architecture. The resulting robots fit then
only a restricted application context, because they are only resource-adapted. They quickly
become inappropriate when the execution context changes.

One possible change in the execution context is the use of robots with different capabilities
and resources. The same missions can be performed differently (reactively or in a more
deliberative way) according to robots resources. Therefore, it is interesting to be able at
deployment-time to tune agents "hybridity", i.e. switch some tasks from the reactive layer to
the deliberative one or vice versa. That is adapting the agent architecture statically between
two rescue operations.

Supporting static adaptation is not enough for mobile robots. Autonomous robots need
to dynamically adapt to resource evolutions while performing their tasks. Resource-adaptive
architectures allow addressing dynamic adaptations. However, such architectures are ad hoc
solutions that can not be reused and scaled. Therefore, an ideal robot control architecture
should be resource-adapting.

2 Adaptation in Questions

Adaptation is the process of conforming a software to new or different conditions [KBC02].
The history of adaptation dates back to the early days of computing, when "self-modifying
code" was used for dynamic optimizations in programs. Nonetheless, such programming was
generally considered as bad practice due to issues such as program inconsistency and difficulty
in debugging. More recently, interest in adaptation increased considerably, due in part to

2nd National Workshop on control Architectures of Robots - May 31 - June 1st - Paris

137



the needs of ubiquitous computing or autonomous systems, more generally to all the the
self-managing systems that deals with a changing environment. The adaptation process can
involve different actors that participate to at least one of the following 3 steps:

• Triggering the adaptation: The actor responsible of this step detects that an adaptation
is required. This detection implies sensing and analyzing some indicators about the
pertinence of adaptations.

• Deciding the adaptation to perform: This step results into the definition of a set of
changes representing the adaptation to perform. The output of this step may include
also the when to perform the adaptation and how to perform it (e.g. adaptation should
be performed atomically or not).

• Performing the adaptation: Decisions made in the previous step are realized at this
stage. Mechanisms used here should ensure that changes will be performed smoothly,
especially in case of run-time adaptation.

In order to compare adaptation solutions, we introduce the following 4 dimensions base on
existing criteria in literature [Sen03, Ket04, Dav05]:

What is adapted? This dimension is about the impact of adaptations, that is the kind of
changes performed.

• Changing the value of some parameters within a predefined range (e.g. size of a
cache). This is the simplest possible adaptation, but also the one with the least
impact. It don’t change algorithms and must always be anticipated. Besides, it does
not scale up well, since having too much parameters makes the software difficult to
develop, and maintain.

• Re-organizing the software either from the logical point of view or from the physi-
cal one. A logical re-organization stands for changing the connections between the
software’s building blocks (e.g. changing the superclass of some class). A phys-
ical re-organization stands for changing the location of some part of distributed
software.

• Additions, suppressions and replacements of some software entities. These oper-
ations allow performing totally unplanned adaptation. The software can even be
deeply changed. New building blocks implementing new functionalities or new
strategies can be introduced.

Who performs the adaptation? This dimension is about the autonomy of the adapted
software. The software can adapt itself, or it can be adapted by another software or by
a human (developer, administrator, end user). Actually, there are degrees of autonomy,
since each step of the adaptation process can be delegated to a different actor (human
or not). There are even more autonomy degrees since the triggering and the decision
steps can be more or less anticipated by developers.

• The triggering can be either fully done by a human. It can be automated by having a
software that matches some sensed data with some patterns specified by a human.
An even more advanced triggering autonomy is that the software autonomously
(without any data from humans) that an adaptation is needed (i.e. the software’s
functioning isn’t “satisfactory” anymore).
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• The decision process can be fully done by a human. It can be automated so
the software selects some adaptation among a set provided by a human (e.g. the
developer). Last the decision can be fully autonomous if the software builds “from
scratch” the set of changes to perform.

When does the adaptation occur? This dimension is about the point in time when adap-
tation is performed.

• Statically: the software is adapted during development stages (i.e. compile-time).
Static adaptation may also be performed later in the software’s life-cycle, on de-
ployment or load-time when more data about the actual execution context can be
collected.

• Dynamically: the adaptation is performed after the software is started. Delaying
adaptations to run-time allows making more relevant decisions as compared to static
adaptations. However, run-time adaptation is more challenging compared to the
static one. Care must be taken regarding the coherence of data and computations.

How is the adaptation performed? This dimension is about mechanisms and strategies
used to perform the adaptation, such as solutions to ensure software coherence (data
and computations) while dynamically adapted. The following criteria allow comparing
different approaches:

• Ease of use: this criterion refers to the effort that developers need to provide in
order to use a mechanism or a tool to perform adaptation. This is tightly related to
the declarativeness, abstractness and expressiveness of the solution. Expressiveness
includes the ability to define adaptations on only part of the software.

• Transparency: refers to the availability of software’s functionality during adapta-
tion. Transparency is maximized if the software “clients” (humans or other software)
are as less disturbed as possible (e.g. no freeze of the GUI).

• Efficiency: corresponds to the amount of resources (e.g. memory, cpu, energy)
required to perform adaptations. Ideally, adaptations should be as efficient as
possible, especially in embedded systems, where resources are scarce.

• Control: refers to the management and coordination of adaptation operations. It
can be centralized, if a single actor (human or software) supervises all operations.
Conversely, adaptation control can be distributed, which is more suitable for dis-
tributed systems, but raises coordination issues.

• Separation of Concerns: refers to the separation between the code that support
adaptation and the code that is actually adapted. Separation of concerns is a
desirable software engineering quality, as highlighted by approaches that improve
modularity such as Aspect-Oriented Software Development [KLM+97, FEAC05]
and Component-Based Software Engineering [SGM02].

3 An Abstract Adaptive Robot Control Architecture

3.1 Software Components are Suitable for Adaptation

Software component [SGM02] is a programming paradigm that aims at going beyond Object-
Oriented programming from the point of view of modularity, reuse and improvement of soft-
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ware quality. Indeed, a software component is a software entity which explicits its dependen-
cies and interactions with other components and resources it relies on. The exact definition of
what is a component is still an open issue, even though there exist multiple component mod-
els [DYK01, Gro04, BCS02, PBJ98]. However, most of them comply with Szyperski abstract
definition stating that “A component is a unit of composition with contractually specified
interfaces and explicit context dependecies only. A software component can be deployed in-
dependently and is subject to composition by third parties” [SGM02].

Software components are more suitable for supporting adaptation as compared to other
programming paradigms. Since dependencies are explicit, a component can be safely discon-
nected from a software and replaced by another one. The impact of the replacement can be
pre-determined because the connections and interactions between components are explicit.
No costly, complex and subject to failures analysis is required to identify the consequences of
such adaptation. Of course, if performed at run-time, this operation requires some mechanism
ensuring coherence of data and computations.

3.2 Requirements for an Adaptive Robot Control Architecture

Because of aforementioned benefits of software components, our first requirement is that the
targeted architecture should be component-based. The other requirements are listed below
based on adaptation dimensions provided in section 2.

What is adapted? We would like to perform arbitrary complex adaptations. Therefore,
adaptations should impact both component’s attributes, their connections to each other,
and their locations. It should also be possible to add, remove or replace components
in order to cope with unpredictable adaptations. In case of a hierarchical component
model, these operations can be performed at different levels. Adaptations should not
only be possible on top-level components, but they also should be applicable inside any
composite component. Therefore, it should be possible to alter the set of sub-components
of any composite component.

Who performs the adaptation? Mobile robots in our project may operate out of reach of
humans. Therefore, they have to be autonomous and make decisions without human
supervision. Such decisions may include adaptations. Human driven adaptations should
still be possible, however.

When does the adaptation occur? Adaptations have to be performed at run-time. In-
deed, stopping controllers may introduce delays that can be risky for robots in a danger-
ous area. And it’s undesirable regarding the emergency of rescue operations. Moreover,
since robots may adapt themselves autonomously, their control software should not be
stopped in order to actually perform adaptations.

How is the adaptation performed? We can stress that transparency and efficiency are
important criteria since adaptations has to be performed dynamically, and robots have
limited resources. Moreover, since efficiency may vary according to resources variations,
the targeted architecture should allow tuning the adaptation process. So, the adaptation
process should be itself adaptive.
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3.3 Abstract Architecture

In this section, we present our abstract architecture for robot control. This architecture is
abstract because: i) it’s incomplete. We highlight main components and those important
to adaptation. ii) it does not make any assumption about the component model to use, iii)
no specification is given for the actual implementation of used components, and iii) their
interfaces are not specified either. Only their roles are provided.

3.3.1 Overview

As shown by figure 2, our abstract architecture is a hybrid layered architecture inspired from
InteRRaP [Mül96] extended with reflective capabilities. Thanks to these capabilities, the
software agent is able to observe and adapt itself [Smi84, Mae87] to best fit its execution
context.

The architecture is organized in three layers running concurrently. Each layer may include
adaptation behavior. Performed adaptations may involve any part of the agent.
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Figure 2: Abstract Adaptive Robot Control Architecture

The top-most layer is the social planning layer that performs plans for coordination with
other agents. Such plans may include ones related to coordinating adaptation tasks. For
example, in the AROUND project, robots disseminated in some area have to decide which
ones should collect data and which one will be in charge of maintaining the mobile ad hoc
network and route messages. And in case the fleet is split into two or more groups, members
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of each group has to re-organize in order to set up again a communication path to rescue
central servers and still collect data.

The second layer is the local planning layer performs plans for making the agent have a
rational functioning. Performed plans can be related to adaptation. They not only decide
which adaptation to perform, but also when and how to perform it. An adaptation example
is making a robot switch from the exploration task to the ad hoc network maintenance task,
without having all skills for this new task. The plan is then to first roam until finding an
other robot that can provide the missing skills, then came-back to the original location, and
last actually perform the adaptation.

The bottom-most layer is the reactive layer. It groups reflexes that are triggered either by
some sensor’s value or by a change in the knowledge base. Reflexes may include adaptations
of any part of the agent, including the knowledge base and the social planning and the local
planning layers. These reflexes allow efficient adaptation decisions for cases where the robot
doesn’t have enough resources for planning adaptations.

The knowledge base is organized in a hierarchy of abstractions. Sensed data allows updat-
ing the world model, i.e. the agent’s beliefs about its environment. Of course such beliefs can
be of high-level which involves fusion of sensed data and inferences. The knowledge base also
includes the agent’s beliefs about itself (mental model) and about other agents (social model).
These beliefs may include knowledge that may trigger adaptations (e.g. battery low) or be
used for adaptations (e.g. cost of).

3.3.2 Adaptation Dimensions of Our Architecture

We present here our architecture according to adaptation dimensions presented in section 2.

What is adapted? Since our architecture is reflective, every part of the agent can be adapted.
The knowledge base and its inference mechanism can be altered. Every layer can be
adapted to add or remove behaviors or change the decision process that selects the
behavior to run. A notable adaptation is replacing a reflex with a plan or vice versa
and hence making the agent become more or less reactive or deliberative. We call such
adaptations hybridity tuning. Since the agent is reflective, adaptations can also concern
adaptation behavior. Indeed, adaptation planning or collaborations can prove expensive
regarding available resources. The agent then can switch to a more reactive adaptation
or even dismiss all components that drive adaptations.

Who performs the adaptation? Agent designers can intervene statically by for instance
removing a layer (e.g. agents without collaboration skills) or deciding which adaptations
to implement as reflexes and which others to implement as plans. Administrators can
trigger adaptations during the activity of agents. Besides, at run-time each agent can
autonomously perform its own adaptations. These adaptations can be driven by any
layer, including the social planning layer, since collaborative adaptations can be possible.
Two or more robots may agree to perform some adaptations and then perform them in
sync.

When does the adaptation occur? Our architecture supports both static and dynamic
adaptations. At run-time, the agent decides which adaptations to perform according
to faced situations and resource availability. An example of adaptation, a mobile robot
navigating within a maze can have a deliberative behavior to build its path. In case
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energetic resources are low, a possible adaptation can be to dismiss the navigation plan
and adopt only a reactive obstacle avoiding behavior. Static adaptation is performed
by the robot designer, often according to the targeted platform and previous knowledge
about the execution context. It consists in providing reflexes and plans that perform
the same tasks according to different strategies. Providing alternative strategies apply
also for adaptation. It is the result of the designer’s decision about how much freedom
is given to the agent to tune its hybridity.

How is the adaptation performed? In order to keep the adaptation process efficient even
in case of resource scarcity, the adaptation support is itself adaptive. This means that a
possible adaptation is to change the way to perform future adaptations. When resources
are very low, only reflex adaptations should be possible. Adaptation plans that consume
more resources, should be dismissed. Symmetrically, when more resources are available,
adaptation plans that compute smart cognitive adaptation decisions should be available.

4 Application to Anticipatory Agents

In this section, we instantiate our abstract architecture for building an anticipatory agent.
An anticipatory agent is a hybrid agent which is able to adapt itself according to predicted
changes of itself and its environment [Dav96, Dav03]. Such an agent combines a reactive fast
layer with a cognitive layer capable to perform predictions and adaptations to avoid undesired
situations before they occur actually.

In order to make our anticipatory agent architecture as much explicit as possible, we used
the MALEVA software component model[BMP06] to design and implement it1.

4.1 MALEVA: A Software Component Model Expliciting Data and Con-
trol Flows

In this example, we use the MALEVA component model [BMP06]. A MALEVA component
is a run-time software entity providing encapsulation like objects, while expliciting its inter-
actions with other components. MALEVA components interact only through their interfaces.
Interfaces can be of two kinds: data interfaces or control interfaces. Data interfaces are
dedicated to data exchange, while control interfaces are dedicated to control flow.

A component can be either active or passive. A passive component is a component that
does perform some computation only after being triggered through one of its control input
interfaces. Once the component computation is over, it stops until being again triggered. As
opposite, an active component don’t need to be triggered to act. It has a thread and thus can
autonomously run.

A component can do arbitrary computations, including reading data available on its data
input interfaces, sending data to other components through its data output interfaces, and
triggering other components through its control output interfaces. The activity (i.e. its
computations) of a component is suspended when triggering other components. The activity
is resumed once the triggered components have finished their own computations.

Last, MALEVA is a hierarchical component model. It allows building composite com-
ponents out of existing component. A composite encapsulates its sub-components. Sub-

1We used MalevaST the Smalltalk implementation of the MALEVA component model for our implemen-
tation. MalevaST is available under the MIT licence at: http://csl.ensm-douai.fr/MalevaST
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components can not be reached unless some of their interfaces are exported by the composite,
i.e. when the composite makes the sub-component interfaces available outside.

From the above quick description, we can see that the MALEVA components are close
to building blocks of the Brooks subsumption model in their encapsulation and interaction
through data exchange [Bro85]. This is why we chose MALEVA in order to define and imple-
ment our anticipatory hybrid agent architecture (see section 4.3). However, we have chosen
MALEVA also because it explicits the control flow and hence allows identifying concurrency
issues more easily.

4.2 From Prediction to Anticipatory Agents

Prediction is a statement made about the future. A typical example is the act of predicting
a trajectory such in the case of a moving object. Anticipation refers to taking prior actions
on the basis of prediction about the future. These actions can be directed to avoid or encour-
age a particular future. Robert Rosen’s [Ros85] standard definition of anticipatory systems
characterizes an anticipatory system as one "containing a predictive model of itself and/or
of its environment, which allows it to change state at an instant in accord with the model’s
predictions pertaining to a latter instant". Thus, anticipation could be viewed as a form of
model-based adaptation.

From the definition of Rosen, Davidsson [Dav03] defines a very simple class of anticipatory
agent system: it contains a causal system S and a model M of this system that provide
predictions of S. As the model M is not a perfect representation of the reactive system, this is
called a quasi-anticipatory system. This architecture is rather coarse-grain, it is only composed
of 5 parts:

• Sensors: provide information about the agent environment.

• Effectors: allow the agent to act upon its environment.

• Reactor: drives the effector in reaction to latest information provided by sensors.

• World Model: is an abstract view of the agent’s environment built based on data collected
using sensors.

• Anticipator: performs reactor modifications based on the world model.

4.3 A Maleva-based Anticipatory Agent Architecture

Figure 3 shows that our agent architecture is an assembly of six Maleva components. We can
see that in this example, the abstract model was adapted at design time by removing some
parts. The knowledge base is restricted to a single world model component. The social plan
layer is dismissed. The “Anticipator” component plays the role of the local plan layer but it
does only plan adaptations to perform on the reactor. The reactor provides two generic inter-
faces for modifications input: one for modification data flow and the second for modification
control flow. The former allows the anticipator to provide modifications to be performed on
the reactor, while the latter allows the anticipator to trigger the modifications. These two in-
terfaces can be viewed as the so-called “meta-interfaces” in the work on Open Implementation
[Kic96], since they allow a disciplined modification of the reactor.
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Figure 3: Maleva-based Anticipatory Agent Architecture

The “Reaction Ticker” is a generic active component that drives the agent’s reaction. It
defines the frequency at which the agent will sense its environment and react to changes.
Indeed, the “Reaction Ticker” triggers the Sensors component every m milliseconds, where m
is the duration between two ticks and depends on the application context.

The Sensors component2 collects data from the agent’s world and propagate it through
its data interfaces to both the reactor and the world model. Then, it triggers the activity of
both the anticipator and the reactor. When getting triggered, the reactor decides the appro-
priate reaction to perform and translates this decision into data propagated to the Effectors
component3.

Once updated by sensed data, the world model provides the new world state to the an-
ticipator. The anticipator is an active component that runs concurrently to the reactor. Its
ticking frequency is higher than the “Reaction Ticker” one, since the anticipator has to work
faster than the reactor, in order to make useful adaptations. This frequency can be easily
changed to tune the anticipator consumption of resources (computing, energy, . . . ), particu-
larly in case of embedded devices with low capabilities. This frequency can even be changed
dynamically, according to resource evolutions, such as the battery level in a mobile robot.

5 Related Work

There are numerous works that tackle the adaptation problem from a software perspective.
Some of them deals more explicitly with adaptation in the context of mobile robots or au-
tonomous agents.

ARM ARM [Mal06] is an Asynchronous Reflection Model used to control modular robots.
This work reconsiders the traditional "implements" link between the object-level layer and the
meta-level layer in a reflective system, that seems to be no more appropriate in an embedded or

2Actually, the Sensors component can be a composite with multiple subcomponents corresponding to dif-
ferent sensors.

3Actually, the Effectors component can also be a composite with multiple subcomponents corresponding to
different effectors.
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distributed context, either because the system lacks ressources or there is no more a centralized
state. ARM main idea is to found the "right combination of connection and detachment"
between the base and the meta-level by using a new reflective model based on an asynchronous
publish/subscribe communication model. Adaptations may lead to split an agent by “moving”
higher layers to remote hosts. Of course such adaptations need to take into account network
latencies.

Touring Machine and InteRRaP In [Fer92], Ferguson describes Touring Machine, a
vertical layered architecture for autonomous agents, that consists of three modules: a reactive
layer, a planning layer and a modeling layer. The modeling layer offers the possibility of
modifying plans based on changes on its environment that cannot be dealt with the replanning
mechanims of the planning layer. Similar ad-hoc adaptation mechanisms are found in the
InteRRap (’Integration of Reactivity and Rational Planning’) architecture [Mül96], a well-
known hybrid control architecture. These adaptations are made from top to bottom layers
and there is no possibility to modify the adaptation machinery. Moreover, these architectures
are not reflective.

Meta-Control Agents Meta-control agents introduced by Russell and Wefald [RW91] are
a specific form of horizontal modularization very similar to the layered hybrid architecture.
A rational agent has to solve two problems: optimize its external behavior according to the
available ressources in the environment and optimize its internal computing with respect to
computational ressources. These two problems are instantiated as two distincts levels: an
object-level sub-system and a meta-level sub-system monitoring and configuring the first one.
Hence, resource-adapting mechanisms are proposed as an architectural principle to balance
agents computations between several goals, tactics, and skills according to overall system
constraints. On contrary to the layered architectures like InteRRaP, the decoupling between of
the two level enhances separation of concerns in adaptation mecanisms. Using the InteRRaP-
R architecture[Jun99] Jung made an attempt to mix InteRRaP hybrid agents and the meta-
control. Each layer is responsible of adapting the layer below according to resource evolutions.
However, nothing is said about how and when the adaption should occur.

MaDcAr Grondin et al. [GBV06] introduced MaDcAr a Model for Automatic and Dy-
namic Component Assembly Reconfiguration. This model provides an abstract description
for an engine that allows assembling and re-assembling a component-based software, either
statically or at run-time. This engine has four inputs: a set of components to assemble, an
application description providing a specification of all valid assemblies, an assembling policy
and a set of sensors observing the execution context. According to sensed data, and based on
the assembling policy and the application description, the engine builds a constraint satisfac-
tion problem (CSP). The engine includes a constraint solver that allows solving the CSP and
finding out which components to assemble and according to which assembly blueprint. This
approach allows both building an application by automatically assembling components and
re-assembling the application according to the context. The set of components to assemble
and the application description may also vary, which in return causes a re-assembling.

Safran SAFRAN [Dav05] is an extension of the Fractal component model [BCS02] that
supports run-time adaptations. As opposite to MaDcAr Safran’s adaptation descriptions are
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spread over all components. The software’s designer assigns to each component an adaptation
policy that states when to trigger adaptations and which adaptations to actually perform.
This policy is expressed using a collection of reactive rules of the form Event–Condition–
Action. Events are generated by WildCAT, a part of Safran’s platform which observes the
software’s activity and its context. Each component selects within its adaptation policy, rules
that match received events. A second filtering is performed to keep only rules which condition
part evaluates to true. Last, adaptation is performed by execution action parts of remaining
rules.

6 Conclusion

Mobile robots in large and particularly those involved in Urban Search And Rescue operations
require a control architecture that is both fast and smart. Hybrid agent architectures seem
appropriate since they mix reactive behaviors with cognitive ones. So, they have reflexes to
quickly react to fast events, while they are still able to do long term plans. However, in
existing hybrid architecture the decision to implement an agent’s behavior as a reflex or as
plan is performed during development. The resulting control architecture does not take into
account the evolution of the robot’s resources and unplanned variations of its surrounding.

In this paper, we introduced a component based abstract adaptive hybrid agent architec-
ture that is suitable for controlling mobile robots in a changing environment. Based on the
InteRRaP [Mül96] model, our architecture has three layers for expressing reflexes, local plans
and collaboration (i.e. social) plans. In order to support adaptation and tune “hybridity”4,
we introduced reflexive capabilities that can be expressed in every layer. So, adaptations can
be expressed either as reflexes or as local plans or even as social plans to allow coordination of
adaptations of multiple agents. Reflective capabilities allow not only to trigger and perform
adaptations, but they also allow to decide when and how to perform adaptations. Besides, our
architecture is fully reflective. So, even adaptation description can be adapted for example to
allow only reactive adaptations if deliberative adaptations are too costly regarding available
resources.

The presented abstract architecture is a work in progress. We are currently in the process
of validating it through projections to concrete implementations. We described in this article a
first projection to Davidsson’s quasi-anticipatory agents [Dav03] using the Maleva component
model [BMP06]. Further investigations will be performed within the context of a robotic
USAR project. Experiments will be conducted with a fleet of wheeled mobile robots that
have to autonomously cooperate in order to explore a damaged area.
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Design Principles for a Universal Robotic Software Platform and
Application to URBI

Jean-Christophe Baillie

Abstract— The number of generic robots available today on
the market is increasing significantly. While this represents a
great opportunity to carry on research using advanced robotic
devices, including humanoid robots, there is still a serious
limitation: all these robots are totally incompatible in term of
software, and they are generally quite hard to program, lacking
the proper abstractions and properties needed in robotics. We
will present here a discussion on possible design rules for such
a universal software platform and review a few already existing
platforms with these criteria in mind. We will also introduce the
URBI platform which is the result of our effort in an attempt
to design a universal platform following these guidelines.

I. INTRODUCTION

Looking at what happens today in Japan, Korea and the
US, it appears that the number of generic robots available
on the market will be increasing significantly in the coming
years [9]. By ”generic robots”, we mean robots not specif-
ically designed for an industrial task but general purpose
robots, commonly usable in labs for research. Many of these
robots, including humanoid robots, integrate cameras, wifi
and on-board computers, and most of them are available for
an affordable price. This is a great opportunity for research
but while the hardware is making progresses, there is still
no clear generic software platform emerging that could make
these robots compatible and bring the benefits of cross-robot
compatibility and component reuse. This is a major issue and
several studies have highlighted the benefits of having such
a universal software platform [4], [8], [5], [6].

Of course, robot programming can be done in C++, even
in C, and to a certain extend every software platform is
formally identical. But we believe that the debate should not
be between using Java vs C++, or using a given technology
vs another. The important question is to think about good
properties of such a universal platform that would facilitate
its adoption by a vastly heterogeneous community, mostly
knowledgeable and sometimes already on-track with a soft-
ware platform of their own. How could such a paradox be
solved: to have a universal but also very flexible platform,
which still brings value added in the process and does
not stand just as an empty shell, while providing a clear
orientation towards robotics. This will be the topic of our
discussion in this article.

We claim that the URBI software platform developed in
our lab makes a significant progress in the direction of
such a universal platform. We will shortly present the key
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characteristics of URBI and compare it to other existing
software platforms.

II. WHAT ARE THE KEY REQUIREMENTS FOR A

UNIVERSAL ROBOTIC SOFTWARE PLATFORM?

The challenge that we are going to investigate is: how
could we design and promote a universal robotic software
platform in the research community, what are the key re-
quirement for such a platform?

As a guideline, there are three main questions that we
should keep in mind when we investigate the potential
features: are these features necessary, acceptable and usable
by the community?

• Being necessary is an obvious requirement, however
sometimes overlooked by “over-featured” solutions that
can drawn the user in useless complexity.

• Being acceptable means that the community can realis-
tically accept to use this feature which by essence cre-
ates certain constraints or enforces a point of view. For
example, forcing the use of the C language exclusively
or forcing the use of a very constrained class-based
architecture will not be acceptable by many users.

• Finally, usability means that, however necessary and
acceptable the feature is, it should be relatively easy
to understand and integrate. The risk is otherwise to
have a kind of ”complexity barrier” that prevents the
widespread usage of the platform.

Breaking one of the three above requirements might be
one the main reasons why we have not seen any successful
platform emerging yet.

We detail below four key characteristics that we believe are
required for a successful universal platform and whose im-
plementation should fit with the necessary/acceptable/usable
constraints presented above.

A. Flexibility

Being flexible means that the platform should be working
with any operating system, be interfaced easily with any
programming language and of course be suitable for any
type of robotic application.

A non flexible platform will typically enforce several
design choices and will, to a certain extend, constrain the user
into a predefined way. While this has the advantage to im-
prove general coherence and structure, it is also generally not
acceptable (in the sense defined above) by the community.
In fact, many research topics are precisely about finding a
good architecture, a good paradigm or structure for robotics.
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One can always bypass these constraints but at the cost of
heavy custom-made layers. The difficulty here is that most
platform developers claim to have a flexible solution, in the
sense that it is possible to do anything with it, as long as
one is ready to put enough effort in the process. A C++
library, like OPENR on the Aibo[10], is a good example.
Here, the notion of usability that we have introduced before
plays a central role. The flexility must be easy to implement,
natural (using well known concepts, like objet oriented
programming) and possibly transparent: no need to read a
long documentation to know how to use it, and no need
to develop, port or recreate preliminary tools/interfaces to
benefit from it.

Note that non-flexible platforms have been imposed al-
ready in other domains, like desktop computers, but there
was already a quasi monopolistic player to enforce it, which
is not the case today for robotics. So we believe that a non-
flexible platform (in the usable sense) will unlikely become
a widely used universal robotic platform.

B. Modularity

Modularity adds the possibility to plug components in the
platform to extend its capabilities. This is necessary to be
able to start cooperations between labs and the industry, by
developing and reusing modules for robotics. It is the basis
of a software industry for robotics. The need for modularity
is widely recognized, see for example [11], [15], [12].
Modularity is also imperative to move towards plug&play
hardware components for robotics.

Again, this constraint will be acceptable only if it is very
easy to deploy. Anyone should be able to develop compo-
nents and the unavoidable structuring constraints should be
reduced to the minimal, for the solution to be usable.

C. Powerful abstractions for robotics

Robotics is unlike classical computer related domains. The
main difference is that robots have to explore hypotheses,
runs things in parallel, react to events at various levels and
generally speaking integrate vastly more software technolo-
gies than a regular PC. Among the important technical dif-
ferences, parallelism and event-based programming are two
core requirement in any robotic application. The underlying
platform must support these abstractions natively.

Thread-based libraries on top of C++ or other languages
do not offer the appropriate abstraction needed for robotics.
The limitations of threads have been widely discussed al-
ready [16] and it is now recognized to be a major issue
in parallel application development, especially now that we
can see quad-core processors on the market. The main
limitation of threads in their most primitive declination is
that memory safe locking and code synchronization, which
is are very challenging problems, are left to the programmer.
This rapidly lead to bugs, even for careful and experienced
programmers.

Something new is needed to handle parallelism at the right
level of abstraction, just like object-oriented programming

brought something new to modular development. The bene-
fits of the abstractions available in C++ today compared to C
are now widely recognized, even if some resistance existed
at the beginning, and we claim that such a paradigm shift
is needed for robotics as well, to integrate parallelism and
event-based programming at the core of the platform.

Introducing some smart C++ classes to handle parallelism
will raise the problem of flexibility. Theses classes will
not be available in Python, Java or Matlab and, even if
it is possible, a important effort would have to be done
to provide a unified set of abstractions for all possible
languages. A intermediary programming scripting language,
with proper interfaces with other languages and integration of
parallel and event-driven abstractions is the direction we have
chosen. More and more, scripting languages are used as glue
between other compiled languages. Python or Ruby are two
famous examples. What these languages lack however for the
moment is the necessary abstractions adapted for robotics, at
least with a sufficient level of usability, as described above.

D. Simplicity

The above requirements generally tend to give birth to
very complicated software architectures which are confusing
and prevent the users to adopt them. Simplicity for usability
is a requirement of both the modular component architecture
and of the core platform technology in general.

It is of course hard to assess what is difficult and what
is simple, it will highly depend on the level of experience
of the user. This criteria can only be enforced by following
some common sense principle: reuse notions that exist, limit
the number of abstractions, build layered architectures where
the complexity of the knowledge necessary to perform a task
is proportional to the complexity of the task, etc.

It is however possible to measure the level of simplicity
reached once the platform has been released by looking at
the average user appreciation. This measure should be done
by any platform developer to validate his approach.

III. ADOPTION STRATEGIES

Beyond the technical questions mentioned above, the
question of the promotion of the platform is a generally
underestimated problem. The issue is not only to have the
platform adopted by the research community but also by
robot manufacturers. Relying on standardization comities
is a long and uncertain process, and releasing open-source
version on the Internet is generally not enough to attract the
proper attention on the solution, at least not in a short time.
In fact, some marketing is required.

Active promotion and continuous development, mainte-
nance and support are typically demanded by robot man-
ufacturers. This support can be achieved by a gathering of
universities granted with appropriate funding and political
will, or by a private company spin-off from the lab and
supported by the community. We believe that individual
initiatives or small lab projects will not be sufficient to
efficiently promote a universal software platform for robotics.
The issue of ”adoption strategies” should not rely only on
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the quality of the solution proposed, but deserves its proper
attention and financing.

IV. THE URBI PLATFORM

The URBI platform, developed initially by J.C. Baillie[1]
in the Cognitive Robotics Lab of ENSTA (Paris), is an
attempt to design a universal robotic software platform that
follows the above guidelines.

The URBI platform is based on a client/server architecture,
built on top of a new programming language called URBI. It
is possible to log into the robot with a simple telnet client and
start to enter URBI code to control the robot and the software
inside the robot. More advanced graphical and developer-
oriented tools are also available.

We detail here the main characteristics of URBI. This is
a very brief introduction, the reader is invited to get more
information in [2], [1], [3].

A. Why a new programming language?

There are already so many programming languages, why
should we add a new one to the list? The novelty of URBI
is that it brings new abstractions to handle parallelism and
event-based programming, directly integrated into the lan-
guage semantics. A component architecture is also directly
integrated in the language via a familiar object oriented
approach.

In terms of the general look & feel (types, control struc-
tures, objects, etc), URBI is fairly similar to other scripting
languages like Ruby, with a syntax based on C/C++ to make
it as familiar as possible to new users (usability constraint).

1) Parallelism: Parallelism is not handled via threads or
callbacks in the language, instead URBI introduces four
command separators: the classical semicolon, and the new
comma, pipe and ampersand. While the semicolon has its
usual serial semantics, the other separators add more possi-
bilities, including parallelism, to state how two commands
should be executed. Figure 1 illustrates the four semantics.

Fig. 1. Four types of command separators in URBI

Note that separators like pipe or ampersand are strict,
since they enforce respectively an immediate serialization
or parallelization of the commands. This can be used to
precisely describe synchronization processes. Comma and

semicolon however are loose, and the semantics allows for
a gap to exist.

One can build complex serial/parallel constructs very
easily. In the following code, C will start as soon as A and
B have both finished:

{ A & B } | C;

Threads are not required as they are transparently handled
by the URBI scheduler running in the language kernel inter-
preter, thus providing the right level of abstraction needed
for parallelism.

2) Event-based programming: Another important abstrac-
tion in URBI is how events can be handled in the language.
Consider the following code:

at (condition) action;

The action part will be executed once, each time the con-
dition becomes true. Another event handler is whenever,
which will execute the action in loops whenever the condition
is true and as long as the condition remains true. These
two commands are a bit similar to if and while, but
they remain in background and will constantly monitor the
condition to trigger the action if necessary.

It is also possible to emit events with parameters to send
signals between codes running in parallel or between clients.
The example below will trigger action(42):

at (myevent(x)) action(x);

emit myevent(42);

We will see in the next section an example that combines
parallel and event-based programming together with the
component architecture.

B. The UObject component architecture

URBI is an object oriented language, so you can use and
define objects as usual. What is more important is that you
can also plug C++ objects into the language very easily,
which is the base of the component architecture available in
URBI. The C++ object will then be visible and usable as
any other object in URBI; it is called a ”UObject”.

UObjects can be plugged, but they can also be unplugged
and then ran remotely as autonomous executable programs,
taking the address of the URBI Engine server as a parameter.
This allows to integrates distributed object management
directly in the language itself. For usability, note that, as
we already explained, the C++ code of the UObject is the
same whether it is plugged or ran in remote mode, it does
not even need to be recompiled and it can be switched at
runtime (relocatable objects).

CORBA, RT-Middleware or openHRP objects can also be
seen from within URBI, like in fact most existing distributed
object architecture, thus making URBI a central platform to
integrate various technologies.
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In summary: URBI plays the role of a central coordina-
tor/hub for a set of plugged or remote heterogeneous objects,
with parallel and event-based built-in capabilities. Shared
memory and message passing can be done simply via the
language structures.

Example
The example below can be used on the Aibo robot

(there is a free version of URBI for Aibo available on
www.urbiforge.org), and it will track the ball whenever the
robot sees it:

whenever (ball.visible) {
headPan.val += camera.xfov * ball.x
&
headTilt.val += camera.yfov * ball.y

};

headPan and headTilt are two UObjects controlling
the head motors, and ball is a UObject detecting and
localizing the ball in the image. Typically, headPan and
headTilt will be plugged in the robot like ”hardware
drivers”, while ball or other computer intensive objects
can be running remotely outside of the robot. The UObject
code is exactly the same in both cases (it is not even
necessary to recompile it) and the way to use the object inside
URBI is identical, which brings important features in term
of transparent distributed object management and usability.

Note that the UObject architecture provides ways to get
a notification whenever a specified variable is modified in
URBI. For example, the ball UObject requests a notifica-
tion on camera.val, thus making ball aware of any new
image to process.

This simple example shows also how URBI enables to
control motors by assigning the ‘val’ attribute of a motor
object in the language. This is very simple and can be used
in educational applications.

The UObject components in C++ have been designed
with simplicity in mind. A limited set of small changes
is necessary to port an existing C++ class into a UObject.
Extensions to Java and C# are in development, to extend the
acceptability of the feature.

C. Advantages of the client/server approach: liburbi

The client/server approach allows to interact with URBI
through a socket connection, from any existing programming
language. Liburbi is a set of GPL libraries for various lan-
guages like C++, C, Java, Matlab, Ruby, Python and others,
that allows to create connections to an URBI Engine, send
commands and receive messages asynchronously. Liburbi is
designed with simplicity in mind, as a proxy to the URBI
Engine and it does not add new abstractions or complexity
to the platform, which is essential for usability.

In the most degraded case, URBI can be seen as a
simple driver for the robot hardware, and can be used with
liburbi from within any programming language to provide a
common interface to any robot.

D. Advanced features for robotics

In addition to parallelism, event-based programming and
the object oriented UObject component architecture, URBI
brings several unique features that we briefly review here.
These features are direct consequences of the parallel nature
of the language and would not be semantically well defined
otherwise.

A simple assignment in URBI can target a variable to
reach a value in a given time or at a given speed, or
set a sinusoidal oscillation on it. The assignment is not
instantaneous anymore and can be run in parallel with others:

neck.val = 10 time:450ms
& leg.val = -45 speed:7.5
& tail.val = 14 sin:4s ampli:45;

Variables have a blend mode which specifies how con-
flicting simultaneous assignments should be handled - an
extension of the concept of ’mutexes’:

x->blend = add;
x = 1 & x = 3;
//now x equals 4

Any portion of code can be prefixed with a tag. It is
then later possible to stop, freeze, unfreeze this code from
anywhere using the tag name, which brings powerful features
to control the flow of execution of parallel codes:

mytag: { some code };
stop mytag;
freeze mytag;
unfreeze mytag;
...

Hierarchical tags and multi-tags are also available.
More details about the advanced features of URBI can be

found in the tutorial or reference manual [2].

E. Limitations

Currently embedded versions of URBI are limited to
robots who have a reasonably powerful CPU embedded
(typically ARM7 or more). It is written in C++ and must be
compiled for the hosting platform. This limitation is coun-
terbalanced by the fact that most robots can be controlled
remotely via a serial link or wifi connection, URBI running
on a PC or a Mac on the side. The general trend in robotics is
also to have more and more linux based robots with sufficient
CPU onboard.

Another limitation of URBI is the need to develop a set of
hardware UObjects for each new robot. This is similar to the
problem of driver development. Most of the time however,
the robot comes with a simple C API that can be wrapped
inside C++ UObjects in a few days. URBI is not an Operating
System and will rely on existing interfaces to the hardware,
thus limiting the driver development problem.

The real time aspect in URBI is dependent on the un-
derlying operating system. If the OS is capable of real-
time scheduling, then putting URBI in the highest priority
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will allow to guarantee a first level of real-time features
in URBI (at the level of URBI commands, not plugged
UObjects). The second stage is to include in URBI some
real-time oriented features, like priority flags for commands.
This is in development for version 2. Finally, work has to be
done on integration of UObjects in the real-time framework,
and integration with existing real-time platforms like RT-
Middleware.

Finally, the current limitation of URBI is its relatively
limited adoption and youth. There are currently nine different
robots that run URBI and one simulator (Webots), and about
20 to 25 universities that use it on a daily basis. One spin-
off company of our lab is currently promoting URBI towards
robot manufacturers to extend its coverage.

V. COMPARISON OF URBI WITH EXISTING PLATFORMS

URBI has been designed with the four above key con-
straints in mind: flexibility, modularity, parallel abstractions
for robotics, and simplicity. Other attempts are currently
made in the same direction and we will shortly review some
of the most significant here.

A. Player/Stage

Player/stage is a client/server based platform built on top
of C++. It is widely used in mobile robotics applications, in
particular with the Pioneer robots.

As a C++ library, it does not bring new abstractions in
term of parallelism or event programming: the user must
use threads and an event loop of his own. Flexibility is also
limited by the choice of a specific programming language,
but the client/server architecture enables in principe other
language interfaces, with a question mark on usability.

There is no distributed component architecture in
player/stage, except C++ built-in objects.

B. Microsoft Robotics Studio

The recent announcement by Microsoft to offer a uni-
versal robotic interface has been perceived as a very good
sign of the maturity of the robotics industry. It represents
a serious effort in the right direction for more advanced
abstractions for robotics, supported by a major software actor
capable of active promotion. It is however relying on a
.NET architecture which needs Microsoft Windows either
on the robot or on a remote computer, raising questions in
terms of flexibility. Generally speaking, several users have
reported that MRS remains relatively complex to master for
the moment.

C. CORBA

CORBA, the distributed component architecture developed
by OMG, provides much flexibility as it has been ported to
many type of languages. CORBA has no particular abstrac-
tions available for parallelism, except the object level par-
allelism, and events are handled with a usual asynchronous
object message passing mechanism.

One of the limitation of CORBA is that it is perceived
as a complex solution and it lacks of a central coordination

mechanism to interface the different CORBA objects. The
same applies to RT-Middleware currently developed in Japan.

Note that since URBI allows to dynamically create meth-
ods on an existing object at runtime, it is possible to create
a UObject that will connect to a CORBA or RT-Middleware
object, read the IDL and create appropriate hooks as URBI
object methods, to transparently interact with the remote
object. Effectively, this allow to transparently access CORBA
or RT-Middleware components, seen as regular objects in
URBI.

D. Others

Many others platforms exist, like Tekkotsu [6], Marie [7],
Orocos [11], Orca [12], ERSP [13] or Pyro [14]. Some
are based on a C++ library approach and rely on a rather
complex architecture. Some others, like Pyro, are notably
more simple and based on python, but do not include native
abstractions for parallelism or distributed objects at the
moment.

While each of these platforms brings its own clear benefits,
and do a great job in their specific domain, none of them at
the moment fits altogether with all the four requirements that
we have detailed.

VI. CONCLUSION

While there is still no clear leader in the field of universal
robotics software platform, the number of candidates is
increasing, like the number of robots. Reminding us of the
beginning of the 80’s and the Personal Computer revolution,
it is likely that one major platform will stand out in the future.
But unlike computer users in the 80’s, robot specialists
and end-users are today more knowledgable and aware of
the importance of design principles in order to have a
successful, flexible and adapted platform. We have presented
four key guidelines that should drive the development of
such a platform: flexibility, modularity, parallel abstractions
for robotics, and simplicity. We have claimed that each of
these characteristics is necessary and should be acceptable
and usable to make it suitable in a universal platform. Finally,
we have introduced the URBI platform which is the result
of our efforts towards such a universal platform. We also
summarized briefly some others candidates by comparing
their approach to the four criteria that we have stated.

URBI is currently available for free on www.urbiforge.org,
with documentation and a user forum. It is available in
particular for the Aibo and Mindstorm robots. We hope
that URBI can contribute to the development of robotics in
research and in the industry.
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